1
|
Nocito KD, Murugaiyan V, Ali J, Pandey A, Casal C, De Asis EJ, Dimaano NG. Genome-Wide Dissection of Novel QTLs and Genes Associated with Weed Competitiveness in Early-Backcross Selective Introgression-Breeding Populations of Rice ( Oryza sativa L.). BIOLOGY 2025; 14:413. [PMID: 40282278 PMCID: PMC12025310 DOI: 10.3390/biology14040413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 04/29/2025]
Abstract
The direct-seeded rice (DSR) system is poised to become the dominant rice cultivation method due to its advantages, including reduced water usage, less labor requirements, decreased greenhouse gas emissions, and improved adaptation to climate change. However, weeds, particularly jungle rice (Echinochloa colona), significantly hinder DSR and cause substantial yield losses. This study aimed to develop rice cultivars competitive against jungle rice through selective breeding, focusing on early seed germination (ESG) and seedling vigor (ESV). We utilized 181 early-backcross selective introgression breeding lines (EB-SILs) developed using Green Super Rice (GSR) technology by backcrossing Weed Tolerant Rice1 (WTR1) with three donor parents, Haoannong, Cheng Hui 448, and Y134. Using the tunable genotyping-by-sequencing (tGBS®, Data2Bio Technologies, Ames, IA, USA) method, we identified 3971 common single nucleotide polymorphisms (SNPs) that facilitated the mapping of 19 novel quantitative trait loci (QTLs) associated with weed competitiveness-eight linked to ESG traits and eleven to ESV traits. Notably, all QTLs were novel except qRPH1, linked to relative plant height at 14 and 21 days after sowing. Key QTLs were located on chromosomes 2, 3, 5, 6, 8, 9, 10, and 12. Candidate genes identified within these QTLs are implicated in the plant's response to various abiotic and biotic stresses. Our findings enhance the understanding of the genetic basis for ESG and ESV traits critical for weed competitiveness, supporting marker-assisted and genomic selection approaches for breeding improved rice varieties. Furthermore, this research lays the groundwork for employing gene expression, cloning, and CRISPR editing strategies to combat jungle rice, with potential applications for other weed species and contributing to effective integrated weed management in the DSR system.
Collapse
Affiliation(s)
- Kim Diane Nocito
- Rice Breeding Platform, International Rice Research Institute, Los Baños 4031, Laguna, Philippines; (K.D.N.); (V.M.); (A.P.); (C.C.J.); (E.J.D.A.)
- Institute of Weed Science, Entomology and Plant Pathology, College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines
| | - Varunseelan Murugaiyan
- Rice Breeding Platform, International Rice Research Institute, Los Baños 4031, Laguna, Philippines; (K.D.N.); (V.M.); (A.P.); (C.C.J.); (E.J.D.A.)
| | - Jauhar Ali
- Rice Breeding Platform, International Rice Research Institute, Los Baños 4031, Laguna, Philippines; (K.D.N.); (V.M.); (A.P.); (C.C.J.); (E.J.D.A.)
| | - Ambika Pandey
- Rice Breeding Platform, International Rice Research Institute, Los Baños 4031, Laguna, Philippines; (K.D.N.); (V.M.); (A.P.); (C.C.J.); (E.J.D.A.)
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding I, Justus Liebig University Giessen, 35390 Giessen, Germany
| | - Carlos Casal
- Rice Breeding Platform, International Rice Research Institute, Los Baños 4031, Laguna, Philippines; (K.D.N.); (V.M.); (A.P.); (C.C.J.); (E.J.D.A.)
| | - Erik Jon De Asis
- Rice Breeding Platform, International Rice Research Institute, Los Baños 4031, Laguna, Philippines; (K.D.N.); (V.M.); (A.P.); (C.C.J.); (E.J.D.A.)
| | - Niña Gracel Dimaano
- Rice Breeding Platform, International Rice Research Institute, Los Baños 4031, Laguna, Philippines; (K.D.N.); (V.M.); (A.P.); (C.C.J.); (E.J.D.A.)
- Institute of Weed Science, Entomology and Plant Pathology, College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines
| |
Collapse
|
2
|
Zhang Q, Ali J, Bouis H, Hu P, Khush G, Li J, Luo L, Tan B, Wan J, Willett W, Wing R, Xiong L, Yu S, Chen H, Li Y, Ouyang Y. Developing green nutritious super rice for a healthy Anthropocene. Sci Bull (Beijing) 2025:S2095-9273(25)00374-3. [PMID: 40274434 DOI: 10.1016/j.scib.2025.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Affiliation(s)
- Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jauhar Ali
- International Rice Research Institute, Los Banos, 4031, Philippines.
| | - Howarth Bouis
- International Food Policy Research Institute, Washington, DC 20006, USA
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Gurdev Khush
- University of California, Davis California, CA 95616, USA
| | - Jiayang Li
- Yazhouwan National Laboratory, Sanya 572024, China
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Bin Tan
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Jianmin Wan
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Walter Willett
- Departments of Epidemiology and Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA 02115 USA
| | - Rod Wing
- Arizona Genomics Institute, BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yibo Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Wang C, Li J, Zhu Q, Li J, Zhang C, Hong R, Huang D, Zhang Z, Xu J, Li D, Wen J, Li C, Zhu Y, Lee D, Chen L. Breeding D1-Type Hybrid Japonica Rice in Diverse Upland Rainfed Environments. Int J Mol Sci 2025; 26:3246. [PMID: 40244086 PMCID: PMC11989851 DOI: 10.3390/ijms26073246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025] Open
Abstract
'Dianheyou615' (DHY615) is an elite Dian (D1)-type hybrid japonica rice variety, renowned for its high yield, exceptional grain quality, and unique adaptability to both irrigated and rainfed conditions in the Yungui Plateau of southwestern China. However, the genetic mechanisms underlying the agronomic performance of the D1-type hybrid japonica rice remain unclear. In this study, a comprehensive analysis of 'DHY615''s agronomic performance, genetic genealogy, and molecular genetic foundation was conducted to dissect its desirable traits for upland rainfed cultivation across diverse ecological environments. The main findings indicate that 'DHY615' possesses 6432 heterozygous SNPs, with 57.48% and 14.43% located in the promoter and coding regions, respectively, potentially affecting key phenotypic traits. High-impact SNPs variants and numerous well-known functional genes were identified, such as OsAAP6, GS3, Sd1, Rf1, BADH2, BPh14, Rymv1, OsFRO1, NRT1.1B, SKC1, OsNCED2, and qUVR-10, which are likely linked to traits including plant architecture, grain yield, grain quality, and resistance to various biotic and abiotic stresses (e.g., disease, cold, drought, salt, high iron, and high UV radiation). Notably, 'Nan615' harbors a greater number of functional allele variants compared to 'H479A', which potentially explaining its superior grain yield and remarkable adaptability. This study offers novel and valuable insights into the molecular genetic foundation of the plateau D1-type hybrid japonica rice, underscoring its potential for sustainable rice production across diverse ecological zones, especially with its unparalleled high-altitude adaptability to rainfed upland planting.
Collapse
Affiliation(s)
- Chunli Wang
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (C.W.); (J.L.); (Q.Z.); (J.L.); (C.Z.); (R.H.); (D.H.); (Z.Z.); (J.X.); (D.L.); (J.W.)
| | - Juan Li
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (C.W.); (J.L.); (Q.Z.); (J.L.); (C.Z.); (R.H.); (D.H.); (Z.Z.); (J.X.); (D.L.); (J.W.)
| | - Qian Zhu
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (C.W.); (J.L.); (Q.Z.); (J.L.); (C.Z.); (R.H.); (D.H.); (Z.Z.); (J.X.); (D.L.); (J.W.)
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (C.L.); (Y.Z.)
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Junjie Li
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (C.W.); (J.L.); (Q.Z.); (J.L.); (C.Z.); (R.H.); (D.H.); (Z.Z.); (J.X.); (D.L.); (J.W.)
| | - Cui Zhang
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (C.W.); (J.L.); (Q.Z.); (J.L.); (C.Z.); (R.H.); (D.H.); (Z.Z.); (J.X.); (D.L.); (J.W.)
| | - Ruke Hong
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (C.W.); (J.L.); (Q.Z.); (J.L.); (C.Z.); (R.H.); (D.H.); (Z.Z.); (J.X.); (D.L.); (J.W.)
| | - Dajun Huang
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (C.W.); (J.L.); (Q.Z.); (J.L.); (C.Z.); (R.H.); (D.H.); (Z.Z.); (J.X.); (D.L.); (J.W.)
| | - Zhonglin Zhang
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (C.W.); (J.L.); (Q.Z.); (J.L.); (C.Z.); (R.H.); (D.H.); (Z.Z.); (J.X.); (D.L.); (J.W.)
| | - Jin Xu
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (C.W.); (J.L.); (Q.Z.); (J.L.); (C.Z.); (R.H.); (D.H.); (Z.Z.); (J.X.); (D.L.); (J.W.)
| | - Dandan Li
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (C.W.); (J.L.); (Q.Z.); (J.L.); (C.Z.); (R.H.); (D.H.); (Z.Z.); (J.X.); (D.L.); (J.W.)
| | - Jiancheng Wen
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (C.W.); (J.L.); (Q.Z.); (J.L.); (C.Z.); (R.H.); (D.H.); (Z.Z.); (J.X.); (D.L.); (J.W.)
| | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (C.L.); (Y.Z.)
| | - Youyong Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (C.L.); (Y.Z.)
| | - Dongsun Lee
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (C.L.); (Y.Z.)
| | - Lijuan Chen
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (C.W.); (J.L.); (Q.Z.); (J.L.); (C.Z.); (R.H.); (D.H.); (Z.Z.); (J.X.); (D.L.); (J.W.)
