1
|
Wang Z, Xia M, Ma R, Zheng Z. Physiological and transcriptional analyses of Arabidopsis primary root growth in response to phosphate starvation under light and dark conditions. FRONTIERS IN PLANT SCIENCE 2025; 16:1557118. [PMID: 40276718 PMCID: PMC12018419 DOI: 10.3389/fpls.2025.1557118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025]
Abstract
Plants cope with Pi deficiency by triggering an array of adaptive responses, including the remodeling of root system architecture (RSA). Arabidopsis thaliana grown on a Pi-deficient (-Pi) medium in transparent Petri dishes exhibits an inhibition of primary root (PR) growth. Previous work has shown that direct illumination on roots by blue light is both required and sufficient for the Pi deficiency-induced inhibition of PR growth. However, whether light illumination on shoots of seedlings contributes to the inhibition of PR growth under -Pi condition and whether light signaling pathway is involved in this process remain largely unknown. In addition to Pi deficiency-induced inhibition of PR growth, how light affects the transcriptomic changes under -Pi also remains elusive. Here, we found that the inhibition of PR growth under -Pi condition is determined by light illumination on roots instead of shoots. Further experiments revealed that blue light receptors CRY1/CRY2 and key regulator in blue light signaling pathway HY5 play minor roles in this process. Finally, we evaluated the light effects on the transcriptomic changes during the inhibition of PR growth under -Pi condition. We found that light promotes the expression of many genes involved in stress and phytohormones-related processes and has both upregulated and downregulated effects on the expression of typical phosphate starvation-induced (PSI) genes. Taken together, our work further demonstrates our previous hypothesis that the inhibition of PR growth under -Pi condition is caused by blue light-triggered chemical reactions, rather than blue light signaling pathways. Apart from the inhibition of PR growth under -Pi, light exposure also results in substantial alterations of transcriptome under -Pi condition, encouraging us to carefully evaluate the phenotype under illuminated, transparent Petri dishes.
Collapse
Affiliation(s)
- Zhen Wang
- School of Agriculture, Forestry and Medicine, The Open University of China, Beijing, China
| | - Mingzhe Xia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Rui Ma
- Ministry of Education Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zai Zheng
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology and Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| |
Collapse
|
2
|
Xia C, Miranda J, Mendoza-Cozatl D, Ham BK, Ma J, Zhang C. Decoding Long-Distance Communication Under Mineral Stress: Advances in Vascular Signalling and Molecular Tools for Plant Resilience. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40091594 DOI: 10.1111/pce.15475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/13/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Mineral nutrients are essential for plant growth, development and crop yield. Under mineral deficient conditions, plants rely on a sophisticated network of signalling pathways to coordinate their molecular, physiological, and morphological responses. Recent research has shown that long-distance signalling pathways play a pivotal role in maintaining mineral homeostasis and optimising growth. This review explores the intricate mechanisms of long-distance signalling under mineral deficiencies, emphasising its importance as a communication network between roots and shoots. Through the vascular tissues, plants transport an array of signalling molecules, including phytohormones, small RNAs, proteins, small peptides, and mobile mRNAs, to mediate systemic responses. Vascular tissues, particularly companion cells, are critical hubs for sensing and relaying mineral deficiency signals, leading to rapid changes in mineral uptake and optimised root morphology. We highlight the roles of key signalling molecules in regulating mineral acquisition and stress adaptation. Advances in molecular tools, including TRAP-Seq, heterografting, and single-cell RNA sequencing, have recently unveiled novel aspects of long-distance signalling and its regulatory components. These insights underscore the essential role of vascular-mediated communication in enabling plants to navigate heterogeneous mineral distribution environments and suggest new avenues for improving crop resilience and mineral use efficiency.
Collapse
Affiliation(s)
- Chao Xia
- Department of Agronomy and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Juliana Miranda
- Department of Agronomy and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | | | - Byung-Koo Ham
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jianxin Ma
- Department of Agronomy and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Cankui Zhang
- Department of Agronomy and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
3
|
Chao ZF, Chao DY. Barriers and carriers for transition metal homeostasis in plants. PLANT COMMUNICATIONS 2025; 6:101235. [PMID: 39731291 PMCID: PMC11897463 DOI: 10.1016/j.xplc.2024.101235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/02/2024] [Accepted: 12/25/2024] [Indexed: 12/29/2024]
Abstract
Transition metals are types of metals with high chemical activity. They play critical roles in plant growth, development, reproduction, and environmental adaptation, as well as in human health. However, the acquisition, transport, and storage of these metals pose specific challenges due to their high reactivity and poor solubility. In addition, distinct yet interconnected apoplastic and symplastic diffusion barriers impede their movement throughout plants. To overcome these obstacles, plants have evolved sophisticated carrier systems to facilitate metal transport, relying on the tight coordination of vesicles, enzymes, metallochaperones, low-molecular-weight metal ligands, and membrane transporters for metals, ligands, and metal-ligand complexes. This review highlights recent advances in the homeostasis of transition metals in plants, focusing on the barriers to transition metal transport and the carriers that facilitate their passage through these barriers.
Collapse
Affiliation(s)
- Zhen-Fei Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Leibniz Institute of Plant Genetics & Crop Plant Research (IPK) OT Gatersleben, Corrensstr 3, 06466 Seeland, Germany
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
4
|
Gautrat P, Matton SEA, Oskam L, Shetty SS, van der Velde KJ, Pierik R. Lights, location, action: shade avoidance signalling over spatial scales. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:695-711. [PMID: 38767295 PMCID: PMC11805592 DOI: 10.1093/jxb/erae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/18/2024] [Indexed: 05/22/2024]
Abstract
Plants growing in dense vegetation need to flexibly position their photosynthetic organs to ensure optimal light capture in a competitive environment. They do so through a suite of developmental responses referred to as the shade avoidance syndrome. Below ground, root development is also adjusted in response to above-ground neighbour proximity. Canopies are dynamic and complex environments with heterogeneous light cues in the far-red, red, blue, and UV spectrum, which can be perceived by photoreceptors in spatially separated plant tissues. Molecular regulation of plant architecture adjustment via PHYTOCHROME-INTERACTING FACTOR transcription factors and growth-related hormones such as auxin, gibberellic acid, brassinosteroids, and abscisic acid were historically studied without much attention to spatial or tissue-specific context. Recent developments and technologies have, however, sparked strong interest in spatially explicit understanding of shade avoidance regulation. Other environmental factors such as temperature and nutrient availability interact with the molecular shade avoidance regulation network, often depending on the spatial location of the signals, and the responding organs. Here, we review recent advances in how plants respond to heterogeneous light cues and integrate these with other environmental signals.
Collapse
Affiliation(s)
- Pierre Gautrat
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Sanne E A Matton
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Lisa Oskam
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
- Experimental and Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Siddhant S Shetty
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Kyra J van der Velde
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
- Experimental and Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Ronald Pierik
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
5
|
Trofimov K, Mankotia S, Ngigi M, Baby D, Satbhai SB, Bauer P. Shedding light on iron nutrition: exploring intersections of transcription factor cascades in light and iron deficiency signaling. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:787-802. [PMID: 39115876 PMCID: PMC11805591 DOI: 10.1093/jxb/erae324] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/07/2024] [Indexed: 02/09/2025]
Abstract
In the dynamic environment of plants, the interplay between light-dependent growth and iron nutrition is a recurring challenge. Plants respond to low iron levels by adjusting growth and physiology through enhanced iron acquisition from the rhizosphere and internal iron pool reallocation. Iron deficiency response assays and gene co-expression networks aid in documenting physiological reactions and unraveling gene-regulatory cascades, offering insight into the interplay between hormonal and external signaling pathways. However, research directly exploring the significance of light in iron nutrition remains limited. This review provides an overview on iron deficiency regulation and its cross-connection with distinct light signals, focusing on transcription factor cascades and long-distance signaling. The circadian clock and retrograde signaling influence iron uptake and allocation. The light-activated shoot-to-root mobile transcription factor ELONGATED HYPOCOTYL5 (HY5) affects iron homeostasis responses in roots. Blue light triggers the formation of biomolecular condensates containing iron deficiency-induced protein complexes. The potential of exploiting the connection between light and iron signaling remains underutilized. With climate change and soil alkalinity on the rise, there is a need to develop crops with improved nutrient use efficiency and modified light dependencies. More research is needed to understand and leverage the interplay between light signaling and iron nutrition.
