1
|
Yang Y, Park JS, Lee SW. Development of a gold nanoparticle-based colorimetric sensor utilizing cysteine-loaded liposomes in acidic buffer solutions. Dalton Trans 2025; 54:6529-6537. [PMID: 40145760 DOI: 10.1039/d5dt00071h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
This study presents the development of a colorimetric sensing system, utilizing gold nanoparticles (AuNPs) and cysteine (Cys)-encapsulated liposomes (CELPs) as sensing probes, that functions in a variety of buffer solutions. Triton X-100 (TX-100), a nonionic surfactant, was used to simulate a biological activity that disrupts the liposome membrane. The Cys released from the CELPs by TX-100 triggered the aggregation of AuNPs, causing a noticeable red-to-blue color change, which was enhanced by Cu2+ chelation. The AuNP-CELP/TX-100 system was tested at pH 5-7.4 in various buffers. At neutral pH (7.0-7.4), the system with citrate-capped AuNPs (cit-AuNPs) displayed a distinctive colorimetric response in the presence of Cu2+ (0.3 mM), transitioning from red to blue with a UV-vis absorption shift from 525 nm to approximately 660 nm. However, the cit-AuNPs showed a limited stability in acidic buffers, and cetyltrimethylammonium bromide (CTAB)-capped AuNPs (cit-AuNPs-CTAB) were employed as an alternative at acidic pH. Overall, the AuNP-CELP/TX-100 sensing system, utilizing the cit-AuNPs-CTAB and Cu2+ chelation to Cys, exhibited the potential to be an effective sensing method working in acidic media. The test results with TX-100, which disrupts the liposome membrane, suggest that this system can be used to visualize diverse biological interactions involving membrane disruption, such as viral attacks, in acidic solutions with diverse ionic compositions.
Collapse
Affiliation(s)
- Youkyoung Yang
- Department of Chemical and Biological Engineering, Gachon University, San 65, Bokjeong-dong, Sujeong-gu, Seongnam-si, Gyeonggi-do, 461-701, South Korea.
| | - Joon-Seo Park
- Department of Chemistry, Eastern University, 1300 Eagle Road, St Davids, PA 19087, USA.
| | - Sang-Wha Lee
- Department of Chemical and Biological Engineering, Gachon University, San 65, Bokjeong-dong, Sujeong-gu, Seongnam-si, Gyeonggi-do, 461-701, South Korea.
| |
Collapse
|
2
|
Abdul-Razek N, Khalil RG, Abdel-Latif M, Kamel MM, Alhazza IM, Awad EM, Ebaid H, Abuelsaad ASA. Investigating the Tumor-Suppressive, Antioxidant Effects and Molecular Binding Affinity of Quercetin-Loaded Selenium Nanoparticles in Breast Cancer Cells. BIONANOSCIENCE 2025; 15:135. [DOI: 10.1007/s12668-024-01767-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 01/03/2025]
Abstract
AbstractIn 2023, breast cancer is expected to have nearly 2 million new cases, making it the second most common cancer overall and the most prevalent among women. Multidrug resistance limits the effectiveness of chemotherapy; however, quercetin, a natural flavonoid, helps combat this issue. The goal of the current investigation is to determine the impact of a novel composite of quercetin and selenium nanoparticles (SeNPs) on the breast cancer cell lines MDA-MB-231 and MCF-7 in order to enhance quercetin’s tumor-suppressive action and decrease selenium (Se) toxicity. Particle size, zeta potential, FTIR, SEM, UV–VIS spectroscopy, and EDX were used to characterize quercetin-selenium nanoparticles (Que-SeNPs), in addition to evaluation of the antioxidant, apoptotic, and anticancer properties. Moreover, autophagy (Atg-13) protein receptors and PD-1/PD-L1 checkpoint were targeted using molecular docking modeling and molecular dynamics (MD) simulations to assess the interaction stability between Que-SeNPs and three targets: PDL-1, PD-1, and Atg-13HORMA domain. Que-SeNPs, synthesized with quercetin, were stable, semi-spherical (80–117 nm), and had a zeta potential of − 37.8 mV. They enhanced cytotoxicity, antioxidant activity, and apoptosis compared to quercetin alone in MCF-7 and MDA-MB-231 cells. Docking simulations showed strong binding to the PD-1/PD-L1 checkpoint and Atg-13HORMA protein receptors. Moreover, the molecular dynamics simulation revealed that the behavior of the PD-L1 intriguing insights into its structural dynamics, therefore, suggesting a stable phase where the complex is adjusting to the simulation environment. The present data confirmed that the stable formula of Que-SeNPs is cytotoxic, antioxidant, and has a potential activity to increase apoptosis in breast cancer cells, with the potential to inhibit PD-1/PD-L1 and Atg-13 proteins.
Graphical Abstract
Role of Que-SeNPs on breast cancer cells in vitro against two breast cancer cell lines MDA-MB-231 and MCF-7.
Collapse
|
3
|
Duman H, Akdaşçi E, Eker F, Bechelany M, Karav S. Gold Nanoparticles: Multifunctional Properties, Synthesis, and Future Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1805. [PMID: 39591046 PMCID: PMC11597081 DOI: 10.3390/nano14221805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024]
Abstract
Gold nanoparticles (NPs) are among the most commonly employed metal NPs in biological applications, with distinctive physicochemical features. Their extraordinary optical properties, stemming from strong localized surface plasmon resonance (LSPR), contribute to the development of novel approaches in the areas of bioimaging, biosensing, and cancer research, especially for photothermal and photodynamic therapy. The ease of functionalization with various ligands provides a novel approach to the precise delivery of these molecules to targeted areas. Gold NPs' ability to transfer heat and electricity positions them as valuable materials for advancing thermal management and electronic systems. Moreover, their inherent characteristics, such as inertness, give rise to the synthesis of novel antibacterial and antioxidant agents as they provide a biocompatible and low-toxicity approach. Chemical and physical synthesis methods are utilized to produce gold NPs. The pursuit of more ecologically sustainable and economically viable large-scale technologies, such as environmentally benign biological processes referred to as green/biological synthesis, has garnered increasing interest among global researchers. Green synthesis methods are more favorable than other synthesis techniques as they minimize the necessity for hazardous chemicals in the reduction process due to their simplicity, cost-effectiveness, energy efficiency, and biocompatibility. This article discusses the importance of gold NPs, their optical, conductivity, antibacterial, antioxidant, and anticancer properties, synthesis methods, contemporary uses, and biosafety, emphasizing the need to understand toxicology principles and green commercialization strategies.