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
4
|
Wang C, Jing W, Fa X, Gu J, Wang W, Zhu K, Zhang W, Gu J, Liu L, Wang Z, Zhang J, Zhang H. Effect of nitrogen levels on grain yield and quality in improving mid-season japonica rice varieties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3010-3023. [PMID: 39716020 DOI: 10.1002/jsfa.14092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/05/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Nitrogen application is recognized as a principal factor influencing rice quality. However, there remains a paucity of research on the effects of different N levels on quality, particularly within the context of the improvement of rice varieties. RESULTS This study examined 14 mid-season japonica rice varieties cultivated in Jiangsu province over the past 80 years under five N application levels (0, 90, 180, 270, and 360 kg N ha-1). The results showed that yield increased steadily as varieties improved at all N levels. For varieties from the 1950s to the 1990s, yields initially rose and then declined as N application rates increased, peaking at 270 kg N ha-1. In contrast, modern varieties (post-2000) exhibited a consistent increase in yield with higher N application rates. Fitted equations indicated that maximum yields were achieved at optimal N levels of 237-278 kg N ha-1 for varieties from the 1950s-1990s and 229.25 kg N ha-1 for post-2000 varieties. As varieties improved, the content of brown, milled, and head milled rice, as well as albumen, gluten, and overall quality, increased. Conversely, chalkiness, protein content, gliadin and amylose content decreased, whereas gel consistency, breakdown, peak viscosity, and globulin showed no consistent pattern. Likewise, there was no consistent pattern in the tendency of starch to retrograde (as indicated by 'setback' values). Increasing N application rates enhanced the content of brown and milled rice, chalkiness, protein and its components, and the tendency of starch to retrograde (indicated by higher setback values). In contrast, amylose content, gel consistency, breakdown, peak viscosity, and overall taste quality declined with higher N levels. The study compared rice varieties with high yields (exceeding 10 t ha-1) and good comprehensive taste scores (above 52), revealing that modern varieties Wuyunjing 24, Lianjing 7, Yanjing 4038, and Nanjing 9108 performed exceptionally well with 180 kg N ha-1 and 270 kg N ha-1. CONCLUSION Modern varieties, with optimal N application and management, can achieve both high yield and good quality effectively. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chen Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Wenjiang Jing
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Xiaotong Fa
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Jiayi Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Weilu Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Kuanyu Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Weiyang Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Junfei Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Lijun Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Zhiqin Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon, China
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Yan M, Feng H, Gu M, Mei H, Wang L, Xu K, Chen S, Zhang A, Zhou L, Xu X, Fan P, Chen L, Feng F, Xu G, Luo L, Xia H. Variation in the promoter of OsNPF7.1 contributes to nitrate uptake, remobilization, and grain yield in upland rice. J Genet Genomics 2025:S1673-8527(25)00083-9. [PMID: 40154598 DOI: 10.1016/j.jgg.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Affiliation(s)
- Ming Yan
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Huimin Feng
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Mian Gu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hanwei Mei
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Lei Wang
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Kai Xu
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Shoujun Chen
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Anning Zhang
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Liguo Zhou
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Xiaoyan Xu
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Peiqing Fan
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Liang Chen
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Fangjun Feng
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Guohua Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lijun Luo
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China; College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China; National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Hui Xia
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China; College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China; National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
6
|
Zhang J, Che J, Ouyang Y. Engineering rice genomes towards green super rice. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102664. [PMID: 39591902 DOI: 10.1016/j.pbi.2024.102664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024]
Abstract
Rice, cultivated for millennia across diverse geographical regions, has witnessed tremendous advancements in recent decades, epitomized by the emergence of Green Super Rice. These efforts aim to address challenges such as climate change, pest and disease threats, and sustainable agriculture. Driven by the advent of multiomics big data, breakthroughs in genomic tools and resources, hybrid rice breeding techniques, and the extensive utilization of green genes, rice genomes are undergoing delicate modifications to produce varieties with high yield, superior quality, enhanced nutrient efficiency, and resilience to pests and environmental stresses, leading to the development of green agriculture in China. Additionally, the utilization of wild relatives and the promotion of genomic breeding approaches have further enriched our understanding of rice improvement. In the future, international efforts to develop next-generation green rice varieties remain both challenging and imperative for the whole community.
Collapse
Affiliation(s)
- Jianwei Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jian Che
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
7
|
Xing YH, Lu H, Zhu X, Deng Y, Xie Y, Luo Q, Yu J. How Rice Responds to Temperature Changes and Defeats Heat Stress. RICE (NEW YORK, N.Y.) 2024; 17:73. [PMID: 39611857 DOI: 10.1186/s12284-024-00748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/06/2024] [Indexed: 11/30/2024]
Abstract
With the intensification of the greenhouse effect, a series of natural phenomena, such as global warming, are gradually recognized; when the ambient temperature increases to the extent that it causes heat stress in plants, agricultural production will inevitably be affected. Therefore, several issues associated with heat stress in crops urgently need to be solved. Rice is one of the momentous food crops for humans, widely planted in tropical and subtropical monsoon regions. It is prone to high temperature stress in summer, leading to a decrease in yield and quality. Understanding how rice can tolerate heat stress through genetic effects is particularly vital. This article reviews how rice respond to rising temperature by integrating the molecular regulatory pathways and introduce its physiological mechanisms of tolerance to heat stress from the perspective of molecular biology. In addition, genome selection and genetic engineering for rice heat tolerance were emphasized to provide a theoretical basis for the sustainability and stability of crop yield-quality structures under high temperatures from the point of view of molecular breeding.
Collapse
Affiliation(s)
- Yuan-Hang Xing
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Hongyu Lu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Xinfeng Zhu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Yufei Deng
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yujun Xie
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Qiuhong Luo
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
| | - Jinsheng Yu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
8
|
Zhang K, Han X, Fu Y, Khan Z, Zhang B, Bi J, Hu L, Luo L. Biochar coating promoted rice growth under drought stress through modulating photosynthetic apparatus, chloroplast ultrastructure, stomatal traits and ROS homeostasis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109145. [PMID: 39321623 DOI: 10.1016/j.plaphy.2024.109145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Drought hampers agricultural production by constraining crop growth and development. Nevertheless, there has been limited exploration regarding the effect of biochar coating in enhancing seed germination under drought conditions and understanding its underlying mechanisms. To fill this gap and clarify the pathway to drought resistance, the current research investigated the protective effectiveness of BC on seedling establishment and subsequent growth of rice under drought conditions. Results showed that BC notably elevated emergence rate (5.5%), shoot length (27.4%), root length (33.4%), plant height (19.6/10.3%), leaf area (69.8/71.7%), and plant biomass (85.7/67.9%) after 15/30 days under drought conditions compared to the control. Biochar coating facilitated the maintenance of a stable chloroplast structure, reduced chlorophyll degradation, and sustained cell expansion. This contributed to the improvement of stomatal characteristics on both adaxial and abaxial leaf surfaces during drought stress, encompassing enhancements in stomatal density and aperture. The preservation of stomatal opening led to an increased photosynthetic capacity, thereby fostering elevated photosynthetic activity and heightened plant biomass under stressful conditions. Simultaneously, BC treatment significantly diminished the production of reactive oxygen species, preserved cell membrane integrity, and augmented the accumulation of osmotic protectants. These outcomes signify that biochar coating mitigates the deleterious impacts of drought stress on photosynthesis, stomatal aperture, chloroplast ultrastructure, osmotic regulation, and redox homeostasis in plants through specific water and nutrient regulation. Consequently, this enhances the tolerance and growth of rice under drought stress.
Collapse
Affiliation(s)
- Kangkang Zhang
- Institute of Quality Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, China; National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China; Shanghai Agrobiological Gene Center, Shanghai, China
| | - Xiaomeng Han
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanfeng Fu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China; Shanghai Agrobiological Gene Center, Shanghai, China
| | - Zaid Khan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Biaojin Zhang
- Institute of Quality Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Junguo Bi
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China; Shanghai Agrobiological Gene Center, Shanghai, China.
| | - Liyong Hu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Lijun Luo
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China; Shanghai Agrobiological Gene Center, Shanghai, China.
| |
Collapse
|
9
|
Yong CSY, Atheeqah-Hamzah N. Transcriptome-wide Identification of Nine Tandem Repeat Protein Families in Roselle ( Hibiscus sabdariffa L.). Trop Life Sci Res 2024; 35:121-148. [PMID: 39464663 PMCID: PMC11507979 DOI: 10.21315/tlsr2024.35.3.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/20/2024] [Indexed: 10/29/2024] Open
Abstract
Plants are rich in tandem repeats-containing proteins. It is postulated that the occurrence of tandem repeat gene families facilitates the adaptation and survival of plants in adverse environmental conditions. This study intended to identify the tandem repeats in the transcriptome of a high potential tropical horticultural plant, roselle (Hibiscus sabdariffa L.). A total of 92,974 annotated de novo assembled transcripts were analysed using in silico approach, and 6,541 transcripts that encoded proteins containing tandem repeats with length of 20-60 amino acid residues were identified. Domain analysis revealed a total of nine tandem repeat protein families in the transcriptome of roselle, which are the Ankyrin repeats (ANK), Armadillo repeats (ARM), elongation factor-hand domain repeats (EF-hand), Huntingtin, elongation factor 3, protein phosphatase 2A, yeast kinase TOR1 repeats (HEAT), Kelch repeats (Kelch), leucine rich repeats (LRR), pentatricopeptide repeats (PPR), tetratricopeptide repeats (TPR) and WD40 repeats (WD40). Functional annotation analysis further matched 6,236 transcripts to 1,045 known proteins that contained tandem repeats including proteins implicated in plant development, protein-protein interaction, immunity and abiotic stress responses. The findings provide new insights into the occurrence of tandem repeats in the transcriptome and lay the foundation to elucidate the functional associations between tandem peptide repeats (TRs) and proteins in roselle and facilitate the identification of novel biotic and abiotic response related tandem repeats genes that may be useful in breeding improved varieties.
Collapse
Affiliation(s)
- Christina Seok Yien Yong
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Jalan UPM, 43400 Serdang, Selangor, Malaysia
| | - Nur Atheeqah-Hamzah
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Jalan UPM, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
10
|
Park JR, Seo J, Lee CM, Jeong OY, Jin M, Park S, Park HS. SNP-based QTL mapping and identification of panicle structure-related genes in rice. PHYSIOLOGIA PLANTARUM 2024; 176:e14588. [PMID: 39440705 DOI: 10.1111/ppl.14588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Rice is a staple crop providing a significant portion of the global food supply. It is then crucial to develop strategies for breeding high-yield cultivars to meet global food security challenges, including the UN's zero-hunger goal. In this study, QTL mapping was employed to pinpoint key genomic regions linked to traits influencing rice yield, with a focus on panicle structure-a critical determinant of grain number. Over two consecutive years, QTLs were identified using 88 JJ625LG/Namchan Recombinant Inbred Lines (JNRILs), revealing several candidate genes. Notably, Gn1a, a known regulator of grain number, was mapped within qNS1 and qNSSr1-1, while the sd1 gene, linked to plant height, was detected across multiple QTLs. Furthermore, a novel gene, OsNSMq3 (Os03g0843800), encoding a methyltransferase, was identified in various QTLs, with haplotype and sequence homology analysis suggesting its role in enhancing yield by influencing panicle structure development. The increase in primary and secondary branches, driven by these genes, leads to a higher number of spikelets per panicle, thereby boosting yield. These findings underscore the potential of candidate genes from stable QTLs as valuable tools in molecular breeding to develop high-yield rice cultivars, addressing global hunger and aiding food supply in refugee crises.