Collapse
Affiliation(s)
- Ksenia Trofimov
- Institute of Botany, Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| | - Samriti Mankotia
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, SAS Nagar, Punjab 140406, India
| | - Mary Ngigi
- Institute of Botany, Heinrich-Heine-University, D-40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| | - Dibin Baby
- Institute of Botany, Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| | - Santosh B Satbhai
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, SAS Nagar, Punjab 140406, India
| | - Petra Bauer
- Institute of Botany, Heinrich-Heine-University, D-40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| |
Collapse
|
6
|
Zeng D, Lv J, Li X, Liu H. The Arabidopsis blue-light photoreceptor CRY2 is active in darkness to inhibit root growth. Cell 2025; 188:60-76.e20. [PMID: 39549699 DOI: 10.1016/j.cell.2024.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/16/2024] [Accepted: 10/16/2024] [Indexed: 11/18/2024]
Abstract
Cryptochromes (CRYs) are blue-light receptors that regulate diverse aspects of plant growth. However, whether and how non-photoexcited CRYs function in darkness or non-blue-light conditions is unknown. Here, we show that CRY2 affects the Arabidopsis transcriptome even in darkness, revealing a non-canonical function. CRY2 suppresses cell division in the root apical meristem to downregulate root elongation in darkness. Blue-light oligomerizes CRY2 to de-repress root elongation. CRY2 physically interacts with FORKED-LIKE 1 (FL1) and FL3, and these interactions are inhibited by blue light, with only monomeric but not dimeric CRY2 able to interact. FL1 and FL3 associate with the chromatin of cell division genes to facilitate their transcription. This pro-growth activity is inhibited by CRY2's physical interaction with FLs in darkness. Plants have evolved to perceive both blue-light and dark cues to coordinate activation and repression of competing developmental processes in above- and below-ground organs through economical and dichotomous use of ancient light receptors.
Collapse
Affiliation(s)
- Desheng Zeng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China; University of Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Junqing Lv
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China; University of Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Xu Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Hongtao Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China.
| |
Collapse
|
7
|
Giustozzi M, Freytes SN, Ferreyra MLF, Cerdán P, Casati P. Mediator subunit 17 regulates light and darkness responses in Arabidopsis plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112285. [PMID: 39419120 DOI: 10.1016/j.plantsci.2024.112285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/06/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Mediator 17 (MED17) is part of the head of the Mediator complex, which regulates transcription initiation in different eukaryotic organisms, including plants. We have previously characterized MED17 roles in Arabidopsis plants exposed to UV-B radiation, revealing its involvement in various aspects of the DNA damage response after exposure. med17 mutant plants showed altered HY5 expression, which encodes a transcription factor with a central role in photomorphogenesis. Our results demonstrate that med17 mutants show altered photomorphogenic responses and also to darkness, when compared to WT plants, and these differences could be due to altered expression of genes encoding key regulators of light and darkness signaling pathways, such as HY5, COP1 and PIF3. Moreover, med17 mutants exhibit transcriptome changes similar to those previously reported in plants exposed to red and blue light, as well as those previously described for photoreceptor mutants. Interestingly, med17 and hy5 mutants show a similar set of differentially expressed genes compared to WT plants, which suggests that both proteins may participate in a common light and dark-induced signaling pathways. Together, our data provides evidence that MED17 is an important regulator of the light and darkness responses in Arabidopsis.
Collapse
Affiliation(s)
- Marisol Giustozzi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | | | - María Lorena Falcone Ferreyra
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Pablo Cerdán
- Fundación Instituto Leloir, IIBBA, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina.
| |
Collapse
|
8
|
Clúa J, Jaskolowski A, Abriata LA, Poirier Y. Spotlight on cytochrome b561 and DOMON domain proteins. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00308-X. [PMID: 39674795 DOI: 10.1016/j.tplants.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/28/2024] [Accepted: 11/19/2024] [Indexed: 12/16/2024]
Abstract
Biotic and abiotic stresses constrain plant growth worldwide. Therefore, understanding the molecular mechanisms contributing to plant resilience is key to achieving food security. In recent years, proteins containing dopamine β-monooxygenase N-terminal (DOMON) and/or cytochrome b561 domains have been identified as important regulators of plant responses to multiple stress factors. Recent findings show that these proteins control the redox states of different cellular compartments to modulate plant development, stress responses, and iron homeostasis. In this review, we analyze the distribution and structure of proteins with DOMON and/or cytochrome b561 domains in model plants. We also discuss their biological roles and the molecular mechanisms by which this poorly characterized group of proteins exert their functions.
Collapse
Affiliation(s)
- Joaquín Clúa
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Aime Jaskolowski
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Luciano A Abriata
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland; Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Yves Poirier
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Hwang H, Lim Y, Oh MM, Choi H, Shim D, Song YH, Cho H. Spatiotemporal bifurcation of HY5-mediated blue-light signaling regulates wood development during secondary growth. Proc Natl Acad Sci U S A 2024; 121:e2407524121. [PMID: 39585973 PMCID: PMC11626169 DOI: 10.1073/pnas.2407524121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024] Open
Abstract
Plants have evolved photoreceptors to optimize their development during primary growth, including germination, hypocotyl elongation, cotyledon opening, and root growth, allowing them to adapt to challenging light conditions. The light signaling transduction pathway during seedling establishment has been extensively studied, but little molecular evidence is available for light-regulated secondary growth, and how light regulates cambium-derived tissue production remains largely unexplored. Here, we show that CRYPTOCHROME (CRY)-dependent blue light signaling and the subsequent attenuation of ELONGATED HYPOCOTYL 5 (HY5) movement to hypocotyls are key inducers of xylem fiber differentiation in Arabidopsis thaliana. Using grafted chimeric plants and hypocotyl-specific transcriptome sequencing of light signaling mutants under controlled light conditions, we demonstrate that the perception of blue light by CRYs in shoots drives secondary cell wall (SCW) deposition at xylem fiber cells during the secondary growth of hypocotyls. We propose that HY5 is a blue light-responsive mobile protein that inhibits xylem fiber formation via direct transcriptional repression of NAC SECONDARY WALL THICKENING PROMOTING 3 (NST3). CRYs retain HY5 in the nucleus, impede its long-distance transport from leaf to hypocotyl, and they initiate NST3-driven SCW gene expression, thereby triggering xylem fiber production. Our findings shed light on the long-range CRYs-HY5-NST3 signaling cascade that shapes xylem fiber development, highlighting the activity of HY5 as a transcriptional repressor during secondary growth.
Collapse
Affiliation(s)
- Hyeona Hwang
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju28644, Korea
| | - Yookyung Lim
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju28644, Korea
| | - Myung-Min Oh
- Department of Horticultural Science, Chungbuk National University, Cheongju28644, Korea
| | - Hyunmo Choi
- Department of Forest Bioresources, National Institute of Forest Science, Suwon16631, Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon34134, Korea
| | - Young Hun Song
- Department of Agricultural Biotechnology, Seoul National University, Seoul08826, Korea
| | - Hyunwoo Cho
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju28644, Korea
| |
Collapse
|
10
|
Chen Y, Ince YÇ, Kawamura A, Favero DS, Suzuki T, Sugimoto K. ELONGATED HYPOCOTYL5-mediated light signaling promotes shoot regeneration in Arabidopsis thaliana. PLANT PHYSIOLOGY 2024; 196:2549-2564. [PMID: 39315875 DOI: 10.1093/plphys/kiae474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024]
Abstract
Injured plant somatic tissues regenerate themselves by establishing shoot or root meristems. In Arabidopsis (Arabidopsis thaliana), a two-step culture system ensures regeneration by first promoting the acquisition of pluripotency and subsequently specifying the fate of new meristems. Although previous studies have reported the importance of phytohormones auxin and cytokinin in determining the fate of new meristems, whether and how environmental factors influence this process remains elusive. In this study, we investigated the impact of light signals on shoot regeneration using Arabidopsis hypocotyls as explants. We found that light signals promote shoot regeneration while inhibiting root formation. ELONGATED HYPOCOTYL 5 (HY5), the pivotal transcriptional factor in light signaling, plays a central role in this process by mediating the expression of key genes controlling the fate of new meristems. Specifically, HY5 directly represses root development genes and activates shoot meristem genes, leading to the establishment of shoot progenitor from pluripotent callus. We further demonstrated that the early activation of photosynthesis is critical for shoot initiation, and this is transcriptionally regulated downstream of HY5-dependent pathways. In conclusion, we uncovered the intricate molecular mechanisms by which light signals control the establishment of new meristems through the regulatory network governed by HY5, thus highlighting the influence of light signals on plant developmental plasticity.
