1
|
Li YP, Su LY, Huang T, Liu H, Tan SS, Deng YJ, Wang YH, Xiong AS. The telomere-to-telomere genome of Pucai () ( Typha angustifolia L.): a distinctive semiaquatic vegetable with lignin and chlorophyll as quality characteristics. HORTICULTURE RESEARCH 2025; 12:uhaf079. [PMID: 40343350 PMCID: PMC12058305 DOI: 10.1093/hr/uhaf079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/03/2025] [Indexed: 05/11/2025]
Abstract
Pucai () (Typha angustifolia L.), within the Typha spp., is a distinctive semiaquatic vegetable. Lignin and chlorophyll are two crucial traits and quality indicators for Pucai. In this study, we assembled a 207.00-Mb high-quality gapless genome of Pucai, telomere-to-telomere (T2T) level with a contig N50 length of 13.73 Mb. The most abundant type of repetitive sequence, comprising 16.98% of the genome, is the long terminal repeat retrotransposons (LTR-RT). A total of 30 telomeres and 15 centromeric regions were predicted. Gene families related to lignin, chlorophyll biosynthesis, and disease resistance were greatly expanded, which played important roles in the adaptation of Pucai to wetlands. The slow evolution of Pucai was indicated by the σ whole-genome duplication (WGD)-associated Ks peaks from different Poales and the low activity of recent LTR-RT in Pucai. Meanwhile, we found a unique WGD event in Typhaceae. A statistical analysis and annotation of genomic variations were conducted in interspecies and intraspecies of Typha. Based on the T2T genome, we constructed lignin and chlorophyll metabolic pathways of Pucai. Subsequently, the candidate structural genes and transcription factors that regulate lignin and chlorophyll biosynthesis were identified. The T2T genomic resources will provide molecular information for lignin and chlorophyll accumulation and help to understand genome evolution in Pucai.
Collapse
Affiliation(s)
- Ya-Peng Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Li-Yao Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ting Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shan-Shan Tan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuan-Jie Deng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ya-Hui Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
2
|
Wu H, Yang W, Dong G, Hu Q, Li D, Liu J. Construction of the super pan-genome for the genus Actinidia reveals structural variations linked to phenotypic diversity. HORTICULTURE RESEARCH 2025; 12:uhaf067. [PMID: 40303430 PMCID: PMC12038230 DOI: 10.1093/hr/uhaf067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/23/2025] [Indexed: 05/02/2025]
Abstract
Kiwifruits, belonging to the genus Actinidia, are acknowledged as one of the most successfully domesticated fruits in the twentieth century. Despite the rich wild resources and diverse phenotypes within this genus, insights into the genomic changes are still limited. Here, we conducted whole-genome sequencing on seven representative materials from highly diversified sections of Actinidia, leading to the assembly and annotation of 14 haplotype genomes with sizes spanning from 602.0 to 699.6 Mb. By compiling these haplotype genomes, we constructed a super pan-genome for the genus. We identified numerous structural variations (SVs, including variations in gene copy number) and highly diverged regions in these genomes. Notably, significant SV variability was observed within the intronic regions of the MED25 and TTG1 genes across different materials, suggesting their potential roles in influencing fruit size and trichome formation. Intriguingly, our findings indicated a high genetic divergence between two haplotype genomes, with one individual, tentatively named Actinidia × leiocacarpae, from sect. Leiocacarpae. This likely hybrid with a heterozygous genome exhibited notable genetic adaptations related to resistance against bacterial canker, particularly through the upregulation of the RPM1 gene, which contains a specific SV, after infection by Pseudomonas syringae pv. actinidiae. In addition, we also discussed the interlineage hybridizations and taxonomic treatments of the genus Actinidia. Overall, the comprehensive pan-genome constructed here, along with our findings, lays a foundation for examining genetic compositions and markers, particularly those related to SVs, to facilitate hybrid breeding aimed at developing desired phenotypes in kiwifruits.
Collapse
Affiliation(s)
- Haolin Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 1st Ring Road, Chengdu, 610065, China
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), No. 184 Xinqiao Street, Chongqing, 400037, China
| | - Wenjie Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 1st Ring Road, Chengdu, 610065, China
| | - Guanyong Dong
- Technology Innovation Service Center, No.110 Jiangnan Road, Cangxi, 628400, China
| | - Quanjun Hu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 1st Ring Road, Chengdu, 610065, China
| | - Dawei Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, No.1 Lumo Road, Wuhan, 430074, China
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 1st Ring Road, Chengdu, 610065, China
- State Key Laboratory of Grassland AgroEcosystem, College of Ecology, Lanzhou University, No.222 South Tianshui Road, Lanzhou, 730000, China
| |
Collapse
|
3
|
Wang Z, Miao L, Tan K, Guo W, Xin B, Appels R, Jia J, Lai J, Lu F, Ni Z, Fu X, Sun Q, Chen J. Near-complete assembly and comprehensive annotation of the wheat Chinese Spring genome. MOLECULAR PLANT 2025; 18:892-907. [PMID: 39949061 DOI: 10.1016/j.molp.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/28/2025] [Accepted: 02/12/2025] [Indexed: 03/04/2025]
Abstract
A complete reference genome assembly is crucial for biological research and genetic improvement. Owing to its large size and highly repetitive nature, there are numerous gaps in the globally used wheat Chinese Spring (CS) genome assembly. In this study, we generated a 14.46 Gb near-complete assembly of the CS genome, with a contig N50 of over 266 Mb and an overall base accuracy of 99.9963%. Among the 290 gaps that remained (26, 257, and 7 gaps from the A, B, and D subgenomes, respectively), 278 were extremely high-copy tandem repeats, whereas the remaining 12 were transposable-element-associated gaps. Four chromosome assemblies were completely gap-free, including chr1D, chr3D, chr4D, and chr5D. Extensive annotation of the near-complete genome revealed 151 405 high-confidence genes, of which 59 180 were newly annotated, including 7602 newly assembled genes. Except for the centromere of chr1B, which has a gap associated with superlong GAA repeat arrays, the centromeric sequences of all of the remaining 20 chromosomes were completely assembled. Our near-complete assembly revealed that the extent of tandem repeats, such as simple-sequence repeats, was highly uneven among different subgenomes. Similarly, the repeat compositions of the centromeres also varied among the three subgenomes. With the genome sequences of all six types of seed storage proteins (SSPs) fully assembled, the expression of ω-gliadin was found to be contributed entirely by the B subgenome, whereas the expression of the other five types of SSPs was most abundant from the D subgenome. The near-complete CS genome will serve as a valuable resource for genomic and functional genomic research and breeding of wheat as well as its related species.
Collapse
Affiliation(s)
- Zijian Wang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing 100193, China
| | - Lingfeng Miao
- Frontiers Science Center for Molecular Design Breeding (Ministry of Education), China Agricultural University, Beijing 100193, China; State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Kaiwen Tan
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding (Ministry of Education), China Agricultural University, Beijing 100193, China; State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Beibei Xin
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding (Ministry of Education), China Agricultural University, Beijing 100193, China
| | - Rudi Appels
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jizeng Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding (Ministry of Education), China Agricultural University, Beijing 100193, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Fei Lu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding (Ministry of Education), China Agricultural University, Beijing 100193, China; State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China.
| | - Xiangdong Fu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding (Ministry of Education), China Agricultural University, Beijing 100193, China; State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China.
| | - Jian Chen
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding (Ministry of Education), China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Chen L, Wang H, Xu T, Liu R, Zhu J, Li H, Zhang H, Tang L, Jing D, Yang X, Guo Q, Wang P, Wang L, Liu J, Duan S, Liu Z, Huang M, Li X, Lu Z. A telomere-to-telomere gap-free assembly integrating multi-omics uncovers the genetic mechanism of fruit quality and important agronomic trait associations in pomegranate. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40318230 DOI: 10.1111/pbi.70107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/26/2025] [Accepted: 04/09/2025] [Indexed: 05/07/2025]
Abstract
Pomegranate is an important perennial fruit tree distributed worldwide. Reference genomes with gaps and limit gene identification controlling important agronomic traits hinder its functional genomics and genetic improvements. Here, we reported a telomere-to-telomere (T2T) gap-free genome assembly of the distinctive cultivar 'Moshiliu'. The Moshiliu reference genome was assembled into eight chromosomes without gaps, totalling ~366.71 Mb, with 32 158 predicted protein-coding genes. All 16 telomeres and eight centromeres were characterized; combined with FISH analysis, we revealed the atypical telomere units in pomegranate as TTTTAGGG. Furthermore, a total of 16 loci associated with 15 important agronomic traits were identified based on GWAS of 146 accessions. Gene editing and biochemical experiments demonstrated that a 37.2-Kb unique chromosome translocation disrupting the coding domain sequence of PgANS was responsible for anthocyanin-less, knockout of PgANS in pomegranate exhibited a defect in anthocyanin production; a unique repeat expansion in the promoter of PgANR may affected its expression, resulting in black peel; notably, the G → A transversion located at the 166-bp coding domain of PgNST3, which caused a E56K mutation in the PgNST3 protein, closely linked with soft-seed trait. Overexpression of PgNST3A in tomato presented smaller and softer seed coats. The E56K mutation in PgNST3 protein, eliminated the binding ability of PgNST3 to the PgMYB46 promoter, which subsequently affected the thickness of the inner seed coat of soft-seeded pomegranates. Collectively, the validated gap-free genome, the identified genes controlling important traits and the CRISPR-Cas9-mediated gene knockout system all provided invaluable resources for pomegranate precise breeding.
Collapse
Affiliation(s)
- Lina Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Hao Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Tingtao Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Ruitao Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Juanli Zhu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Haoxian Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
- Chuxiong Yunguo Agriculture Technology Research Institute, Chinese Academy of Agricultural Sciences, Chuxiong, Yunnan, China
| | - Huawei Zhang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, China
| | - Liying Tang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Dan Jing
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xuanwen Yang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Qigao Guo
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Peng Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Luwei Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Junhao Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Shuyun Duan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhaoning Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Mengchi Huang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaolong Li
- OMIX Technologies Corporation, Chengdu, China
| | - Zhenhua Lu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
- Chuxiong Yunguo Agriculture Technology Research Institute, Chinese Academy of Agricultural Sciences, Chuxiong, Yunnan, China
| |
Collapse
|
5
|
Zhou T, Huang XJ, Cheng YJ, Zhang XY, Wang XJ, Li ZH. Telomere-to-telomere genome and multi-omics analysis of Prunus avium cv. Tieton provides insights into its genomic evolution and flavonoid biosynthesis. Int J Biol Macromol 2025; 306:141809. [PMID: 40057088 DOI: 10.1016/j.ijbiomac.2025.141809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/17/2025] [Accepted: 03/05/2025] [Indexed: 05/11/2025]
Abstract
The European sweet cherry (Prunus avium) is highly valued for its superior quality, delectable taste, and robust stress resistance, leading to its extensive cultivation in the world. However, the previous incomplete genome assemblies have impeded its evolution and genetic regulation studies. In this study, we generated a Telomere-to-Telomere gap-free genome assembly of P. avium cv. Tieton, using advanced sequencing technologies. The assembled genome comprises eight pseudochromosomes with a genome size of 342.23 Mb and a contig N50 of 40.66 Mb. Comparative genomic analysis identified several unique stress resistance-related genes, possibly associated with the species' environmental adaptation. The integrative analyses of genomics, transcriptomes and metabolomes identified some key structural genes and metabolites crucial to flavonoid biosynthesis of sweet cherry. Our analyses revealed that 85 flavonoid metabolites, which are highly differentially accumulated among five tissues (flesh, stem, leaf, bud, and seed) of cherry. Interestingly, eight abundant flavonoids (Narcissoside, Typhaneoside, Myricetin 3-0-galactoside, Diosmin, Neohesperidin, Liquiritin apioside, 5,6,7-Trimethoxyflavone and Oroxin B) were highly accumulated in cherry flesh tissues. The gene-metabolite correlation analysis revealed that seven genes (HTC8, HTC6, CYP75B1_9, CYP75B1_10, 4CL1, DFR1, and FLS1) significantly regulated flavonoid accumulation in cherry flesh. Additionally, some structural genes (4CL6, PAL3, CYP75A2, F3H1, CYP75B1_8, and CYP75B1_10) were identified in the flavonoid biosynthetic pathway and were highly expressed, aligning with high flavonoid metabolite content in cherry flesh. These identified genes and metabolites are likely pivotal in conferring sweet cherry's stress resistance and high-quality traits. These findings offer deep insights into the mechanisms of genomic evolution and flavonoid biosynthesis, which also lay a solid foundation for further function genomics studies and breeding improvement in cherry.
