1
|
Kan G, Chen L, Zhang W, Bian Q, Wang X, Zhong J. Recent advances in the development and application of curcumin-loaded micro/nanocarriers in food research. Adv Colloid Interface Sci 2025; 335:103333. [PMID: 39522421 DOI: 10.1016/j.cis.2024.103333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/05/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The application of curcumin in food science is challenged by its poor water solubility, easy degradation under processing and within the gastrointestinal tract, and poor bioavailability. Micro/nanocarrier is an emerging and efficient platform to overcome these drawbacks. This review focuses on the recent advances in the development and application of curcumin-loaded micro/nanocarriers in food research. The recent development advances of curcumin-loaded micro/nanocarriers could be classified into ten basic systems: emulsions, micelles, dendrimers, hydrogel polymeric particles, polymer nanofibers, polymer inclusion complexes, liposomes, solid lipid particles, structured lipid carriers, and extracellular vesicles. The application advances of curcumin-loaded micro/nanocarriers for food research could be classified into four types: coloring agents, functional active agents, preservation agents, and quality sensors. This review demonstrated that micro/nanocarriers were excellent carriers for the fat-soluble curcumin and the obtained curcumin-loaded micro/nanocarriers had promising application prospects in the field of food science.
Collapse
Affiliation(s)
- Guangyi Kan
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lijia Chen
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Wenjie Zhang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Qiqi Bian
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China; Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai 201306, China.
| |
Collapse
|
2
|
Alghamdi WA, Alterary SS, Alarifi A, Ramu R, Khan MS, Afzal M. Exploring the interaction of curcumin with β-cyclodextrin and its binding with DNA: A combined spectroscopic and molecular docking study. Int J Biol Macromol 2024; 282:137238. [PMID: 39500426 DOI: 10.1016/j.ijbiomac.2024.137238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
At present, a major effort in biophysical studies has been paid towards exploring the interactions and release of therapeutic payloads to the specific site leaving behind healthy cells unaffected and hence, lower the drug-induced toxicity. For the purpose, interaction of β-bound CUR with calf thymus DNA (ctDNA) has been examined intensely using a series of biophysical methods like absorption, steady state fluorescence emission, and circular dichroism together with molecular docking study. The experimental analysis divulge that CUR interacts with both β-CD (although with different molar ratio) and DNA. However, the binding affinity of CUR with the target (DNA) is higher than it does with the β-CD. When β-CD-carried (10 mM) CUR (μM) (inclusion complex) comes near DNA (15-372 μM), CUR gets out from β-CD's void and approaches to binds with the DNA. The relocation of the probe occurred due to competitive binding of the CUR between β-CD and the DNA. The present investigation may provide a simple yet probable route for the transfer of encapsulated therapeutic payload of β-CD to the most relevant biomolecular target DNA.
Collapse
Affiliation(s)
- Waad A Alghamdi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Seham S Alterary
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Alarifi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ramith Ramu
- Department of Biotechnology & Bioinformatics School of Life Science, JSS Academy of Higher Education & Research (Deemed to be University) Sri Shivarathreeshwara Nagara, Mysuru, Karnataka 570015, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohd Afzal
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
3
|
Ge Z, Wang D, Zhao W, Wang P, Dong M, Zhao X. Characterization of Sayram ketteki freeze-dried yogurt with fortified resveratrol. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2024; 18:7388-7401. [DOI: 10.1007/s11694-024-02725-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/22/2024] [Indexed: 01/06/2025]
|
4
|
Li Y, Li S, Huang Z, Zhang D, Jia Q. Research progress of fluorescent composites based on cyclodextrins: Preparation strategies, fluorescence properties and applications in sensing and bioimaging. Anal Chim Acta 2024; 1316:342878. [PMID: 38969399 DOI: 10.1016/j.aca.2024.342878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/07/2024]
Abstract
Fluorescence analysis has been regarded as one of the commonly used analytical methods because of its advantages of simple operation, fast response, low cost and high sensitivity. So far, various fluorescent probes, with noble metal nanoclusters, quantum dots, organic dyes and metal organic frameworks as representatives, have been widely reported. However, single fluorescent probe often suffers from some deficiencies, such as low quantum yield, poor chemical stability, low water solubility and toxicity. To overcome these disadvantages, the introduction of cyclodextrins into fluorescent probes has become a fascinating approach. This review (with 218 references) systematically covers the research progress of fluorescent composites based on cyclodextrins in recent years. Preparation strategies, fluorescence properties, response mechanisms and applications in sensing (ions, organic pollutants, bio-related molecules, temperature, pH) and bioimaging of fluorescent composites based on cyclodextrins are summarized in detail. Finally, the current challenges and future perspectives of these composites in relative research fields are discussed.