Collapse
Affiliation(s)
- Yu Chen
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-Ku, Tokyo 113-0033, Japan
- RIKEN, Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Yetkin Çaka Ince
- RIKEN, Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Ayako Kawamura
- RIKEN, Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - David S Favero
- RIKEN, Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Keiko Sugimoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-Ku, Tokyo 113-0033, Japan
- RIKEN, Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
11
|
Okada K, Yachi K, Nguyen TAN, Kanno S, Yasuda S, Tadai H, Tateda C, Lee TH, Nguyen U, Inoue K, Tsuchida N, Ishihara T, Miyashima S, Hiruma K, Miwa K, Maekawa T, Notaguchi M, Saijo Y. Defense-related callose synthase PMR4 promotes root hair callose deposition and adaptation to phosphate deficiency in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2639-2655. [PMID: 39544094 DOI: 10.1111/tpj.17134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/10/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024]
Abstract
Plants acquire phosphorus (P) primarily as inorganic phosphate (Pi) from the soil. Under Pi deficiency, plants induce an array of physiological and morphological responses, termed phosphate starvation response (PSR), thereby increasing Pi acquisition and use efficiency. However, the mechanisms by which plants adapt to Pi deficiency remain to be elucidated. Here, we report that deposition of a β-1,3-glucan polymer called callose is induced in Arabidopsis thaliana root hairs under Pi deficiency, in a manner independent of PSR-regulating PHR1/PHL1 transcription factors and LPR1/LPR2 ferroxidases. Genetic studies revealed PMR4 (GSL5) callose synthase being required for the callose deposition in Pi-depleted root hairs. Loss of PMR4 also reduces Pi acquisition in shoots and plant growth under low Pi conditions. The defects are not recovered by simultaneous disruption of SID2, mediating defense-associated salicylic acid (SA) biosynthesis, excluding SA defense activation from the cause of the observed pmr4 phenotypes. Grafting experiments and characterization of plants expressing PMR4 specifically in root hair cells suggest that a PMR4 pool in the cell type contributes to shoot growth under Pi deficiency. Our findings thus suggest an important role for PMR4 in plant adaptation to Pi deficiency.
Collapse
Affiliation(s)
- Kentaro Okada
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-cho, Ikoma, 630-0192, Japan
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Koei Yachi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-cho, Ikoma, 630-0192, Japan
| | - Tan Anh Nhi Nguyen
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-cho, Ikoma, 630-0192, Japan
| | - Satomi Kanno
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
| | - Shigetaka Yasuda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-cho, Ikoma, 630-0192, Japan
| | - Haruna Tadai
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-cho, Ikoma, 630-0192, Japan
| | - Chika Tateda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-cho, Ikoma, 630-0192, Japan
| | - Tae-Hong Lee
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-cho, Ikoma, 630-0192, Japan
| | - Uyen Nguyen
- Institute for Plant Sciences, University of Cologne, Cologne, D-50674, Germany
| | - Kanako Inoue
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-cho, Ikoma, 630-0192, Japan
| | - Natsuki Tsuchida
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-cho, Ikoma, 630-0192, Japan
| | - Taiga Ishihara
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-cho, Ikoma, 630-0192, Japan
| | - Shunsuke Miyashima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-cho, Ikoma, 630-0192, Japan
| | - Kei Hiruma
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-cho, Ikoma, 630-0192, Japan
| | - Kyoko Miwa
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Takaki Maekawa
- Institute for Plant Sciences, University of Cologne, Cologne, D-50674, Germany
- CEPLAS Cluster of Excellence on Plant Sciences at the University of Cologne, Cologne, D-50674, Germany
| | - Michitaka Notaguchi
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Yusuke Saijo
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-cho, Ikoma, 630-0192, Japan
| |
Collapse
|
12
|
Sheng H, Bouwmeester HJ, Munnik T. Phosphate promotes Arabidopsis root skewing and circumnutation through reorganisation of the microtubule cytoskeleton. THE NEW PHYTOLOGIST 2024; 244:2311-2325. [PMID: 39360424 PMCID: PMC11579438 DOI: 10.1111/nph.20152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
Phosphate (Pi) plays a key role in plant growth and development. Hence, plants display a range of adaptations to acquire it, including changes in root system architecture (RSA). Whether Pi triggers directional root growth is unknown. We investigated whether Arabidopsis roots sense Pi and grow towards it, that is whether they exhibit phosphotropism. While roots did exhibit a clear Pi-specific directional growth response, it was, however, always to the left, independent of the direction of the Pi gradient. We discovered that increasing concentrations of KH2PO4, trigger a dose-dependent skewing response, in both primary and lateral roots. This phenomenon is Pi-specific - other nutrients do not trigger this - and involves the reorganisation of the microtubule cytoskeleton in epidermal cells of the root elongation zone. Higher Pi levels promote left-handed cell file rotation that results in right-handed, clockwise, root growth and leftward skewing as a result of the helical movement of roots (circumnutation). Our results shed new light on the role of Pi in root growth, and may provide novel insights for crop breeding to optimise RSA and P-use efficiency.
Collapse
Affiliation(s)
- Hui Sheng
- Plant Cell Biology, Green Life Sciences Cluster, Swammerdam Institute for Life SciencesUniversity of AmsterdamScience Park 904Amsterdam1098 XHthe Netherlands
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life SciencesUniversity of AmsterdamScience Park 904Amsterdam1098 XHthe Netherlands
| | - Harro J. Bouwmeester
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life SciencesUniversity of AmsterdamScience Park 904Amsterdam1098 XHthe Netherlands
| | - Teun Munnik
- Plant Cell Biology, Green Life Sciences Cluster, Swammerdam Institute for Life SciencesUniversity of AmsterdamScience Park 904Amsterdam1098 XHthe Netherlands
| |
Collapse
|
13
|
Liu C, Bai Z, Luo Y, Zhang Y, Wang Y, Liu H, Luo M, Huang X, Chen A, Ma L, Chen C, Yuan J, Xu Y, Zhu Y, Mu J, An R, Yang C, Chen H, Chen J, Li Z, Li X, Dong Y, Zhao J, Shen X, Jiang L, Feng X, Yu P, Wang D, Chen X, Li N. Multiomics dissection of Brassica napus L. lateral roots and endophytes interactions under phosphorus starvation. Nat Commun 2024; 15:9732. [PMID: 39523413 PMCID: PMC11551189 DOI: 10.1038/s41467-024-54112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Many plants associate with endophytic microbes that improve root phosphorus (P) uptake. Understanding the interactions between roots and endophytes can enable efforts to improve P utilization. Here, we characterize the interactions between lateral roots of endophytes in a core collection of 50 rapeseed (Brassica napus L.) genotypes with differing sensitivities to low P conditions. With the correlation analysis result between bacterial abundance and plant physiological indices of rapeseeds, and inoculation experiments on plates and soil, we identify one Flavobacterium strain (C2) that significantly alleviates the P deficiency phenotype of rapeseeds. The underlying mechanisms are explored by performing the weighted gene coexpression network analysis (WGCNA), and conducting genome-wide association studies (GWAS) using Flavobacterium abundance as a quantitative trait. Under P-limited conditions, C2 regulates fatty acid and lipid metabolic pathways. For example, C2 improves metabolism of linoleic acid, which mediates root suberin biosynthesis, and enhances P uptake efficiency. In addition, C2 suppresses root jasmonic acid biosynthesis, which depends on α-linolenic acid metabolism, improving C2 colonization and activating P uptake. This study demonstrates that adjusting the endophyte composition can modulate P uptake in B. napus plants, providing a basis for developing agricultural microbial agents.
Collapse
Affiliation(s)
- Can Liu
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Zhen Bai
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yu Luo
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Yongfeng Wang
- College of Agriculture, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, Henan, China
| | - Hexin Liu
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Meng Luo
- Shanghai Majorbio Research Institute, Shanghai, 201203, PR China
| | - Xiaofang Huang
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Anle Chen
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Lige Ma
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Chen Chen
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Jinwei Yuan
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Ying Xu
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Yantao Zhu
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Jianxin Mu
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Ran An
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Cuiling Yang
- College of Agriculture, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, Henan, China
| | - Hao Chen
- College of Agriculture, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, Henan, China
| | - Jiajie Chen
- Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou, 310012, China
| | - Zaifang Li
- Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou, 310012, China
| | - Xiaodan Li
- Shanghai Majorbio Research Institute, Shanghai, 201203, PR China
| | - Yachen Dong
- Shanghai Majorbio Research Institute, Shanghai, 201203, PR China
| | - Jianhua Zhao
- Shanghai Majorbio Research Institute, Shanghai, 201203, PR China
| | - Xingxing Shen
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
- Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou, 310012, China
| | - Lixi Jiang
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Xianzhong Feng
- Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou, 310012, China
| | - Peng Yu
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany.
- Plant Genetics, School of Life Sciences, Technical University of Munich, Freising, D-85354, Germany.
| | - Daojie Wang
- College of Agriculture, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, Henan, China.
| | - Xinping Chen
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China.
| | - Nannan Li
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China.
- Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou, 310012, China.