Collapse
Affiliation(s)
- Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (E.A.); (F.E.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (E.A.); (F.E.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (E.A.); (F.E.)
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (E.A.); (F.E.)
| |
Collapse
|
4
|
Ozcicek I, Baydas G, Erim UC, Ustundag UV. Quercetin/Polyethyleneimine Modified Gold Nanoconjugates Inhibit Apoptosis and ROS Production Induced by Hydrogen Peroxide in DRG Sensory Neurons. J Pharm Sci 2024; 113:3088-3099. [PMID: 39151794 DOI: 10.1016/j.xphs.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
The basis of most neurological syndromes is the accumulation of free radical molecules. Quercetin is a polyphenolic bioflavonoid molecule and it has a very strong antioxidant effect by maintaining oxidative balance. There are many difficulties in the clinical use of quercetin due to its hydrophobic structure, low solubility, instability, poor oral bioavailability, and limited tissue-barrier penetration. Its synergistic use in complex with gold nanoparticles (AuNPs) could overcome these problems. AuNPs have recently emerged as an attractive candidate for delivery applications of various biomolecules and drugs. The aim of this study was to synthesize two different sized gold nanoparticles (AuNP20 and AuNP50) modified with polyethyleneimine (PEI) and quercetin, evaluate their potential neuroprotective effects on the in vitro oxidative stress model using DRG primary sensory neurons. It was shown that the antioxidant and anti-apoptotic ability of the bioflavonoid was preserved after exposure to the designed quercetin modified AuNPs. The PEI surface coating increased the stability and biocompatibility of the AuNPs in both sizes. It also potentially enables additional surface functionalization. This study indicates that designed nanoparticles (AuNP-Q-PEI) with different sizes could be a useful potential platform for the treatment of neurodegenerative syndromes or cancer diseases.
Collapse
Affiliation(s)
- Ilyas Ozcicek
- Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.
| | - Gulsena Baydas
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey; Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Umit Can Erim
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey; Department of Analytical Chemistry, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey
| | - Unsal Veli Ustundag
- Department of Basic Medical Scinces, Faculty of Dentistry, Istanbul Atlas University, Istanbul, Turkey
| |
Collapse
|
5
|
Matić IZ, Mraković A, Rakočević Z, Stoiljković M, Pavlović VB, Momić T. Anticancer effect of novel luteolin capped gold nanoparticles selectively cytotoxic towards human cervical adenocarcinoma HeLa cells: An in vitro approach. J Trace Elem Med Biol 2023; 80:127286. [PMID: 37634345 DOI: 10.1016/j.jtemb.2023.127286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/26/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Although luteolin has been confirmed as potent anticancer agent, its potential application as therapeutic is limited by its water solubility. To overcome this shortcoming nanoparticle technology approach was applied. Owing to their proven low toxicity and the possibility to be easily functionalized gold nanoparticles (AuNP) were the nanosystem of choice used in this study. Novel luteolin capped gold nanoparticles (AuNPL) were synthesized and their anticancer effect towards human cervical adenocarcinoma HeLa cells was investigated in vitro. METHODS AuNPL were synthesized by reducing chloroauric acid by trisodium citrate with subsequent addition of luteoline during synthesis and their physicochemical characterization was done. AuNPL cytotoxicity against HeLa, human malignant melanoma A375, and normal human keratinocytes HaCaT cells was tested by MTT cell survival assay, and their IC50 values were determined. The capability of AuNPL to induce cell cycle arrest and apoptosis in HeLa cells were demonstrated by flow cytometry. The antioxidant activity of AuNPL was assessed by DPPH· and ABTS·+ scavenging assays. Cytoprotective properties of AuNPL towards HaCaT cells were examined by measuring the physiological and H2O2 induced intracellular reactive oxygen species (ROS) levels using flow cytometry. Also, genotoxicity of AuNPL in HaCaT cells was investigated by the single cell alkaline comet assay. RESULTS Spherical AuNPL, stable in aqueous solution up to six months at 4 °C were obtained in the synthesis. The selectivity in the cytotoxic action of AuNPL on HeLa and A375 cancer cells compared with their cytotoxicity on normal keratinocytes HaCaT was observed. AuNPL exerted their cytotoxic activity against HeLa cells through accumulation of the cells in the subG1 phase of the cell cycle, inducing the apoptotic cell death mediated by the activation of caspase-3 - 8, and - 9. AuNPL antioxidative potential was confirmed by DPPH· and ABTS·+ scavenging assays. IC50 concentration of AuNPL exerted cytoprotective effect against HaCaT cells by the significant reduction of the physiological intracellular ROS level. Additionally, AuNPL were shown as more cytoprotective towards HaCaT cells then luteolin due to the more successful elimination of H2O2 induced intracellular ROS. Moreover, nontoxic concentrations of AuNPL did not cause considerable DNA damage of HaCaT cells, indicating low genotoxicity of the nanoparticles. CONCLUSION Synthesized AuNPL showed selective cytotoxic activity against HeLa cells, while being nontoxic and cytoprotective against HaCaT cells. The observed findings encourage further investigation of AuNPL as a promising novel anticancer agent.