Collapse
Affiliation(s)
- Yiqi Li
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Songrui Li
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhenzhen Huang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Dawei Zhang
- College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
5
|
Yang YH, Zhang Z, Bao QL, Zhao F, Yang MK, Tao X, Chen Y, Zhang JT, Yang LJ. Designing and preparing supramolecular encapsulation systems based on fraxetin and cyclodextrins for highly selective detection of nicotine. Carbohydr Polym 2024; 327:121624. [PMID: 38171652 DOI: 10.1016/j.carbpol.2023.121624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 01/05/2024]
Abstract
Herein, a series of water-soluble supramolecular inclusion complexes (ICs) probes were prepared using cyclodextrins (CDs) and fraxetin (FRA) to detect nicotine (NT) with high selectivity in vitro and in vivo. The FRA/CD ICs prepared through the saturated solution method exhibited excellent water solubility, stability, and biocompatibility. A clear host-guest inclusion model was provided by the theoretical calculations. The investigation revealed that NT was able to enter into the cavities of FRA/β-CD IC and FRA/γ-CD IC, and further formed charge transfer complexes with FRA in the CD cavities, resulting in a rapid and highly selective fluorescence-enhanced response with the lowest detection limits of 1.9 × 10-6 M and 9.7 × 10-7 M, and the linear response ranged from 0.02 to 0.3 mM and 0.01-0.05 mM, respectively. The IC probes showed good anti-interference performance to common interferents or different pH environments, with satisfactory reproducibility and repeatability of response to NT. Furthermore, the potentiality of the probes was confirmed through fluorescence imaging experiments using human lung cancer cells and the lung tissue of mice. This study offers a fresh perspective for detecting NT in environmental and biomedical analysis.
Collapse
Affiliation(s)
- Yun-Han Yang
- Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Zhen Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, PR China; Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, PR China
| | - Qiu-Lian Bao
- Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Fang Zhao
- Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Ming-Kun Yang
- Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Xin Tao
- Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Yan Chen
- Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Jun-Tong Zhang
- Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Li-Juan Yang
- Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, PR China.
| |
Collapse
|
6
|
Kumarasamy K, Devendhiran T, Chien WJ, Lin MC, Ramasamy SK, Yang JJ. Bodipy-based quinoline derivative as a highly Hg 2+-selective fluorescent chemosensor and its potential applications. Methods 2024; 223:35-44. [PMID: 38228195 DOI: 10.1016/j.ymeth.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024] Open
Abstract
A highly efficient sensor has been successfully developed using quinoline-based BODIPY compounds (8-quinoline-4,4-difluoro-4-boro-3a, 4a-diazaindacene (C1) and 7-hydroxy-8-quinoline-4,4-difluoro-4-boro-3a, 4a-diazindacene (C2) to detect Hg2+ ions. The sensor C1 exhibits remarkable selectivity in detecting Hg2+ with a limit of detection 3.06 × 10-8 mol/L. The developed chemical sensors have shown stability, cost-effectiveness, ease of preparation, and remarkable selectivity towards Hg2+ ions compared to other commonly occurring metal ions. The total recovery of the sensor C1 can be achieved by using a 0.1 mol/L solution of KI. The proposed sensor C1 has been applied to determine Hg2+ in tap and distilled water, yielding excellent results. In addition, the binding mode of C1-Hg2+ and C2-Hg2+ complexes was a 1:1 ratio confirmed by mass spectra, Job's plot, and DFT study. Moreover, the sensor C1 successfully applied for the biological studies results in negligible cytotoxicity, which demonstrates it can be used to determine Hg2+ in HT22 cells.