Collapse
Affiliation(s)
- Tong Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Xiao-Juan Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Yan-Jun Cheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Xing-Ya Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Xiao-Juan Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
| |
Collapse
|
6
|
Li Y, Song Z, Zhan X, Li X, Ye L, Lin M, Wang R, Huang H, Guo J, Sun L, Gu H, Chen J, Fang J, Qi X. Chromosome-level genome assembly assisting for dissecting mechanism of anthocyanin regulation in kiwifruit (Actinidia arguta). MOLECULAR HORTICULTURE 2025; 5:18. [PMID: 40165341 PMCID: PMC11959805 DOI: 10.1186/s43897-024-00139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/26/2024] [Indexed: 04/02/2025]
Abstract
Actinidia arguta is a newly emerged, commercially cultivated Actinidia species. A. arguta has a beautiful appearance and is rich in anthocyanin, and is thus highly welcomed by consumers. However, the mechanism of anthocyanin regulation in A. arguta remains unclear. In this study, we assembled the nearly complete genome of the first red A. arguta cultivar, 'Tianyuanhong', with an N50 of 21 Mb. Comparative genome analysis revealed a role of the expansion/contraction of gene families in the species-specific trait formation of A. arguta. Through verification of transient overexpression and stable transformation, RNA-seq analysis revealed a key bHLH transcription factor, AaBEE1, which negatively regulates anthocyanin biosynthesis. DAP-seq analysis combined with Y1H, EMSA, Chip-qPCR and LUC suggested that AaBEE1 binds to the G-box of the AaLDOX promoter and suppresses its expression. Overall, we assembled the genome of A. arguta and clarified its AaBEE1-AaLDOX module-mediated molecular mechanism of anthocyanin regulation.
Collapse
Affiliation(s)
- Yukuo Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, China
| | - Zhe Song
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xu Zhan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471000, China
| | - Xiaohan Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lingshuai Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Miaomiao Lin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, China
| | - Ran Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Hailei Huang
- Shiyan Economic Crops Research Institute, Shiyan, 442099, China
| | - Jian Guo
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Leiming Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Hong Gu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Jinyong Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Jinbao Fang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| | - Xiujuan Qi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, China.
| |
Collapse
|
7
|
Nachtigall PG, Nystrom GS, Broussard EM, Wray KP, Junqueira-de-Azevedo ILM, Parkinson CL, Margres MJ, Rokyta DR. A Segregating Structural Variant Defines Novel Venom Phenotypes in the Eastern Diamondback Rattlesnake. Mol Biol Evol 2025; 42:msaf058. [PMID: 40101100 PMCID: PMC11965796 DOI: 10.1093/molbev/msaf058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025] Open
Abstract
Of all mutational mechanisms contributing to phenotypic variation, structural variants are both among the most capable of causing major effects as well as the most technically challenging to identify. Intraspecific variation in snake venoms is widely reported, and one of the most dramatic patterns described is the parallel evolution of streamlined neurotoxic rattlesnake venoms from hemorrhagic ancestors by means of deletion of snake venom metalloproteinase (SVMP) toxins and recruitment of neurotoxic dimeric phospholipase A2 (PLA2) toxins. While generating a haplotype-resolved, chromosome-level genome assembly for the eastern diamondback rattlesnake (Crotalus adamanteus), we discovered that our genome animal was heterozygous for a ∼225 Kb deletion containing six SVMP genes, paralleling one of the two steps involved in the origin of neurotoxic rattlesnake venoms. Range-wide population-genomic analysis revealed that, although this deletion is rare overall, it is the dominant homozygous genotype near the northwestern periphery of the species' range, where this species is vulnerable to extirpation. Although major SVMP deletions have been described in at least five other rattlesnake species, C. adamanteus is unique in not additionally gaining neurotoxic PLA2s. Previous work established a superficially complementary north-south gradient in myotoxin (MYO) expression based on copy number variation with high expression in the north and low in the south, yet we found that the SVMP and MYO genotypes vary independently, giving rise to an array of diverse, novel venom phenotypes across the range. Structural variation, therefore, forms the basis for the major axes of geographic venom variation for C. adamanteus.
Collapse
Affiliation(s)
- Pedro G Nachtigall
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
- Laboratório de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, SP, Brazil
| | - Gunnar S Nystrom
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Emilie M Broussard
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Kenneth P Wray
- Biodiversity Center, University of Texas at Austin, Austin, TX, USA
| | | | | | - Mark J Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
8
|
Liu S, Li K, Dai X, Qin G, Lu D, Gao Z, Li X, Song B, Bian J, Ren D, Liu Y, Chen X, Xu Y, Liu W, Yang C, Liu X, Chen S, Li J, Li B, He H, Deng XW. A telomere-to-telomere genome assembly coupled with multi-omic data provides insights into the evolution of hexaploid bread wheat. Nat Genet 2025; 57:1008-1020. [PMID: 40195562 PMCID: PMC11985340 DOI: 10.1038/s41588-025-02137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/19/2025] [Indexed: 04/09/2025]
Abstract
The complete assembly of vast and complex plant genomes, like the hexaploid wheat genome, remains challenging. Here we present CS-IAAS, a comprehensive telomere-to-telomere (T2T) gap-free Triticum aestivum L. genome, encompassing 14.51 billion base pairs and featuring all 21 centromeres and 42 telomeres. Annotation revealed 90.8 Mb additional centromeric satellite arrays and 5,611 rDNA units. Genome-wide rearrangements, centromeric elements, transposable element expansion and segmental duplications were deciphered during tetraploidization and hexaploidization, providing a comprehensive understanding of wheat subgenome evolution. Among them, transposable element insertions during hexaploidization greatly influenced gene expression balances, thus increasing the genome plasticity of transcriptional levels. Additionally, we generated 163,329 full-length cDNA sequences and proteomic data that helped annotate 141,035 high-confidence protein-coding genes. The complete T2T reference genome (CS-IAAS), along with its transcriptome and proteome, represents a significant step in our understanding of wheat genome complexity and provides insights for future wheat research and breeding.
Collapse
Affiliation(s)
- Shoucheng Liu
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Kui Li
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Xiuru Dai
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
- College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Guochen Qin
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Dongdong Lu
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Zhaoxu Gao
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Xiaopeng Li
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Bolong Song
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Jianxin Bian
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Da Ren
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Yongqi Liu
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Xiaofeng Chen
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Yunbi Xu
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Weimin Liu
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Chen Yang
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Xiaoqin Liu
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Shisheng Chen
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Jian Li
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Bosheng Li
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China.
| | - Hang He
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China.
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, China.
| | - Xing Wang Deng
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China.
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, China.
| |
Collapse
|
9
|
Yin M, Song X, He C, Li X, Li M, Li J, Wu H, Chen C, Zhang L, Cai Z, Lu L, Xu Y, Wang X, Yi H, Wu J. The haplotype-resolved genome assembly of an ancient citrus variety provides insights into the domestication history and fruit trait formation of loose-skin mandarins. Genome Biol 2025; 26:61. [PMID: 40098183 PMCID: PMC11912795 DOI: 10.1186/s13059-025-03535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 03/10/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Loose-skin mandarins (LSMs) are among the oldest domesticated horticultural crops, yet their domestication history and the genetic basis underlying the formation of key selected traits remain unclear. RESULTS We provide a chromosome-scale and haplotype-resolved assembly for the ancient Chinese citrus variety Nanfengmiju tangerine. Through the integration of 77 resequenced and 114 published citrus germplasm genomes, we categorize LSMs into 12 distinct groups based on population genomic analyses. We infer that the ancestors of modern cultivated mandarins diverged from wild mandarins in Daoxian approximately 500,000 years ago, when they entered the Yangtze and Pearl River Basins. There, they were domesticated into four ancient cultivation groups, forming the cornerstone of modern Chinese LSM cultivation. We identify selective sweeps underlying quantitative trait loci and genes related to important fruit quality traits, including sweetness and size. We reveal that the co-selection of sugar transporter and metabolism genes are associated with increased fruit sweetness. Significant alterations in the auxin and gibberellin signaling networks may contribute to the enlargement of LSM fruits. We also provide a comprehensive, high-spatiotemporal-resolution atlas of allelic gene expression during citrus fruit development. We detect 5890 allele pairs showing specific expression patterns and a significant increase in variation levels. CONCLUSIONS Our study provides valuable genomic resources and further revises the origin and domestication history of LSMs, offering insights for genetic improvement of citrus plants.
Collapse
Affiliation(s)
- Minqiang Yin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaochan Song
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chao He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiyuan Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengyuan Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiangbo Li
- Fuzhou Agricultural and Rural Industry Development Service Center, Fuzhou, 344100, China
| | - Hao Wu
- Fuzhou Institute of Agricultural Sciences, Fuzhou, 344100, China
| | - Chuanwu Chen
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin, 541004, China
| | - Li Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhenmei Cai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liqing Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanhui Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hualin Yi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Juxun Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
10
|
Cheng L, Han Q, Hao Y, Qiao Z, Li M, Liu D, Yin H, Li T, Long W, Luo S, Gao Y, Zhang Z, Yu H, Sun X, Li H, Zhao Y. Genome assembly of Stewartia sinensis reveals origin and evolution of orphan genes in Theaceae. Commun Biol 2025; 8:354. [PMID: 40032980 PMCID: PMC11876429 DOI: 10.1038/s42003-025-07525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 01/13/2025] [Indexed: 03/05/2025] Open
Abstract
Orphan genes play crucial roles in diverse biological processes, but the evolutionary trajectories and functional divergence remain largely unexplored. The Theaceae family, including the economically and culturally important tea plant, offers a distinctive model to examine these aspects. Here, we integrated Nanopore long-read sequencing, Illumina short-read sequencing, and Hi-C methods to decode a pseudo-chromosomal genome assembly of Stewartia sinensis, from the earliest-diverging tribe of Theaceae, spanning 2.95 Gb. Comparative genomic analysis revealed the absence of recent whole-genome duplication events in the Theaceae ancestor, highlighting tandem duplications as the predominant mechanism of gene expansion. We identified 31,331 orphan genes, some of which appear to have ancient origins, suggesting early emergence with frequent gains and losses, while others seem more specific and recent. Notably, orphan genes are distinguished by shorter lengths, fewer exons and functional domains compared to genes that originate much earlier, like transcription factors. Moreover, tandem duplication contributes significantly to the adaptive evolution and characteristic diversity of Theaceae, and it is also a major mechanism driving the origination of orphan genes. This study illuminates the evolutionary dynamics of orphan genes, providing a valuable resource for understanding the origin and evolution of tea plant flavor and enhancing genetic breeding efforts.
Collapse
Affiliation(s)
- Lin Cheng
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, China
- Henan International Joint Laboratory of Tea-oil Tree Biology and High-Value Utilization, College of Tea and Food Science, Xinyang Normal University, Xinyang, China
| | - Qunwei Han
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, China
- Henan International Joint Laboratory of Tea-oil Tree Biology and High-Value Utilization, College of Tea and Food Science, Xinyang Normal University, Xinyang, China
| | - Yanlin Hao
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, China
| | - Zhen Qiao
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, China
| | - Mengge Li
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, China
| | - Daliang Liu
- Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Hao Yin
- Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Tao Li
- Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Wen Long
- Xinyang Normal University Library, Xinyang Normal University, Xinyang, China
| | - Shanshan Luo
- Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Ya Gao
- Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Zhihan Zhang
- Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Houlin Yu
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, USA
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - Xinhao Sun
- College of Science, Northeastern University, Boston, USA
| | - Hao Li
- School of Life Sciences, East China Normal University, Shanghai, China.
- Shanghai Institute of Eco-Chongming (SIEC), Shanghai, China.
| | - Yiyong Zhao
- Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China.
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China.
| |
Collapse
|
11
|
Gao H, Chen M, Jin N, Ye L, Zhang G, Shen Q, Xu Z. A comprehensive analytical method 'Regulatome' revealed a novel pathway for aerenchyma formation under waterlogging in wheat. PHYSIOLOGIA PLANTARUM 2025; 177:e70157. [PMID: 40083176 DOI: 10.1111/ppl.70157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/12/2025] [Accepted: 03/01/2025] [Indexed: 03/16/2025]
Abstract
Waterlogging is a major abiotic stress restricting crop yield globally, and aerenchyma formation is one of the most important adaptive strategies in waterlogging-tolerant plants. However, the conservation of this process remains poorly understood, and additional pathways are yet to be identified. Here, physiological, anatomical, transcriptomic, and metabolomic analyses were conducted on wheat seedlings under normal and waterlogging conditions. Waterlogging caused growth inhibition and physiological damage, as well as induced aerenchyma formation in roots. A total of 10,346 differentially expressed genes and 3,419 differential metabolites were identified in roots. In addition to the AP2/ERF (APETALA2/ETHYLENE RESPONSIVE FACTOR) gene family, integrating analyses also revealed the role of LOB/AS2 (LATERAL ORGAN BOUNDARIES/ASYMMETRIC LEAVES2) in aerenchyma formation under waterlogging. It was revealed that the classical pathway of aerenchyma formation mediated by ethylene response, as well as synergy of calcium ion and reactive oxygen species, was deeply conserved in both monocots and eudicots during 160 million years of evolution through gene co-expression networks of cross-species. The newly introduced concept 'Regulatome' supported the classical pathway of aerenchyma formation, with a proposed model of the jasmonic acid signalling pathway involved in waterlogging, suggesting its usefulness in gene identification and function exploration. These findings provide a novel insight into the regulatory mechanisms of aerenchyma formation and breeding approaches for developing wheat cultivars with high waterlogging tolerance.