Collapse
Affiliation(s)
- Ivana Z Matić
- Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Ana Mraković
- VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11000 Belgrade, Serbia
| | - Zlatko Rakočević
- VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11000 Belgrade, Serbia
| | - Milovan Stoiljković
- VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11000 Belgrade, Serbia
| | - Vladimir B Pavlović
- Faculty of Agriculture, University of Belgrade, P.O. Box 127, 11080 Zemun, Serbia
| | - Tatjana Momić
- VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11000 Belgrade, Serbia.
| |
Collapse
|
6
|
Sumera NS, Iqbal SS, Khan ST, Rehman ZU. Fusarium oxysporum; its enhanced entomopathogenic activity with acidic silver nanoparticles against Rhipicephalus microplus ticks. BRAZ J BIOL 2023; 84:e266741. [PMID: 36820787 DOI: 10.1590/1519-6984.266741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/29/2022] [Indexed: 02/22/2023] Open
Abstract
Fusarium oxysporum is an entomopathogenic fungus, and it has anti-biological activity against arthropods. Ticks are blood sucking arthropods which are responsible for transmitting different diseases in humans and animals. The use of chemical insecticides against ticks is not eco-friendly option and results in the development of acaricide resistance. Previously, we had cultured a local isolate of Fusarium oxysporum from soil samples which were identified through microscopy and confirmed through molecular technique. In our previous experiments, we have prepared Silver nanoparticles (AgNP) at pH 7 and they had been characterized through X-Ray Diffraction (XRD), UV-visible and zeta-potential. In our current study, the AgNP were prepared at different pH conditions and characterized through Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The protein molecules of F. oxysporum were charged with Ag ions. F. oxysporum NP were observed to enhance anti-biological activity by killing Rhipicephalus microplus and they caused 100% mortality at pH 4 and pH 5 in 24 h in anti-tick biological assay. Our study is the first report to do biological assay against Rhipicehalus ticks by using Fusarium AgNP at acidic pH. Biological control using entomopathogenic fungi can be the best alternative of the chemical method to control the tick population.
Collapse
Affiliation(s)
- N S Sumera
- Government College for Women, Department of Physics, Mustafabad, Lahore, Pakistan.,University of Lahore, Department of Physics, Lahore, Pakistan
| | - S S Iqbal
- University of Lahore, Department of Physics, Lahore, Pakistan.,Lahore Garrison University, Department of Physics, Lahore, Pakistan
| | - S T Khan
- University of Veterinary and Animal Sciences, Department of Parasitology, Lahore, Pakistan
| | - Z Ul Rehman
- University of Veterinary and Animal Sciences, Department of Parasitology, Lahore, Pakistan
| |
Collapse
|
7
|
Fotooh Abadi L, Kumar P, Paknikar K, Gajbhiye V, Kulkarni S. Tenofovir-tethered gold nanoparticles as a novel multifunctional long-acting anti-HIV therapy to overcome deficient drug delivery-: an in vivo proof of concept. J Nanobiotechnology 2023; 21:19. [PMID: 36658575 PMCID: PMC9850711 DOI: 10.1186/s12951-022-01750-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The adoption of Antiretroviral Therapy (ART) substantially extends the life expectancy and quality of HIV-infected patients. Yet, eliminating the latent reservoirs of HIV to achieve a cure remains an unmet need. The advent of nanomedicine has revolutionized the treatment of HIV/AIDS. The present study explores a unique combination of Tenofovir (TNF) with gold nanoparticles (AuNPs) as a potential therapeutic approach to overcome several limitations of the current ART. RESULTS TNF-tethered AuNPs were successfully synthesized. Cell viability, genotoxicity, haemolysis, and histopathological studies confirmed the complete safety of the preparation. Most importantly, its anti-HIV1 reverse transcriptase activity was ~ 15 folds higher than the native TNF. In addition, it exhibited potent anti-HIV1 protease activity, a much sought-after target in anti-HIV1 therapeutics. Finally, the in vivo biodistribution studies validated that the AuNPs could reach many tissues/organs, serving as a secure nest for HIV and overcoming the problem of deficient drug delivery to HIV reservoirs. CONCLUSIONS We show that the combination of TNF and AuNPs exhibits multifunctional activity, viz. anti-HIV1 and anti-HIV1 protease. These findings are being reported for the first time and highlight the prospects of developing AuNP-TNF as a novel next-generation platform to treat HIV/AIDS.
Collapse
Affiliation(s)
- Leila Fotooh Abadi
- grid.419119.50000 0004 1803 003XDivision of Virology, Indian Council of Medical Research-National AIDS Research Institute, Pune, 411 026 India
| | - Pramod Kumar
- grid.417727.00000 0001 0730 5817Nanobioscience Group, Agharkar Research Institute, Pune, 411 004 India
| | - Kishore Paknikar
- grid.417727.00000 0001 0730 5817Nanobioscience Group, Agharkar Research Institute, Pune, 411 004 India ,grid.417971.d0000 0001 2198 7527Department of Chemistry, Indian Institute of Technology, Mumbai, 400 076 India
| | - Virendra Gajbhiye
- grid.417727.00000 0001 0730 5817Nanobioscience Group, Agharkar Research Institute, Pune, 411 004 India
| | - Smita Kulkarni
- grid.419119.50000 0004 1803 003XDivision of Virology, Indian Council of Medical Research-National AIDS Research Institute, Pune, 411 026 India
| |
Collapse
|
8
|
Parthiban A, Sachithanandam V, Sarangapany S, Misra R, Muthukrishnan P, Jeyakumar TC, Purvaja R, Ramesh R. Green synthesis of gold nanoparticles using quercetin biomolecule from mangrove plant, Ceriops tagal: Assessment of antiproliferative properties, cellular uptake and DFT studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Gold nanoparticles for skin drug delivery. Int J Pharm 2022; 625:122122. [PMID: 35987319 DOI: 10.1016/j.ijpharm.2022.122122] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/02/2022] [Accepted: 08/13/2022] [Indexed: 02/01/2023]
Abstract
Nanoparticle-based drug carriers are being pursued intensely to overcome the skin barrier and improve even hydrophilic or macromolecular drug delivery into or across the skin efficiently. Over the past few years, the application of gold nanoparticles as a novel kind of drug carrier for skin drug delivery has attracted increasing attention because of their unique properties and versatility. In this review, we summarized the possible factors contributing to the penetration behaviors of gold nanoparticles, including size, surface chemistry, and shape. Drug loading, release, and penetration patterns were captured towards implicating the design of gold nanoparticles for dermal or transdermal drug delivery. Physical methods applicable for future enhancing the delivery efficacy of GNPs were also presented, which mainly included microneedles and iontophoresis. As a promising "drug", the inherent activities of GNPs were finally discussed, especially regarding their application in the treatment of skin disease. Thus, this paper provided a comprehensive review of the use of gold nanoparticles for skin drug delivery, which would help the design of multifunctional systems for skin drug delivery based on gold nanoparticles.