Collapse
Affiliation(s)
- Jae-Ryoung Park
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea
| | - Jeonghwan Seo
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea
| | - Chang-Min Lee
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea
| | - O-Young Jeong
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea
| | - Mina Jin
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea
| | - Songhee Park
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea
| | - Hyun-Su Park
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea
| |
Collapse
|
11
|
Jiang N, Zhu XG. Modern phenomics to empower holistic crop science, agronomy, and breeding research. J Genet Genomics 2024; 51:790-800. [PMID: 38734136 DOI: 10.1016/j.jgg.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Crop phenomics enables the collection of diverse plant traits for a large number of samples along different time scales, representing a greater data collection throughput compared with traditional measurements. Most modern crop phenomics use different sensors to collect reflective, emitted, and fluorescence signals, etc., from plant organs at different spatial and temporal resolutions. Such multi-modal, high-dimensional data not only accelerates basic research on crop physiology, genetics, and whole plant systems modeling, but also supports the optimization of field agronomic practices, internal environments of plant factories, and ultimately crop breeding. Major challenges and opportunities facing the current crop phenomics research community include developing community consensus or standards for data collection, management, sharing, and processing, developing capabilities to measure physiological parameters, and enabling farmers and breeders to effectively use phenomics in the field to directly support agricultural production.
Collapse
Affiliation(s)
- Ni Jiang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xin-Guang Zhu
- Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
12
|
Li X, Wu ME, Zhang J, Xu J, Diao Y, Li Y. The OsCLV2s-OsCRN1 co-receptor regulates grain shape in rice. J Genet Genomics 2024; 51:691-702. [PMID: 38575110 DOI: 10.1016/j.jgg.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
The highly conserved CLV-WUS negative feedback pathway plays a decisive role in regulating stem cell maintenance in shoot and floral meristems in higher plants, including Arabidopsis, rice, maize, and tomato. Here, we find significant natural variations in the OsCLV2c, OsCLV2d, and OsCRN1 loci in a genome-wide association study of grain shape in rice. OsCLV2a, OsCLV2c, OsCLV2d, and OsCRN1 negatively regulate grain length-width ratio and show distinctive geographical distribution, indica-japonica differentiation, and artificial selection signatures. Notably, OsCLV2a and OsCRN1 interact biochemically and genetically, suggesting that the two components function in a complex to regulate grain shape of rice. Furthermore, the genetic contributions of the haplotypes combining OsCLV2a, OsCLV2c, and OsCRN1 are significantly higher than those of each single gene alone in controlling key yield traits. These findings identify two groups of receptor-like kinases that may function as distinct co-receptors to control grain size in rice, thereby revealing a previously unrecognized role of the CLV class genes in regulating seed development and proposing a framework to understand the molecular mechanisms of the CLV-WUS pathway in rice and other crops.
Collapse
Affiliation(s)
- Xingxing Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Meng-En Wu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Juncheng Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Jingyue Xu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Yuanfei Diao
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Yibo Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
13
|
Jin F, Xie P, Li Z, Wu B, Huang W, Fang Z. Blocking of amino acid transporter OsAAP7 promoted tillering and yield by determining basic and neutral amino acids accumulation in rice. BMC PLANT BIOLOGY 2024; 24:447. [PMID: 38783192 PMCID: PMC11112796 DOI: 10.1186/s12870-024-05159-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Amino acids are not only the main form of N in rice, but also are vital for its growth and development. These processes are facilitated by amino acid transporters within the plant. Despite their significance, only a few AAP amino acid transporters have been reported. RESULTS In this study, we observed that there were differences in the expression of amino acid transporter OsAAP7 among 521 wild cultivated rice varieties, and it directly negatively correlated with tillering and grain yield per plant. We revealed that OsAAP7 protein was localized to the endoplasmic reticulum and had absorption and transport affinity for amino acids such as phenylalanine (Phe), lysine (Lys), leucine (Leu), and arginine (Arg) using subcellular localization, yeast substrate testing, fluorescent amino acid uptake, and amino acid content determination. Further hydroponic studies showed that exogenous application of amino acids Phe, Lys and Arg inhibited the growth of axillary buds in the overexpression lines, and promoted the elongation of axillary buds in the mutant lines. Finally, RNA-seq analysis showed that the expression patterns of genes related to nitrogen, auxin and cytokinin pathways were changed in axillary buds of OsAAP7 transgenic plants. CONCLUSIONS This study revealed the gene function of OsAAP7, and found that blocking of amino acid transporter OsAAP7 with CRISPR/Cas9 technology promoted tillering and yield by determining basic and neutral amino acids accumulation in rice.
Collapse
Affiliation(s)
- Feng Jin
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Pengfei Xie
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Zhenghan Li
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Bowen Wu
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Weiting Huang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Zhongming Fang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
14
|
Ahmed MS, Majeed A, Attia KA, Javaid RA, Siddique F, Farooq MS, Uzair M, Yang SH, Abushady AM. Country-wide, multi-location trials of Green Super Rice lines for yield performance and stability analysis using genetic and stability parameters. Sci Rep 2024; 14:9416. [PMID: 38658570 PMCID: PMC11043415 DOI: 10.1038/s41598-024-55510-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 02/24/2024] [Indexed: 04/26/2024] Open
Abstract
Rice (Oryza sativa L.) is an important member of the family Poaceae and more than half of world population depend for their dietary nutrition on rice. Rice cultivars with higher yield, resilience to stress and wider adaptability are essential to ensure production stability and food security. The fundamental objective of this study was to identify higher-yielding rice genotypes with stable performance and wider adaptability in a rice growing areas of Pakistan. A triplicate RCBD design experiment with 20 Green Super Rice (GSR) advanced lines was conducted at 12 rice growing ecologies in four Provinces of Pakistan. Grain yield stability performance was assessed by using different univariate and multivariate statistics. Analysis of variance revealed significant differences among genotypes, locations, and G x E interaction for mean squares (p < 0.05) of major yield contributing traits. All the studied traits except for number of tillers per plant revealed higher genotypic variance than environmental variance. Broad sense heritability was estimated in the range of 44.36% to 98.60%. Based on ASV, ASI, bi, Wi2, σ2i and WAAS statistics, the genotypes G1, G4, G5, G8, G11 and G12 revealed lowest values for parametric statistics and considered more stable genotypes based on paddy yield. The additive main effects and multiplicative interaction (AMMI) model revealed significant variation (p < 0.05) for genotypes, non-signification for environment and highly significant for G × E interaction. The variation proportion of PC1 and PC2 from interaction revealed 67.2% variability for paddy yield. Based on 'mean verses stability analysis of GGE biplot', 'Which-won-where' GGE Biplot, 'discriminativeness vs. representativeness' pattern of stability, 'IPCA and WAASB/GY' ratio-based stability Heat-map, and ranking of genotypes, the genotypes G1, G2, G3, G5, G8, G10, G11 and G13 were observed ideal genotypes with yield potential more than 8 tons ha-1. Discriminativeness vs. representativeness' pattern of stability identifies two environments, E5 (D.I Khan, KPK) and E6 (Usta Muhammad, Baluchistan) were best suited for evaluating genotypic yield performance. Based on these findings we have concluded that the genotypes G1, G2, G3, G5, G8, G10, G11 and G13 could be included in the commercial varietal development process and future breeding program.
Collapse
Affiliation(s)
- Muhammad Shahzad Ahmed
- Rice Research Program, Crop Sciences Institute, National Agricultural Research Center, Islamabad, Pakistan.
| | - Abid Majeed
- Rice Research Program, Crop Sciences Institute, National Agricultural Research Center, Islamabad, Pakistan
| | - Kotb A Attia
- Department of Biochemistry, College of Science King Saud University, P.O. Box 11451, Riyadh, Saudi Arabia
| | - Rana Arsalan Javaid
- Rice Research Program, Crop Sciences Institute, National Agricultural Research Center, Islamabad, Pakistan
| | - Faiza Siddique
- Rice Research Program, Crop Sciences Institute, National Agricultural Research Center, Islamabad, Pakistan
| | - Muhammad Shahbaz Farooq
- Rice Research Program, Crop Sciences Institute, National Agricultural Research Center, Islamabad, Pakistan
- Food Science and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Muhammad Uzair
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Centre (NARC), Park Road, Islamabad, Pakistan
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, 59626, Republic of Korea.
| | - Asmaa M Abushady
- Biotechnology School, 26th of July Corridor, Nile University, Sheikh Zayed City, 12588, Giza, Egypt
- Department of Genetics, Agriculture College, Ain Shams University, Cairo, Egypt
| |
Collapse
|
15
|
Han R, Yang Z, Wang C, Zhu S, Tang G, Shen X, Duanmu D, Cao Y, Huang R. Wild species rice OsCERK1DY-mediated arbuscular mycorrhiza symbiosis boosts yield and nutrient use efficiency in rice breeding. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:22. [PMID: 38435473 PMCID: PMC10907559 DOI: 10.1007/s11032-024-01459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Meeting the ever-increasing food demands of a growing global population while ensuring resource and environmental sustainability presents significant challenges for agriculture worldwide. Arbuscular mycorrhizal symbiosis (AMS) has emerged as a potential solution by increasing the surface area of a plant's root system and enhancing the absorption of phosphorus, nitrogen nutrients, and water. Consequently, there is a longstanding hypothesis that rice varieties exhibiting more efficient AMS could yield higher outputs at reduced input costs, paving the way for the development of Green Super Rice (GSR). Our prior research study identified a variant, OsCERK1DY, derived from Dongxiang wild-type rice, which notably enhanced AMS efficiency in the rice cultivar "ZZ35." This variant represents a promising gene for enhancing yield and nutrient use efficiency in rice breeding. In this study, we conducted a comparative analysis of biomass, crop growth characteristics, yield attributes, and nutrient absorption at varying soil nitrogen levels in the rice cultivar "ZZ35" and its chromosome single-segment substitution line, "GJDN1." In the field, GJDN1 exhibited a higher AM colonization level in its roots compared with ZZ35. Notably, GJDN1 displayed significantly higher effective panicle numbers and seed-setting rates than ZZ35. Moreover, the yield of GJDN1 with 75% nitrogen was 14.27% greater than the maximum yield achieved using ZZ35. At equivalent nitrogen levels, GJDN1 consistently outperformed ZZ35 in chlorophyll (Chl) content, dry matter accumulation, major nutrient element accumulation, N agronomic efficiency (NAE), N recovery efficiency (NRE), and N partial factor productivity (NPFP). The performance of OsCERK1DY overexpression lines corroborated these findings. These results support a model wherein the heightened level of AMS mediated by OsCERK1DY contributes to increased nitrogen, phosphorus, and potassium accumulation. This enhancement in nutrient utilization promotes higher fertilizer efficiency, dry matter accumulation, and ultimately, rice yield. Consequently, the OsCERK1DY gene emerges as a robust candidate for improving yield, reducing fertilizer usage, and facilitating a transition towards greener, lower-carbon agriculture. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01459-8.