Collapse
Affiliation(s)
- Hao Gao
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Mingjiong Chen
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Nanfei Jin
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Lingzhen Ye
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, China
| | - Guoping Zhang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, China
| | - Qiufang Shen
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, China
| | - Zhengyuan Xu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, China
| |
Collapse
|
12
|
Zhang W, Tariq A, Jia X, Yan J, Fernie AR, Usadel B, Wen W. Plant sperm cell sequencing for genome phasing and determination of meiotic crossover points. Nat Protoc 2025; 20:690-708. [PMID: 39358597 DOI: 10.1038/s41596-024-01063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/08/2024] [Indexed: 10/04/2024]
Abstract
Haplotype phasing represents a pivotal procedure in genome analysis, entailing the identification of specific genetic variant combinations on each chromosome. Achieving chromosome-level genome phasing constitutes a considerable challenge, particularly in organisms with large and complex genomes. To address this challenge, we have developed a robust, gamete cell-based phasing pipeline, including wet-laboratory processes for plant sperm cell isolation, short-read sequencing and a bioinformatics workflow to generate chromosome-level phasing. The bioinformatics workflow is applicable for both plant and other sperm cells, for example, those of mammals. Our pipeline ensures high-quality single-nucleotide polymorphism (SNP) calling for each sperm cell and the subsequent construction of a high-density genetic map. The genetic map facilitates accurate chromosome-level genome phasing, enables crossover event detection and could be used to correct potential assembly errors. Our bioinformatics pipeline runs on a Linux system and most of its steps can be executed in parallel, expediting the analysis process. The entire workflow can be performed over the course of 1 d. We provide a practical example from our previous research using this protocol and provide the whole bioinformatics pipeline as a Docker image to ensure its easy adaptability to other studies.
Collapse
Affiliation(s)
- Weiyi Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Arslan Tariq
- Institute for Biological Data Science, CEPLAS, Heinrich-Heine Universität, Düsseldorf, Germany
| | - Xinxin Jia
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jianbing Yan
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | - Björn Usadel
- Institute for Biological Data Science, CEPLAS, Heinrich-Heine Universität, Düsseldorf, Germany.
- Institute of Bio- and Geosciences, IBG-4: Bioinformatics, CEPLAS, Forschungszentrum Jülich, Jülich, Germany.
| | - Weiwei Wen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
13
|
Ma N, Li X, Ci D, Zeng HY, Zhang C, Xie X, Zhong C, Deng XW, Li D, He H. Chromatin Topological Domains Associate With the Rapid Formation of Tandem Duplicates in Plants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408861. [PMID: 39731323 PMCID: PMC11831494 DOI: 10.1002/advs.202408861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/25/2024] [Indexed: 12/29/2024]
Abstract
In eukaryotes, chromatin is compacted within nuclei under the principle of compartmentalization. On top of that, condensin II establishes eukaryotic chromosome territories, while cohesin organizes the vertebrate genome by extruding chromatin loops and forming topologically associating domains (TADs). Thus far, the formation and roles of these chromatin structures in plants remain poorly understood. This study integrates Hi-C data from diverse plant species, demonstrating that nuclear DNA content influences large-scale chromosome conformation and affects the finer details of compartmental patterns. These contrasting compartmental patterns are distinguished by gene-to-gene loops and validated through cytological observations. Additionally, a novel chromatin domain type associated with tandem duplicate gene clusters is identified. These domains are independent of H3K27me3-mediated chromatin compartmentalization and exhibit evolutionary conservation across species. Gene pairs within TAD-like domains are younger and show higher levels of coexpression. These domains potentially promote the formation of tandem duplicates, a property appears unique to the Actinidia family. Overall, this study reveals functional chromatin domains in plants and provides evidence for the role of three-dimensional chromatin architecture in gene regulation and genome evolution.
Collapse
Affiliation(s)
- Ni Ma
- School of Advanced Agriculture Sciences and School of Life Sciences, Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijing100871China
- Peking University Institute of Advanced Agricultural SciencesShandong Laboratory of Advanced Agricultural Sciences in WeifangShandong261325China
| | - Xiaopeng Li
- Peking University Institute of Advanced Agricultural SciencesShandong Laboratory of Advanced Agricultural Sciences in WeifangShandong261325China
| | - Dong Ci
- School of Advanced Agriculture Sciences and School of Life Sciences, Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijing100871China
- Peking University Institute of Advanced Agricultural SciencesShandong Laboratory of Advanced Agricultural Sciences in WeifangShandong261325China
| | - Hai Yue Zeng
- School of Advanced Agriculture Sciences and School of Life Sciences, Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijing100871China
- Peking University Institute of Advanced Agricultural SciencesShandong Laboratory of Advanced Agricultural Sciences in WeifangShandong261325China
| | - Congxiao Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical GardenThe Chinese Academy of SciencesWuhanHubei430074China
| | - Xiaodong Xie
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical GardenThe Chinese Academy of SciencesWuhanHubei430074China
| | - Caihong Zhong
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical GardenThe Chinese Academy of SciencesWuhanHubei430074China
| | - Xing Wang Deng
- School of Advanced Agriculture Sciences and School of Life Sciences, Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijing100871China
- Peking University Institute of Advanced Agricultural SciencesShandong Laboratory of Advanced Agricultural Sciences in WeifangShandong261325China
| | - Dawei Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical GardenThe Chinese Academy of SciencesWuhanHubei430074China
| | - Hang He
- School of Advanced Agriculture Sciences and School of Life Sciences, Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijing100871China
- Peking University Institute of Advanced Agricultural SciencesShandong Laboratory of Advanced Agricultural Sciences in WeifangShandong261325China
| |
Collapse
|
14
|
Yu X, Qu M, Wu P, Zhou M, Lai E, Liu H, Guo S, Li S, Yao X, Gao L. Super pan-genome reveals extensive genomic variations associated with phenotypic divergence in Actinidia. MOLECULAR HORTICULTURE 2025; 5:4. [PMID: 39849617 PMCID: PMC11758757 DOI: 10.1186/s43897-024-00123-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 10/24/2024] [Indexed: 01/25/2025]
Abstract
Kiwifruit is an economically and nutritionally important horticultural fruit crop worldwide. The genomic data of several kiwifruit species have been released, providing an unprecedented opportunity for pan-genome analysis to comprehensively investigate the inter- and intra-species genetic diversity and facilitate utilization for kiwifruit breeding. Here, we generated a kiwifruit super pan-genome using 15 high-quality assemblies of eight Actinidia species. For gene-based pan-genome, a total of 61,465 gene families were identified, and the softcore and dispensable genes were enriched in biological processes like response to endogenous stimulus, response to hormone and cell wall organization or biogenesis. Then, structural variations (SVs) against A. chinensis 'Donghong' were identified and then used to construct a graph-based genome. Further population-scale SVs based on resequencing data from 112 individuals of 20 species revealed extensive SVs which probably contributed to the phenotypic diversity among the Actinidia species. SV hotspot regions were found contributed to environmental adaptation. Furthermore, we systematically identified resistance gene analogs (RGAs) in the 15 assemblies and generated a pan-RGA dataset to reveal the diversity of genes potentially involved in disease resistance in Actinidia. The pan-genomic data obtained here is useful for evolutionary and functional genomic studies in Actinidia, and facilitates breeding design.
Collapse
Affiliation(s)
- Xiaofen Yu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| | - Minghao Qu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Miao Zhou
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Enhui Lai
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huan Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Bioinformatics Center, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Sumin Guo
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Shan Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Xiaohong Yao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
| | - Lei Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China.
| |
Collapse
|
15
|
Wang J, Xu D, Sang YL, Sun M, Liu C, Niu M, Li Y, Liu L, Han X, Li J. A telomere-to-telomere gap-free reference genome of Chionanthus retusus provides insights into the molecular mechanism underlying petal shape changes. HORTICULTURE RESEARCH 2024; 11:uhae249. [PMID: 39664691 PMCID: PMC11629972 DOI: 10.1093/hr/uhae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/26/2024] [Indexed: 12/13/2024]
Abstract
Chionanthus retusus, an arbor tree of the Oleaceae family, is an ecologically and economically valuable ornamental plant for its remarkable adaptability in landscaping. During C. retusus breeding, we observed diverse floral shapes; however, no available genome for C. retusus has hindered the widespread identification of genes related to flower morphology. Thus, a de novo telomere-to-telomere (T2T) gap-free genome was generated. The assembly, incorporating high-coverage and long-read sequencing data, successfully yielded two complete haplotypes (687 and 683 Mb). The genome encompasses 42 864 predicted protein-coding genes, with all 46 telomeres and 23 centromeres in one haplotype. Whole-genome duplication analysis revealed that C. retusus underwent one fewer event of whole-genome duplication after differentiation compared to other species in the Oleaceae family. Furthermore, flower vein diversity was the main reason for the differences in floral shapes. Auxin-related genes were responsible for petal shape formation on genome-based transcriptome analysis. Specifically, the removal and retention of the first intron in CrAUX/IAA20 resulted in the production of two transcripts, and the differences in the expression levels of CrAUX/IAA20 resulted in the variations of flower veins. Compared to transcripts lacking the first intron, transcripts with intron retention caused more severe decreases in the number and length of flower veins in transgenic Arabidopsis thaliana. Our findings will deepen our understanding of flower morphology development and provide important theoretical support for the cultivation of Oleaceae.
Collapse
Affiliation(s)
- Jinnan Wang
- Shandong Mountain Tai Forest Ecosystem National Station, Key Laboratory of Forest Cultivation in the Lower Yellow River, National Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Dong Xu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Haikou, Hainan 570100, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Ya Lin Sang
- Shandong Mountain Tai Forest Ecosystem National Station, Key Laboratory of Forest Cultivation in the Lower Yellow River, National Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Maotong Sun
- Shandong Mountain Tai Forest Ecosystem National Station, Key Laboratory of Forest Cultivation in the Lower Yellow River, National Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Cuishuang Liu
- Shandong Mountain Tai Forest Ecosystem National Station, Key Laboratory of Forest Cultivation in the Lower Yellow River, National Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Muge Niu
- Shandong Mountain Tai Forest Ecosystem National Station, Key Laboratory of Forest Cultivation in the Lower Yellow River, National Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Ying Li
- Shandong Mountain Tai Forest Ecosystem National Station, Key Laboratory of Forest Cultivation in the Lower Yellow River, National Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Laishuo Liu
- Shandong Mountain Tai Forest Ecosystem National Station, Key Laboratory of Forest Cultivation in the Lower Yellow River, National Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Jihong Li
- Shandong Mountain Tai Forest Ecosystem National Station, Key Laboratory of Forest Cultivation in the Lower Yellow River, National Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
16
|
Zhang T, Li H, Jiang M, Hou H, Gao Y, Li Y, Wang F, Wang J, Peng K, Liu YX. Nanopore sequencing: flourishing in its teenage years. J Genet Genomics 2024; 51:1361-1374. [PMID: 39293510 DOI: 10.1016/j.jgg.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Over the past decade, nanopore sequencing has experienced significant advancements and changes, transitioning from an initially emerging technology to a significant instrument in the field of genomic sequencing. However, as advancements in next-generation sequencing technology persist, nanopore sequencing also improves. This paper reviews the developments, applications, and outlook on nanopore sequencing technology. Currently, nanopore sequencing supports both DNA and RNA sequencing, making it widely applicable in areas such as telomere-to-telomere (T2T) genome assembly, direct RNA sequencing (DRS), and metagenomics. The openness and versatility of nanopore sequencing have established it as a preferred option for an increasing number of research teams, signaling a transformative influence on life science research. As the nanopore sequencing technology advances, it provides a faster, more cost-effective approach with extended read lengths, demonstrating the significant potential for complex genome assembly, pathogen detection, environmental monitoring, and human disease research, offering a fresh perspective in sequencing technologies.