Collapse
|
10
|
Flavonoid-based Polymeric Nanoparticles: A Promising Approach for Cancer and Diabetes Treatment. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Pansare AV, Pansare PV, Shedge AA, Pansare SV, Patil VR, Terrasi GP, Donde KJ. Click gold quantum dots biosynthesis with conjugation of quercetin for adenocarcinoma exertion. RSC Adv 2022; 12:18425-18430. [PMID: 35799927 PMCID: PMC9218964 DOI: 10.1039/d2ra02529a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/23/2022] [Indexed: 12/20/2022] Open
Abstract
We developed a cost-effective and eco-friendly click biosynthesis of small molecule quercetin-gold quantum dots (QRT-AuQDs) involving quick conjugation using an ultrasonication method at ambient temperature by utilizing QRT and gold ions in the proportion of 0.1 : 1 (molar ratio). A comparatively very short amount of time (60 seconds) was required as compared to conventional procedures. The present biomimetics research relates to the isolation of bioactive QRT by the circularly spread silica gel layer technique (CSSGLT) and characterization (UV-Vis, FTIR, NMR and DSC analysis). Characterization of the synthesized QRT-AuQDs conjugated complex was carried out by UV-Vis, HR-TEM, DLS, zeta potential and X-ray diffraction. The main objective of the present work was to study the comparative anticancer activity of QRT and QRT-AuQDs on human lung cancer HOP-62 and leukemia K-562 cell lines. The results suggested that QRT-AuQDs showed potential for applications in anticancer treatment and were found to be a more cytotoxic agent in comparison to QRT, causing > 50% inhibition of cancer cells at the concentration < 10-7 M. Hence, small molecule conjugated QRT-AuQDs can be used as a promising material for biomedical, bioengineering and anti-infectives applications.
Collapse
Affiliation(s)
- Amol V Pansare
- Composite Group, Mechanical Systems Engineering, Swiss Federal Laboratories for Materials Science and Technology-Empa 8600 Dübendorf Switzerland
- Department of Chemistry, University of Mumbai Santacruz (E) Mumbai 400098 India
| | - Priyanka V Pansare
- Ramnarain Ruia Autonomous College, University of Mumbai Matunga (E) India
| | - Amol A Shedge
- Department of Chemistry, University of Mumbai Santacruz (E) Mumbai 400098 India
| | - Shubham V Pansare
- Department of Chemistry, University of Mumbai Santacruz (E) Mumbai 400098 India
| | - Vishwanath R Patil
- Department of Chemistry, University of Mumbai Santacruz (E) Mumbai 400098 India
| | - Giovanni P Terrasi
- Composite Group, Mechanical Systems Engineering, Swiss Federal Laboratories for Materials Science and Technology-Empa 8600 Dübendorf Switzerland
| | - Kamini J Donde
- Ramnarain Ruia Autonomous College, University of Mumbai Matunga (E) India
| |
Collapse
|
12
|
Mehanna ET, Kamel BSA, Abo-Elmatty DM, Elnabtity SM, Mahmoud MB, Abdelhafeez MM, Abdoon ASS. Effect of gold nanoparticles shape and dose on immunological, hematological, inflammatory, and antioxidants parameters in male rabbit. Vet World 2022; 15:65-75. [PMID: 35369578 PMCID: PMC8924392 DOI: 10.14202/vetworld.2022.65-75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Gold nanorods (AuNRs) have gained much attention recent years due to their promising optical and chemical properties and are hence used in applied research and industrial nanotechnology. This study was designed to investigate the effect of gold nanoparticle shape (Gold nanorods vs. gold nanosphere) on immune response in rabbit. Materials and Methods: Thirty New Zealand white rabbits were divided into six groups (n=5 rabbits). The first group is the control negative received an intravenous (IV) injection of normal saline 0.9%; the second group (vaccinated) is the control positive, and the other four groups were vaccinated and received a single-dose or repeated five consecutive IV doses of 300 mg/kg body weight 50 nm AuNRs or 50 nm gold nanosphere (50 nm AuNSs) dissolved in ultrapure water. Blood and serum were collected for the hematological and biochemical analysis. Results: White blood cells (WBCs) count, lymphocytes, monocytes, eosinophils, and basophils showed significantly (p<0.05) higher values with the repeated-dose AuNRs. g-globulin levels showed a significant difference after 15 days in the single-dose AuNSs. Single-dose AuNSs significantly (p<0.05) increased the immunoglobulin G (IgG) and significantly (p<0.05) decreased the tumor necrosis factor-alpha. In addition, it elicited a significant (p<0.05) decrease in the malondialdehyde levels and a significant (p<0.05) increase of the superoxide dismutase, glutathione peroxidase, and catalase levels. Moreover, evoked red blood cells count, mean corpuscular volume, and mean corpuscular hemoglobin were significantly (p<0.05) lower than the control group. The platelet count, lysozymes, and nitric oxide were significantly (p<0.05) higher in repeated-dose AuNRs. Conclusion: The effect of AuNPs is shape and dose-dependent. The repeated 5 days IV 50 nm AuNRs doses over 15 days showed a significant antioxidant effect, with no considerable toxicity or vascular reactions.