Collapse
Affiliation(s)
- Ruicai Han
- Nanchang Subcenter of National Research Center for Rice Engineering, Key Laboratory of Rice Physiology and Genetics of Jiangxi Province, Rice Research Institute, Jiangxi Academy of Agriculture Science, Nanchang, 330200 People’s Republic of China
| | - Zhou Yang
- Nanchang Subcenter of National Research Center for Rice Engineering, Key Laboratory of Rice Physiology and Genetics of Jiangxi Province, Rice Research Institute, Jiangxi Academy of Agriculture Science, Nanchang, 330200 People’s Republic of China
| | - Chunquan Wang
- Jiangxi Biotech Vocational College, Nanchang, 330200 People’s Republic of China
| | - Shan Zhu
- Nanchang Subcenter of National Research Center for Rice Engineering, Key Laboratory of Rice Physiology and Genetics of Jiangxi Province, Rice Research Institute, Jiangxi Academy of Agriculture Science, Nanchang, 330200 People’s Republic of China
| | - Guoping Tang
- Nanchang Subcenter of National Research Center for Rice Engineering, Key Laboratory of Rice Physiology and Genetics of Jiangxi Province, Rice Research Institute, Jiangxi Academy of Agriculture Science, Nanchang, 330200 People’s Republic of China
| | - Xianhua Shen
- Nanchang Subcenter of National Research Center for Rice Engineering, Key Laboratory of Rice Physiology and Genetics of Jiangxi Province, Rice Research Institute, Jiangxi Academy of Agriculture Science, Nanchang, 330200 People’s Republic of China
| | - Deqiang Duanmu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yangrong Cao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Renliang Huang
- Nanchang Subcenter of National Research Center for Rice Engineering, Key Laboratory of Rice Physiology and Genetics of Jiangxi Province, Rice Research Institute, Jiangxi Academy of Agriculture Science, Nanchang, 330200 People’s Republic of China
| |
Collapse
|
16
|
Li W, Liu J, Li Z, Ye R, Chen W, Huang Y, Yuan Y, Zhang Y, Hu H, Zheng P, Fang Z, Tao Z, Song S, Pan R, Zhang J, Tu J, Sheen J, Du H. Mitigating growth-stress tradeoffs via elevated TOR signaling in rice. MOLECULAR PLANT 2024; 17:240-257. [PMID: 38053337 PMCID: PMC11271712 DOI: 10.1016/j.molp.2023.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
Rice production accounts for approximately half of the freshwater resources utilized in agriculture, resulting in greenhouse gas emissions such as methane (CH4) from flooded paddy fields. To address this challenge, environmentally friendly and cost-effective water-saving techniques have become widely adopted in rice cultivation. However, the implementation of water-saving treatments (WSTs) in paddy-field rice has been associated with a substantial yield loss of up to 50% as well as a reduction in nitrogen use efficiency (NUE). In this study, we discovered that the target of rapamycin (TOR) signaling pathway is compromised in rice under WST. Polysome profiling-coupled transcriptome sequencing (polysome-seq) analysis unveiled a substantial reduction in global translation in response to WST associated with the downregulation of TOR activity. Molecular, biochemical, and genetic analyses revealed new insights into the impact of the positive TOR-S6K-RPS6 and negative TOR-MAF1 modules on translation repression under WST. Intriguingly, ammonium exhibited a greater ability to alleviate growth constraints under WST by enhancing TOR signaling, which simultaneously promoted uptake and utilization of ammonium and nitrogen allocation. We further demonstrated that TOR modulates the ammonium transporter AMT1;1 as well as the amino acid permease APP1 and dipeptide transporter NPF7.3 at the translational level through the 5' untranslated region. Collectively, these findings reveal that enhancing TOR signaling could mitigate rice yield penalty due to WST by regulating the processes involved in protein synthesis and NUE. Our study will contribute to the breeding of new rice varieties with increased water and fertilizer utilization efficiency.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Jiaqi Liu
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China
| | - Zeqi Li
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Ruiqiang Ye
- National Key Laboratory of Plant Molecular Genetics, CAS, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenzhen Chen
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Yuqing Huang
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China
| | - Yue Yuan
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China
| | - Yi Zhang
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China
| | - Huayi Hu
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China
| | - Peng Zheng
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Zhongming Fang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang 550025, China
| | - Zeng Tao
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China
| | - Shiyong Song
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China
| | - Ronghui Pan
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Jian Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Jumim Tu
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China
| | - Jen Sheen
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Hao Du
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China; Hainan Institute of Zhejiang University, Sanya 572025, China.
| |
Collapse
|
17
|
Tian Y, Chen X, Xu P, Wang Y, Wu X, Wu K, Fu X, Chin Y, Liao Y. Rapid Visual Detection of Elite Erect Panicle Dense and Erect Panicle 1 Allele for Marker-Assisted Improvement in Rice ( Oryza sativa L.) Using the Loop-Mediated Isothermal Amplification Method. Curr Issues Mol Biol 2024; 46:498-512. [PMID: 38248334 PMCID: PMC10814556 DOI: 10.3390/cimb46010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Molecular-assisted breeding is an effective way to improve targeted agronomic traits. dep1 (dense and erect panicle 1) is a pleiotropic gene that regulates yield, quality, disease resistance, and stress tolerance, traits that are of great value in rice (Oryza sativa L.) breeding. In this study, a colorimetric LAMP (loop-mediated isothermal amplification) assay was developed for the detection of the dep1 allele and tested for the screening and selection of the heavy-panicle hybrid rice elite restorer line SHUHUI498, modified with the allele. InDel (Insertion and Deletion) primers (DEP1_F and DEP1_R) and LAMP primers (F3, B3, FIP, and BIP) for genotyping were designed using the Primer3 Plus (version 3.3.0) and PrimerExplore (version 5) software. Our results showed that both InDel and LAMP markers could be used for accurate genotyping. After incubation at a constant temperature of 65 °C for 60 min with hydroxynaphthol blue (HNB) as a color indicator, the color of the LAMP assay containing the dep1 allele changed to sky blue. The SHUHUI498 rice line that was detected in our LAMP assay displayed phenotypes consistent with the dep1 allele such as having a more compact plant architecture, straight stems and leaves, and a significant increase in the number of effective panicles and spikelets, demonstrating the effectiveness of our method in screening for the dep1 allele in rice breeding.
Collapse
Affiliation(s)
- Yonghang Tian
- College of Food Science and Engineering, Hainan Tropical Ocean University, No. 1 Yucai Road, Sanya 572022, China; (Y.T.); (X.C.)
- Marine Food Engineering Technology Research Center of Hainan Province, No. 1 Yucai Road, Sanya 572022, China
| | - Xiyi Chen
- College of Food Science and Engineering, Hainan Tropical Ocean University, No. 1 Yucai Road, Sanya 572022, China; (Y.T.); (X.C.)
- Marine Food Engineering Technology Research Center of Hainan Province, No. 1 Yucai Road, Sanya 572022, China
| | - Peizhou Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Chengdu 611130, China; (P.X.); (Y.W.); (X.W.)
| | - Yuping Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Chengdu 611130, China; (P.X.); (Y.W.); (X.W.)
| | - Xianjun Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Chengdu 611130, China; (P.X.); (Y.W.); (X.W.)
| | - Kun Wu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Beijing 100101, China; (K.W.); (X.F.)
| | - Xiangdong Fu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Beijing 100101, China; (K.W.); (X.F.)
| | - Yaoxian Chin
- College of Food Science and Engineering, Hainan Tropical Ocean University, No. 1 Yucai Road, Sanya 572022, China; (Y.T.); (X.C.)
- Marine Food Engineering Technology Research Center of Hainan Province, No. 1 Yucai Road, Sanya 572022, China
| | - Yongxiang Liao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Chengdu 611130, China; (P.X.); (Y.W.); (X.W.)
| |
Collapse
|
18
|
Park JR, Jang YH, Kim EG, Hur SS, Kim KM. Quantitative Trait Loci Mapping Identified Candidate Genes Involved in Plant Height Regulation in Rice. Int J Mol Sci 2023; 24:16895. [PMID: 38069217 PMCID: PMC10706376 DOI: 10.3390/ijms242316895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Rice plant height is an agricultural trait closely related to biomass, lodging tolerance, and yield. Identifying quantitative trait loci (QTL) regions related to plant height regulation and developing strategies to screen potential candidate genes can improve agricultural traits in rice. In this study, a double haploid population (CNDH), derived by crossing 'Cheongcheong' and 'Nagdong' individuals, was used, and a genetic map was constructed with 222 single-sequence repeat markers. In the RM3482-RM212 region on chromosome 1, qPh1, qPh1-1, qPh1-3, qPh1-5, and qPh1-6 were identified for five consecutive years. The phenotypic variance explained ranged from 9.3% to 13.1%, and the LOD score ranged between 3.6 and 17.6. OsPHq1, a candidate gene related to plant height regulation, was screened in RM3482-RM212. OsPHq1 is an ortholog of gibberellin 20 oxidase 2, and its haplotype was distinguished by nine SNPs. Plants were divided into two groups based on their height, and tall and short plants were distinguished and clustered according to the expression level of OsPHq1. QTLs and candidate genes related to plant height regulation, and thus, biomass regulation, were screened and identified in this study, but the molecular mechanism of the regulation remains poorly known. The information obtained in this study will help develop molecular markers for marker-assisted selection and breeding through rice plant height control.