- Yazhouwan National Laboratory, Sanya, 572025, China.
| |
Collapse
|
14
|
Singh Rawat S, Laxmi A. Light at the end of the tunnel: integrating signaling pathways in the coordination of lateral root development. Biochem Soc Trans 2024; 52:1895-1908. [PMID: 39171690 DOI: 10.1042/bst20240049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Root system architecture (RSA) encompasses a range of physical root attributes, including the lateral roots (LRs), root hairs and adventitious roots, in addition to the primary or main root. This overall structure is a crucial trait for efficient water and mineral capture alongside providing anchorage to the plant in the soil and is vital for plant productivity and fitness. RSA dynamics are dependent upon various environmental cues such as light, soil pH, water, mineral nutrition and the belowground microbiome. Among these factors, light signaling through HY5 significantly influences the flexibility of RSA by controlling different signaling pathways that converge at photoreceptors-mediated signaling, also present in the 'hidden half'. Furthermore, several phytohormones also drive the formation and emergence of LRs and are critical to harmonize intra and extracellular stimuli in this regard. This review endeavors to elucidate the impact of these interactions on RSA, with particular emphasis on LR development and to enhance our understanding of the fundamental mechanisms governing the light-regulation of LR growth and physiology.
Collapse
Affiliation(s)
- Sanjay Singh Rawat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
15
|
Yang X, Liu C, Liang C, Wang T, Tian J. The Phosphorus-Iron Nexus: Decoding the Nutrients Interaction in Soil and Plant. Int J Mol Sci 2024; 25:6992. [PMID: 39000100 PMCID: PMC11241702 DOI: 10.3390/ijms25136992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Phosphorus (P) and iron (Fe) are two essential mineral nutrients in plant growth. It is widely observed that interactions of P and Fe could influence their availability in soils and affect their homeostasis in plants, which has received significant attention in recent years. This review presents a summary of latest advances in the activation of insoluble Fe-P complexes by soil properties, microorganisms, and plants. Furthermore, we elucidate the physiological and molecular mechanisms underlying how plants adapt to Fe-P interactions. This review also discusses the current limitations and presents potential avenues for promoting sustainable agriculture through the optimization of P and Fe utilization efficiency in crops.
Collapse
Affiliation(s)
| | | | | | - Tianqi Wang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.Y.); (C.L.); (C.L.); (J.T.)
| | | |
Collapse
|
16
|
Li G, Wu J, Kronzucker HJ, Li B, Shi W. Physiological and molecular mechanisms of plant-root responses to iron toxicity. JOURNAL OF PLANT PHYSIOLOGY 2024; 297:154257. [PMID: 38688043 DOI: 10.1016/j.jplph.2024.154257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
The chemical form and physiological activity of iron (Fe) in soil are dependent on soil pH and redox potential (Eh), and Fe levels in soils are frequently elevated to the point of causing Fe toxicity in plants, with inhibition of normal physiological activities and of growth and development. In this review, we describe how iron toxicity triggers important physiological changes, including nitric-oxide (NO)-mediated potassium (K+) efflux at the tips of roots and accumulation of reactive oxygen species (ROS) and reactive nitrogen (RNS) in roots, resulting in physiological stress. We focus on the root system, as the first point of contact with Fe in soil, and describe the key processes engaged in Fe transport, distribution, binding, and other mechanisms that are drawn upon to defend against high-Fe stress. We describe the root-system regulation of key physiological processes and of morphological development through signaling substances such as ethylene, auxin, reactive oxygen species, and nitric oxide, and discuss gene-expression responses under high Fe. We especially focus on studies on the physiological and molecular mechanisms in rice and Arabidopsis under high Fe, hoping to provide a valuable theoretical basis for improving the ability of crop roots to adapt to soil Fe toxicity.
Collapse
Affiliation(s)
- Guangjie Li
- State Key Laboratory of Nutrient Use and Management, Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Jinlin Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Herbert J Kronzucker
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Baohai Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China; University of the Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China.
| |
Collapse
|
17
|
Trofimov K, Gratz R, Ivanov R, Stahl Y, Bauer P, Brumbarova T. FER-like iron deficiency-induced transcription factor (FIT) accumulates in nuclear condensates. J Cell Biol 2024; 223:e202311048. [PMID: 38393070 PMCID: PMC10890924 DOI: 10.1083/jcb.202311048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/28/2023] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The functional importance of nuclear protein condensation remains often unclear. The bHLH FER-like iron deficiency-induced transcription factor (FIT) controls iron acquisition and growth in plants. Previously described C-terminal serine residues allow FIT to interact and form active transcription factor complexes with subgroup Ib bHLH factors such as bHLH039. FIT has lower nuclear mobility than mutant FITmSS271AA. Here, we show that FIT undergoes a light-inducible subnuclear partitioning into FIT nuclear bodies (NBs). Using quantitative and qualitative microscopy-based approaches, we characterized FIT NBs as condensates that were reversible and likely formed by liquid-liquid phase separation. FIT accumulated preferentially in NBs versus nucleoplasm when engaged in protein complexes with itself and with bHLH039. FITmSS271AA, instead, localized to NBs with different dynamics. FIT colocalized with splicing and light signaling NB markers. The NB-inducing light conditions were linked with active FIT and elevated FIT target gene expression in roots. FIT condensation may affect nuclear mobility and be relevant for integrating environmental and Fe nutrition signals.
Collapse
Affiliation(s)
- Ksenia Trofimov
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Regina Gratz
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Yvonne Stahl
- Institute for Developmental Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tzvetina Brumbarova
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
18
|
Mankotia S, Jakhar P, Satbhai SB. HY5: a key regulator for light-mediated nutrient uptake and utilization by plants. THE NEW PHYTOLOGIST 2024; 241:1929-1935. [PMID: 38178773 DOI: 10.1111/nph.19516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
ELONGATED HYPOCOTYL 5 (HY5), a bZIP-type transcription factor, is a master regulator of light-mediated responses. ELONGATED HYPOCOTYL 5 binds to the promoter of c. 3000 genes, thereby regulating various physiological and biological processes, including photomorphogenesis, flavonoid biosynthesis, root development, response to abiotic stress and nutrient homeostasis. In recent decades, it has become clear that light signaling plays a crucial role in promoting nutrient uptake and assimilation. Recent studies have revealed the molecular mechanisms underlying such encouraging effects and the crucial function of the transcription factor HY5, whose activity is regulated by many photoreceptors. The discovery that HY5 directly activates the expression of genes involved in nutrient uptake and utilization, including several nitrogen, iron, sulphur, phosphorus and copper uptake and assimilation-related genes, enhances our understanding of how light signaling regulates uptake and utilisation of multiple nutrients in plants. Here, we review recent advances in the role of HY5 in light-dependent nutrient uptake and utilization.
Collapse
Affiliation(s)
- Samriti Mankotia
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, SAS Nagar, Punjab, 140306, India
| | - Pooja Jakhar
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, SAS Nagar, Punjab, 140306, India
| | - Santosh B Satbhai
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, SAS Nagar, Punjab, 140306, India
| |
Collapse
|
19
|
Kaya C, Uğurlar F, Ashraf M, Alyemeni MN, Dewil R, Ahmad P. Mitigating salt toxicity and overcoming phosphate deficiency alone and in combination in pepper (Capsicum annuum L.) plants through supplementation of hydrogen sulfide. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119759. [PMID: 38091729 DOI: 10.1016/j.jenvman.2023.119759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 01/14/2024]
Abstract
While it is widely recognized that hydrogen sulfide (H2S) promotes plant stress tolerance, the precise processes through which H2S modulates this process remains unclear. The processes by which H2S promotes phosphorus deficiency (PD) and salinity stress (SS) tolerance, simulated individually or together, were examined in this study. The adverse impacts on plant biomass, total chlorophyll and chlorophyll fluorescence were more pronounced with joint occurrence of PD and SS than with individual application. Malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolyte leakage (EL) levels in plant leaves were higher in plants exposed to joint stresses than in plants grown under an individual stress. When plants were exposed to a single stress as opposed to both stressors, sodium hydrosulfide (NaHS) treatment more efficiently decreased EL, MDA, and H2O2 concentrations. Superoxide dismutase, peroxidase, glutathione reductase and ascorbate peroxidase activities were increased by SS alone or in conjunction with PD, whereas catalase activity decreased significantly. The favorable impact of NaHS on all the evaluated attributes was reversed by supplementation with 0.2 mM hypotaurine (HT), a H2S scavenger. Overall, the unfavorable effects caused to NaHS-supplied plants by a single stress were less severe compared with those caused by the combined administration of both stressors.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey.
| | - Ferhat Uğurlar
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Pakistan
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Raf Dewil
- Department of Chemical Engineering, KU Leuven, Belgium; Department of Engineering Science, University of Oxford, United Kingdom
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama, 192301, Jammu and Kashmir, India.
