1
|
Alenkina IV, Oshtrakh MI. Control of the Iron State in Pharmaceuticals Used for Treatment and Prevention of Iron Deficiency Using Mössbauer Spectroscopy. J Pharm Sci 2024; 113:1426-1454. [PMID: 38423387 DOI: 10.1016/j.xphs.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Various iron-containing medicaments, vitamins and dietary supplements are used or developed for treatment and prevention of the iron deficiency anemia which is very dangerous for human and may cause various disorders. From the other hand, blood losses, iron poor diet, microelements (co-factors) deficiency, metabolic failures, absorption problems, etc. can change the iron status and affect the health. These pharmaceuticals contain iron compounds in the ferrous and ferric states. It is known that ferrous salts are more suitable for the intestinal intake than ferric ones. On the other hand, pharmaceutically important ferritin analogues contain ferric hydrous oxides and appear to be effective for both injections and peroral administration. 57Fe Mössbauer spectroscopy is a unique physical technique which allows one to study various iron-containing materials including pharmaceuticals. Therefore, this technique was applied to study iron-containing pharmaceuticals for the analysis of the iron state, identification of ferric and ferrous compounds, revealing some structural peculiarities and for detection of aging processes in relation to the iron compounds. This review considers the main results of a long experience in the study of iron-containing pharmaceuticals by Mössbauer spectroscopy with critical analysis that may be useful for pharmacists, biochemists, biophysicists, and physicians.
Collapse
Affiliation(s)
- Irina V Alenkina
- Department of Experimental Physics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002, Russian Federation
| | - Michael I Oshtrakh
- Department of Experimental Physics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002, Russian Federation.
| |
Collapse
|
2
|
Alenkina IV, Ushakov MV, Morais PC, Kalai Selvan R, Kuzmann E, Klencsár Z, Felner I, Homonnay Z, Oshtrakh MI. Mössbauer Spectroscopy with a High Velocity Resolution in the Studies of Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3748. [PMID: 36364524 PMCID: PMC9657480 DOI: 10.3390/nano12213748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/08/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The present review describes our long experience in the application of Mössbauer spectroscopy with a high velocity resolution (a high discretization of the velocity reference signal) in the studies of various nanosized and nanostructured iron-containing materials. The results reviewed discuss investigations of: (I) nanosized iron cores in: (i) extracted ferritin, (ii) ferritin in liver and spleen tissues in normal and pathological cases, (iii) ferritin in bacteria, (iv) pharmaceutical ferritin analogues; (II) nanoparticles developed for magnetic fluids for medical purposes; (III) nanoparticles and nanostructured FINEMET alloys developed for technical purposes. The results obtained demonstrate that the high velocity resolution Mössbauer spectroscopy permits to excavate more information and to extract more spectral components in the complex Mössbauer spectra with overlapped components, in comparison with those obtained by using conventional Mössbauer spectroscopy. This review also shows the advances of Mössbauer spectroscopy with a high velocity resolution in the study of various iron-based nanosized and nanostructured materials since 2005.
Collapse
Affiliation(s)
- Irina V. Alenkina
- Department of Experimental Physics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002, Russia
| | - Michael V. Ushakov
- Department of Experimental Physics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002, Russia
| | - Paulo C. Morais
- Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasilia 71966-700, DF, Brazil
- Institute of Physics, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | | | - Ernő Kuzmann
- Laboratory of Nuclear Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Zoltán Klencsár
- Nuclear Analysis and Radiography Department, Centre for Energy Research, 1121 Budapest, Hungary
| | - Israel Felner
- Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
| | - Zoltán Homonnay
- Laboratory of Nuclear Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Michael I. Oshtrakh
- Department of Experimental Physics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002, Russia
| |
Collapse
|
3
|
Structural and magnetic study of the iron cores in iron(III)-polymaltose pharmaceutical ferritin analogue Ferrifol®. J Inorg Biochem 2020; 213:111202. [PMID: 33139022 DOI: 10.1016/j.jinorgbio.2020.111202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 11/21/2022]
Abstract
Iron(III)-polymaltose pharmaceutical ferritin analogue Ferrifol® was investigated by high resolution transmission electron microscopy (HRTEM), X-ray diffraction, thermogravimetry, electron magnetic resonance (EMR) spectroscopy, direct current magnetization measurements and 57Fe Mössbauer spectroscopy to get novel information about the structural arrangement of the iron core. The Ferrifol® Mössbauer spectra measured in the range from 295 K to 90 K demonstrated non-Lorentzian two-peak pattern. These spectra were better fitted using a superposition of 5 quadrupole doublets with the same line width. The obtained Mössbauer parameters were different and an unusual line broadening with temperature decrease was observed. Measurements of the Ferrifol® Mössbauer spectra from 60 K to 20 K demonstrated a slow decrease of magnetic relaxation in the iron core. Zero-field-cooled and field-cooled magnetization measurements revealed a blocking temperature at ~33 K and a paramagnetic state of the Ferrifol® iron core at higher temperatures. Isothermal magnetization measurements at 5 K show that the saturation magnetic moment is ~0.31 emu/g. X-band EMR spectroscopy measurements revealed the presence of different magnetic species in the sample. Transmission electron microscopy demonstrated that the size of the iron cores in Ferrifol® is in the range 2-6 nm. The lattice periodicity in these iron cores, measured on the HRTEM images, vary in the range 2.2-2.7 Å. This can be best understood as sets of close packed O(OH) layers in ferrihydrite cores without long range correlation.