Collapse
Affiliation(s)
- Eman T. Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | | | - Dina M. Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Sameh M. Elnabtity
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Manal B. Mahmoud
- Department of Immunology, Animal Reproduction Research Institute, ARC, Haram, Giza, Egypt
| | - Mostafa M. Abdelhafeez
- Department of Food Science and Technology, Faculty of Agriculture, Misurata University, Libya
| | - Ahmed Sabry S. Abdoon
- Department of Animal Reproduction and Artificial Insemination, Veterinary Research Division, National Research Center, Dokki, Cairo, Egypt
| |
Collapse
|
13
|
Sadalage PS, Patil RV, Havaldar DV, Gavade SS, Santos AC, Pawar KD. Optimally biosynthesized, PEGylated gold nanoparticles functionalized with quercetin and camptothecin enhance potential anti-inflammatory, anti-cancer and anti-angiogenic activities. J Nanobiotechnology 2021; 19:84. [PMID: 33766058 PMCID: PMC7992809 DOI: 10.1186/s12951-021-00836-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/16/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The development of nano delivery systems is rapidly emerging area of nanotechnology applications where nanomaterials (NMs) are employed to deliver therapeutic agents to specific site in a controlled manner. To accomplish this, green synthesis of NMs is widely explored as an eco-friendly method for the development of smart drug delivery system. In the recent times, use of green synthesized NMs, especially metallic NMs have fascinated the scientific community as they are excellent carriers for drugs. This work demonstrates optimized green, biogenic synthesis of gold nanoparticles (AuNPs) for functionalization with quercetin (QT) and camptothecin (CPT) to enhance potential anti-inflammatory, anti-cancer and anti-angiogenic activities of these drugs. RESULTS Gold nanoparticles were optimally synthesized in 8 min of reaction at 90 °C, pH 6, using 4 mM of HAuCl4 and 4:1 ratio of extract: HAuCl4. Among different capping agents tested, capping of AuNPs with polyethylene glycol 9000 (PG9) was found best suited prior to functionalization. PG9 capped AuNPs were optimally functionalized with QT in 1 h reaction at 70 °C, pH 7, using 1200 ppm of QT and 1:4 ratio of AuNPs-PG9:QT whereas, CPT was best functionalized at RT in 1 h, pH 12, AuNPs-PG9:CPT ratio of 1:1, and 0.5 mM of CPT. QT functionalized AuNPs showed good anti-cancer activity (IC50 687.44 µg/mL) against MCF-7 cell line whereas test of anti-inflammatory activity also showed excellent activity (IC50 287.177 mg/L). The CAM based assessment of anti-angiogenic activity of CPT functionalized AuNPs demonstrated the inhibition of blood vessel branching confirming the anti-angiogenic effect. CONCLUSIONS Thus, present study demonstrates that optimally synthesized biogenic AuNPs are best suited for the functionalization with drugs such as QT and CPT. The functionalization of these drugs with biogenic AuNPs enhances the potential anti-inflammatory, anti-cancer and anti-angiogenic activities of these drugs, therefore can be used in biomedical application.
Collapse
Affiliation(s)
| | - Reshma V Patil
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra, India
| | - Darshana V Havaldar
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra, India
| | - Shruti S Gavade
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra, India
| | - Ana Cláudia Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Kiran D Pawar
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra, India.
| |
Collapse
|
14
|
Facile Synthesis and Characterization of Quercetin-Loaded Alginate Nanoparticles for Enhanced In Vitro Anticancer Effect Against Human Leukemic Cancer U937 Cells. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01913-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Drug delivery systems based on nanoparticles and related nanostructures. Eur J Pharm Sci 2020; 151:105412. [DOI: 10.1016/j.ejps.2020.105412] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
|
16
|
Frias Batista LM, Meader VK, Romero K, Kunzler K, Kabir F, Bullock A, Tibbetts KM. Kinetic Control of [AuCl4]− Photochemical Reduction and Gold Nanoparticle Size with Hydroxyl Radical Scavengers. J Phys Chem B 2019; 123:7204-7213. [DOI: 10.1021/acs.jpcb.9b04643] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Laysa M. Frias Batista
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Victoria Kathryn Meader
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Katherine Romero
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Karli Kunzler
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Fariha Kabir
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Amazin Bullock
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Katharine Moore Tibbetts
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
17
|
Milanezi FG, Meireles LM, de Christo Scherer MM, de Oliveira JP, da Silva AR, de Araujo ML, Endringer DC, Fronza M, Guimarães MCC, Scherer R. Antioxidant, antimicrobial and cytotoxic activities of gold nanoparticles capped with quercetin. Saudi Pharm J 2019; 27:968-974. [PMID: 31997903 PMCID: PMC6978611 DOI: 10.1016/j.jsps.2019.07.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/10/2019] [Indexed: 12/19/2022] Open
Abstract
In the present work, we report the antioxidant, antimicrobial and cytotoxic activities of quercetin-capped gold nanoparticles (AuNPsQct). The synthesis of AuNPsQct was confirmed by UV-Vis spectroscopy, FTIR and transmission electron microscopy (TEM) analyses. The FTIR spectrum showed the integrity of the quercetin molecules on the nanoparticle surface. The TEM images showed sizes less than 100 nm and a slight spherical shape. The electrostatic stability was confirmed by the zeta potential method. The antioxidant activity of quercetin, evaluated by DPPH, ABTS and nitric oxide free radical scavenging methods, was preserved in the gold nanoparticles, furthermore quercetin-capped gold nanoparticles (IR50 0.37 µg/mL) demonstrated a higher antioxidant activity than free quercetin (IR50 0.57 µg/mL) by nitric oxide free radical scavenging method. Strong antifungal activity was observed for Aspergillus fumigatus with concentrations ranging from 0.1 to 0.5 mg/mL. The nanoparticles with quercetin did not exhibit cytotoxicity to human fibroblasts (L929 cells). In conclusion, these results suggest that AuNPsQct, produced by cost-effective method, can act as a promising candidate for different medical applications.
Collapse
Affiliation(s)
- Felipe Guzansky Milanezi
- Pharmaceutical Sciences Graduate Program, Universidade Vila Velha, 29102-920 Vila Velha, ES, Brazil
| | - Leandra Martins Meireles
- Pharmaceutical Sciences Graduate Program, Universidade Vila Velha, 29102-920 Vila Velha, ES, Brazil
| | | | - Jairo P de Oliveira
- Department of Morphology, Federal University of Espírito Santo, 29075-910 Vitória, ES, Brazil
| | | | - Mariceli Lamas de Araujo
- Pharmaceutical Sciences Graduate Program, Universidade Vila Velha, 29102-920 Vila Velha, ES, Brazil
| | | | - Marcio Fronza
- Pharmaceutical Sciences Graduate Program, Universidade Vila Velha, 29102-920 Vila Velha, ES, Brazil
| | | | - Rodrigo Scherer
- Pharmaceutical Sciences Graduate Program, Universidade Vila Velha, 29102-920 Vila Velha, ES, Brazil
| |
Collapse
|
18
|
Lakshmi BA, Kim S. Quercetin mediated gold nanoclusters explored as a dual functional nanomaterial in anticancer and bio-imaging disciplines. Colloids Surf B Biointerfaces 2019; 178:230-237. [DOI: 10.1016/j.colsurfb.2019.02.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/13/2022]
|
19
|
Bharti S, Kaur G, Jain S, Gupta S, Tripathi SK. Characteristics and mechanism associated with drug conjugated inorganic nanoparticles. J Drug Target 2019; 27:813-829. [PMID: 30601068 DOI: 10.1080/1061186x.2018.1561888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nanoparticles have several exciting applications nowadays almost in every area. Biomedical field is one of them where nanoparticles show potential for various applications due to their exceptional and exciting properties. The presence of heavy metals in inorganic nanoparticles lead to toxicity in the biological system, therefore, their direct use for drug delivery is restricted. But encapsulating their surface with a non-toxic or biocompatible material makes them a promising material for application in drug delivery system. This review highlights the various characteristics and factors involved in nano-drug delivery system. The understanding of various mechanisms involved during the uptake of nanoparticles by cells, toxicity, surface chemistry and several drug release mechanisms has been discussed. This article also includes various computational studies used to optimise the design and properties of drug delivery system.