| |
Collapse
|
20
|
Khan GA, Dutta A, van de Meene A, Frandsen KEH, Ogden M, Whelan J, Persson S. Phosphate starvation regulates cellulose synthesis to modify root growth. PLANT PHYSIOLOGY 2024; 194:1204-1217. [PMID: 37823515 PMCID: PMC10828208 DOI: 10.1093/plphys/kiad543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/15/2023] [Accepted: 09/24/2023] [Indexed: 10/13/2023]
Abstract
In the model plant Arabidopsis (Arabidopsis thaliana), the absence of the essential macro-nutrient phosphate reduces primary root growth through decreased cell division and elongation, requiring alterations to the polysaccharide-rich cell wall surrounding the cells. Despite its importance, the regulation of cell wall synthesis in response to low phosphate levels is not well understood. In this study, we show that plants increase cellulose synthesis in roots under limiting phosphate conditions, which leads to changes in the thickness and structure of the cell wall. These changes contribute to the reduced growth of primary roots in low-phosphate conditions. Furthermore, we found that the cellulose synthase complex (CSC) activity at the plasma membrane increases during phosphate deficiency. Moreover, we show that this increase in the activity of the CSC is likely due to alterations in the phosphorylation status of cellulose synthases in low-phosphate conditions. Specifically, phosphorylation of CELLULOSE SYNTHASE 1 (CESA1) at the S688 site decreases in low-phosphate conditions. Phosphomimic versions of CESA1 with an S688E mutation showed significantly reduced cellulose induction and primary root length changes in low-phosphate conditions. Protein structure modeling suggests that the phosphorylation status of S688 in CESA1 could play a role in stabilizing and activating the CSC. This mechanistic understanding of root growth regulation under limiting phosphate conditions provides potential strategies for changing root responses to soil phosphate content.
Collapse
Affiliation(s)
- Ghazanfar Abbas Khan
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
| | - Arka Dutta
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
| | | | - Kristian E H Frandsen
- Copenhagen Plant Science Center, Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C 1871, Denmark
| | - Michael Ogden
- Copenhagen Plant Science Center, Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C 1871, Denmark
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
- Copenhagen Plant Science Center, Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C 1871, Denmark
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| |
Collapse
|
21
|
Clúa J, Montpetit J, Jimenez-Sandoval P, Naumann C, Santiago J, Poirier Y. A CYBDOM protein impacts iron homeostasis and primary root growth under phosphate deficiency in Arabidopsis. Nat Commun 2024; 15:423. [PMID: 38212368 PMCID: PMC10784552 DOI: 10.1038/s41467-023-43911-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 11/23/2023] [Indexed: 01/13/2024] Open
Abstract
Arabidopsis primary root growth response to phosphate (Pi) deficiency is mainly controlled by changes in apoplastic iron (Fe). Upon Pi deficiency, apoplastic Fe deposition in the root apical meristem activates pathways leading to the arrest of meristem maintenance and inhibition of cell elongation. Here, we report that a member of the uncharacterized cytochrome b561 and DOMON domain (CYBDOM) protein family, named CRR, promotes iron reduction in an ascorbate-dependent manner and controls apoplastic iron deposition. Under low Pi, the crr mutant shows an enhanced reduction of primary root growth associated with increased apoplastic Fe in the root meristem and a reduction in meristematic cell division. Conversely, CRR overexpression abolishes apoplastic Fe deposition rendering primary root growth insensitive to low Pi. The crr single mutant and crr hyp1 double mutant, harboring a null allele in another member of the CYDOM family, shows increased tolerance to high-Fe stress upon germination and seedling growth. Conversely, CRR overexpression is associated with increased uptake and translocation of Fe to the shoot and results in plants highly sensitive to Fe excess. Our results identify a ferric reductase implicated in Fe homeostasis and developmental responses to abiotic stress, and reveal a biological role for CYBDOM proteins in plants.
Collapse
Affiliation(s)
- Joaquín Clúa
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015, Lausanne, Switzerland
| | - Jonatan Montpetit
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015, Lausanne, Switzerland
| | - Pedro Jimenez-Sandoval
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015, Lausanne, Switzerland
| | - Christin Naumann
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Germany
| | - Julia Santiago
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015, Lausanne, Switzerland
| | - Yves Poirier
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
22
|
Siqueira JA, Zsögön A, Fernie AR, Nunes-Nesi A, Araújo WL. Does day length matter for nutrient responsiveness? TRENDS IN PLANT SCIENCE 2023; 28:1113-1123. [PMID: 37268488 DOI: 10.1016/j.tplants.2023.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 06/04/2023]
Abstract
For over 2500 years, considerable agronomic interest has been paid to soil fertility. Both crop domestication and the Green Revolution shifted photoperiodism and the circadian clock in cultivated species, although this contributed to an increase in the demand for chemical fertilisers. Thus, the uptake of nutrients depends on light signalling, whereas diel growth and circadian rhythms are affected by nutrient levels. Here, we argue that day length and circadian rhythms may be central regulators of the uptake and usage of nutrients, also modulating responses to toxic elements (e.g., aluminium and cadmium). Thus, we suggest that knowledge in this area might assist in developing next-generation crops with improved uptake and use efficiency of nutrients.
Collapse
Affiliation(s)
- João Antonio Siqueira
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil.
| | - Agustin Zsögön
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil.
| |
Collapse
|
23
|
Liu M, Zhao Y, Fan P, Kong J, Wang Y, Xu X, Xu M, Wang L, Li S, Liang Z, Duan W, Dai Z. Grapevine plantlets respond to different monochromatic lights by tuning photosynthesis and carbon allocation. HORTICULTURE RESEARCH 2023; 10:uhad160. [PMID: 37719274 PMCID: PMC10500148 DOI: 10.1093/hr/uhad160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/27/2023] [Indexed: 09/19/2023]
Abstract
The quality of planting materials is the foundation for productivity, longevity, and berry quality of perennial grapevines with a long lifespan. Manipulating the nursery light spectrum may speed up the production of healthy and high-quality planting vines but the underlying mechanisms remain elusive. Herein, the effects of different monochromatic lights (green, blue, and red) on grapevine growth, leaf photosynthesis, whole-plant carbon allocation, and transcriptome reprograming were investigated with white light as control. Results showed that blue and red lights were favorable for plantlet growth in comparison with white light. Blue light repressed excessive growth, significantly increased the maximum net photosynthetic rate (Pn) of leaves by 39.58% and leaf specific weight by 38.29%. Red light increased the dry weight of the stem by 53.60%, the starch content of the leaf by 53.63%, and the sucrose content of the stem by 230%. Green light reduced all photosynthetic indexes of the grape plantlet. Photosynthetic photon flux density (PPFD)/Ci-Pn curves indicated that blue light affected photosynthetic rate depending on the light intensity and CO2 concentration. RNA-seq analysis of different organs (leaf, stem, and root) revealed a systematic transcriptome remodeling and VvCOP1 (CONSTITUTIVELY PHOTOMORPHOGENIC 1), VvHY5 (ELONGATED HYPOCOTYL5), VvHYH (HY5 HOMOLOG), VvELIP (early light-induced protein) and VvPIF3 (PHYTOCHROME INTERACTING FACTOR 3) may play important roles in this shoot-to-root signaling. Furthermore, the correlation network between differential expression genes and physiological traits indicated that VvpsbS (photosystem II subunit S), Vvpsb28 (photosystem II subunit 28), VvHYH, VvSUS4 (sucrose synthase 4), and VvALDA (fructose-bisphosphate aldolase) were pertinent candidate genes in responses to different light qualities. Our results provide a foundation for optimizing the light recipe of grape plantlets and strengthen the understanding of light signaling and carbon metabolism under different monochromatic lights.
Collapse
Affiliation(s)
- Menglong Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peige Fan
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhua Kong
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Yongjian Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xiaobo Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meilong Xu
- Ningxia Horticulture Research Institute, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| | - Lijun Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaohua Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenchang Liang
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Duan
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Zhanwu Dai
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Liu XX, Zhu XF, Xue DW, Zheng SJ, Jin CW. Beyond iron-storage pool: functions of plant apoplastic iron during stress. TRENDS IN PLANT SCIENCE 2023; 28:941-954. [PMID: 37019715 DOI: 10.1016/j.tplants.2023.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Iron (Fe) is an essential micronutrient for plants, and its storage in the apoplast represents an important Fe pool. Plants have developed various strategies to reutilize this apoplastic Fe pool to adapt to Fe deficiency. In addition, growing evidence indicates that the dynamic changes in apoplastic Fe are critical for plant adaptation to other stresses, including ammonium stress, phosphate deficiency, and pathogen attack. In this review, we discuss and scrutinize the relevance of apoplastic Fe for plant behavior changes in response to stress cues. We mainly focus on the relevant components that modulate the actions and downstream events of apoplastic Fe in stress signaling networks.