Collapse
|
4
|
Applications of Mössbauer Spectroscopy in Biomedical Research. Cell Biochem Biophys 2018; 77:15-32. [PMID: 29704106 DOI: 10.1007/s12013-018-0843-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/07/2018] [Indexed: 10/17/2022]
Abstract
A brief review on the applications of Mössbauer spectroscopy in biomedical research discusses the results of more than fifty years of experience in this field. Basing on the numerous results the main directions of biomedical applications of Mössbauer spectroscopy are considered as follows: 1) studies of the quantitative changes of iron-containing biomolecules related to pathological processes; 2) studies of the qualitative changes in iron-containing biomolecules related to pathological processes; 3) studies of the effect of various environmental factors (physical, chemical, and biological) on iron-containing biomolecules; 4) studies of metabolic processes by means of analysis of the Mössbauer nuclides pathways in organisms; 5) studies of dynamic processes; 6) studies of pharmaceutical compounds and blood substitutes containing Mössbauer nuclides; 7) miscellaneous studies. Some examples of biomedical research using 57Fe, 57Co, 119Sn, 153Sm, and 197Au Mössbauer nuclides are presented.
Collapse
|
5
|
Oshtrakh MI, Alenkina IV, Klencsár Z, Kuzmann E, Semionkin VA. Different 57Fe microenvironments in the nanosized iron cores in human liver ferritin and its pharmaceutical analogues on the basis of temperature dependent Mössbauer spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 172:14-24. [PMID: 27372204 DOI: 10.1016/j.saa.2016.06.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
Mössbauer spectra of human liver ferritin and its pharmaceutical analogues Ferrum Lek and Maltofer® measured at various temperatures within the range of 295-83K were fitted using five quadrupole doublets related to different 57Fe microenvironments in various layers/regions of the ferrihydrite and akaganéite iron cores. The observed anomalous temperature dependences of some Mössbauer parameters were considered as a result of low temperature structural rearrangements in different layers/regions in the iron core.
Collapse
Affiliation(s)
- M I Oshtrakh
- Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002, Russian Federation; Department of Experimental Physics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002, Russian Federation.
| | - I V Alenkina
- Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002, Russian Federation; Department of Experimental Physics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002, Russian Federation
| | - Z Klencsár
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - E Kuzmann
- Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - V A Semionkin
- Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002, Russian Federation; Department of Experimental Physics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002, Russian Federation
| |
Collapse
|
6
|
Oshtrakh MI, Alenkina IV, Vinogradov AV, Kumar A, Berkovsky AL, Zakharova AP, Konstantinova TS, Novikov EG, Semionkin VA. The 57Fe hyperfine interactions in the life sciences: application of Mössbauer spectroscopy with a high velocity resolution in the study of iron-containing biomolecules and pharmaceutical compounds. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-4769-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Alenkina IV, Oshtrakh MI, Klencsár Z, Kuzmann E, Chukin AV, Semionkin VA. 57Fe Mössbauer spectroscopy and electron paramagnetic resonance studies of human liver ferritin, Ferrum Lek and Maltofer®. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 130:24-36. [PMID: 24762570 DOI: 10.1016/j.saa.2014.03.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/17/2014] [Accepted: 03/20/2014] [Indexed: 06/03/2023]
Abstract
A human liver ferritin, commercial Ferrum Lek and Maltofer® samples were studied using Mössbauer spectroscopy and electron paramagnetic resonance. Two Mössbauer spectrometers have been used: (i) a high velocity resolution (4096 channels) at 90 and 295K, (ii) and a low velocity resolution (250 channels) at 20 and 40 K. It is shown that the three studied materials have different superparamagnetic features at various temperatures. This may be caused by different magnetic anisotropy energy barriers, sizes (volume), structures and compositions of the iron cores. The electron paramagnetic resonance spectra of the ferritin, Ferrum Lek and Maltofer® were decomposed into multiple spectral components demonstrating the presence of minor ferro- or ferrimagnetic phases along with revealing marked differences among the studied substances. Mössbauer spectroscopy provides evidences on several components in the measured spectra which could be related to different regions, layers, nanocrystallites, etc. in the iron cores that coincides with heterogeneous and multiphase models for the ferritin iron cores.