Collapse
Affiliation(s)
- Tianyuan Zhang
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China; Wuhan Benagen Technology Co., Ltd, Wuhan, Hubei 430000, China
| | - Hanzhou Li
- Wuhan Benagen Technology Co., Ltd, Wuhan, Hubei 430000, China
| | - Mian Jiang
- Wuhan Benagen Technology Co., Ltd, Wuhan, Hubei 430000, China
| | - Huiyu Hou
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Yunyun Gao
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Yali Li
- Wuhan Benagen Technology Co., Ltd, Wuhan, Hubei 430000, China
| | - Fuhao Wang
- Wuhan Benagen Technology Co., Ltd, Wuhan, Hubei 430000, China
| | - Jun Wang
- Wuhan Benagen Technology Co., Ltd, Wuhan, Hubei 430000, China
| | - Kai Peng
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225000, China
| | - Yong-Xin Liu
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China.
| |
Collapse
|
17
|
Li W, Chen J, Li C, Huang D, Huang Y, Zhang W, Pan X. Genome-wide identification of SWEET gene family and the sugar transport function of three candidate genes during female flower bud induction stage of Juglans sigillata Dode. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109288. [PMID: 39566115 DOI: 10.1016/j.plaphy.2024.109288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/29/2024] [Accepted: 11/09/2024] [Indexed: 11/22/2024]
Abstract
Sugar Will Eventually be Exported Transporter (SWEET) transports sugar to sink organs and regulates intercellular sugar transport to provide energy for plant growth and development. In this study, twenty-two SWEET genes were identified and distributed on eleven chromosomes. Phylogenetic tree analysis showed that these genes could be divided into four subfamilies. Metabolism and transcriptome analysis showed that sucrose and fructose were accumulated in female flower buds at physiological differentiation stage (PDS). The third branch of JsSWEET1 and the fourth branch of JsSWEET9 and JsSWEET17 were highly expressed in female flower buds at undifferentiated stage (UDS) and PDS, which promoted sugar accumulation in female flower bud differentiation, so these three candidate SWEET genes were considered to be involved in the accumulation of sugar in the flower bud differentiation of Juglans sigillata. The subcellular localization showed that all three candidate genes were located on the cell membrane, and JsSWEET17 was also expressed and functioned in the vacuolar membrane. Through overexpression in callus and silencing in female flower buds at UDS and PDS, it was found that JsSWEET1 positively regulated the accumulation of sucrose in female flower buds, and JsSWEET9 and JsSWEET17 are involved in the transport and accumulation of fructose during flower bud differentiation. These results could provide a comprehensive understanding of the JsSWEETs gene family and provide theoretical guidance for further study of the function of SWEET-induced sugar accumulation in plant flower development.
Collapse
Affiliation(s)
- Wenwen Li
- College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, China; College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Jinyan Chen
- College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, China; College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Chunxiang Li
- College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, China; College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Dong Huang
- College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, China; College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Yuanqi Huang
- College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, China; College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Wen'e Zhang
- College of Agriculture, Guizhou University, Guiyang, 550025, China.
| | - Xuejun Pan
- College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, China; College of Agriculture, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
18
|
Fu M, Chen Y, Liu YX, Chang X, Zhang L, Yang X, Li L, Zhang L. Genotype-associated core bacteria enhance host resistance against kiwifruit bacterial canker. HORTICULTURE RESEARCH 2024; 11:uhae236. [PMID: 39507700 PMCID: PMC11539023 DOI: 10.1093/hr/uhae236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/08/2024] [Indexed: 11/08/2024]
Abstract
Both the phyllosphere and rhizosphere are inhabited by different kinds of microorganisms that are closely related to plant growth and health. However, it is not clear whether disease-resistant cultivars shape the microbiome to facilitate disease resistance. In this study, significant differences were found in the aboveground and belowground bacterial communities of disease-resistant and disease-susceptible cultivars grown in the same kiwifruit orchard. The phyllosphere of the resistant cultivar 'Wanjin' showed greater enrichment of Pseudomonas spp. and Sphingomonas spp. than the susceptible cultivar 'Donghong'. The rhizosphere microbes of 'Wanjin' were less affected by field location, with significantly greater bacterial abundance than those of 'Donghong' and more bacteria with potential biocontrol properties. Pseudomonas syringae pv. actinidiae (Psa) infection significantly affected the microbiome of the phyllosphere of kiwifruit plants, especially that of 'Donghong'. Resistant and susceptible kiwifruit cultivars exhibit distinct beneficial microbial recruitment strategies under Psa challenge. The phyllosphere of 'Donghong' in Jinzhai was enriched with Sphingomonas spp. and Pantoea spp. under Psa infection, while the rhizosphere of 'Wanjin' was enriched with Sphingomonas spp. and Novosphingobium spp. We further identified five key biomarkers within the microbial community associated with Psa infection. Inoculation experiments showed that Lysobacter sp. R34, Stenotrophomonas sp. R31, Pseudomonas sp. R10 and RS54, which were isolated from belowground compartments of 'Wanjin', could positively affect plant performance under Psa challenge. The combination use of Pseudomonas sp. R10 and Stenotrophomonas sp. R31 significantly improve the management of kiwifruit canker. Our findings provided novel insights into soil-microbe-plant interactions and the role of microbes in plant disease resistance and susceptibility.
Collapse
Affiliation(s)
- Min Fu
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety, Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Yunhe Chen
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety, Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Yong-Xin Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Xiaoxi Chang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety, Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Lei Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety, Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Xinyi Yang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety, Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Li Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, CAS Engineering Laboratory for Kiwifruit Industrial Technology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Lixin Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety, Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
19
|
Li X, Huo L, Li X, Zhang C, Gu M, Fan J, Xu C, Gong J, Hu X, Zheng Y, Sun X. Genomes of diverse Actinidia species provide insights into cis-regulatory motifs and genes associated with critical traits. BMC Biol 2024; 22:200. [PMID: 39256695 PMCID: PMC11389309 DOI: 10.1186/s12915-024-02002-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Kiwifruit, belonging to the genus Actinidia, represents a unique fruit crop characterized by its modern cultivars being genetically diverse and exhibiting remarkable variations in morphological traits and adaptability to harsh environments. However, the genetic mechanisms underlying such morphological diversity remain largely elusive. RESULTS We report the high-quality genomes of five Actinidia species, including Actinidia longicarpa, A. macrosperma, A. polygama, A. reticulata, and A. rufa. Through comparative genomics analyses, we identified three whole genome duplication events shared by the Actinidia genus and uncovered rapidly evolving gene families implicated in the development of characteristic kiwifruit traits, including vitamin C (VC) content and fruit hairiness. A range of structural variations were identified, potentially contributing to the phenotypic diversity in kiwifruit. Notably, phylogenomic analyses revealed 76 cis-regulatory elements within the Actinidia genus, predominantly associated with stress responses, metabolic processes, and development. Among these, five motifs did not exhibit similarity to known plant motifs, suggesting the presence of possible novel cis-regulatory elements in kiwifruit. Construction of a pan-genome encompassing the nine Actinidia species facilitated the identification of gene DTZ79_23g14810 specific to species exhibiting extraordinarily high VC content. Expression of DTZ79_23g14810 is significantly correlated with the dynamics of VC concentration, and its overexpression in the transgenic roots of kiwifruit plants resulted in increased VC content. CONCLUSIONS Collectively, the genomes and pan-genome of diverse Actinidia species not only enhance our understanding of fruit development but also provide a valuable genomic resource for facilitating the genome-based breeding of kiwifruit.
Collapse
Affiliation(s)
- Xiaolong Li
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Liuqing Huo
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xinyi Li
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Chaofan Zhang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Miaofeng Gu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Jialu Fan
- Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Changbin Xu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Jinli Gong
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xiaoli Hu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yi Zheng
- Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Xuepeng Sun
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
20
|
Zi Y, Zhang Z, Zhao K, Yang X, Zhu L, Yin T, Chen C, Wen K, Li X, Zhang H, Liu X. Genome-wide identification of kiwifruit K + channel Shaker family members and their response to low-K + stress. BMC PLANT BIOLOGY 2024; 24:833. [PMID: 39243055 PMCID: PMC11378538 DOI: 10.1186/s12870-024-05555-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND 'Hongyang' kiwifruit (Actinidia chinensis cv 'Hongyang') is a high-quality variety of A. chinensis with the advantages of high yield, early ripening, and high stress tolerance. Studies have confirmed that the Shaker K+ genes family is involved in plant uptake and distribution of potassium (K+). RESULTS Twenty-eight Shaker genes were identified and analyzed from the 'Hongyang' kiwifruit (A. chinensis cv 'Hongyang') genome. Subcellular localization results showed that more than one-third of the AcShaker genes were on the cell membrane. Phylogenetic analysis indicated that the AcShaker genes were divided into six subfamilies (I-VI). Conservative model, gene structure, and structural domain analyses showed that AcShaker genes of the same subfamily have similar sequence features and structure. The promoter cis-elements of the AcShaker genes were classified into hormone-associated cis-elements and environmentally stress-associated cis-elements. The results of chromosomal localization and duplicated gene analysis demonstrated that AcShaker genes were distributed on 18 chromosomes, and segmental duplication was the prime mode of gene duplication in the AcShaker family. GO enrichment analysis manifested that the ion-conducting pathway of the AcShaker family plays a crucial role in regulating plant growth and development and adversity stress. Compared with the transcriptome data of the control group, all AcShaker genes were expressed under low-K+stress, and the expression differences of three genes (AcShaker15, AcShaker17, and AcShaker22) were highly significant. The qRT-PCR results showed a high correlation with the transcriptome data, which indicated that these three differentially expressed genes could regulate low-K+ stress and reduce K+ damage in kiwifruit plants, thus improving the resistance to low-K+ stress. Comparison between the salt stress and control transcriptomic data revealed that the expression of AcShaker11 and AcShaker18 genes was significantly different and lower under salt stress, indicating that both genes could be involved in salt stress resistance in kiwifruit. CONCLUSION The results showed that 28 AcShaker genes were identified and all expressed under low K+ stress, among which AcShaker22 was differentially and significantly upregulated. The AcShaker22 gene can be used as a candidate gene to cultivate new varieties of kiwifruit resistant to low K+ and provide a reference for exploring more properties and functions of the AcShaker genes.
Collapse
Affiliation(s)
- Yinqiang Zi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Zhiming Zhang
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming, 650224, Yunnan Province, China
| | - Ke Zhao
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Xiuyao Yang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Ling Zhu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Tuo Yin
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Chaoying Chen
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Ke Wen
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Xulin Li
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Hanyao Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China.
| | - Xiaozhen Liu
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming, 650224, Yunnan Province, China.
| |
Collapse
|
21
|
Garg V, Bohra A, Mascher M, Spannagl M, Xu X, Bevan MW, Bennetzen JL, Varshney RK. Unlocking plant genetics with telomere-to-telomere genome assemblies. Nat Genet 2024; 56:1788-1799. [PMID: 39048791 DOI: 10.1038/s41588-024-01830-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
Contiguous genome sequence assemblies will help us to realize the full potential of crop translational genomics. Recent advances in sequencing technologies, especially long-read sequencing strategies, have made it possible to construct gapless telomere-to-telomere (T2T) assemblies, thus offering novel insights into genome organization and function. Plant genomes pose unique challenges, such as a continuum of ancient to recent polyploidy and abundant highly similar and long repetitive elements. Owing to progress in sequencing approaches, for most crop plants, chromosome-scale reference genome assemblies are available, but T2T assembly construction remains challenging. Here we describe methods for haplotype-resolved, gapless T2T assembly construction in plants, including various crop species. We outline the impact of T2T assemblies in elucidating the roles of repetitive elements in gene regulation, as well as in pangenomics, functional genomics, genome-assisted breeding and targeted genome manipulation. In conjunction with sequence-enriched germplasm repositories, T2T assemblies thus hold great promise for basic and applied plant sciences.
Collapse
Affiliation(s)
- Vanika Garg
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Abhishek Bohra
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Seeland, Germany
| | - Manuel Spannagl
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- Plant Genome and Systems Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Xun Xu
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- BGI-Shenzhen, Shenzhen, China
| | | | | | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
| |
Collapse
|
22
|
Ozturk B, Korkmaz M, Aglar E. Changes in fruit quality properties and phytochemical substances of kiwifruit (Actinidia deliciosa) grown in different agro-ecological conditions during cold storage. BMC PLANT BIOLOGY 2024; 24:795. [PMID: 39174967 PMCID: PMC11342499 DOI: 10.1186/s12870-024-05507-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND The changes in the physical structures of the products are the first things that consumers pay attention to. Therefore, it is essential and significant importance to take measures to improve the storage conditions of products and to minimize quality losses. The main objective of the study was to evaluate the effects of agro-ecological conditions on bioactive compounds and fruit quality of kiwifruit during cold storage. The 'Hayward' kiwifruit cultivar grown in Ordu, Giresun, Samsun, Rize, and Yalova provinces of Türkiye were kept at 0 ± 0.5 °C and relative humidity of 90 ± 5% for 150 d. RESULTS The kiwifruit obtained from the provinces of Yalova, Ordu, and Giresun experienced the least weight loss during cold storage. Kiwifruit from Samsun and Yalova provinces had the lowest fruit firmness, while those from Giresun had the highest on 150th d. The changes were observed in the skin and flesh colors of the kiwifruit belonging to all cultivation areas. The amount of vitamin C increased throughout the study in all ecological conditions, but the Yalova province's kiwifruit was found to have the highest levels. Additionally, in all ecologies, kiwifruit showed an increase in antioxidant activity, total phenolics, and total flavonoids, all known to have beneficial effects on human health. The total antioxidant activity and total phenolics were highest in the kiwifruit of Yalova province, but the total flavonoids were found in the kiwifruit of Rize and Ordu provinces. CONCLUSION The study's results revealed that kiwifruit's bioactive compounds and quality parameters may vary depending on the cultivation area. Additionally, it can be stated that Yalova province kiwifruit experiences the least amount of postharvest quality losses.