Collapse
Affiliation(s)
- Xing Xing Liu
- State Key Laboratory of Plant Physiology and Biochemistry, Zhejiang University, Hangzhou, China
| | - Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Da Wei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, Zhejiang University, Hangzhou, China
| | - Chong Wei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, Zhejiang University, Hangzhou, China.
| |
Collapse
|
25
|
Ai H, Liu X, Hu Z, Cao Y, Kong N, Gao F, Hu S, Shen X, Huang X, Xu G, Sun S. Mutation of OsLPR3 Enhances Tolerance to Phosphate Starvation in Rice. Int J Mol Sci 2023; 24:ijms24032437. [PMID: 36768758 PMCID: PMC9917114 DOI: 10.3390/ijms24032437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Low Phosphate Root (LPR) encodes a protein localized to the endoplasmic reticulum (ER) and cell wall. This gene plays a key role in responding to phosphate (Pi) deprivation, especially in remodeling the root system architecture (RSA). An identification and expression analysis of the OsLPR family in rice (Oryza sativa) has been previously reported, and OsLPR5, functioning in Pi uptake and translocation, is required for the normal growth and development of rice. However, the role of OsLPR3, one of the five members of this family in rice, in response to Pi deficiency and/or in the regulation of plant growth and development is unknown. Therefore, in this study, the roles of OsLPR3 in these processes were investigated, and some functions were found to differ between OsLPR3 and OsLPR5. OsLPR3 was found to be induced in the leaf blades, leaf sheaths, and roots under Pi deprivation. OsLPR3 overexpression strongly inhibited the growth and development of the rice but did not affect the Pi homeostasis of the plant. However, oslpr3 mutants improved RSA and Pi utilization, and they exhibited a higher tolerance to low Pi stress in rice. The agronomic traits of the oslpr3 mutants, such as 1000-grain weight and seed length, were stimulated under Pi-sufficient conditions, indicating that OsLPR3 plays roles different from those of OsLPR5 during plant growth and development, as well as in the maintenance of the Pi status of rice.
Collapse
Affiliation(s)
- Hao Ai
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiuli Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Cao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Nannan Kong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Feiyan Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Siwen Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xianzhong Huang
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shubin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: ; Fax: +86-25-84396238
| |
Collapse
|
26
|
Xu ZR, Cai ML, Yang Y, You TT, Ma JF, Wang P, Zhao FJ. The ferroxidases LPR1 and LPR2 control iron translocation in the xylem of Arabidopsis plants. MOLECULAR PLANT 2022; 15:1962-1975. [PMID: 36348623 DOI: 10.1016/j.molp.2022.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/06/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Iron (Fe) deficiency is common in agricultural crops and affects millions of people worldwide. Translocation of Fe in the xylem is a key step for Fe distribution in plants. The mechanism controlling this process remains largely unknown. Here, we report that two Arabidopsis ferroxidases, LPR1 and LPR2, play a crucial and redundant role in controlling Fe translocation in the xylem. LPR1 and LPR2 are mainly localized in the cell walls of xylem vessels and the surrounding cells in roots, leaves, and stems. Knockout of both LPR1 and LPR2 increased the proportion of Fe(II) in the xylem sap, and caused Fe deposition along the vascular bundles especially in the petioles and main veins of leaves, which was alleviated by blocking blue light. The lpr1 lpr2 double mutant displayed constitutive expression of Fe deficiency response genes and overaccumulation of Fe in the roots and mature leaves under Fe-sufficient supply, but Fe deficiency chlorosis in the new leaves and inflorescences under low Fe supply. Moreover, the lpr1 lpr2 double mutant showed lower Fe concentrations in the xylem and phloem saps, and impaired 57Fe translocation along the xylem. In vitro assays showed that Fe(III)-citrate, the main form of Fe in xylem sap, is easily photoreduced to Fe(II)-citrate, which is unstable and prone to adsorption by cell walls. Taken together, these results indicate that LPR1 and LPR2 are required to oxidize Fe(II) and maintain Fe(III)-citrate stability and mobility during xylem translocation against photoreduction. Our study not only uncovers an essential physiological role of LPR1 and LPR2 but also reveals a new mechanism by which plants maintain Fe mobility during long-distance translocation in the xylem.
Collapse
Affiliation(s)
- Zhong-Rui Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mei-Ling Cai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ting-Ting You
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | - Peng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
27
|
Li T, Zhang R, Satheesh V, Wang P, Ma G, Guo J, An GY, Lei M. The chromatin remodeler BRAHMA recruits HISTONE DEACETYLASE6 to regulate root growth inhibition in response to phosphate starvation in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2314-2326. [PMID: 35972795 DOI: 10.1111/jipb.13345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Plasticity in root system architecture (RSA) allows plants to adapt to changing nutritional status in the soil. Phosphorus availability is a major determinant of crop yield, and RSA remodeling is critical to increasing the efficiency of phosphorus acquisition. Although substantial progress has been made in understanding the signaling mechanism driving phosphate starvation responses in plants, whether and how epigenetic regulatory mechanisms contribute is poorly understood. Here, we report that the Switch defective/sucrose non-fermentable (SWI/SNF) ATPase BRAHMA (BRM) is involved in the local response to phosphate (Pi) starvation. The loss of BRM function induces iron (Fe) accumulation through increased LOW PHOSPHATE ROOT1 (LPR1) and LPR2 expression, reducing primary root length under Pi deficiency. We also demonstrate that BRM recruits the histone deacetylase (HDA) complex HDA6-HDC1 to facilitate histone H3 deacetylation at LPR loci, thereby negatively regulating local Pi deficiency responses. BRM is degraded under Pi deficiency conditions through the 26 S proteasome pathway, leading to increased histone H3 acetylation at the LPR loci. Collectively, our data suggest that the chromatin remodeler BRM, in concert with HDA6, negatively regulates Fe-dependent local Pi starvation responses by transcriptionally repressing the RSA-related genes LPR1 and LPR2 in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Tao Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruyue Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Viswanathan Satheesh
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Peng Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Guojie Ma
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Jianfei Guo
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Guo-Yong An
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Mingguang Lei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
28
|
Stafen CF, Kleine-Vehn J, Maraschin FDS. Signaling events for photomorphogenic root development. TRENDS IN PLANT SCIENCE 2022; 27:1266-1282. [PMID: 36057533 DOI: 10.1016/j.tplants.2022.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
A germinating seedling incorporates environmental signals such as light into developmental outputs. Light is not only a source of energy, but also a central coordinative signal in plants. Traditionally, most research focuses on aboveground organs' response to light; therefore, our understanding of photomorphogenesis in roots is relatively scarce. However, root development underground is highly responsive to light signals from the shoot and understanding these signaling mechanisms will give a better insight into early seedling development. Here, we review the central light signaling hubs and their role in root growth promotion of Arabidopsis thaliana seedlings.
Collapse
Affiliation(s)
- Cássia Fernanda Stafen
- PPGBM - Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Jürgen Kleine-Vehn
- Institute of Biology II, Chair of Molecular Plant Physiology (MoPP), University of Freiburg, Freiburg, Germany; Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany
| | - Felipe Dos Santos Maraschin
- PPGBM - Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; Departamento de Botânica, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
29
|
Chao ZF, Chao DY. Similarities and differences in iron homeostasis strategies between graminaceous and nongraminaceous plants. THE NEW PHYTOLOGIST 2022; 236:1655-1660. [PMID: 36093736 DOI: 10.1111/nph.18482] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Iron (Fe) homeostasis is essential for both plant development and human nutrition. The maintenance of Fe homeostasis involves a complex network in which Fe signaling nodes and circuits coordinate tightly Fe transporters, ferric reductases, H+ -ATPases, low-molecular-mass metal chelators, and transporters of chelators and Fe-chelate complexes. Early-stage studies have revealed different strategies for Fe homeostasis between graminaceous and nongraminaceous plants. Recent progress has refreshed our understanding of previous knowledge, especially on the uptake, phloem transport and systemic signaling of Fe. This review attempts to summarize recent exciting and potentially influential studies on the various routes of Fe uptake and distribution in plants, focusing on breakthroughs that have changed our understanding of plant Fe nutrition.