Collapse
Affiliation(s)
- Shivani Bharti
- a Department of Physics, Centre of Advanced Study in Physics , Punjab University , Chandigarh , India
| | - Gurvir Kaur
- b Sri Guru Gobind Singh College , Chandigarh , India
| | - Shikshita Jain
- a Department of Physics, Centre of Advanced Study in Physics , Punjab University , Chandigarh , India
| | - Shikha Gupta
- c Goswami Ganesh Dutta Sanatan Dharma College , Chandigarh , India
| | - S K Tripathi
- a Department of Physics, Centre of Advanced Study in Physics , Punjab University , Chandigarh , India
| |
Collapse
|
20
|
Marslin G, Siram K, Maqbool Q, Selvakesavan RK, Kruszka D, Kachlicki P, Franklin G. Secondary Metabolites in the Green Synthesis of Metallic Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E940. [PMID: 29865278 PMCID: PMC6024997 DOI: 10.3390/ma11060940] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/25/2018] [Accepted: 05/30/2018] [Indexed: 12/18/2022]
Abstract
The ability of organisms and organic compounds to reduce metal ions and stabilize them into nanoparticles (NPs) forms the basis of green synthesis. To date, synthesis of NPs from various metal ions using a diverse array of plant extracts has been reported. However, a clear understanding of the mechanism of green synthesis of NPs is lacking. Although most studies have neglected to analyze the green-synthesized NPs (GNPs) for the presence of compounds derived from the extract, several studies have demonstrated the conjugation of sugars, secondary metabolites, and proteins in these biogenic NPs. Despite several reports on the bioactivities (antimicrobial, antioxidant, cytotoxic, catalytic, etc.) of GNPs, only a handful of studies have compared these activities with their chemically synthesized counterparts. These comparisons have demonstrated that GNPs possess better bioactivities than NPs synthesized by other methods, which might be attributed to the presence of plant-derived compounds in these NPs. The ability of NPs to bind with organic compounds to form a stable complex has huge potential in the harvesting of precious molecules and for drug discovery, if harnessed meticulously. A thorough understanding of the mechanisms of green synthesis and high-throughput screening of stabilizing/capping agents on the physico-chemical properties of GNPs is warranted to realize the full potential of green nanotechnology.
Collapse
Affiliation(s)
- Gregory Marslin
- Ratnam Institute of Pharmacy and Research, Nellore 524346, India.
| | - Karthik Siram
- Department of Pharmaceutics, PSG College of Pharmacy, Coimbatore 641004, India.
| | - Qaisar Maqbool
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan 60479, Poland.
| | | | - Dariusz Kruszka
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan 60479, Poland.
| | - Piotr Kachlicki
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan 60479, Poland.
| | - Gregory Franklin
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan 60479, Poland.
| |
Collapse
|
21
|
Sierra-Rosales P, Torres R, Sepúlveda C, Kogan MJ, Arturo Squella J. Electrochemical Characterization and Electrocatalytic Application of Gold Nanoparticles Synthesized with Different Stabilizing Agents. ELECTROANAL 2017. [DOI: 10.1002/elan.201700633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Paulina Sierra-Rosales
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación; Universidad Tecnológica Metropolitana; Ignacio Valdivieso 2409 P.O Box 8940577 San Joaquín, Santiago Chile
| | - Rodrigo Torres
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas; Universidad de Chile.; 8380492 Santiago Chile
| | - Carlos Sepúlveda
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas; Universidad de Chile.; 8380492 Santiago Chile
| | - Marcelo J. Kogan
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas; Universidad de Chile.; 8380492 Santiago Chile
- Advanced Center for Chronic Diseases (ACCDis); Santiago Chile
| | - Juan Arturo Squella
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas; Universidad de Chile.; 8380492 Santiago Chile
| |
Collapse
|
22
|
Johnson P, Krishnan V, Loganathan C, Govindhan K, Raji V, Sakayanathan P, Vijayan S, Sathishkumar P, Palvannan T. Rapid biosynthesis of Bauhinia variegata flower extract-mediated silver nanoparticles: an effective antioxidant scavenger and α-amylase inhibitor. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1488-1494. [DOI: 10.1080/21691401.2017.1374283] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Preethi Johnson
- Department of Biochemistry, Periyar University, Salem, India
| | | | | | | | - Vijayan Raji
- Department of Biochemistry, Periyar University, Salem, India
| | | | - Sudha Vijayan
- Department of Biochemistry, Periyar University, Salem, India
| | - Palanivel Sathishkumar
- Centre for Environmental Sustainability and Water Security (IPASA), Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | | |
Collapse
|
23
|
Farrell MJ, Reaume RJ, Pradhan AK. Visual Detection of Denatured Glutathione Peptides: A Facile Method to Visibly Detect Heat Stressed Biomolecules. Sci Rep 2017; 7:2604. [PMID: 28572597 PMCID: PMC5453926 DOI: 10.1038/s41598-017-02899-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 04/20/2017] [Indexed: 11/09/2022] Open
Abstract
Every year pharmaceutical companies use significant resources to mitigate aggregation of pharmaceutical drug products. Specifically, peptides and proteins that have been denatured or degraded can lead to adverse patient reactions such as undesired immune responses. Current methods to detect aggregation of biological molecules are limited to costly and time consuming processes such as high pressure liquid chromatography, ultrahigh pressure liquid chromatography and SDS-PAGE gels. Aggregation of pharmaceutical drug products can occur during manufacturing, processing, packaging, shipment and storage. Therefore, a facile in solution detection method was evaluated to visually detect denatured glutathione peptides, utilizing gold nanoparticle aggregation via 3-Aminopropyltreithoxysilane. Glutathione was denatured using a 70 °C water bath to create an accelerated heat stressed environment. The peptide, gold nanoparticle and aminosilane solution was then characterized via, UV-Vis spectroscopy, FTIR spectroscopy, dynamic light scattering and scanning electron microscopy. Captured images and resulting absorbance spectra of the gold nanoparticle, glutathione, and aminosilane complex demonstrated visual color changes detectable with the human eye as a function of the denaturation time. This work serves as an extended proof of concept for fast in solution detection methods for glutathione peptides that have experienced heat stress.