Collapse
Affiliation(s)
- Burhan Ozturk
- Faculty of Agriculture, Department of Horticulture, Ordu University, Ordu, Türkiye.
| | - Murat Korkmaz
- Faculty of Agriculture, Department of Horticulture, Ordu University, Ordu, Türkiye
| | - Erdal Aglar
- Faculty of Agriculture, Department of Horticulture, Van Yüzüncü Yıl University, Van, Türkiye.
| |
Collapse
|
23
|
Fan Z, Fang L, Liu Q, Lin H, Lin M, Lin Y, Wang H, Hung YC, Chen Y. Comparative transcriptome and metabolome reveal the role of acidic electrolyzed oxidizing water in improving postharvest disease resistance of longan fruit. Food Chem 2024; 449:139235. [PMID: 38583405 DOI: 10.1016/j.foodchem.2024.139235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Acidic electrolyzed oxidizing water (AEOW) was applied to suppress disease development and maintain good quality of fresh fruit. However, the involvement of AEOW in improving disease resistance of fresh longan remains unknown. Here, transcriptomic and metabolic analyses were performed to compare non-treated and AEOW-treated longan during storage. The transcriptome analysis showed AEOW-induced genes associated with phenylpropanoid and flavonoid biosynthesis. The metabolome analysis found the contents of coumarin, phenolic acid, and tannin maintained higher levels in AEOW-treated longan than non-treated longan. Moreover, the weighted correlation network analysis (WGCNA) was performed to identify hub genes, and a gene-metabolite correlation network associated with AEOW-improved disease resistance in longan was constructed by the co-analysis of transcriptomics and metabolomics. These findings identified a series of important genes and metabolites involving in AEOW-induced disease resistance of longan fruit, expanding our knowledges on fruit disease resistance and quality maintenance at the transcript and metabolic levels.
Collapse
Affiliation(s)
- Zhongqi Fan
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Ling Fang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Qingqing Liu
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| | - Mengshi Lin
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yen-Con Hung
- Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, United States
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
24
|
Wang G, Zeng J, Du C, Tang Q, Hua Y, Chen M, Yang G, Tu M, He G, Li Y, He J, Chang J. Divergent Roles of the Auxin Response Factors in Lemongrass ( Cymbopogon flexuosus (Nees ex Steud.) W. Watson) during Plant Growth. Int J Mol Sci 2024; 25:8154. [PMID: 39125724 PMCID: PMC11312390 DOI: 10.3390/ijms25158154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Auxin Response Factors (ARFs) make up a plant-specific transcription factor family that mainly couples perception of the phytohormone, auxin, and gene expression programs and plays an important and multi-faceted role during plant growth and development. Lemongrass (Cymbopogon flexuosus) is a representative Cymbopogon species widely used in gardening, beverages, fragrances, traditional medicine, and heavy metal phytoremediation. Biomass yield is an important trait for several agro-economic purposes of lemongrass, such as landscaping, essential oil production, and phytoremediation. Therefore, we performed gene mining of CfARFs and identified 26 and 27 CfARF-encoding genes in each of the haplotype genomes of lemongrass, respectively. Phylogenetic and domain architecture analyses showed that CfARFs can be divided into four groups, among which groups 1, 2, and 3 correspond to activator, repressor, and ETTN-like ARFs, respectively. To identify the CfARFs that may play major roles during the growth of lemongrass plants, RNA-seq was performed on three tissues (leaf, stem, and root) and four developmental stages (3-leaf, 4-leaf, 5-leaf. and mature stages). The expression profiling of CfARFs identified several highly expressed activator and repressor CfARFs and three CfARFs (CfARF3, 18, and 35) with gradually increased levels during leaf growth. Haplotype-resolved transcriptome analysis revealed that biallelic expression dominance is frequent among CfARFs and contributes to their gene expression patterns. In addition, co-expression network analysis identified the modules enriched with CfARFs. By establishing orthologous relationships among CfARFs, sorghum ARFs, and maize ARFs, we showed that CfARFs were mainly expanded by whole-genome duplications, and that the duplicated CfARFs might have been divergent due to differential expression and variations in domains and motifs. Our work provides a detailed catalog of CfARFs in lemongrass, representing a first step toward characterizing CfARF functions, and may be useful in molecular breeding to enhance lemongrass plant growth.
Collapse
Affiliation(s)
- Guoli Wang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (G.W.); (J.Z.)
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (C.D.); (Q.T.); (M.C.); (G.Y.); (G.H.); (Y.L.)
| | - Jian Zeng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (G.W.); (J.Z.)
| | - Canghao Du
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (C.D.); (Q.T.); (M.C.); (G.Y.); (G.H.); (Y.L.)
| | - Qi Tang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (C.D.); (Q.T.); (M.C.); (G.Y.); (G.H.); (Y.L.)
| | - Yuqing Hua
- Hubei Technical Engineering Research Center for Chemical Utilization and Engineering Development of Agricultural and Byproduct Resources, School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (M.T.)
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (C.D.); (Q.T.); (M.C.); (G.Y.); (G.H.); (Y.L.)
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (C.D.); (Q.T.); (M.C.); (G.Y.); (G.H.); (Y.L.)
| | - Min Tu
- Hubei Technical Engineering Research Center for Chemical Utilization and Engineering Development of Agricultural and Byproduct Resources, School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (M.T.)
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (C.D.); (Q.T.); (M.C.); (G.Y.); (G.H.); (Y.L.)
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (C.D.); (Q.T.); (M.C.); (G.Y.); (G.H.); (Y.L.)
| | - Jinming He
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (G.W.); (J.Z.)
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (C.D.); (Q.T.); (M.C.); (G.Y.); (G.H.); (Y.L.)
| |
Collapse
|
25
|
Yang T, Cai Y, Huang T, Yang D, Yang X, Yin X, Zhang C, Yang Y, Yang Y. A telomere-to-telomere gap-free reference genome assembly of avocado provides useful resources for identifying genes related to fatty acid biosynthesis and disease resistance. HORTICULTURE RESEARCH 2024; 11:uhae119. [PMID: 38966866 PMCID: PMC11220182 DOI: 10.1093/hr/uhae119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 04/14/2024] [Indexed: 07/06/2024]
Abstract
Avocado (Persea americana Mill.) is an economically valuable plant because of the high fatty acid content and unique flavor of its fruits. Its fatty acid content, especially the relatively high unsaturated fatty acid content, provides significant health benefits. We herein present a telomere-to-telomere gapless genome assembly (841.6 Mb) of West Indian avocado. The genome contains 40 629 predicted protein-coding genes. Repeat sequences account for 57.9% of the genome. Notably, all telomeres, centromeres, and a nucleolar organizing region are included in this genome. Fragments from these three regions were observed via fluorescence in situ hybridization. We identified 376 potential disease resistance-related nucleotide-binding leucine-rich repeat genes. These genes, which are typically clustered on chromosomes, may be derived from gene duplication events. Five NLR genes (Pa11g0262, Pa02g4855, Pa07g3139, Pa07g0383, and Pa02g3196) were highly expressed in leaves, stems, and fruits, indicating they may be involved in avocado disease responses in multiple tissues. We also identified 128 genes associated with fatty acid biosynthesis and analyzed their expression patterns in leaves, stems, and fruits. Pa02g0113, which encodes one of 11 stearoyl-acyl carrier protein desaturases mediating C18 unsaturated fatty acid synthesis, was more highly expressed in the leaves than in the stems and fruits. These findings provide valuable insights that enhance our understanding of fatty acid biosynthesis in avocado.
Collapse
Affiliation(s)
- Tianyu Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Cai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Tianping Huang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Gardening & Horticulture, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Danni Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xingyu Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Yin
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Chengjun Zhang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yunqiang Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yongping Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
26
|
Wang Y, Li P, Zhu Y, Zhang F, Zhang S, He Y, Wu Y, Lin Y, Wang H, Ren W, Wang L, Yang Y, Wang R, Zheng P, Liu Y, Wang S, Yue J. Graph-Based Pangenome of Actinidia chinensis Reveals Structural Variations Mediating Fruit Degreening. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400322. [PMID: 38757662 PMCID: PMC11267314 DOI: 10.1002/advs.202400322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/19/2024] [Indexed: 05/18/2024]
Abstract
Fruit ripening is associated with the degreening process (loss of chlorophyll) that occurs in most fruit species. Kiwifruit is one of the special species whose fruits may maintain green flesh by accumulating a large amount of chlorophyll even after ripening. However, little is known about the genetic variations related to the fruit degreening process. Here, a graph-based kiwifruit pangenome by analyzing 14 chromosome-scale haplotype-resolved genome assemblies from seven representative cultivars or lines in Actinidia chinensis is built. A total of 49,770 non-redundant gene families are identified, with core genes constituting 46.6%, and dispensable genes constituting 53.4%. A total of 84,591 non-redundant structural variations (SVs) are identified. The pangenome graph integrating both reference genome sequences and variant information facilitates the identification of SVs related to fruit color. The SV in the promoter of the AcBCM gene determines its high expression in the late developmental stage of fruits, which causes chlorophyll accumulation in the green-flesh fruits by post-translationally regulating AcSGR2, a key enzyme of chlorophyll catabolism. Taken together, a high-quality pangenome is constructed, unraveled numerous genetic variations, and identified a novel SV mediating fruit coloration and fruit quality, providing valuable information for further investigating genome evolution and domestication, QTL genes function, and genomics-assisted breeding.
Collapse
Affiliation(s)
- Yingzhen Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
- School of Forestry Science and TechnologyLishui Vocational and Technical CollegeLishui323000China
| | - Pengwei Li
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Yanyan Zhu
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Feng Zhang
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Sijia Zhang
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Yan He
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Ying Wu
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Yunzhi Lin
- Ministry of Education Key Laboratory for Bio‐resource and Eco‐environmentCollege of Life ScienceState Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengdu610064China
| | - Hongtao Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Wangmei Ren
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Lihuan Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Ying Yang
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Runze Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Pengpeng Zheng
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Yongsheng Liu
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
- Ministry of Education Key Laboratory for Bio‐resource and Eco‐environmentCollege of Life ScienceState Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengdu610064China
| | - Songhu Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Junyang Yue
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| |
Collapse
|
27
|
Lu XM, Yu XF, Li GQ, Qu MH, Wang H, Liu C, Man YP, Jiang XH, Li MZ, Wang J, Chen QQ, Lei R, Zhao CC, Zhou YQ, Jiang ZW, Li ZZ, Zheng S, Dong C, Wang BL, Sun YX, Zhang HQ, Li JW, Mo QH, Zhang Y, Lou X, Peng HX, Yi YT, Wang HX, Zhang XJ, Wang YB, Wang D, Li L, Zhang Q, Wang WX, Liu Y, Gao L, Wu JH, Wang YC. Genome assembly of autotetraploid Actinidia arguta highlights adaptive evolution and enables dissection of important economic traits. PLANT COMMUNICATIONS 2024; 5:100856. [PMID: 38431772 PMCID: PMC11211551 DOI: 10.1016/j.xplc.2024.100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/07/2023] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Actinidia arguta, the most widely distributed Actinidia species and the second cultivated species in the genus, can be distinguished from the currently cultivated Actinidia chinensis on the basis of its small and smooth fruit, rapid softening, and excellent cold tolerance. Adaptive evolution of tetraploid Actinidia species and the genetic basis of their important agronomic traits are still unclear. Here, we generated a chromosome-scale genome assembly of an autotetraploid male A. arguta accession. The genome assembly was 2.77 Gb in length with a contig N50 of 9.97 Mb and was anchored onto 116 pseudo-chromosomes. Resequencing and clustering of 101 geographically representative accessions showed that they could be divided into two geographic groups, Southern and Northern, which first diverged 12.9 million years ago. A. arguta underwent two prominent expansions and one demographic bottleneck from the mid-Pleistocene climate transition to the late Pleistocene. Population genomics studies using paleoclimate data enabled us to discern the evolution of the species' adaptation to different historical environments. Three genes (AaCEL1, AaPME1, and AaDOF1) related to flesh softening were identified by multi-omics analysis, and their ability to accelerate flesh softening was verified through transient expression assays. A set of genes that characteristically regulate sexual dimorphism located on the sex chromosome (Chr3) or autosomal chromosomes showed biased expression during stamen or carpel development. This chromosome-level assembly of the autotetraploid A. arguta genome and the genes related to important agronomic traits will facilitate future functional genomics research and improvement of A. arguta.