Collapse
Affiliation(s)
- Keerthika Kumarasamy
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 413310, Taiwan, ROC
| | - Tamiloli Devendhiran
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan, ROC
| | - Wei-Jyun Chien
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 413310, Taiwan, ROC
| | - Mei-Ching Lin
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 413310, Taiwan, ROC.
| | - Selva Kumar Ramasamy
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University) Mullana, Ambala 133207, Haryana, India
| | - Ji-Jhang Yang
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 413310, Taiwan, ROC
| |
Collapse
|
7
|
Louis M, Balakrishnan A, Joseph A, Shanmughan P, Maliakel B, Illathu Madhavamenon K. Two-Stage Supramolecular Self-Assembly-Directed Collagen-Peptide-Decorated Liposomal Complexes of Curcumin Microspheres with Enhanced Solubility and Bioavailability. ACS OMEGA 2023; 8:26243-26252. [PMID: 37521668 PMCID: PMC10372937 DOI: 10.1021/acsomega.3c02530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023]
Abstract
Green formulations of phytonutrients with enhanced solubility and bioavailability are of great significance in nutrition therapy. In the present contribution, we hypothesized that the collagen peptides could be a safe, natural, food-grade, and cost-effective functional agent for the surface decoration and stabilization of liposomes in powder form and hence a "green" solution for the oral delivery of phytonutrients. The present study reports a two-stage supramolecular self-assembly-directed process for the preparation of collagen peptide-decorated liposomal complexes of curcumin (CCL) [10% (w/w)] as microspheres (125 ± 25 μm) with improved solubility (1.46 × 105-fold) and sustained-release properties under gastrointestinal pH conditions. The molecular self-assembly of collagen peptides around the lipid bilayers and the various noncovalent interactions and conformational changes leading to the supramolecular assembly to act as a matrix for the encapsulation of lipid vesicles of curcumin were clear from the spectroscopic studies (UV-vis, fluorescence, FTIR, and circular dichroism). Further investigation of pharmacokinetics following a randomized double-blinded controlled trial on healthy volunteers (n = 15) demonstrated that the oral administration of 2.5 g of CCL sachet (250 mg of curcumin) enhanced the plasma concentration (Cmax: 118 vs. 4.3 ng/mL), the elimination half-life (4.2 vs. 0.7 h), and bioavailability as per the area under the curve over 12 h [AUC0-12h (CCL) = 506·8 vs. AUC0-12h (C95) = 9.47 (53-fold)], when the plasma concentration of curcumin was estimated with triple quadruple tandem mass spectrometry (UPLC-ESI-MS/MS).
Collapse
|
8
|
A Highly Selective Supramolecular Fluorescent Probe for Detection of Au3+ Based on Supramolecular Complex of Pillar[5]arene with 3, 3'-Dihydroxybenzidine. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Benucci I, Mazzocchi C, Lombardelli C, Del Franco F, Cerreti M, Esti M. Inclusion of curcumin in b-cyclodextrin: a promising prospective as food ingredient. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1942-1952. [PMID: 36255357 DOI: 10.1080/19440049.2022.2135764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the present work, the inclusion complexes between curcumin (CC) and β-cyclodextrin (β-CD) were obtained through co-precipitation at different times of magnetic stirring and simple mixing. The stoichiometric ratio between CC and β-CD was ascertained to be 1:2. The samples prepared by co-precipitation (24 h magnetic stirring and 24 h cold static precipitation) and by simple mixing, showed the best performance in terms of powder recovery (72 and 97%, respectively), encapsulation efficiency (72 and 95%, respectively) and tinting power, while no significant differences were revealed in terms of loading capacity (about 14%). Using either inclusion method, the complexation of CC into β-CD make the colorant 20-fold more water soluble than pure CC. The pigment stability was also enhanced under different storage conditions (high temperature and light exposure), either when applied in liquid or gel state. However, after 30 days under natural light exposure, an appreciable colour change from yellow to orange was revealed to an extent probably perceptible by an inexperienced observer.