Collapse
Affiliation(s)
- Monique J Farrell
- Center for Materials Research, Norfolk State University, 700 Park Ave., Norfolk, VA, 23504, USA
| | - Robert J Reaume
- Center for Materials Research, Norfolk State University, 700 Park Ave., Norfolk, VA, 23504, USA
| | - Aswini K Pradhan
- Center for Materials Research, Norfolk State University, 700 Park Ave., Norfolk, VA, 23504, USA.
| |
Collapse
|
24
|
Patra M, Mukherjee R, Banik M, Dutta D, Begum NA, Basu T. Calcium phosphate-quercetin nanocomposite (CPQN): A multi-functional nanoparticle having pH indicating, highly fluorescent and anti-oxidant properties. Colloids Surf B Biointerfaces 2017; 154:63-73. [PMID: 28324689 DOI: 10.1016/j.colsurfb.2017.03.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 12/18/2022]
Abstract
Calcium phosphate quercetin nanocomposite (CPQN) i.e., quercetin entrapped in calcium phosphate nanoparticle was synthesized by a precipitation method at 80°C, taking ammonium hydrogen phosphate, calcium nitrate and quercetin as precursors and sodium citrate as stabilizer. The nanocomposite suspension had different color at different pH values, a property that could render the nanoparticle a pH indicator. Besides color, the particles also had different size, shape, stability and quercetin content with change of pH. In addition, the CPQN was highly fluorescent having two sharp emission peaks at 460 and 497nm, when excited at 370nm; by this property it behaved as an effective fluorophore to label biological cell. Moreover, the nanocomposite had potential anti-oxidant property, for which mortality of mouse neuroblastoma cell N2A, by H2O2-induced oxidative stress, was found to be lowered by the pre-treatment of the cells with CPQN.
Collapse
Affiliation(s)
- Mousumi Patra
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani 741 235, West Bengal, India
| | - Riya Mukherjee
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani 741 235, West Bengal, India
| | - Milon Banik
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani 741 235, West Bengal, India
| | - Debanjan Dutta
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani 741 235, West Bengal, India
| | - Naznin Ara Begum
- Department of Chemistry, Viswa Bharati University, Santiniketan, West Bengal, India
| | - Tarakdas Basu
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani 741 235, West Bengal, India.
| |
Collapse
|
25
|
Phytofabricated gold nanoparticles and their biomedical applications. Biomed Pharmacother 2017; 89:414-425. [PMID: 28249242 DOI: 10.1016/j.biopha.2017.02.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 02/13/2017] [Accepted: 02/16/2017] [Indexed: 12/20/2022] Open
Abstract
In a couple of decades, nanotechnology has become a trending technology owing to its integrated science collection that incorporates variety of fields such as chemistry, physics, medicine, catalytic processes, food processing industries, electronics and energy sectors. One of the emerging fields of nanotechnology that has gained momentous admiration is nano-biotechnology. Nano-biotechnology is an integrated combination of biology with nanotechnology that encompasses the tailoring, and synthesis of small particles that are less than 100nm in size and subsequent exploitation of these particles for their biological applications. Though the variety of physical techniques and chemical procedures are known for the nanoparticles synthesis, biological approach is considered to be the preferred one. Environmental hazards and concerns associated with the physical and chemical approaches of nanoparticles synthesis has added impetus and zenith to the biological approach involving the use of plants and microorganisms. The current review article is focused on the synthesis of plant-derived (phytochemical) gold nanoparticles alongside their scope in biomedical applications.
Collapse
|
26
|
Milaneze BA, Oliveira JP, Augusto I, Keijok WJ, Côrrea AS, Ferreira DM, Nunes OC, Gonçalves RDCR, Kitagawa RR, Celante VG, da Silva AR, Pereira ACH, Endringer DC, Schuenck RP, Guimarães MCC. Facile Synthesis of Monodisperse Gold Nanocrystals Using Virola oleifera. NANOSCALE RESEARCH LETTERS 2016; 11:465. [PMID: 27757946 PMCID: PMC5069227 DOI: 10.1186/s11671-016-1683-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/08/2016] [Indexed: 06/06/2023]
Abstract
The development of new routes and strategies for nanotechnology applications that only employ green synthesis has inspired investigators to devise natural systems. Among these systems, the synthesis of gold nanoparticles using plant extracts has been actively developed as an alternative, efficient, cost-effective, and environmentally safe method for producing nanoparticles, and this approach is also suitable for large-scale synthesis. This study reports reproducible and completely natural gold nanocrystals that were synthesized using Virola oleifera extract. V. oleifera resin is rich in epicatechin, ferulic acid, gallic acid, and flavonoids (i.e., quercetin and eriodictyol). These gold nanoparticles play three roles. First, these nanoparticles exhibit remarkable stability based on their zeta potential. Second, these nanoparticles are functionalized with flavonoids, and third, an efficient, economical, and environmentally friendly mechanism can be employed to produce green nanoparticles with organic compounds on the surface. Our model is capable of reducing the resin of V. oleifera, which creates stability and opens a new avenue for biological applications. This method does not require painstaking conditions or hazardous agents and is a rapid, efficient, and green approach for the fabrication of monodisperse gold nanoparticles. Graphical Abstract The Virola oleifera reduction method for the synthesis of gold nanoparticles (AuNP's).