Collapse
Affiliation(s)
- Jae-Ryoung Park
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea;
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Yoon-Hee Jang
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Eun-Gyeong Kim
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Sang-Sun Hur
- Division of Health and Welfare, Department of BioFood Science, Joongbu University, Geunmsan 32713, Republic of Korea;
| | - Kyung-Min Kim
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea;
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
19
|
Wang W, Ji D, Peng S, Loladze I, Harrison MT, Davies WJ, Smith P, Xia L, Wang B, Liu K, Zhu K, Zhang W, Ouyang L, Liu L, Gu J, Zhang H, Yang J, Wang F. Eco-physiology and environmental impacts of newly developed rice genotypes for improved yield and nitrogen use efficiency coordinately. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165294. [PMID: 37414171 DOI: 10.1016/j.scitotenv.2023.165294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
Significant advancements have been made in understanding the genetic regulation of nitrogen use efficiency (NUE) and identifying crucial NUE genes in rice. However, the development of rice genotypes that simultaneously exhibit high yield and NUE has lagged behind these theoretical advancements. The grain yield, NUE, and greenhouse gas (GHG) emissions of newly-bred rice genotypes under reduced nitrogen application remain largely unknown. To address this knowledge gap, field experiments were conducted, involving 80 indica (14 to 19 rice genotypes each year in Wuxue, Hubei) and 12 japonica (8 to 12 rice genotypes each year in Yangzhou, Jiangsu). Yield, NUE, agronomy, and soil parameters were assessed, and climate data were recorded. The experiments aimed to assess genotypic variations in yield and NUE among these genotypes and to investigate the eco-physiological basis and environmental impacts of coordinating high yield and high NUE. The results showed significant variations in yield and NUE among the genotypes, with 47 genotypes classified as moderate-high yield with high NUE (MHY_HNUE). These genotypes demonstrated the higher yields and NUE levels, with 9.6 t ha-1, 54.4 kg kg-1, 108.1 kg kg-1, and 64 % for yield, NUE for grain and biomass production, and N harvest index, respectively. Nitrogen uptake and tissue concentration were key drivers of the relationship between yield and NUE, particularly N uptake at heading and N concentrations in both straw and grain at maturity. Increase in pre-anthesis temperature consistently lowered yield and NUE. Genotypes within the MHY_HNUE group exhibited higher methane emissions but lower nitrous oxide emissions compared to those in the low to middle yield and NUE group, resulting in a 12.8 % reduction in the yield-scaled greenhouse gas balance. In conclusion, prioritizing crop breeding efforts on yield and resource use efficiency, as well as developing genotypes resilient to high temperatures with lower GHGs, can mitigate planetary warming.
Collapse
Affiliation(s)
- Weilu Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Dongling Ji
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Shaobing Peng
- MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Irakli Loladze
- Bryan College of Health Sciences, Bryan Medical Center, Lincoln, NE 68506, USA
| | - Matthew Tom Harrison
- Tasmanian Institute of Agriculture, University of Tasmania, Newnham Drive, Launceston, Tasmania 7248, Australia
| | | | - Pete Smith
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK
| | - Longlong Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Bin Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ke Liu
- Tasmanian Institute of Agriculture, University of Tasmania, Newnham Drive, Launceston, Tasmania 7248, Australia
| | - Kuanyu Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Wen Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100071, China
| | - Linhan Ouyang
- College of Economics and Management, Department of Management Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Lijun Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Junfei Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Jianchang Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| | - Fei Wang
- MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
20
|
Wen X, Chen Z, Yang Z, Wang M, Jin S, Wang G, Zhang L, Wang L, Li J, Saeed S, He S, Wang Z, Wang K, Kong Z, Li F, Zhang X, Chen X, Zhu Y. A comprehensive overview of cotton genomics, biotechnology and molecular biological studies. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2214-2256. [PMID: 36899210 DOI: 10.1007/s11427-022-2278-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/09/2023] [Indexed: 03/12/2023]
Abstract
Cotton is an irreplaceable economic crop currently domesticated in the human world for its extremely elongated fiber cells specialized in seed epidermis, which makes it of high research and application value. To date, numerous research on cotton has navigated various aspects, from multi-genome assembly, genome editing, mechanism of fiber development, metabolite biosynthesis, and analysis to genetic breeding. Genomic and 3D genomic studies reveal the origin of cotton species and the spatiotemporal asymmetric chromatin structure in fibers. Mature multiple genome editing systems, such as CRISPR/Cas9, Cas12 (Cpf1) and cytidine base editing (CBE), have been widely used in the study of candidate genes affecting fiber development. Based on this, the cotton fiber cell development network has been preliminarily drawn. Among them, the MYB-bHLH-WDR (MBW) transcription factor complex and IAA and BR signaling pathway regulate the initiation; various plant hormones, including ethylene, mediated regulatory network and membrane protein overlap fine-regulate elongation. Multistage transcription factors targeting CesA 4, 7, and 8 specifically dominate the whole process of secondary cell wall thickening. And fluorescently labeled cytoskeletal proteins can observe real-time dynamic changes in fiber development. Furthermore, research on the synthesis of cotton secondary metabolite gossypol, resistance to diseases and insect pests, plant architecture regulation, and seed oil utilization are all conducive to finding more high-quality breeding-related genes and subsequently facilitating the cultivation of better cotton varieties. This review summarizes the paramount research achievements in cotton molecular biology over the last few decades from the above aspects, thereby enabling us to conduct a status review on the current studies of cotton and provide strong theoretical support for the future direction.
Collapse
Affiliation(s)
- Xingpeng Wen
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhiwen Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Maojun Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangda Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Zhang
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Lingjian Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jianying Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sumbul Saeed
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shoupu He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Kun Wang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- Shanxi Agricultural University, Jinzhong, 030801, China.
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Xianlong Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xiaoya Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Yuxian Zhu
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China.
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
21
|
Xu C, Xu Y, Wang Z, Zhang X, Wu Y, Lu X, Sun H, Wang L, Zhang Q, Zhang Q, Li X, Xiao J, Li X, Zhao M, Ouyang Y, Huang X, Zhang Q. Spontaneous movement of a retrotransposon generated genic dominant male sterility providing a useful tool for rice breeding. Natl Sci Rev 2023; 10:nwad210. [PMID: 37621414 PMCID: PMC10446136 DOI: 10.1093/nsr/nwad210] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 08/26/2023] Open
Abstract
Male sterility in plants provides valuable breeding tools in germplasm innovation and hybrid crop production. However, genetic resources for dominant genic male sterility, which hold great promise to facilitate breeding processes, are extremely rare in natural germplasm. Here we characterized the Sanming Dominant Genic Male Sterility in rice and identified the gene SDGMS using a map-based cloning approach. We found that spontaneous movement of a 1978-bp long terminal repeat (LTR) retrotransposon into the promoter region of the SDGMS gene activates its expression in anther tapetum, which causes abnormal programmed cell death of tapetal cells resulting in dominant male sterility. SDGMS encodes a ribosome inactivating protein showing N-glycosidase activity. The activation of SDGMS triggers transcription reprogramming of genes responsive to biotic stress leading to a hypersensitive response which causes sterility. The results demonstrate that an ectopic gene activation by transposon movement can give birth to a novel trait which enriches phenotypic diversity with practical utility.
Collapse
Affiliation(s)
- Conghao Xu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yifeng Xu
- Ningde Inspection and Testing Centre for Agricultural Product Quality and Safety, Ningde 352100, China
| | - Zhengji Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyu Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuying Wu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyan Lu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongwei Sun
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingfu Zhao
- Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianbo Huang
- Sanming Institute of Agricultural Sciences, Shaxian 365509, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
22
|
Wu Y, Zha W, Qiu D, Guo J, Liu G, Li C, Wu B, Li S, Chen J, Hu L, Shi S, Zhou L, Zhang Z, Du B, You A. Comprehensive identification and characterization of lncRNAs and circRNAs reveal potential brown planthopper-responsive ceRNA networks in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1242089. [PMID: 37636117 PMCID: PMC10457010 DOI: 10.3389/fpls.2023.1242089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023]
Abstract
Brown planthopper (Nilaparvata lugens Stål, BPH) is one of the most destructive pests of rice. Non-coding RNA plays an important regulatory role in various biological processes. However, comprehensive identification and characterization of long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in BPH-infested rice have not been performed. Here, we performed a genome-wide analysis of lncRNAs and circRNAs in BPH6-transgenic (resistant, BPH6G) and Nipponbare (susceptible, NIP) rice plants before and after BPH feeding (early and late stage) via deep RNA-sequencing. A total of 310 lncRNAs and 129 circRNAs were found to be differentially expressed. To reveal the different responses of resistant and susceptible rice to BPH herbivory, the potential functions of these lncRNAs and circRNAs as competitive endogenous RNAs (ceRNAs) were predicted and investigated using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Dual-luciferase reporter assays revealed that miR1846c and miR530 were targeted by the lncRNAs XLOC_042442 and XLOC_028297, respectively. In responsive to BPH infestation, 39 lncRNAs and 21 circRNAs were predicted to combine with 133 common miRNAs and compete for miRNA binding sites with 834 mRNAs. These mRNAs predictably participated in cell wall organization or biogenesis, developmental growth, single-organism cellular process, and the response to stress. This study comprehensively identified and characterized lncRNAs and circRNAs, and integrated their potential ceRNA functions, to reveal the rice BPH-resistance network. These results lay a foundation for further study on the functions of lncRNAs and circRNAs in the rice-BPH interaction, and enriched our understanding of the BPH-resistance response in rice.
Collapse
Affiliation(s)
- Yan Wu
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Wenjun Zha
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Dongfeng Qiu
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jianping Guo
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Gang Liu
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Changyan Li
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Bian Wu
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Sanhe Li
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Junxiao Chen
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Liang Hu
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Shaojie Shi
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Lei Zhou
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Zaijun Zhang
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Bo Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Aiqing You
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
23
|
Peng W, Wang Y, Zeng X, Li W, Song N, Liu J, Wang B, Dai L. Integrative transcriptomic, proteomic, and phosphoproteomic analysis on the defense response to Magnaporthe oryzae reveals different expression patterns at the molecular level of durably resistant rice cultivar Mowanggu. FRONTIERS IN PLANT SCIENCE 2023; 14:1212510. [PMID: 37521912 PMCID: PMC10373791 DOI: 10.3389/fpls.2023.1212510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023]
Abstract
Rice blast, caused by Magnaporthe oryzae is one of the most destructive diseases of rice (Oryza sativa L.) in most rice-cultivated areas worldwide. Mowanggu (MWG) is a traditional landrace rice variety in Yunnan with broad-spectrum and durable blast resistance against rice blast fungus. However, the underlying disease-resistance mechanisms remain unknown. An integrative transcriptomic, proteomic, and phosphoproteomic analysis of MWG was performed after inoculation with M. oryzae in this study. The transcriptomic and proteomic results revealed that MWG was moderately correlated at the transcriptional and protein levels. Differentially expressed genes and proteins were up-regulated and significantly enriched in protein phosphorylation, peroxisome, plant-pathogen interactions, phenylpropanoid metabolism and phenylalanine biosynthesis pathways. The phosphoproteomic profile and phosphorylated-protein-interaction network revealed that the altered phosphoproteins were primarily associated with reactive oxygen species (ROS), glycolysis, MAPK signaling pathways, and amino acid biosynthesis. In addition, a series of physiological and biochemical parameters, including ROS, soluble sugars, soluble protein and callus accumulation and defense-related enzyme activities, were used to validate the possible blast resistance mechanisms of MWG. The integrative transcriptomic, proteomic, and phosphoproteomic analysis revealed the different expression patterns at the molecular level of the durably resistant rice cultivar MWG after inoculation with M. oryzae, which provides insight into the molecular mechanisms of rice blast resistance.