Collapse
Affiliation(s)
- Ilaria Benucci
- Department of Agriculture and Forestry Science (DAFNE), Tuscia University, Viterbo, Italy
| | - Caterina Mazzocchi
- Department of Agriculture and Forestry Science (DAFNE), Tuscia University, Viterbo, Italy
| | - Claudio Lombardelli
- Department of Agriculture and Forestry Science (DAFNE), Tuscia University, Viterbo, Italy
| | - Felicia Del Franco
- Department of Agriculture and Forestry Science (DAFNE), Tuscia University, Viterbo, Italy
| | - Martina Cerreti
- Department of Agriculture and Forestry Science (DAFNE), Tuscia University, Viterbo, Italy
| | - Marco Esti
- Department of Agriculture and Forestry Science (DAFNE), Tuscia University, Viterbo, Italy
| |
Collapse
|
10
|
Cyclodextrin Inclusion Complexes and Their Application in Food Safety Analysis: Recent Developments and Future Prospects. Foods 2022; 11:foods11233871. [PMID: 36496679 PMCID: PMC9736450 DOI: 10.3390/foods11233871] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
Food safety issues are a major threat to public health and have attracted much attention. Therefore, exploring accurate, efficient, sensitive, and economical detection methods is necessary to ensure consumers' health. In this regard, cyclodextrins (CDs) are promising candidates because they are nontoxic and noncaloric. The main body of CDs is a ring structure with hydrophobic cavity and hydrophilic exterior wall. Due to the above characteristics, CDs can encapsulate small guest molecules into their cavities, enhance their stability, avoid agglomeration and oxidation, and, at the same time, interact through hydrogen bonding and electrostatic interactions. Additionally, they can selectively capture the target molecules to be detected and improve the sensitivity of food detection. This review highlights recent advances in CD inclusion technology in food safety analysis, covering various applications from small molecule and heavy metal sensing to amino acid and microbial sensing. Finally, challenges and prospects for CDs and their derivatives are presented. The current review can provide a reference and guidance for current research on CDs in the food industry and may inspire breakthroughs in this field.
Collapse
|
11
|
Natural and Engineered Nanomaterials for the Identification of Heavy Metal Ions—A Review. NANOMATERIALS 2022; 12:nano12152665. [PMID: 35957095 PMCID: PMC9370674 DOI: 10.3390/nano12152665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
Abstract
In recent years, there has been much interest in developing advanced and innovative approaches for sensing applications in various fields, including agriculture and environmental remediation. The development of novel sensors for detecting heavy metals using nanomaterials has emerged as a rapidly developing research area due to its high availability and sustainability. This review emphasized the naturally derived and engineered nanomaterials that have the potential to be applied as sensing reagents to interact with metal ions or as reducing and stabilizing agents to synthesize metallic nanoparticles for the detection of heavy metal ions. This review also focused on the recent advancement of nanotechnology-based detection methods using naturally derived and engineered materials, with a summary of their sensitivity and selectivity towards heavy metals. This review paper covers the pros and cons of sensing applications with recent research published from 2015 to 2022.
Collapse
|
12
|
Chen H, Li X, Gao P, Pan Y, Liu J. A BODIPY-based turn-off fluorescent probe for mercury ion detection in solution and on test strips. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
|
14
|
Mellado M, Roldán N, Miranda R, Aguilar LF, Bravo MA, Quiroz W. Sensitive fluorescent chemosensor for Hg(II) in aqueous solution using 4'-dimethylaminochalcone. J Fluoresc 2022; 32:1449-1456. [PMID: 35441925 DOI: 10.1007/s10895-022-02941-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/24/2022] [Indexed: 12/14/2022]
Abstract
Mercury (Hg) is an element with high toxicity, especially to the nervous system, and fluorescent pigments are used to visualize dynamic processes in living cells. A little explored fluorescent core is chalcone. Herein, we synthesized chalcone (2E)-3-(4-(dimethylamino)phenyl)-1-phenylprop-2-en-1-one (8) and assessed its photophysical properties. Moreover, the application of this chemosensor in aqueous media shows a selective fluorescence quenching effect with Hg(II). The figures of merit for the chemosensor were calculated to be LOD = 136 nM and LOQ = 454 nM, as well as a stoichiometry of 1:1. Furthermore, the association constant (Ka) and fluorescence quenching constant (KSV) were calculated using the Benesi-Hildebrand and Stern-Volmer equations to be Ka= 9.08 × 104 and KSV= 1.60 × 105, respectively. Finally, by using a computational approach, we explain the interaction between chalcone (8) and Hg(II) and propose a potential quenching mechanism based on the blocking of photoinduced electron transfer.