Collapse
Affiliation(s)
- Zhen-Fei Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
30
|
Sun Y, Luo J, Feng P, Yang F, Liu Y, Liang J, Wang H, Zou Y, Ma F, Zhao T. MbHY5-MbYSL7 mediates chlorophyll synthesis and iron transport under iron deficiency in Malus baccata. FRONTIERS IN PLANT SCIENCE 2022; 13:1035233. [PMID: 36340415 PMCID: PMC9627156 DOI: 10.3389/fpls.2022.1035233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Iron (Fe) plays an important role in cellular respiration and catalytic reactions of metalloproteins in plants and animals. Plants maintain iron homeostasis through absorption, translocation, storage, and compartmentalization of iron via a cooperative regulative network. Here, we showed different physiological characteristics in the leaves and roots of Malus baccata under Fe sufficiency and Fe deficiency conditions and propose that MbHY5 (elongated hypocotyl 5), an important transcription factor for its function in photomorphogenesis, participated in Fe deficiency response in both the leaves and roots of M. baccata. The gene co-expression network showed that MbHY5 was involved in the regulation of chlorophyll synthesis and Fe transport pathway under Fe-limiting conditions. Specifically, we found that Fe deficiency induced the expression of MbYSL7 in root, which was positively regulated by MbHY5. Overexpressing or silencing MbYSL7 influenced the expression of MbHY5 in M. baccata.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yangjun Zou
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Tao Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
31
|
Naumann C, Heisters M, Brandt W, Janitza P, Alfs C, Tang N, Toto Nienguesso A, Ziegler J, Imre R, Mechtler K, Dagdas Y, Hoehenwarter W, Sawers G, Quint M, Abel S. Bacterial-type ferroxidase tunes iron-dependent phosphate sensing during Arabidopsis root development. Curr Biol 2022; 32:2189-2205.e6. [PMID: 35472311 PMCID: PMC9168544 DOI: 10.1016/j.cub.2022.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/21/2022] [Accepted: 04/04/2022] [Indexed: 12/02/2022]
Abstract
Access to inorganic phosphate (Pi), a principal intermediate of energy and nucleotide metabolism, profoundly affects cellular activities and plant performance. In most soils, antagonistic Pi-metal interactions restrict Pi bioavailability, which guides local root development to maximize Pi interception. Growing root tips scout the essential but immobile mineral nutrient; however, the mechanisms monitoring external Pi status are unknown. Here, we show that Arabidopsis LOW PHOSPHATE ROOT 1 (LPR1), one key determinant of Fe-dependent Pi sensing in root meristems, encodes a novel ferroxidase of high substrate specificity and affinity (apparent KM ∼ 2 μM Fe2+). LPR1 typifies an ancient, Fe-oxidizing multicopper protein family that evolved early upon bacterial land colonization. The ancestor of streptophyte algae and embryophytes (land plants) acquired LPR1-type ferroxidase from soil bacteria via horizontal gene transfer, a hypothesis supported by phylogenomics, homology modeling, and biochemistry. Our molecular and kinetic data on LPR1 regulation indicate that Pi-dependent Fe substrate availability determines LPR1 activity and function. Guided by the metabolic lifestyle of extant sister bacterial genera, we propose that Arabidopsis LPR1 monitors subtle concentration differentials of external Fe availability as a Pi-dependent cue to adjust root meristem maintenance via Fe redox signaling and cell wall modification. We further hypothesize that the acquisition of bacterial LPR1-type ferroxidase by embryophyte progenitors facilitated the evolution of local Pi sensing and acquisition during plant terrestrialization.
Collapse
Affiliation(s)
- Christin Naumann
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Marcus Heisters
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Wolfgang Brandt
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Philipp Janitza
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Strasse, 06120 Halle (Saale), Germany
| | - Carolin Alfs
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Nancy Tang
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Alicia Toto Nienguesso
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Jörg Ziegler
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Richard Imre
- Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr Gasse 3, 1030 Vienna, Austria; Research Institute of Molecular Pathology, Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Karl Mechtler
- Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr Gasse 3, 1030 Vienna, Austria; Research Institute of Molecular Pathology, Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Yasin Dagdas
- Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Wolfgang Hoehenwarter
- Proteome Analytics, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Gary Sawers
- Institute of Biology/Microbiology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Strasse, 06120 Halle (Saale), Germany; German Center for Integrative Biodiversity Research, Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| | - Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany; Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany; Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616 USA.
| |
Collapse
|
32
|
Satheesh V, Tahir A, Li J, Lei M. Plant phosphate nutrition: sensing the stress. STRESS BIOLOGY 2022; 2:16. [PMID: 37676547 PMCID: PMC10441931 DOI: 10.1007/s44154-022-00039-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/31/2022] [Indexed: 09/08/2023]
Abstract
Phosphorus (P) is obtained by plants as phosphate (Pi) from the soil and low Pi levels affects plant growth and development. Adaptation to low Pi condition entails sensing internal and external Pi levels and translating those signals to molecular and morphophysiological changes in the plant. In this review, we present findings related to local and systemin Pi sensing with focus the molecular mechanisms behind root system architectural changes and the impact of hormones and epigenetic mechanisms affecting those changes. We also present some of the recent advances in the Pi sensing and signaling mechanisms focusing on inositol pyrophosphate InsP8 and its interaction with SPX domain proteins to regulate the activity of the central regulator of the Pi starvation response, PHR.
Collapse
Affiliation(s)
- Viswanathan Satheesh
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
| | - Ayesha Tahir
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan
| | - Jinkai Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Mingguang Lei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
| |
Collapse
|
33
|
Yao Y, Zhao H, Sun L, Wu W, Li C, Wu Q. Genome-wide identification of MAPK gene family members in Fagopyrum tataricum and their expression during development and stress responses. BMC Genomics 2022; 23:96. [PMID: 35114949 PMCID: PMC8815160 DOI: 10.1186/s12864-022-08293-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitogen-activated protein kinases (MAPKs) plays essential roles in the development, hormone regulation and abiotic stress response of plants. Nevertheless, a comprehensive study on MAPK family members has thus far not been performed in Tartary buckwheat. RESULTS Here, we identified 16 FtMAPKs in the Fagopyrum tataricum genome. Phylogenetic analysis showed that the FtMAPK family members could be classified into Groups A, B, C and D, in which A, B and C members contain a Thr-Glu-Tyr (TEY) signature motif and Group D members contain a Thr-Asp-Tyr (TDY) signature motif. Promoter cis-acting elements showed that most ProFtMAPks contain light response elements, hormone response elements and abiotic stress response elements, and several ProFtMAPks have MYB-binding sites, which may be involved in the regulation of flavonoid biosynthesis-related enzyme gene expression. Synteny analysis indicated that FtMAPKs have a variety of biological functions. Protein interaction prediction suggested that MAPKs can interact with proteins involved in development and stress resistance. Correlation analysis further confirmed that most of the FtMAPK genes and transcription factors involved in the stress response have the same expression pattern. The transient transformation of FtMAPK1 significantly increased the antioxidant enzymes activity in Tartary buckwheat leaves. In addition, we also found that FtMAPK1 can respond to salt stress by up-regulating the transcription abundance of downstream genes. CONCLUSIONS A total of 16 MAPKs were identified in Tartary buckwheat, and the members of the MAPK family containing the TDY motif were found to have expanded. The same subfamily members have relatively conserved gene structures and similar protein motifs. Tissue-specific expression indicated that the expression of all FtMAPK genes varied widely in the roots, stems, leaves and flowers. Most FtMAPKs can regulate the expression of other transcription factors and participate in the abiotic stress response. Our findings comprehensively revealed the FtMAPK gene family and laid a theoretical foundation for the functional characterization of FtMAPKs.
Collapse
Affiliation(s)
- Yingjun Yao
- College of Life Science, Sichuan Agricultural University, No.46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, No.46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Lei Sun
- College of Life Science, Sichuan Agricultural University, No.46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Wenjing Wu
- College of Life Science, Sichuan Agricultural University, No.46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, No.46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, No.46, Xinkang Road, Ya'an, 625014, Sichuan, China.
| |
Collapse
|
34
|
Ge S, He L, Jin L, Xia X, Li L, Ahammed GJ, Qi Z, Yu J, Zhou Y. Light-dependent activation of HY5 promotes mycorrhizal symbiosis in tomato by systemically regulating strigolactone biosynthesis. THE NEW PHYTOLOGIST 2022; 233:1900-1914. [PMID: 34839530 DOI: 10.1111/nph.17883] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 11/18/2021] [Indexed: 05/25/2023]
Abstract
Light quality affects mutualisms between plant roots and arbuscular mycorrhizal fungi (AMFs), which modify nutrient acquisition in plants. However, the mechanisms by which light systemically modulates root colonization by AMFs and phosphate uptake in roots remain unclear. We used a range of approaches, including grafting techniques, protein immunoblot analysis, electrophoretic mobility shift assay, chromatin immunoprecipitation, and dual-luciferase assays, to unveil the molecular basis of light signal transmission from shoot to root that mediates arbuscule development and phosphate uptake in tomato. The results show that shoot phytochrome B (phyB) triggers shoot-derived mobile ELONGATED HYPOCOTYL5 (HY5) protein accumulation in roots, and HY5 further positively regulates transcription of strigolactone (SL) synthetic genes, thus forming a shoot phyB-dependent systemic signaling pathway that regulates the synthesis and accumulation of SLs in roots. Further experiments with carotenoid cleavage dioxygenase 7 mutants and supplementary red light confirm that SLs are indispensable in the red-light-regulated mycorrhizal symbiosis in roots. Our results reveal a phyB-HY5-SLs systemic signaling cascade that facilitates mycorrhizal symbiosis and phosphate utilization in plants. The findings provide new prospects for the potential application of AMFs and light manipulation to effectively improve nutrient utilization and minimize the use of chemical fertilizers and associated pollution.