Collapse
Affiliation(s)
- Weiye Peng
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, China
| | - Yunsheng Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Xuanning Zeng
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Wei Li
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Na Song
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Jing Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Bing Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Liangying Dai
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
24
|
Qin X, Li X, Xiao J, Wu Q, Li Y, Li C, Jiang D, Tang T, Nan W, Liang Y, Zhang H. Transcriptomic and Physiological Analyses of Two Rice Restorer Lines under Different Nitrogen Supplies Provide Novel Insights into Hybrid Rice Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:2276. [PMID: 37375901 DOI: 10.3390/plants12122276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Improving plant nitrogen-use efficiency (NUE) has great significance for various crops, particularly in hybrid breeding. Reducing nitrogen inputs is key to achieving sustainable rice production and mitigating environmental problems. In this study, we analyzed the transcriptomic and physiological changes in two indica restorer lines (Nanhui511 [NH511] and Minghui23 [MH23]) under high nitrogen (HN) and low nitrogen (LN) conditions. Compared to MH23, NH511 was more sensitive to different nitrogen supplies and exhibited higher nitrogen uptake and NUE under HN conditions by increasing lateral root and tiller numbers in the seedling and maturation stages, respectively. NH511 also exhibited a lower survival rate than MH23 when planted in a chlorate-containing hydroponic solution, indicating its HN uptake ability under different nitrogen-supply conditions. Transcriptomic analysis showed that NH511 has 2456 differentially expressed genes, whereas MH23 had only 266. Furthermore, these genes related to nitrogen utilization showed differential expression in NH511 under HN conditions, while the opposite was observed in MH23. Our findings revealed that NH511 could be regarded as elite rice and used for breeding high-NUE restorer lines by regulating and integrating nitrogen-utilization genes, which provides novel insights for the cultivation of high-NUE hybrid rice.
Collapse
Affiliation(s)
- Xiaojian Qin
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China
| | - Xiaowei Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Juan Xiao
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qian Wu
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yuntong Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Cuiping Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Dan Jiang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Tingting Tang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Wenbin Nan
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China
| | - Yongshu Liang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China
| | - Hanma Zhang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
25
|
Qin X, Li X, Li C, Li Y, Wu Q, Wen H, Jiang D, Tang T, Nan W, Liang Y, Zhang H. Genome-wide identification of nitrate-responsive microRNAs by small RNA sequencing in the rice restorer cultivar Nanhui 511. FRONTIERS IN PLANT SCIENCE 2023; 14:1198809. [PMID: 37332718 PMCID: PMC10272429 DOI: 10.3389/fpls.2023.1198809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023]
Abstract
Rice productivity relies heavily on nitrogen fertilization, and improving nitrogen use efficiency (NUE) is important for hybrid rice breeding. Reducing nitrogen inputs is the key to achieving sustainable rice production and reducing environmental problems. Here, we analyzed the genome-wide transcriptomic changes in microRNAs (miRNAs) in the indica rice restorer cultivar Nanhui 511 (NH511) under high (HN) and low nitrogen (LN) conditions. The results showed that NH511 is sensitive to nitrogen supplies and HN conditions promoted the growth its lateral roots at the seedling stage. Furthermore, we identified 483 known miRNAs and 128 novel miRNAs by small RNA sequencing in response to nitrogen in NH511. We also detected 100 differentially expressed genes (DEGs), including 75 upregulated and 25 downregulated DEGs, under HN conditions. Among these DEGs, 43 miRNAs that exhibited a 2-fold change in their expression were identified in response to HN conditions, including 28 upregulated and 15 downregulated genes. Additionally, some differentially expressed miRNAs were further validated by qPCR analysis, which showed that miR443, miR1861b, and miR166k-3p were upregulated, whereas miR395v and miR444b.1 were downregulated under HN conditions. Moreover, the degradomes of possible target genes for miR166k-3p and miR444b.1 and expression variations were analyzed by qPCR at different time points under HN conditions. Our findings revealed comprehensive expression profiles of miRNAs responsive to HN treatments in an indica rice restorer cultivar, which advances our understanding of the regulation of nitrogen signaling mediated by miRNAs and provides novel data for high-NUE hybrid rice cultivation.
Collapse
Affiliation(s)
- Xiaojian Qin
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing, China
| | - Xiaowei Li
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Cuiping Li
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yuntong Li
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Qian Wu
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Huan Wen
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Dan Jiang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Tingting Tang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Wenbin Nan
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing, China
| | - Yongshu Liang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing, China
| | - Hanma Zhang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing, China
| |
Collapse
|
26
|
Shen E, Wang X, Lu Z, Zhou F, Ma W, Cui Z, Li Z, Li C, Lin Y. Overexpression of a beta-1,6-glucanase gene GluM in transgenic rice confers high resistance to rice blast, sheath blight and false smut. PEST MANAGEMENT SCIENCE 2023; 79:2152-2162. [PMID: 36729081 DOI: 10.1002/ps.7394] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Frequent fungal diseases tend to lead to severe losses in rice production. As a main component of the fungal cell wall, glucan plays an important role in the growth and development of fungi. Glucanase can inhibit the growth of fungi by breaking glycosidic bonds, and may be a promising target for developing rice varieties with broad-spectrum disease resistance. RESULTS We transferred a codon-optimized β-1,6-glucanase gene (GluM) from myxobacteria into the japonica rice variety Zhonghua11 (ZH11), and obtained a large number of individual transgenic plants with GluM overexpression. Based on molecular analysis, three single-copy homozygous lines with GluM overexpression were selected for assessment of fungal disease resistance at the T3 generation. Compared with that of the recipient cultivar ZH11, the area of rice blast lesion in transgenic rice was reduced by 82.71%; that of sheath blight lesion was decreased by 35.76%-43.67%; the sheath blight resistance in the field was enhanced by an average of 0.75 grade over 3 years; and the incidence of diseased panicles due to rice false smut was decreased by 65.79%. More importantly, there was no obvious loss of yield (without a significant effect on agronomic traits). Furthermore, plants overexpressing a β-1,6-glucanase gene showed higher disease resistance than rice plants overexpressing a β-1,3-glucanase gene derived from tobacco. CONCLUSION The β-1,6-glucanase gene GluM can confer broad-spectrum disease resistance to rice, providing an environmentally friendly alternative way to effectively manage fungal pathogens in rice production. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Enlong Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xingchao Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaoxi Lu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Changyan Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
27
|
Wang W, Qiu X, Wang Z, Xie T, Sun W, Xu J, Zhang F, Yu S. Deciphering the Genetic Architecture of Color Variation in Whole Grain Rice by Genome-Wide Association. PLANTS (BASEL, SWITZERLAND) 2023; 12:927. [PMID: 36840275 PMCID: PMC9960595 DOI: 10.3390/plants12040927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Whole grain rice is recommended in a natural healthy diet because of its high nutritional and healthful benefits compared to polished or white rice. The whole grain contains the pericarp with many assorted colors (such as brown, red, and black) associated with taste and commercial quality. The color attributes of whole grain or brown rice are usually undesirable and need to be improved. To decipher the genetic basis of color variation in the whole grain rice, we conducted a genome-wide association analysis of three parameters of grain colors (brightness, redness, and yellowness) in a panel of 682 rice accessions. Twenty-six loci were identified for the color parameters, implying that grain color is under polygenic control. Among them, some major-effect loci were co-localized with the previously identified genes such as Rc and Rd. To eliminate the possible mask of Rc on other loci influencing grain color, we performed the association analysis in a subset of the panel that excluded the pigmented (red and black) rice. Eighteen loci or SNPs were detected to be associated with grain color in the subpopulation, many of which were not reported before. Two significant peak SNP regions on chromosomes 1 and 9 were validated using near-isogenic lines. Based on differential expression analysis of annotated genes within the SNP regions and metabolic analysis of pooled extreme samples, we found at least three annotated genes as potential candidates involved in the flavonoid metabolic pathway related to pericarp color. These results provide insights into the genetic basis of rice grain color and facilitate genomic breeding to improve appearance and commercial quality of whole grain rice.
Collapse
Affiliation(s)
- Wenjun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianjin Qiu
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Ziqi Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Tianyi Xie
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenqiang Sun
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianlong Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fan Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
28
|
Hu B, Wang W, Chen J, Liu Y, Chu C. Genetic improvement toward nitrogen-use efficiency in rice: Lessons and perspectives. MOLECULAR PLANT 2023; 16:64-74. [PMID: 36380584 DOI: 10.1016/j.molp.2022.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
The indispensable role of nitrogen fertilizer in ensuring world food security together with the severe threats it poses to the ecosystem makes the usage of nitrogen fertilizer a major challenge for sustainable agriculture. Genetic improvement of crops with high nitrogen-use efficiency (NUE) is one of the most feasible solutions for tackling this challenge. In the last two decades, extensive efforts toward dissecting the variation of NUE-related traits and the underlying genetic basis in different germplasms have been made, and a series of achievements have been obtained in crops, especially in rice. Here, we summarize the approaches used for genetic dissection of NUE and the functions of the causal genes in modulating NUE as well as their applications in NUE improvement in rice. Strategies for exploring the variants controlling NUE and breeding future crops with "less-input-more-output" for sustainable agriculture are also proposed.