Collapse
Affiliation(s)
- Xue-Mei Lu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xiao-Fen Yu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Guo-Qiang Li
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Ming-Hao Qu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Huan Wang
- Wuhan Frasergen Bioinformatics Co., Ltd, Wuhan, Hubei, China
| | - Chuang Liu
- Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yu-Ping Man
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xiao-Han Jiang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mu-Zi Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qi-Qi Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Rui Lei
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Cheng-Cheng Zhao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yun-Qiu Zhou
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zheng-Wang Jiang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zuo-Zhou Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Shang Zheng
- Wuhan Frasergen Bioinformatics Co., Ltd, Wuhan, Hubei, China
| | - Chang Dong
- College of Agricultural Sciences, Xichang University, Xichang, Sichuan, China
| | - Bai-Lin Wang
- Department of Horticulture, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yan-Xiang Sun
- College of Life Sciences, Langfang Normal University, Langfang, Hebei, China
| | - Hui-Qin Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jie-Wei Li
- Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin, Guangxi, China
| | - Quan-Hui Mo
- Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin, Guangxi, China
| | - Ying Zhang
- Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi'an, Shaanxi, China
| | - Xin Lou
- Institute of Modern Agricultural Research, Dalian University, Dalian, Liaoning, China
| | - Hai-Xu Peng
- Bioinformatics Center, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ya-Ting Yi
- Bioinformatics Center, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - He-Xin Wang
- Institute of Modern Agricultural Research, Dalian University, Dalian, Liaoning, China
| | - Xiu-Jun Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yi-Bo Wang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Dan Wang
- College of Agriculture, Eastern Liaoning University, Dandong, Liaoning, China
| | - Li Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qiong Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Wen-Xia Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Yongbo Liu
- State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.
| | - Lei Gao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China.
| | - Jin-Hu Wu
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand.
| | - Yan-Chang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China.
| |
Collapse
|
28
|
Zhang F, Feng LY, Lin PF, Jia JJ, Gao LZ. Chromosome-scale genome assembly of oil-tea tree Camellia crapnelliana. Sci Data 2024; 11:599. [PMID: 38849406 PMCID: PMC11161624 DOI: 10.1038/s41597-024-03459-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024] Open
Abstract
Camellia crapnelliana Tutch., belonging to the Theaceae family, is an excellent landscape tree species with high ornamental values. It is particularly an important woody oil-bearing plant species with high ecological, economic, and medicinal values. Here, we first report the chromosome-scale reference genome of C. crapnelliana with integrated technologies of SMRT, Hi-C and Illumina sequencing platforms. The genome assembly had a total length of ~2.94 Gb with contig N50 of ~67.5 Mb, and ~96.34% of contigs were assigned to 15 chromosomes. In total, we predicted 37,390 protein-coding genes, ~99.00% of which could be functionally annotated. The chromosome-scale genome of C. crapnelliana will become valuable resources for understanding the genetic basis of the fatty acid biosynthesis, and greatly facilitate the exploration and conservation of C. crapnelliana.
Collapse
Affiliation(s)
- Fen Zhang
- Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education; Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou, 570228, China
| | - Li-Ying Feng
- Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education; Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou, 570228, China
| | - Pei-Fan Lin
- Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education; Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou, 570228, China
| | - Ju-Jin Jia
- Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education; Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou, 570228, China
| | - Li-Zhi Gao
- Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education; Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou, 570228, China.
| |
Collapse
|
29
|
Xia Z, Fan W, Liu D, Chen Y, Lv J, Xu M, Zhang M, Ren Z, Chen X, Wang X, Li L, Zhu P, Liu C, Song Z, Huang C, Wang X, Wang S, Zhao A. Haplotype-resolved chromosomal-level genome assembly reveals regulatory variations in mulberry fruit anthocyanin content. HORTICULTURE RESEARCH 2024; 11:uhae120. [PMID: 38919559 PMCID: PMC11197311 DOI: 10.1093/hr/uhae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/14/2024] [Indexed: 06/27/2024]
Abstract
Understanding the intricate regulatory mechanisms underlying the anthocyanin content (AC) in fruits and vegetables is crucial for advanced biotechnological customization. In this study, we generated high-quality haplotype-resolved genome assemblies for two mulberry cultivars: the high-AC 'Zhongsang5801' (ZS5801) and the low-AC 'Zhenzhubai' (ZZB). Additionally, we conducted a comprehensive analysis of genes associated with AC production. Through genome-wide association studies (GWAS) on 112 mulberry fruits, we identified MaVHAG3, which encodes a vacuolar-type H+-ATPase G3 subunit, as a key gene linked to purple pigmentation. To gain deeper insights into the genetic and molecular processes underlying high AC, we compared the genomes of ZS5801 and ZZB, along with fruit transcriptome data across five developmental stages, and quantified the accumulation of metabolic substances. Compared to ZZB, ZS5801 exhibited significantly more differentially expressed genes (DEGs) related to anthocyanin metabolism and higher levels of anthocyanins and flavonoids. Comparative analyses revealed expansions and contractions in the flavonol synthase (FLS) and dihydroflavonol 4-reductase (DFR) genes, resulting in altered carbon flow. Co-expression analysis demonstrated that ZS5801 displayed more significant alterations in genes involved in late-stage AC regulation compared to ZZB, particularly during the phase stage. In summary, our findings provide valuable insights into the regulation of mulberry fruit AC, offering genetic resources to enhance cultivars with higher AC traits.
Collapse
Affiliation(s)
- Zhongqiang Xia
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Wei Fan
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Duanyang Liu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Yuane Chen
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Jing Lv
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Mengxia Xu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Meirong Zhang
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Zuzhao Ren
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Xuefei Chen
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Xiujuan Wang
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Liang Li
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Panpan Zhu
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Zhiguang Song
- Chongqing Sericulture Science and Technology Research Institute, Chongqing.400715, China
| | - Chuanshu Huang
- Chongqing Sericulture Science and Technology Research Institute, Chongqing.400715, China
| | - Xiling Wang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Shuchang Wang
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 570100, China
| | - Aichun Zhao
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| |
Collapse
|
30
|
Huang XZ, Gong SD, Shang XH, Gao M, Zhao BY, Xiao L, Shi PL, Zeng WD, Cao S, Wu ZD, Song JM, Chen LL, Yan HB. High-integrity Pueraria montana var. lobata genome and population analysis revealed the genetic diversity of Pueraria genus. DNA Res 2024; 31:dsae017. [PMID: 38809753 PMCID: PMC11149379 DOI: 10.1093/dnares/dsae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/23/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
Pueraria montana var. lobata (P. lobata) is a traditional medicinal plant belonging to the Pueraria genus of Fabaceae family. Pueraria montana var. thomsonii (P. thomsonii) and Pueraria montana var. montana (P. montana) are its related species. However, evolutionary history of the Pueraria genus is still largely unknown. Here, a high-integrity, chromosome-level genome of P. lobata and an improved genome of P. thomsonii were reported. It found evidence for an ancient whole-genome triplication and a recent whole-genome duplication shared with Fabaceae in three Pueraria species. Population genomics of 121 Pueraria accessions demonstrated that P. lobata populations had substantially higher genetic diversity, and P. thomsonii was probably derived from P. lobata by domestication as a subspecies. Selection sweep analysis identified candidate genes in P. thomsonii populations associated with the synthesis of auxin and gibberellin, which potentially play a role in the expansion and starch accumulation of tubers in P. thomsonii. Overall, the findings provide new insights into the evolutionary and domestication history of the Pueraria genome and offer a valuable genomic resource for the genetic improvement of these species.
Collapse
Affiliation(s)
- Xuan-Zhao Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Shao-Da Gong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Xiao-hong Shang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences (GXAAS), Nanning, Guangxi 530007, China
| | - Min Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Bo-Yuan Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Liang Xiao
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences (GXAAS), Nanning, Guangxi 530007, China
| | - Ping-li Shi
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences (GXAAS), Nanning, Guangxi 530007, China
| | - Wen-dan Zeng
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences (GXAAS), Nanning, Guangxi 530007, China
| | - Sheng Cao
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences (GXAAS), Nanning, Guangxi 530007, China
| | - Zheng-dan Wu
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences (GXAAS), Nanning, Guangxi 530007, China
| | - Jia-Ming Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Ling-Ling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Hua-bing Yan
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences (GXAAS), Nanning, Guangxi 530007, China
| |
Collapse
|
31
|
Huang J, Zhang Y, Li Y, Xing M, Lei C, Wang S, Nie Y, Wang Y, Zhao M, Han Z, Sun X, Zhou H, Wang Y, Zheng X, Xiao X, Fan W, Liu Z, Guo W, Zhang L, Cheng Y, Qian Q, He H, Yang Q, Qiao W. Haplotype-resolved gapless genome and chromosome segment substitution lines facilitate gene identification in wild rice. Nat Commun 2024; 15:4573. [PMID: 38811581 PMCID: PMC11137157 DOI: 10.1038/s41467-024-48845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
The abundant genetic variation harbored by wild rice (Oryza rufipogon) has provided a reservoir of useful genes for rice breeding. However, the genome of wild rice has not yet been comprehensively assessed. Here, we report the haplotype-resolved gapless genome assembly and annotation of wild rice Y476. In addition, we develop two sets of chromosome segment substitution lines (CSSLs) using Y476 as the donor parent and cultivated rice as the recurrent parents. By analyzing the gapless reference genome and CSSL population, we identify 254 QTLs associated with agronomic traits, biotic and abiotic stresses. We clone a receptor-like kinase gene associated with rice blast resistance and confirm its wild rice allele improves rice blast resistance. Collectively, our study provides a haplotype-resolved gapless reference genome and demonstrates a highly efficient platform for gene identification from wild rice.
Collapse
Affiliation(s)
- Jingfen Huang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yilin Zhang
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Yapeng Li
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
- Hainan Academy of Agricultural Sciences, Haikou, Hainan, China
| | - Meng Xing
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Cailin Lei
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Shizhuang Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Yamin Nie
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Yanyan Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Mingchao Zhao
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
- Hainan Academy of Agricultural Sciences, Haikou, Hainan, China
| | - Zhenyun Han
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianjun Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han Zhou
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Yan Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Xiaoming Zheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Xiaorong Xiao
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
- Hainan Academy of Agricultural Sciences, Haikou, Hainan, China
| | - Weiya Fan
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ziran Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenlong Guo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lifang Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunlian Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Qian
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Hang He
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, China.
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China.
| | - Qingwen Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China.
| | - Weihua Qiao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China.
| |
Collapse
|
32
|
Wang Y, Liu Y. Recent advances of kwifruit genome and genetic transformation. MOLECULAR HORTICULTURE 2024; 4:19. [PMID: 38725051 PMCID: PMC11084073 DOI: 10.1186/s43897-024-00096-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Affiliation(s)
- Yingzhen Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Yongsheng Liu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, P. R. China.
| |
Collapse
|
33
|
Li K, Chen R, Abudoukayoumu A, Wei Q, Ma Z, Wang Z, Hao Q, Huang J. Haplotype-resolved T2T reference genomes for wild and domesticated accessions shed new insights into the domestication of jujube. HORTICULTURE RESEARCH 2024; 11:uhae071. [PMID: 38725458 PMCID: PMC11079485 DOI: 10.1093/hr/uhae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 02/28/2024] [Indexed: 05/12/2024]
Abstract
Chinese jujube (Ziziphus jujuba Mill.) is one of the most important deciduous tree fruits in China, with substantial economic and nutritional value. Jujube was domesticated from its wild progenitor, wild jujube (Z. jujuba var. spinosa), and both have high medicinal value. Here we report the 767.81- and 759.24-Mb haplotype-resolved assemblies of a dry-eating 'Junzao' jujube (JZ) and a wild jujube accession (SZ), using a combination of multiple sequencing strategies. Each assembly yielded two complete haplotype-resolved genomes at the telomere-to-telomere (T2T) level, and ~81.60 and 69.07 Mb of structural variations were found between the two haplotypes within JZ and SZ, respectively. Comparative genomic analysis revealed a large inversion on each of chromosomes 3 and 4 between JZ and SZ, and numerous genes were affected by structural variations, some of which were associated with starch and sucrose metabolism. A large-scale population analysis of 672 accessions revealed that wild jujube originated from the lower reaches of the Yellow River and was initially domesticated at local sites. It spread widely and was then independently domesticated at the Shanxi-Shaanxi Gorge of the middle Yellow River. In addition, we identified some new selection signals regions on genomes, which are involved in the tissue development, pollination, and other aspects of jujube tree morphology and fertilization domestication. In conclusion, our study provides high-quality reference genomes of jujube and wild jujube and new insights into the domestication history of jujube.