Collapse
Affiliation(s)
- Shibei Ge
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Liqun He
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Lijuan Jin
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xiaojian Xia
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Lan Li
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Zhenyu Qi
- Agricultural Experiment Station, Zhejiang University, Hangzhou, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Yanhong Zhou
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, China
| |
Collapse
|
35
|
Phloem iron remodels root development in response to ammonium as the major nitrogen source. Nat Commun 2022; 13:561. [PMID: 35091578 PMCID: PMC8799741 DOI: 10.1038/s41467-022-28261-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 01/10/2022] [Indexed: 01/20/2023] Open
Abstract
Plants use nitrate and ammonium as major nitrogen (N) sources, each affecting root development through different mechanisms. However, the exact signaling pathways involved in root development are poorly understood. Here, we show that, in Arabidopsis thaliana, either disruption of the cell wall-localized ferroxidase LPR2 or a decrease in iron supplementation efficiently alleviates the growth inhibition of primary roots in response to NH4+ as the N source. Further study revealed that, compared with nitrate, ammonium led to excess iron accumulation in the apoplast of phloem in an LPR2-dependent manner. Such an aberrant iron accumulation subsequently causes massive callose deposition in the phloem from a resulting burst of reactive oxygen species, which impairs the function of the phloem. Therefore, ammonium attenuates primary root development by insufficiently allocating sucrose to the growth zone. Our results link phloem iron to root morphology in response to environmental cues.
Collapse
|
36
|
Chen W, Tang L, Wang J, Zhu H, Jin J, Yang J, Fan W. Research Advances in the Mutual Mechanisms Regulating Response of Plant Roots to Phosphate Deficiency and Aluminum Toxicity. Int J Mol Sci 2022; 23:ijms23031137. [PMID: 35163057 PMCID: PMC8835462 DOI: 10.3390/ijms23031137] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 02/08/2023] Open
Abstract
Low phosphate (Pi) availability and high aluminum (Al) toxicity constitute two major plant mineral nutritional stressors that limit plant productivity on acidic soils. Advances toward the identification of genes and signaling networks that are involved in both stresses in model plants such as Arabidopsis thaliana and rice (Oryza sativa), and in other plants as well have revealed that some factors such as organic acids (OAs), cell wall properties, phytohormones, and iron (Fe) homeostasis are interconnected with each other. Moreover, OAs are involved in recruiting of many plant-growth-promoting bacteria that are able to secrete both OAs and phosphatases to increase Pi availability and decrease Al toxicity. In this review paper, we summarize these mutual mechanisms by which plants deal with both Al toxicity and P starvation, with emphasis on OA secretion regulation, plant-growth-promoting bacteria, transcription factors, transporters, hormones, and cell wall-related kinases in the context of root development and root system architecture remodeling that plays a determinant role in improving P use efficiency and Al resistance on acidic soils.
Collapse
Affiliation(s)
- Weiwei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China;
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (J.W.); (H.Z.); (J.J.)
| | - Li Tang
- College of Resources and Environment, Yunan Agricultural University, Kunming 650201, China;
| | - Jiayi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (J.W.); (H.Z.); (J.J.)
| | - Huihui Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (J.W.); (H.Z.); (J.J.)
| | - Jianfeng Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (J.W.); (H.Z.); (J.J.)
| | - Jianli Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (J.W.); (H.Z.); (J.J.)
- Correspondence: (J.Y.); (W.F.); Tel.: +86-871-6522-7681 (W.F.); Fax: +86-571-8820-6438 (J.Y.)
| | - Wei Fan
- College of Horticulture and Landscape, Yunan Agricultural University, Kunming 650201, China
- Correspondence: (J.Y.); (W.F.); Tel.: +86-871-6522-7681 (W.F.); Fax: +86-571-8820-6438 (J.Y.)
| |
Collapse
|
37
|
Xiao Y, Chu L, Zhang Y, Bian Y, Xiao J, Xu D. HY5: A Pivotal Regulator of Light-Dependent Development in Higher Plants. FRONTIERS IN PLANT SCIENCE 2022; 12:800989. [PMID: 35111179 PMCID: PMC8801436 DOI: 10.3389/fpls.2021.800989] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/17/2021] [Indexed: 05/10/2023]
Abstract
ELONGATED HYPOCOTYL5 (HY5), a bZIP-type transcription factor, acts as a master regulator that regulates various physiological and biological processes in plants such as photomorphogenesis, root growth, flavonoid biosynthesis and accumulation, nutrient acquisition, and response to abiotic stresses. HY5 is evolutionally conserved in function among various plant species. HY5 acts as a master regulator of light-mediated transcriptional regulatory hub that directly or indirectly controls the transcription of approximately one-third of genes at the whole genome level. The transcription, protein abundance, and activity of HY5 are tightly modulated by a variety of factors through distinct regulatory mechanisms. This review primarily summarizes recent advances on HY5-mediated molecular and physiological processes and regulatory mechanisms on HY5 in the model plant Arabidopsis as well as in crops.
Collapse
Affiliation(s)
| | | | | | | | | | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
38
|
Gao H, Wang T, Zhang Y, Li L, Wang C, Guo S, Zhang T, Wang C. GTPase ROP6 negatively modulates phosphate deficiency through inhibition of PHT1;1 and PHT1;4 in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1775-1786. [PMID: 34288396 DOI: 10.1111/jipb.13153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus, an essential macroelement for plant growth and development, is a major limiting factor for sustainable crop yield. The Rho of plant (ROP) GTPase is involved in regulating multiple signal transduction processes in plants, but potentially including the phosphate deficiency signaling pathway remains unknown. Here, we identified that the rop6 mutant exhibited a dramatic tolerant phenotype under Pi-deficient conditions, with higher phosphate accumulation and lower anthocyanin content. In contrast, the rop6 mutant was more sensitive to arsenate (As(V)) toxicity, the analog of Pi. Immunoblot analysis displayed that the ROP6 protein was rapidly degraded through ubiquitin/26S proteasome pathway under Pi-deficient conditions. In addition, pull-down assay using GST-RIC1 demonstrated that the ROP6 activity was decreased obviously under Pi-deficient conditions. Strikingly, protein-protein interaction and two-voltage clamping assays demonstrated that ROP6 physically interacted with and inhibited the key phosphate uptake transporters PHT1;1 and PHT1;4 in vitro and in vivo. Moreover, genetic analysis showed that ROP6 functioned upstream of PHT1;1 and PHT1;4. Thus, we conclude that GTPase ROP6 modulates the uptake of phosphate by inhibiting the activities of PHT1;1 and PHT1;4 in Arabidopsis.
Collapse
Affiliation(s)
- Huiling Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Tian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yanting Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Lili Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Chuanqing Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Shiyuan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Tianqi Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Cun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
39
|
Miotto YE, da Costa CT, Offringa R, Kleine-Vehn J, Maraschin FDS. Effects of Light Intensity on Root Development in a D-Root Growth System. FRONTIERS IN PLANT SCIENCE 2021; 12:778382. [PMID: 34975962 PMCID: PMC8715079 DOI: 10.3389/fpls.2021.778382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/08/2021] [Indexed: 05/10/2023]
Abstract
Plant development is highly affected by light quality, direction, and intensity. Under natural growth conditions, shoots are directly exposed to light whereas roots develop underground shielded from direct illumination. The photomorphogenic development strongly represses shoot elongation whereas promotes root growth. Over the years, several studies helped the elucidation of signaling elements that coordinate light perception and underlying developmental outputs. Light exposure of the shoots has diverse effects on main root growth and lateral root (LR) formation. In this study, we evaluated the phenotypic root responses of wild-type Arabidopsis plants, as well as several mutants, grown in a D-Root system. We observed that sucrose and light act synergistically to promote root growth and that sucrose alone cannot overcome the light requirement for root growth. We also have shown that roots respond to the light intensity applied to the shoot by changes in primary and LR development. Loss-of-function mutants for several root light-response genes display varying phenotypes according to the light intensity to which shoots are exposed. Low light intensity strongly impaired LR development for most genotypes. Only vid-27 and pils4 mutants showed higher LR density at 40 μmol m-2 s-1 than at 80 μmol m-2 s-1 whereas yuc3 and shy2-2 presented no LR development in any light condition, reinforcing the importance of auxin signaling in light-dependent root development. Our results support the use of D-Root systems to avoid the effects of direct root illumination that might lead to artifacts and unnatural phenotypic outputs.
Collapse
Affiliation(s)
- Yohanna Evelyn Miotto
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cibele Tesser da Costa
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Remko Offringa
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- Department of Molecular Plant Physiology, Institute of Biology, University of Freiburg, Freiburg, Germany
- Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Felipe dos Santos Maraschin
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- *Correspondence: Felipe dos Santos Maraschin,
| |
Collapse
|