Collapse
Affiliation(s)
- Bin Hu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, 510642, Guangzhou, China.
| | - Wei Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, 510642, Guangzhou, China
| | - Jiajun Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yongqiang Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengcai Chu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, 510642, Guangzhou, China.
| |
Collapse
|
29
|
Xu Y, Zhang X, Li H, Zheng H, Zhang J, Olsen MS, Varshney RK, Prasanna BM, Qian Q. Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction. MOLECULAR PLANT 2022; 15:1664-1695. [PMID: 36081348 DOI: 10.1016/j.molp.2022.09.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/20/2022] [Accepted: 09/02/2022] [Indexed: 05/12/2023]
Abstract
The first paradigm of plant breeding involves direct selection-based phenotypic observation, followed by predictive breeding using statistical models for quantitative traits constructed based on genetic experimental design and, more recently, by incorporation of molecular marker genotypes. However, plant performance or phenotype (P) is determined by the combined effects of genotype (G), envirotype (E), and genotype by environment interaction (GEI). Phenotypes can be predicted more precisely by training a model using data collected from multiple sources, including spatiotemporal omics (genomics, phenomics, and enviromics across time and space). Integration of 3D information profiles (G-P-E), each with multidimensionality, provides predictive breeding with both tremendous opportunities and great challenges. Here, we first review innovative technologies for predictive breeding. We then evaluate multidimensional information profiles that can be integrated with a predictive breeding strategy, particularly envirotypic data, which have largely been neglected in data collection and are nearly untouched in model construction. We propose a smart breeding scheme, integrated genomic-enviromic prediction (iGEP), as an extension of genomic prediction, using integrated multiomics information, big data technology, and artificial intelligence (mainly focused on machine and deep learning). We discuss how to implement iGEP, including spatiotemporal models, environmental indices, factorial and spatiotemporal structure of plant breeding data, and cross-species prediction. A strategy is then proposed for prediction-based crop redesign at both the macro (individual, population, and species) and micro (gene, metabolism, and network) scales. Finally, we provide perspectives on translating smart breeding into genetic gain through integrative breeding platforms and open-source breeding initiatives. We call for coordinated efforts in smart breeding through iGEP, institutional partnerships, and innovative technological support.
Collapse
Affiliation(s)
- Yunbi Xu
- Institute of Crop Sciences, CIMMYT-China, Chinese Academy of Agricultural Sciences, Beijing 100081, China; CIMMYT-China Tropical Maize Research Center, School of Food Science and Engineering, Foshan University, Foshan, Guangdong 528231, China; Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261325, China.
| | - Xingping Zhang
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261325, China
| | - Huihui Li
- Institute of Crop Sciences, CIMMYT-China, Chinese Academy of Agricultural Sciences, Beijing 100081, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
| | - Hongjian Zheng
- CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201400, China
| | - Jianan Zhang
- MolBreeding Biotechnology Co., Ltd., Shijiazhuang, Hebei 050035, China
| | - Michael S Olsen
- CIMMYT (International Maize and Wheat Improvement Center), ICRAF Campus, United Nations Avenue, Nairobi, Kenya
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Australia
| | - Boddupalli M Prasanna
- CIMMYT (International Maize and Wheat Improvement Center), ICRAF Campus, United Nations Avenue, Nairobi, Kenya
| | - Qian Qian
- Institute of Crop Sciences, CIMMYT-China, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
30
|
Kim KW, Nawade B, Nam J, Chu SH, Ha J, Park YJ. Development of an inclusive 580K SNP array and its application for genomic selection and genome-wide association studies in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1036177. [PMID: 36352876 PMCID: PMC9637963 DOI: 10.3389/fpls.2022.1036177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Rice is a globally cultivated crop and is primarily a staple food source for more than half of the world's population. Various single-nucleotide polymorphism (SNP) arrays have been developed and utilized as standard genotyping methods for rice breeding research. Considering the importance of SNP arrays with more inclusive genetic information for GWAS and genomic selection, we integrated SNPs from eight different data resources: resequencing data from the Korean World Rice Collection (KRICE) of 475 accessions, 3,000 rice genome project (3 K-RGP) data, 700 K high-density rice array, Affymetrix 44 K SNP array, QTARO, Reactome, and plastid and GMO information. The collected SNPs were filtered and selected based on the breeder's interest, covering all key traits or research areas to develop an integrated array system representing inclusive genomic polymorphisms. A total of 581,006 high-quality SNPs were synthesized with an average distance of 200 bp between adjacent SNPs, generating a 580 K Axiom Rice Genotyping Chip (580 K _ KNU chip). Further validation of this array on 4,720 genotypes revealed robust and highly efficient genotyping. This has also been demonstrated in genome-wide association studies (GWAS) and genomic selection (GS) of three traits: clum length, heading date, and panicle length. Several SNPs significantly associated with cut-off, -log10 p-value >7.0, were detected in GWAS, and the GS predictabilities for the three traits were more than 0.5, in both rrBLUP and convolutional neural network (CNN) models. The Axiom 580 K Genotyping array will provide a cost-effective genotyping platform and accelerate rice GWAS and GS studies.
Collapse
Affiliation(s)
- Kyu-Won Kim
- Center for Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan, South Korea
| | - Bhagwat Nawade
- Center for Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan, South Korea
| | - Jungrye Nam
- Center for Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan, South Korea
| | - Sang-Ho Chu
- Center for Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan, South Korea
| | - Jungmin Ha
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, South Korea
| | - Yong-Jin Park
- Center for Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan, South Korea
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan, South Korea
| |
Collapse
|
31
|
Wang B, Zhou G, Guo S, Li X, Yuan J, Hu A. Improving Nitrogen Use Efficiency in Rice for Sustainable Agriculture: Strategies and Future Perspectives. Life (Basel) 2022; 12:1653. [PMID: 36295087 PMCID: PMC9605605 DOI: 10.3390/life12101653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 10/15/2022] [Indexed: 11/30/2022] Open
Abstract
Nitrogen (N) is an important nutrient for the growth and development of rice. The application of N fertilizer has become one of the inevitable ways to increase rice yield due to insufficient soil N content. However, in order to achieve stable and high yield, farmers usually increase N fertilizer input without hesitation, resulting in a series of problems such as environmental pollution, energy waste and low production efficiency. For sustainable agriculture, improving the nitrogen use efficiency (NUE) to decrease N fertilizer input is imperative. In the present review, we firstly demonstrate the role of N in mediating root architecture, photosynthesis, metabolic balance, and yield components in rice. Furthermore, we further summarize the current agronomic practices for enhancing rice NUE, including balanced fertilization, the use of nitrification inhibitors and slow-release N fertilizers, the split application of N fertilizer, root zone fertilization, and so on. Finally, we discuss the recent advances of N efficiency-related genes with potential breeding value. These genes will contribute to improving the N uptake, maintain the N metabolism balance, and enhance the NUE, thereby breeding new varieties against low N tolerance to improve the rice yield and quality. Moreover, N-efficient varieties also need combine with precise N fertilizer management and advanced cultivation techniques to realize the maximum exploitation of their biological potential.
Collapse
Affiliation(s)
- Bo Wang
- Department of Food Crops, Jiangsu Yanjiang Institute of Agricultural Science, Nantong 226012, China
| | - Genyou Zhou
- Department of Food Crops, Jiangsu Yanjiang Institute of Agricultural Science, Nantong 226012, China
| | - Shiyang Guo
- School of Geographic Sciences, Nantong University, Nantong 226019, China
| | - Xiaohui Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jiaqi Yuan
- Department of Food Crops, Jiangsu Yanjiang Institute of Agricultural Science, Nantong 226012, China
| | - Anyong Hu
- School of Geographic Sciences, Nantong University, Nantong 226019, China
| |
Collapse
|
32
|
Shen Q, Xie Y, Qiu X, Yu J. The era of cultivating smart rice with high light efficiency and heat tolerance has come of age. FRONTIERS IN PLANT SCIENCE 2022; 13:1021203. [PMID: 36275525 PMCID: PMC9585279 DOI: 10.3389/fpls.2022.1021203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
How to improve the yield of crops has always been the focus of breeding research. Due to the population growth and global climate change, the demand for food has increased sharply, which has brought great challenges to agricultural production. In order to make up for the limitation of global cultivated land area, it is necessary to further improve the output of crops. Photosynthesis is the main source of plant assimilate accumulation, which has a profound impact on the formation of its yield. This review focuses on the cultivation of high light efficiency plants, introduces the main technical means and research progress in improving the photosynthetic efficiency of plants, and discusses the main problems and difficulties faced by the cultivation of high light efficiency plants. At the same time, in view of the frequent occurrence of high-temperature disasters caused by global warming, which seriously threatened plant normal production, we reviewed the response mechanism of plants to heat stress, introduced the methods and strategies of how to cultivate heat tolerant crops, especially rice, and briefly reviewed the progress of heat tolerant research at present. Given big progress in these area, the era of cultivating smart rice with high light efficiency and heat tolerance has come of age.
Collapse
Affiliation(s)
- Qiuping Shen
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| | - Yujun Xie
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| | - Xinzhe Qiu
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| | - Jinsheng Yu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
33
|
Luo Z, Xia H, Bao Z, Wang L, Feng Y, Zhang T, Xiong J, Chen L, Luo L. Integrated phenotypic, phylogenomic, and evolutionary analyses indicate the earlier domestication of Geng upland rice in China. MOLECULAR PLANT 2022; 15:1506-1509. [PMID: 36127872 DOI: 10.1016/j.molp.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/28/2022] [Accepted: 09/18/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Zhi Luo
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China; Shanghai Agrobiological Gene Center, Shanghai, China
| | - Hui Xia
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China; Shanghai Agrobiological Gene Center, Shanghai, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China.
| | - Zhigui Bao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lei Wang
- Shanghai Agrobiological Gene Center, Shanghai, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Yu Feng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Ting Zhang
- Shanghai OE Biotech. Co., Ltd., Shanghai, China
| | - Jie Xiong
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China; Shanghai Agrobiological Gene Center, Shanghai, China
| | - Liang Chen
- Shanghai Agrobiological Gene Center, Shanghai, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Lijun Luo
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China; Shanghai Agrobiological Gene Center, Shanghai, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
34
|
Zhang Y, Han E, Peng Y, Wang Y, Wang Y, Geng Z, Xu Y, Geng H, Qian Y, Ma S. Rice co-expression network analysis identifies gene modules associated with agronomic traits. PLANT PHYSIOLOGY 2022; 190:1526-1542. [PMID: 35866684 PMCID: PMC9516743 DOI: 10.1093/plphys/kiac339] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Identifying trait-associated genes is critical for rice (Oryza sativa) improvement, which usually relies on map-based cloning, quantitative trait locus analysis, or genome-wide association studies. Here we show that trait-associated genes tend to form modules within rice gene co-expression networks, a feature that can be exploited to discover additional trait-associated genes using reverse genetics. We constructed a rice gene co-expression network based on the graphical Gaussian model using 8,456 RNA-seq transcriptomes, which assembled into 1,286 gene co-expression modules functioning in diverse pathways. A number of the modules were enriched with genes associated with agronomic traits, such as grain size, grain number, tiller number, grain quality, leaf angle, stem strength, and anthocyanin content, and these modules are considered to be trait-associated gene modules. These trait-associated gene modules can be used to dissect the genetic basis of rice agronomic traits and to facilitate the identification of trait genes. As an example, we identified a candidate gene, OCTOPUS-LIKE 1 (OsOPL1), a homolog of the Arabidopsis (Arabidopsis thaliana) OCTOPUS gene, from a grain size module and verified it as a regulator of grain size via functional studies. Thus, our network represents a valuable resource for studying trait-associated genes in rice.