Collapse
Affiliation(s)
- Bárbara A. Milaneze
- Federal University of Espirito Santo, Av Marechal Campos1468, Vitória, ES 29.040-090 Brazil
| | - Jairo P. Oliveira
- Federal University of Espirito Santo, Av Marechal Campos1468, Vitória, ES 29.040-090 Brazil
| | - Ingrid Augusto
- Federal University of Espirito Santo, Av Marechal Campos1468, Vitória, ES 29.040-090 Brazil
| | - Wanderson J. Keijok
- Federal University of Espirito Santo, Av Marechal Campos1468, Vitória, ES 29.040-090 Brazil
| | - Andressa S. Côrrea
- Federal University of Espirito Santo, Av Marechal Campos1468, Vitória, ES 29.040-090 Brazil
| | - Débora M. Ferreira
- Federal University of Espirito Santo, Av Marechal Campos1468, Vitória, ES 29.040-090 Brazil
| | - Otalíbio C. Nunes
- Federal University of Espirito Santo, Av Marechal Campos1468, Vitória, ES 29.040-090 Brazil
| | | | - Rodrigo R. Kitagawa
- Federal University of Espirito Santo, Av Marechal Campos1468, Vitória, ES 29.040-090 Brazil
| | - Vinícius G. Celante
- Federal Institute of Espírito Santo, Av. Morobá, 248 - Morobá, Aracruz, ES 29192-733 Brazil
| | - André Romero da Silva
- Federal Institute of Espírito Santo, Av. Morobá, 248 - Morobá, Aracruz, ES 29192-733 Brazil
| | - Ana Claudia H. Pereira
- Vila Velha University, Rua Comissário José Dantas de Melo, 21, Boa Vista, Vila Velha, ES 29102-770 Brazil
| | - Denise C. Endringer
- Federal Institute of Espírito Santo, Av. Morobá, 248 - Morobá, Aracruz, ES 29192-733 Brazil
- Vila Velha University, Rua Comissário José Dantas de Melo, 21, Boa Vista, Vila Velha, ES 29102-770 Brazil
| | - Ricardo P. Schuenck
- Federal University of Espirito Santo, Av Marechal Campos1468, Vitória, ES 29.040-090 Brazil
| | - Marco C. C. Guimarães
- Federal University of Espirito Santo, Av Marechal Campos1468, Vitória, ES 29.040-090 Brazil
| |
Collapse
|
27
|
Deep oxidation of rutin and quercetin during their reaction with HAuCl4 in aqueous solutions. Russ Chem Bull 2016. [DOI: 10.1007/s11172-015-1180-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Richard PU, Duskey JT, Stolarov S, Spulber M, Palivan CG. New concepts to fight oxidative stress: nanosized three-dimensional supramolecular antioxidant assemblies. Expert Opin Drug Deliv 2015; 12:1527-45. [DOI: 10.1517/17425247.2015.1036738] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
29
|
Rajendran I, Dhandapani H, Anantanarayanan R, Rajaram R. Apigenin mediated gold nanoparticle synthesis and their anti-cancer effect on human epidermoid carcinoma (A431) cells. RSC Adv 2015. [DOI: 10.1039/c5ra04303d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Apigenin reduces Au3+to Au0to form ap-AuNPs at RT. ap-AuNPs are biocompatible towards HaCat cells. They show anti-cancer activity towards A431 cells by inducing apoptosis.
Collapse
Affiliation(s)
- Indra Rajendran
- Department of Biochemistry
- Central Leather Research Institute
- Chennai – 600 020
- India
| | - Harini Dhandapani
- Department of Biochemistry
- Central Leather Research Institute
- Chennai – 600 020
- India
| | | | - Rama Rajaram
- Department of Biochemistry
- Central Leather Research Institute
- Chennai – 600 020
- India
| |
Collapse
|
30
|
Mukhopadhyay P, Prajapati AK. Quercetin in anti-diabetic research and strategies for improved quercetin bioavailability using polymer-based carriers – a review. RSC Adv 2015. [DOI: 10.1039/c5ra18896b] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
With numerous pharmacological and biological functions bio-flavonoids gain appreciable attention in diabetes and other therapeutic research.
Collapse
Affiliation(s)
- Piyasi Mukhopadhyay
- Department of Chemistry
- Faculty of Science
- The M. S. University of Baroda
- Vadodara-390 002
- India
| | - A. K. Prajapati
- Department of Chemistry
- Faculty of Science
- The M. S. University of Baroda
- Vadodara-390 002
- India
| |
Collapse
|
31
|
Herizchi R, Abbasi E, Milani M, Akbarzadeh A. Current methods for synthesis of gold nanoparticles. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:596-602. [DOI: 10.3109/21691401.2014.971807] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Zhong S, Kong Y, Zhou L, Zhou C, Zhang X, Wang Y. Efficient conversion of myricetin from Ampelopsis grossedentata extracts and its purification by MIP-SPE. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 945-946:39-45. [PMID: 24321759 DOI: 10.1016/j.jchromb.2013.11.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/14/2013] [Accepted: 11/16/2013] [Indexed: 10/26/2022]
Abstract
In this study, we developed an efficient conversion process of dihydromyricetin to myricetin from Ampelopsis grossedentata extracts. The content of myricetin increased from 2.38% to 85.57%, demonstrating the successful dehydrogenation of dihydromyricetin. Molecularly imprinted polymers (MIPs) were prepared by surface imprinting method using silica microspheres as the support matrices and myricetin as template. The MIPs were applied for the selective adsorption of myricetin. The chemical structure of the MIPs was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. Static, dynamic and selective adsorption experiments showed that the MIPs exhibited good adsorption ability, rather fast template rebinding kinetics, and appreciate selectivity over structurally related compounds. Accordingly, the MIPs were applied as the selective sorbent in SPE to purify myricetin obtained through dehydrogenation, followed by HPLC-UV analysis. The recoveries of myricetin and dihydromyricetin were 92.7% and 55.6%, respectively. This study demonstrates the feasibility of using the developed MIP-SPE method to purify and enrich myricetin in the natural products.
Collapse
Affiliation(s)
- Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yanyue Kong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Ling Zhou
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Chengyun Zhou
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiaona Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yan Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|