Collapse
Affiliation(s)
- Kun Li
- Key Laboratory of National Forestry and Grassland Administration on Forest Cultivation on the Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Ruihong Chen
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Ayimaiti Abudoukayoumu
- Key Laboratory of National Forestry and Grassland Administration on Forest Cultivation on the Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Qian Wei
- Key Laboratory of National Forestry and Grassland Administration on Forest Cultivation on the Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Zhibo Ma
- Key Laboratory of National Forestry and Grassland Administration on Forest Cultivation on the Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Zhengyang Wang
- Key Laboratory of National Forestry and Grassland Administration on Forest Cultivation on the Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Qing Hao
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Jian Huang
- Key Laboratory of National Forestry and Grassland Administration on Forest Cultivation on the Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
34
|
Li Y, Kong F, Wu S, Song W, Shao Y, Kang M, Chen T, Peng L, Shu Q. Integrated analysis of metabolome, transcriptome, and bioclimatic factors of Acer truncatum seeds reveals key candidate genes related to unsaturated fatty acid biosynthesis, and potentially optimal production area. BMC PLANT BIOLOGY 2024; 24:284. [PMID: 38627650 PMCID: PMC11020666 DOI: 10.1186/s12870-024-04936-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Lipids found in plant seeds are essential for controlling seed dormancy, dispersal, and defenses against biotic and abiotic stress. Additionally, these lipids provide nutrition and energy and are therefore important to the human diet as edible oils. Acer truncatum, which belongs to the Aceaceae family, is widely cultivated around the world for its ornamental value. Further because its seed oil is rich in unsaturated fatty acids (UFAs)- i.e. α-linolenic acid (ALA) and nervonic acid (NA)- and because it has been validated as a new food resource in China, the importance of A. truncatum has greatly risen. However, it remains unknown how UFAs are biosynthesized during the growth season, to what extent environmental factors impact their content, and what areas are potentially optimal for their production. RESULTS In this study, transcriptome and metabolome of A. truncatum seeds at three representative developmental stages was used to find the accumulation patterns of all major FAs. Cumulatively, 966 metabolites and 87,343 unigenes were detected; the differential expressed unigenes and metabolites were compared between stages as follows: stage 1 vs. 2, stage 1 vs. 3, and stage 2 vs. 3 seeds, respectively. Moreover, 13 fatty acid desaturases (FADs) and 20 β-ketoacyl-CoA synthases (KCSs) were identified, among which the expression level of FAD3 (Cluster-7222.41455) and KCS20 (Cluster-7222.40643) were consistent with the metabolic results of ALA and NA, respectively. Upon analysis of the geographical origin-affected diversity from 17 various locations, we found significant variation in phenotypes and UFA content. Notably, in this study we found that 7 bioclimatic variables showed considerable influence on FAs contents in A. truncatum seeds oil, suggesting their significance as critical environmental parameters. Ultimately, we developed a model for potentially ecological suitable regions in China. CONCLUSION This study provides a comprehensive understanding of the relationship between metabolome and transcriptome in A. truncatum at various developmental stages of seeds and a new strategy to enhance seed FA content, especially ALA and NA. This is particularly significant in meeting the increasing demands for high-quality edible oil for human consumption. The study offers a scientific basis for A. truncatum's novel utilization as a woody vegetable oil rather than an ornamental plant, potentially expanding its cultivation worldwide.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Fan Kong
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shangwei Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjin Song
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Shao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Kang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Hunan Agricultural University, Changsha, 410128, China
| | - Tiantian Chen
- Taishan Academy of Forestry Sciences, Tai'an, 271002, China
| | - Liping Peng
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| | - Qingyan Shu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
35
|
Xie L, Gong X, Yang K, Huang Y, Zhang S, Shen L, Sun Y, Wu D, Ye C, Zhu QH, Fan L. Technology-enabled great leap in deciphering plant genomes. NATURE PLANTS 2024; 10:551-566. [PMID: 38509222 DOI: 10.1038/s41477-024-01655-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
Plant genomes provide essential and vital basic resources for studying many aspects of plant biology and applications (for example, breeding). From 2000 to 2020, 1,144 genomes of 782 plant species were sequenced. In the past three years (2021-2023), 2,373 genomes of 1,031 plant species, including 793 newly sequenced species, have been assembled, representing a great leap. The 2,373 newly assembled genomes, of which 63 are telomere-to-telomere assemblies and 921 have been generated in pan-genome projects, cover the major phylogenetic clades. Substantial advances in read length, throughput, accuracy and cost-effectiveness have notably simplified the achievement of high-quality assemblies. Moreover, the development of multiple software tools using different algorithms offers the opportunity to generate more complete and complex assemblies. A database named N3: plants, genomes, technologies has been developed to accommodate the metadata associated with the 3,517 genomes that have been sequenced from 1,575 plant species since 2000. We also provide an outlook for emerging opportunities in plant genome sequencing.
Collapse
Affiliation(s)
- Lingjuan Xie
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Yazhou Bay, Shanya, China
| | - Xiaojiao Gong
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Kun Yang
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Yujie Huang
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Shiyu Zhang
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Leti Shen
- Hainan Institute of Zhejiang University, Yazhou Bay, Shanya, China
| | - Yanqing Sun
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Dongya Wu
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Chuyu Ye
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, Black Mountain Laboratories, Canberra, Australia
| | - Longjiang Fan
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China.
- Hainan Institute of Zhejiang University, Yazhou Bay, Shanya, China.
| |
Collapse
|
36
|
Yang H, Wang C, Zhou G, Zhang Y, He T, Yang L, Wu Y, Wang Z, Tang X, Chen G, Liu Z, Tang H, Zhou H, Kang X, Zhang S, Leng L, Chen S, Song C. A haplotype-resolved gap-free genome assembly provides novel insight into monoterpenoid diversification in Mentha suaveolens 'Variegata'. HORTICULTURE RESEARCH 2024; 11:uhae022. [PMID: 38469381 PMCID: PMC10925848 DOI: 10.1093/hr/uhae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/11/2024] [Indexed: 03/13/2024]
Abstract
Mentha is a commonly used spice worldwide, which possesses medicinal properties and fragrance. These characteristics are conferred, at least partially, by essential oils such as menthol. In this study, a gap-free assembly with a genome size of 414.3 Mb and 31,251 coding genes was obtained for Mentha suaveolens 'Variegata'. Based on its high heterozygosity (1.5%), two complete haplotypic assemblies were resolved, with genome sizes of 401.9 and 405.7 Mb, respectively. The telomeres and centromeres of each haplotype were almost fully annotated. In addition, we detected a total of 41,135 structural variations. Enrichment analysis demonstrated that genes involved in terpenoid biosynthesis were affected by these structural variations. Analysis of volatile metabolites showed that M. suaveolens mainly produces piperitenone oxide rather than menthol. We identified three genes in the M. suaveolens genome which encode isopiperitenone reductase (ISPR), a key rate-limiting enzyme in menthol biosynthesis. However, the transcription levels of ISPR were low. Given that other terpenoid biosynthesis genes were expressed, M. suaveolens ISPRs may account for the accumulation of piperitenone oxide in this species. The findings of this study may provide a valuable resource for improving the detection rate and accuracy of genetic variants, thereby enhancing our understanding of their impact on gene function and expression. Moreover, our haplotype-resolved gap-free genome assembly offers novel insights into molecular marker-assisted breeding of Mentha.
Collapse
Affiliation(s)
- Hanting Yang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Can Wang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Guanru Zhou
- Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yuxuan Zhang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianxing He
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lulu Yang
- Wuhan Benagen Technology Co., Ltd, Wuhan 430000, China
| | - Ya Wu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhengnan Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xin Tang
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing, China
| | - Gang Chen
- Wuhan Benagen Technology Co., Ltd, Wuhan 430000, China
| | - Zhaoyu Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huanyu Tang
- Wuhan Benagen Technology Co., Ltd, Wuhan 430000, China
| | - Hanlin Zhou
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xumei Kang
- Wuhan Benagen Technology Co., Ltd, Wuhan 430000, China
| | - Sanyin Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Leng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Chi Song
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
37
|
Zhang F, Wang Y, Lin Y, Wang H, Wu Y, Ren W, Wang L, Yang Y, Zheng P, Wang S, Yue J, Liu Y. Haplotype-resolved genome assembly provides insights into evolutionary history of the Actinidia arguta tetraploid. MOLECULAR HORTICULTURE 2024; 4:4. [PMID: 38317251 PMCID: PMC10845759 DOI: 10.1186/s43897-024-00083-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/23/2024] [Indexed: 02/07/2024]
Abstract
Actinidia arguta, known as hardy kiwifruit, is a widely cultivated species with distinct botanical characteristics such as small and smooth-fruited, rich in beneficial nutrients, rapid softening and tolerant to extremely low temperatures. It contains the most diverse ploidy types, including diploid, tetraploid, hexaploid, octoploid, and decaploid. Here we report a haplotype-resolved tetraploid genome (A. arguta cv. 'Longcheng No.2') containing four haplotypes, each with 40,859, 41,377, 39,833 and 39,222 protein-coding genes. We described the phased genome structure, synteny, and evolutionary analyses to identify and date possible WGD events. Ks calculations for both allelic and paralogous genes pairs throughout the assembled haplotypic individuals showed its tetraploidization is estimated to have formed ~ 1.03 Mya following Ad-α event occurred ~ 18.7 Mya. Detailed annotations of NBS-LRRs or CBFs highlight the importance of genetic variations coming about after polyploidization in underpinning ability of immune responses or environmental adaptability. WGCNA analysis of postharvest quality indicators in combination with transcriptome revealed several transcription factors were involved in regulating ripening kiwi berry texture. Taking together, the assembly of an A. arguta tetraploid genome provides valuable resources in deciphering complex genome structure and facilitating functional genomics studies and genetic improvement for kiwifruit and other crops.
Collapse
Affiliation(s)
- Feng Zhang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Yingzhen Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
- School of Forestry Science and Technology, Lishui Vocational and Technical College, Lishui, 323000, China
| | - Yunzhi Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Hongtao Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Ying Wu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Wangmei Ren
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Lihuan Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Ying Yang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Pengpeng Zheng
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Songhu Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Junyang Yue
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Yongsheng Liu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
38
|
Bi G, Zhao S, Yao J, Wang H, Zhao M, Sun Y, Hou X, Haas FB, Varshney D, Prigge M, Rensing SA, Jiao Y, Ma Y, Yan J, Dai J. Near telomere-to-telomere genome of the model plant Physcomitrium patens. NATURE PLANTS 2024; 10:327-343. [PMID: 38278953 DOI: 10.1038/s41477-023-01614-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/19/2023] [Indexed: 01/28/2024]
Abstract
The model plant Physcomitrium patens has played a pivotal role in enhancing our comprehension of plant evolution and development. However, the current genome harbours numerous regions that remain unfinished and erroneous. To address these issues, we generated an assembly using Oxford Nanopore reads and Hi-C mapping. The assembly incorporates telomeric and centromeric regions, thereby establishing it as a near telomere-to-telomere genome except a region in chromosome 1 that is not fully assembled due to its highly repetitive nature. This near telomere-to-telomere genome resolves the chromosome number at 26 and provides a gap-free genome assembly as well as updated gene models to aid future studies using this model organism.
Collapse
Affiliation(s)
- Guiqi Bi
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shijun Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiawei Yao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Huan Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Mengkai Zhao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yuanyuan Sun
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xueren Hou
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Fabian B Haas
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Deepti Varshney
- Faculty of Chemistry and Pharmacy, University of Freiburg, Freiburg, Germany
| | - Michael Prigge
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Stefan A Rensing
- Faculty of Chemistry and Pharmacy, University of Freiburg, Freiburg, Germany
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Center for Quantitative Biology, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yingxin Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Junbiao Dai
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
39
|
Yu M, Xiong J, Dong K, Quan X, Guo H, Huo J, Qin D, Wang Y, Lu X, Zhu C. AcMYB10 Involved in Anthocyanin Regulation of 'Hongyang' Kiwifruit Induced via Fruit Bagging and High-Postharvest-Temperature Treatments. Genes (Basel) 2024; 15:97. [PMID: 38254986 PMCID: PMC10815172 DOI: 10.3390/genes15010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Light and temperature are key factors influencing the accumulation of anthocyanin in fruit crops. To assess the effects of fruit bagging during development and high post-ripening temperature on 'Hongyang' kiwifruit, we compared the pigmentation phenotypes and expression levels of anthocyanin-related genes between bagged and unbagged treatments, and between 25 °C and 37 °C postharvest storage temperatures. Both the bagging and 25 °C treatments showed better pigmentation phenotypes with higher anthocyanin concentrations. The results of the qRT-PCR analysis revealed that the gene expression levels of LDOX (leucoanthocyanidin dioxygenase), F3GT (UDP-flavonoid 3-O-glycosyltransferase ), AcMYB10, and AcbHLH42 were strongly correlated and upregulated by both the bagging treatment and 25 °C storage. The results of bimolecular fluorescence complementation and luciferase complementation imaging assays indicated an interaction between AcMYB10 and AcbHLH42 in plant cells, whereas the results of a yeast one-hybrid assay further demonstrated that AcMYB10 activated the promoters of AcLODX and AcF3GT. These results strongly suggest that enhanced anthocyanin synthesis is caused by the promoted expression of AcLODX and AcF3GT, regulated by the complex formed by AcMYB10-AcbHLH42.
Collapse
Affiliation(s)
- Min Yu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jinyu Xiong
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Kun Dong
- Horticulture Branch, Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China
| | - Xin Quan
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Hao Guo
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Junwei Huo
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Dong Qin
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Yanchang Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xuemei Lu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Chenqiao Zhu
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| |
Collapse
|
40
|
Peng D, Hong Z, Kan S, Wu Z, Liao X. The telomere-to-telomere (T2T) genome provides insights into the evolution of specialized centromere sequences in sandalwood. Gigascience 2024; 13:giae096. [PMID: 39661724 PMCID: PMC11633456 DOI: 10.1093/gigascience/giae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/18/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Sandalwood, a prized hemiparasitic plant, is highly sought in the commercial market because of its aromatic core materia. The structure and stability of the genome are instrumental in the rapid adaptation of parasitic plants to their surroundings. However, there is a conspicuous lack of research on the genomic-level adaptive evolution of sandalwood. RESULTS In this study, we assembled a gap-free telomere-to-telomere (T2T) reference genome for Santalum album using PacBio HiFi, Hi-C, and ultra-long ONT data. The T2T reference genome (Sal_t2t) encompassed annotations of 24,171 genes and 25.34% repetitive sequences, in addition to all 10 centromeres and 20 telomeres across the 10 chromosomes. The results revealed that the 3 distinct parasitic species of Santalales had diverse centromeric compositions. The Copia-type long terminal repeat transposon emerged as the most significant in the S. album genome, constituting the primary sequence of the centromere and influencing gene expression. Third, in sandalwood, the presence of Copia affected the size of the centromeres and, consequently, the genome size. Identification of the sandalwood T2T genome in this study also enabled the identification of more precise organelle transfer fragments. CONCLUSIONS Our research provides a sandalwood T2T genome, laying the groundwork for future investigations on the evolution of energy organs in parasitic plants. Moreover, it offers novel insights into the function and evolution of centromeres, as well as the mechanisms of adaptation and parasitism.