Collapse
Affiliation(s)
- Yu Zhang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Ershang Han
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Yuming Peng
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Yuzhou Wang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yifan Wang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Zhenxing Geng
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Yupu Xu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Haiying Geng
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | | | | |
Collapse
|
35
|
Gao Y, Qi S, Wang Y. Nitrate signaling and use efficiency in crops. PLANT COMMUNICATIONS 2022; 3:100353. [PMID: 35754172 PMCID: PMC9483113 DOI: 10.1016/j.xplc.2022.100353] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/06/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Nitrate (NO3-) is not only an essential nutrient but also an important signaling molecule for plant growth. Low nitrogen use efficiency (NUE) of crops is causing increasingly serious environmental and ecological problems. Understanding the molecular mechanisms of NO3- regulation in crops is crucial for NUE improvement in agriculture. During the last several years, significant progress has been made in understanding the regulation of NO3- signaling in crops, and some key NO3- signaling factors have been shown to play important roles in NO3- utilization. However, no detailed reviews have yet summarized these advances. Here, we focus mainly on recent advances in crop NO3- signaling, including short-term signaling, long-term signaling, and the impact of environmental factors. We also review the regulation of crop NUE by crucial genes involved in NO3- signaling. This review provides useful information for further research on NO3- signaling in crops and a theoretical basis for breeding new crop varieties with high NUE, which has great significance for sustainable agriculture.
Collapse
Affiliation(s)
- Yangyang Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Shengdong Qi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
36
|
Xia H, Zhang X, Liu Y, Bi J, Ma X, Zhang A, Liu H, Chen L, Zhou S, Gao H, Xu K, Wei H, Liu G, Wang F, Zhao H, Luo X, Hou D, Lou Q, Feng F, Zhou L, Chen S, Yan M, Li T, Li M, Wang L, Liu Z, Yu X, Mei H, Luo L. Blue revolution for food security under carbon neutrality: A case from the water-saving and drought-resistance rice. MOLECULAR PLANT 2022; 15:1401-1404. [PMID: 35915587 DOI: 10.1016/j.molp.2022.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/27/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Hui Xia
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Xianxian Zhang
- Shanghai Academy of Agricultural Sciences, Shanghai, China; Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, China
| | - Yi Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Junguo Bi
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Xiaosong Ma
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Anning Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Hongyan Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Liang Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Sheng Zhou
- Shanghai Academy of Agricultural Sciences, Shanghai, China; Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, China
| | - Huan Gao
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Kai Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Haibin Wei
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Guolan Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Feiming Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Hongyang Zhao
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Xingxing Luo
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Danping Hou
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Qiaojun Lou
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Fangjun Feng
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Liguo Zhou
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Shoujun Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Ming Yan
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Tianfei Li
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Mingshou Li
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, China
| | - Lei Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Zaochang Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Xinqiao Yu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Hanwei Mei
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Lijun Luo
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China.
| |
Collapse
|
37
|
Bin Rahman ANMR, Zhang J. Trends in rice research: 2030 and beyond. Food Energy Secur 2022. [DOI: 10.1002/fes3.390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
| | - Jianhua Zhang
- Department of Biology Hong Kong Baptist University Hong Kong China
- State Key Laboratory of Agrobiotechnology The Chinese University of Hong Kong Hong Kong China
| |
Collapse
|
38
|
Hao Z, Ma S, Liang L, Feng T, Xiong M, Lian S, Zhu J, Chen Y, Meng L, Li M. Candidate Genes and Pathways in Rice Co-Responding to Drought and Salt Identified by gcHap Network. Int J Mol Sci 2022; 23:ijms23074016. [PMID: 35409377 PMCID: PMC8999833 DOI: 10.3390/ijms23074016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/26/2022] [Accepted: 04/01/2022] [Indexed: 01/24/2023] Open
Abstract
Drought and salinity stresses are significant abiotic factors that limit rice yield. Exploring the co-response mechanism to drought and salt stress will be conducive to future rice breeding. A total of 1748 drought and salt co-responsive genes were screened, most of which are enriched in plant hormone signal transduction, protein processing in the endoplasmic reticulum, and the MAPK signaling pathways. We performed gene-coding sequence haplotype (gcHap) network analysis on nine important genes out of the total amount, which showed significant differences between the Xian/indica and Geng/japonica population. These genes were combined with related pathways, resulting in an interesting mechanistic draft called the ‘gcHap-network pathway’. Meanwhile, we collected a lot of drought and salt breeding varieties, especially the introgression lines (ILs) with HHZ as the parent, which contained the above-mentioned nine genes. This might imply that these ILs have the potential to improve the tolerance to drought and salt. In this paper, we focus on the relationship of drought and salt co-response gene gcHaps and their related pathways using a novel angle. The haplotype network will be helpful to explore the desired haplotypes that can be implemented in haplotype-based breeding programs.
Collapse
Affiliation(s)
- Zhiqi Hao
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (Z.H.); (S.M.); (L.L.); (T.F.); (M.X.); (S.L.); (J.Z.); (Y.C.)
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Sai Ma
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (Z.H.); (S.M.); (L.L.); (T.F.); (M.X.); (S.L.); (J.Z.); (Y.C.)
| | - Lunping Liang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (Z.H.); (S.M.); (L.L.); (T.F.); (M.X.); (S.L.); (J.Z.); (Y.C.)
| | - Ting Feng
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (Z.H.); (S.M.); (L.L.); (T.F.); (M.X.); (S.L.); (J.Z.); (Y.C.)
| | - Mengyuan Xiong
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (Z.H.); (S.M.); (L.L.); (T.F.); (M.X.); (S.L.); (J.Z.); (Y.C.)
| | - Shangshu Lian
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (Z.H.); (S.M.); (L.L.); (T.F.); (M.X.); (S.L.); (J.Z.); (Y.C.)
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jingyan Zhu
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (Z.H.); (S.M.); (L.L.); (T.F.); (M.X.); (S.L.); (J.Z.); (Y.C.)
| | - Yanjun Chen
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (Z.H.); (S.M.); (L.L.); (T.F.); (M.X.); (S.L.); (J.Z.); (Y.C.)
| | - Lijun Meng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Correspondence: (L.M.); (M.L.)
| | - Min Li
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (Z.H.); (S.M.); (L.L.); (T.F.); (M.X.); (S.L.); (J.Z.); (Y.C.)
- Correspondence: (L.M.); (M.L.)
| |
Collapse
|
39
|
Understanding the genetic and molecular constitutions of heterosis for developing hybrid rice. J Genet Genomics 2022; 49:385-393. [PMID: 35276387 DOI: 10.1016/j.jgg.2022.02.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/31/2022]
Abstract
The wide adoption of hybrid rice has greatly increased rice yield in the last several decades. The utilization of heterosis facilitated by male sterility has been a common strategy for hybrid rice development. Here, we summarize our efforts in the genetic and molecular understanding of heterosis and male sterility together with the related progress from other research groups. Analyses of F1 diallel crosses show that strong heterosis widely exists in hybrids of diverse germplasms, and inter-subspecific hybrids often display higher heterosis. Using the elite hybrid Shanyou 63 as a model, an immortalized F2 population design is conducted for systematic characterization of the biological mechanism of heterosis, with identification of loci controlling heterosis of yield and yield component traits. Dominance, overdominance, and epistasis all play important roles in the genetic basis of heterosis; quantitative assessment of these components well addressed the three classical genetic hypotheses for heterosis. Environment-sensitive genic male sterility (EGMS) enables the development of two-line hybrids, and long noncoding RNAs often function as regulators of EGMS. Inter-subspecific hybrids show greatly reduced fertility; the identification and molecular characterization of hybrid sterility genes offer strategies for overcoming inter-subspecific hybrid sterility. These developments have significant implications for future hybrid rice improvement using genomic breeding.
Collapse
|
40
|
Genome-wide identification and expression analysis of the GSK gene family in wheat (Triticum aestivum L.). Mol Biol Rep 2022; 49:2899-2913. [PMID: 35083611 DOI: 10.1007/s11033-021-07105-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Plant glycogen synthase kinase 3/shaggy kinase (GSK3) proteins contain the conserved kinase domain and play a pivotal role in the regulation of plant growth and abiotic stress responses. Nonetheless, genome-wide analysis of the GSK gene family in wheat (Triticum aestivum L.) has not been reported. METHODS AND RESULTS Using high-quality wheat genome sequences, a comprehensive genome-wide characterization of the GSK gene family in wheat was conducted. Their phylogenetics, chromosome location, gene structure, conserved domains, promoter cis-elements, gene duplications, and network interactions were systematically analyzed. In this study, we identified 22 GSK genes in wheat genome that were unevenly distributed on nine wheat chromosomes. Based on phylogenetic analysis, the GSK genes from Arabidopsis, rice, barley, and wheat were clustered into four subfamilies. Gene structure and conserved protein motif analysis revealed that GSK proteins in the same subfamily share similar motif structures and exon/intron organization. Results from gene duplication analysis indicate that four segmental duplications events contribute to the expansion of the wheat GSK gene family. Promoter analysis indicated the participation of TaSK genes in response to the hormone, light and abiotic stress, and plant growth and development. Furthermore, gene network analysis found that five TaSKs were involved in the regulatory network and 130 gene pairs of network interactions were identified. The heat map generated from the available transcriptomic data revealed that the TaSKs exhibited preferential expression in specific tissues and different expression patterns under abiotic stress conditions. Moreover, results from qRT-PCR analysis revealed that the randomly selected TaSK genes were abundantly expressed in spikes and grains at one specific developmental stage, as well as in responding to drought and salt stress. CONCLUSIONS These findings clearly depicted the evolutionary processes and the characteristics, and expression profiles of the GSK gene family in wheat, revealed their role in wheat development and response to abiotic stress responses.
Collapse
|