Collapse
Affiliation(s)
- I V Alenkina
- Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002, Russian Federation; Department of Experimental Physics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002, Russian Federation
| | - M I Oshtrakh
- Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002, Russian Federation; Department of Experimental Physics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002, Russian Federation.
| | - Z Klencsár
- Institute of Molecular Pharmacology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pusztaszeri út 59-67, Budapest 1025, Hungary
| | - E Kuzmann
- Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - A V Chukin
- Department of Theoretical Physics and Applied Mathematics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002, Russian Federation
| | - V A Semionkin
- Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002, Russian Federation; Department of Experimental Physics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002, Russian Federation
| |
Collapse
|
8
|
Alenkina I, Oshtrakh M, Tugarova A, Biró B, Semionkin V, Kamnev A. Study of the rhizobacterium Azospirillum brasilense Sp245 using Mössbauer spectroscopy with a high velocity resolution: Implication for the analysis of ferritin-like iron cores. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.04.084] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Evaluation of the Debye temperature for iron cores in human liver ferritin and its pharmaceutical analogue, Ferrum Lek, using Mössbauer spectroscopy. J Inorg Biochem 2014; 140:89-93. [PMID: 25086236 DOI: 10.1016/j.jinorgbio.2014.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/08/2014] [Accepted: 07/08/2014] [Indexed: 11/22/2022]
Abstract
An iron-polymaltose complex, Ferrum Lek, used as antianemic drug and considered as a ferritin analogue and human liver ferritin were investigated in the temperature range of 295-90K using (57)Fe Mössbauer spectroscopy with a high velocity resolution (in 4096 channels). This study aimed to make a comparison of the Fe atom dynamics in the Ferrum Lek and ferritin iron cores by means of evaluation of the Debye temperature using the temperature dependence of the spectral center shift obtained with two different fitting procedures and the second order Doppler shift approach. The Debye temperature, evaluated as ΘD=502±24K for Ferrum Lek and ΘD=461±16K for human liver ferritin, demonstrated a very small difference in the Fe atom vibrations, reflecting a slightly smaller rigidity in the iron cores in human liver ferritin.
Collapse
|
10
|
Kästele X, Sturm C, Klüfers P. 13C NMR spectroscopy as a tool for the in situ characterisation of iron-supplementing preparations. Eur J Pharm Biopharm 2014; 86:469-77. [DOI: 10.1016/j.ejpb.2013.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 11/05/2013] [Indexed: 11/17/2022]
|
11
|
Alenkina IV, Oshtrakh MI, Semionkin VA, Kuzmann E. Comparative study of nanosized iron cores in human liver ferritin and its pharmaceutically important models Maltofer® and Ferrum Lek using Mössbauer spectroscopy. ACTA ACUST UNITED AC 2013. [DOI: 10.3103/s1062873813060038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Mössbauer spectroscopy of the iron cores in human liver ferritin, ferritin in normal human spleen and ferritin in spleen from patient with primary myelofibrosis: preliminary results of comparative analysis. Biometals 2013; 26:229-39. [DOI: 10.1007/s10534-012-9602-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
|
13
|
Alenkina IV, Oshtrakh MI, Klepova YV, Dubiel SM, Sadovnikov NV, Semionkin VA. Comparative study of the iron cores in human liver ferritin, its pharmaceutical models and ferritin in chicken liver and spleen tissues using Mössbauer spectroscopy with a high velocity resolution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 100:88-93. [PMID: 22465305 DOI: 10.1016/j.saa.2012.02.083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 02/22/2012] [Indexed: 05/31/2023]
Abstract
Application of Mössbauer spectroscopy with a high velocity resolution (4096 channels) for comparative analysis of iron cores in a human liver ferritin and its pharmaceutically important models Imferon, Maltofer(®) and Ferrum Lek as well as in iron storage proteins in chicken liver and spleen tissues allowed to reveal small variations in the (57)Fe hyperfine parameters related to differences in the iron core structure. Moreover, it was shown that the best fit of Mössbauer spectra of these samples required different number of components. The latter may indicate that the real iron core structure is more complex than that following from a simple core-shell model. The effect of different living conditions and age on the iron core in chicken liver was also considered.
Collapse
Affiliation(s)
- I V Alenkina
- Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002, Russian Federation
| | | | | | | | | | | |
Collapse
|
14
|
Oshtrakh MI, Semionkin VA. Mössbauer spectroscopy with a high velocity resolution: advances in biomedical, pharmaceutical, cosmochemical and nanotechnological research. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 100:78-87. [PMID: 22521301 DOI: 10.1016/j.saa.2012.03.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/23/2012] [Accepted: 03/07/2012] [Indexed: 05/31/2023]
Abstract
The methodological principles of velocity resolution as additional characteristic of the quality of both Mössbauer spectrometer velocity driving system and Mössbauer spectrum were briefly considered. Significantly better quality of Mössbauer spectra measured with a high velocity resolution in comparison with those measured with a low velocity resolution was demonstrated. The main advances of recent studies of iron containing biomolecules, pharmaceutical products, meteorite samples and nanoparticles using Mössbauer spectroscopy with a high velocity resolution were considered and advantages of this technique were shown.
Collapse
Affiliation(s)
- M I Oshtrakh
- Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002, Russian Federation.
| | | |
Collapse
|