Collapse
Affiliation(s)
- Dan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120 Shenzhen, China
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Zhou Hong
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, 510520 Guangzhou, China
| | - Shenglong Kan
- Marine College, Shandong University, 264209 Weihai, China
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120 Shenzhen, China
| | - Xuezhu Liao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120 Shenzhen, China
| |
Collapse
|
41
|
Lan L, Leng L, Liu W, Ren Y, Reeve W, Fu X, Wu Z, Zhang X. The haplotype-resolved telomere-to-telomere carnation ( Dianthus caryophyllus) genome reveals the correlation between genome architecture and gene expression. HORTICULTURE RESEARCH 2024; 11:uhad244. [PMID: 38225981 PMCID: PMC10788775 DOI: 10.1093/hr/uhad244] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/12/2023] [Indexed: 01/17/2024]
Abstract
Carnation (Dianthus caryophyllus) is one of the most valuable commercial flowers, due to its richness of color and form, and its excellent storage and vase life. The diverse demands of the market require faster breeding in carnations. A full understanding of carnations is therefore required to guide the direction of breeding. Hence, we assembled the haplotype-resolved gap-free carnation genome of the variety 'Baltico', which is the most common white standard variety worldwide. Based on high-depth HiFi, ultra-long nanopore, and Hi-C sequencing data, we assembled the telomere-to-telomere (T2T) genome to be 564 479 117 and 568 266 215 bp for the two haplotypes Hap1 and Hap2, respectively. This T2T genome exhibited great improvement in genome assembly and annotation results compared with the former version. The improvements were seen when different approaches to evaluation were used. Our T2T genome first informs the analysis of the telomere and centromere region, enabling us to speculate about specific centromere characteristics that cannot be identified by high-order repeats in carnations. We analyzed allele-specific expression in three tissues and the relationship between genome architecture and gene expression in the haplotypes. This demonstrated that the length of the genes, coding sequences, and introns, the exon numbers and the transposable element insertions correlate with gene expression ratios and levels. The insertions of transposable elements repress expression in gene regulatory networks in carnation. This gap-free finished T2T carnation genome provides a valuable resource to illustrate the genome characteristics and for functional genomics analysis in further studies and molecular breeding.
Collapse
Affiliation(s)
- Lan Lan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch 6150, Western Australia, Australia
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Luhong Leng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Weichao Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yonglin Ren
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch 6150, Western Australia, Australia
| | - Wayne Reeve
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch 6150, Western Australia, Australia
| | - Xiaopeng Fu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xiaoni Zhang
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| |
Collapse
|
42
|
Jue DW, Sang XL, Li ZX, Zhang WL, Liao QH, Tang J. Determination of the effects of pre-harvest bagging treatment on kiwifruit appearance and quality via transcriptome and metabolome analyses. Food Res Int 2023; 173:113276. [PMID: 37803588 DOI: 10.1016/j.foodres.2023.113276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 10/08/2023]
Abstract
Bagging is an effective cultivation strategy to produce attractive and pollution-free kiwifruit. However, the effect and metabolic regulatory mechanism of bagging treatment on kiwifruit quality remain unclear. In this study, transcriptome and metabolome analyses were conducted to determine the regulatory network of the differential metabolites and genes after bagging. Using outer and inner yellow single-layer fruit bags, we found that bagging treatment improved the appearance of kiwifruit, increased the soluble solid content (SSC) and carotenoid and anthocyanin levels, and decreased the chlorophyll levels. We also identified 41 differentially expressed metabolites and 897 differentially expressed genes (DEGs) between the bagged and control 'Hongyang' fruit. Transcriptome and metabolome analyses revealed that the increase in SSC after bagging treatment was mainly due to the increase in D-glucosamine metabolite levels and eight DEGs involved in amino sugar and nucleotide sugar metabolic pathways. A decrease in glutamyl-tRNA reductase may be the main reason for the decrease in chlorophyll. Downregulation of lycopene epsilon cyclase and 9-cis-epoxycarotenoid dioxygenase increased carotenoid levels. Additionally, an increase in the levels of the taxifolin-3'-O-glucoside metabolite, flavonoid 3'-monooxygenase, and some transcription factors led to the increase in anthocyanin levels. This study provides novel insights into the effects of bagging on the appearance and internal quality of kiwifruit and enriches our theoretical knowledge on the regulation of color pigment synthesis in kiwifruit.
Collapse
Affiliation(s)
- Deng-Wei Jue
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China; Southwest University, College of Horticulture and Landscape, Chongqing 400715, China
| | - Xue-Lian Sang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
| | - Zhe-Xin Li
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Wen-Lin Zhang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Qin-Hong Liao
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Jianmin Tang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
| |
Collapse
|
43
|
Sun M, Yao C, Shu Q, He Y, Chen G, Yang G, Xu S, Liu Y, Xue Z, Wu J. Telomere-to-telomere pear ( Pyrus pyrifolia) reference genome reveals segmental and whole genome duplication driving genome evolution. HORTICULTURE RESEARCH 2023; 10:uhad201. [PMID: 38023478 PMCID: PMC10681005 DOI: 10.1093/hr/uhad201] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/01/2023] [Indexed: 12/01/2023]
Abstract
Previously released pear genomes contain a plethora of gaps and unanchored genetic regions. Here, we report a telomere-to-telomere (T2T) gap-free genome for the red-skinned pear, 'Yunhong No. 1' (YH1; Pyrus pyrifolia), which is mainly cultivated in Yunnan Province (southwest China), the pear's primary region of origin. The YH1 genome is 501.20 Mb long with a contig N50 length of 29.26 Mb. All 17 chromosomes were assembled to the T2T level with 34 characterized telomeres. The 17 centromeres were predicted and mainly consist of centromeric-specific monomers (CEN198) and long terminal repeat (LTR) Gypsy elements (≥74.73%). By filling all unclosed gaps, the integrity of YH1 is markedly improved over previous P. pyrifolia genomes ('Cuiguan' and 'Nijisseiki'). A total of 1531 segmental duplication (SD) driven duplicated genes were identified and enriched in stress response pathways. Intrachromosomal SDs drove the expansion of disease resistance genes, suggesting the potential of SDs in adaptive pear evolution. A large proportion of duplicated gene pairs exhibit dosage effects or sub-/neo-functionalization, which may affect agronomic traits like stone cell content, sugar content, and fruit skin russet. Furthermore, as core regulators of anthocyanin biosynthesis, we found that MYB10 and MYB114 underwent various gene duplication events. Multiple copies of MYB10 and MYB114 displayed obvious dosage effects, indicating role differentiation in the formation of red-skinned pear fruit. In summary, the T2T gap-free pear genome provides invaluable resources for genome evolution and functional genomics.
Collapse
Affiliation(s)
- Manyi Sun
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Chenjie Yao
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Qun Shu
- Institute of Horticulture, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Yingyun He
- Institute of Horticulture, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Guosong Chen
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Guangyan Yang
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Shaozhuo Xu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Yueyuan Liu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Zhaolong Xue
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Jun Wu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| |
Collapse
|
44
|
Mahajan S, Bisht MS, Chakraborty A, Sharma VK. Genome of Phyllanthus emblica: the medicinal plant Amla with super antioxidant properties. FRONTIERS IN PLANT SCIENCE 2023; 14:1210078. [PMID: 37727852 PMCID: PMC10505619 DOI: 10.3389/fpls.2023.1210078] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/15/2023] [Indexed: 09/21/2023]
Abstract
Phyllanthus emblica or Indian gooseberry, commonly known as amla, is an important medicinal horticultural plant used in traditional and modern medicines. It bears stone fruits with immense antioxidant properties due to being one of the richest natural sources of vitamin C and numerous flavonoids. This study presents the first genome sequencing of this species performed using 10x Genomics and Oxford Nanopore Technology. The draft genome assembly was 519 Mbp in size and consisted of 4,384 contigs, N50 of 597 Kbp, 98.4% BUSCO score, and 37,858 coding sequences. This study also reports the genome-wide phylogeny of this species with 26 other plant species that resolved the phylogenetic position of P. emblica. The presence of three ascorbate biosynthesis pathways including L-galactose, galacturonate, and myo-inositol pathways was confirmed in this genome. A comprehensive comparative evolutionary genomic analysis including gene family expansion/contraction and identification of multiple signatures of adaptive evolution provided evolutionary insights into ascorbate and flavonoid biosynthesis pathways and stone fruit formation through lignin biosynthesis. The availability of this genome will be beneficial for its horticultural, medicinal, dietary, and cosmetic applications and will also help in comparative genomics analysis studies.
Collapse
Affiliation(s)
| | | | | | - Vineet K. Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| |
Collapse
|
45
|
Shen F, Xu S, Shen Q, Bi C, Lysak MA. The allotetraploid horseradish genome provides insights into subgenome diversification and formation of critical traits. Nat Commun 2023; 14:4102. [PMID: 37491530 PMCID: PMC10368706 DOI: 10.1038/s41467-023-39800-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 06/29/2023] [Indexed: 07/27/2023] Open
Abstract
Polyploidization can provide a wealth of genetic variation for adaptive evolution and speciation, but understanding the mechanisms of subgenome evolution as well as its dynamics and ultimate consequences remains elusive. Here, we report the telomere-to-telomere (T2T) gap-free reference genome of allotetraploid horseradish (Armoracia rusticana) sequenced using a comprehensive strategy. The (epi)genomic architecture and 3D chromatin structure of the A and B subgenomes differ significantly, suggesting that both the dynamics of the dominant long terminal repeat retrotransposons and DNA methylation have played critical roles in subgenome diversification. Investigation of the genetic basis of biosynthesis of glucosinolates (GSLs) and horseradish peroxidases reveals both the important role of polyploidization and subgenome differentiation in shaping the key traits. Continuous duplication and divergence of essential genes of GSL biosynthesis (e.g., FMOGS-OX, IGMT, and GH1 gene family) contribute to the broad GSL profile in horseradish. Overall, the T2T assembly of the allotetraploid horseradish genome expands our understanding of polyploid genome evolution and provides a fundamental genetic resource for breeding and genetic improvement of horseradish.
Collapse
Affiliation(s)
- Fei Shen
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| | - Shixiao Xu
- Tobacco College, Henan Agricultural University, Zhengzhou, Henan, China
| | - Qi Shen
- Genome Research Center, Leeuwenhoek Biotechnology Inc., Hong Kong, China
- Shangji Biotechnology Inc., Tianjin, China
- PheniX, Plant Phenomics Research Centre, Nanjing Agricultural University, Nanjing, China
| | - Changwei Bi
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, China
| | - Martin A Lysak
- Central European Institute of Technology and National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
46
|
Sahu SK, Liu H. Long-read sequencing (method of the year 2022): The way forward for plant omics research. MOLECULAR PLANT 2023; 16:791-793. [PMID: 37056048 DOI: 10.1016/j.molp.2023.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/20/2023] [Accepted: 04/11/2023] [Indexed: 05/04/2023]
Affiliation(s)
- Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China.
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
47
|
Ren W, Wang L, Feng G, Tao C, Liu Y, Yang J. High-Quality Assembly and Comparative Analysis of Actinidia latifolia and A. valvata Mitogenomes. Genes (Basel) 2023; 14:genes14040863. [PMID: 37107621 PMCID: PMC10138172 DOI: 10.3390/genes14040863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Kiwifruit (Actinidia) has been recently domesticated as a horticultural crop with remarkably economic and nutritional value. In this study, by combining sequence datasets from Oxford Nanopore long-reads and Illumina short-reads, we de novo assembled two mitogenomes of Actinidia latifolia and A. valvata, respectively. The results indicated that the A. latifolia mitogenome has a single, circular, 825,163 bp molecule while the A. valvata mitogenome possesses two distinct circular molecules, 781,709 and 301,558 bp, respectively. We characterized the genome structure, repeated sequences, DNA transfers, and dN/dS selections. The phylogenetic analyses showed that A. valvata and A. arguta, or A. latifolia and A. eriantha, were clustered together, respectively. This study provides valuable sequence resources for evolutionary study and molecular breeding in kiwifruit.
Collapse
Affiliation(s)
- Wangmei Ren
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
| | - Liying Wang
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
| | - Guangcheng Feng
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
| | - Cheng Tao
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
| | - Yongsheng Liu
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610017, China
| | - Jun Yang
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
| |
Collapse
|