Collapse
Affiliation(s)
- Marco Mellado
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, 8330507, Santiago, Chile.
| | - Nicole Roldán
- Instituto de Química, Facultad de Química, Pontificia Universidad Católica de Valparaíso, Av. Universidad #330, Curauma, Valparaíso, Chile
| | - Rodrigo Miranda
- Instituto de Química, Facultad de Química, Pontificia Universidad Católica de Valparaíso, Av. Universidad #330, Curauma, Valparaíso, Chile
| | - Luis F Aguilar
- Instituto de Química, Facultad de Química, Pontificia Universidad Católica de Valparaíso, Av. Universidad #330, Curauma, Valparaíso, Chile
| | - Manuel A Bravo
- Instituto de Química, Facultad de Química, Pontificia Universidad Católica de Valparaíso, Av. Universidad #330, Curauma, Valparaíso, Chile
| | - Waldo Quiroz
- Instituto de Química, Facultad de Química, Pontificia Universidad Católica de Valparaíso, Av. Universidad #330, Curauma, Valparaíso, Chile.
| |
Collapse
|
15
|
Enhancing bioaccessibility of resveratrol by loading in natural porous starch microparticles. Int J Biol Macromol 2022; 194:982-992. [PMID: 34852260 DOI: 10.1016/j.ijbiomac.2021.11.157] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 01/26/2023]
Abstract
Resveratrol (RSV) is a lipophilic polyphenol susceptible to photo- and thermal degradation, and strategies are to be studied to enable its distribution in food matrices, prevent its degradation during storage, and increase its bioaccessibility during digestion. In this study, the porous matrix of natural starch, in the form of milled freeze-dried potato microparticles (FDPMs), was studied as an absorbent to load RSV. The binary solvent of ethanol and polyethylene glycol 400 (40:60 v/v) was used to dissolve 30% w/v RSV for diffusion into FDPMs. After ethanol was evaporated, the loading capacity was 112 mg RSV/g FDPMs and was maintained at 104 mg RSV/g FDPMs (92.9% retention) after 110-day ambient storage. The RSV stability under UV irradiation at 253 nm was improved by 32% due to shielding effect of FDPMs, and the ferric reducing power was 25% higher than the pristine RSV. The release of RSV in FDPMs was significantly higher than pristine RSV during simulated gastric and intestinal digestions (82.3% vs 51.4% bioaccessibility). The increased reducing power and bioaccessibility were supported by the amorphous state of RSV in FDPMs. The present study illustrates the potential of porous vegetable microparticles as natural matrices to load lipophilic bioactive compounds in functional foods.
Collapse
|
16
|
He Y, Chen L, He R, Zhong K, Tang L. Research Progress of Fluorescence Probes Constructed by Cyclodextrin Derivatives and Inclusion Complexes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Sharma M, Kumari M, Rani S, Yadav AK, Solanki PR, Mozumdar S. Influence of pH, β-Cyclodextrin, and Metal Ions on the Solubility and Stability of the Medicinally Competent Isoxazole Derivative of Curcumin: A Photophysical Study. ACS APPLIED BIO MATERIALS 2021; 4:8407-8423. [PMID: 35005944 DOI: 10.1021/acsabm.1c00957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The β-diketo-modified isoxazole derivative of curcumin (IOC) is well renowned for its anticancer, antioxidant, antimalarial, antiproliferative, and many other biological activities. With the aim of obtaining fundamental knowledge on the photophysics of IOC, the present work was directed toward delineating those at different pH environments and studying the degradation profiles of IOC at five different pH values. Because one of the primary drawbacks of curcumin is its rapid degradation at physiological conditions, the studies showed that the problem could be resolved, as the IOC molecule was extremely stable even in a highly alkaline medium. Further, in order to encounter the problems associated with the low solubility of IOC in aqueous media, β-CD (β-cyclodextrin) was used and calculations of the thermodynamic parameters revealed that the process of development of the host-guest inclusion complex was highly spontaneous in nature. The synthesis of the IOC:β-CD inclusion complex has also been accomplished in the solid state, and the solid formed has been characterized using various physicochemical techniques. Finally, while variations in the pH as well as addition of foreign metal ions in +1 and +2 oxidation states showed minimal effect on the photophysics of the IOC:β-CD inclusion complex, antiproliferative studies performed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays revealed their nontoxic nature on fibroblast L929 normal cell lines and extremely toxic activity on human lung cancer A549 cell lines.
Collapse
Affiliation(s)
- Manisha Sharma
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Mamta Kumari
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Swati Rani
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Amit K Yadav
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pratima R Solanki
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Subho Mozumdar
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
18
|
Nazerdeylami S, Ghasemi JB, Mohammadi Ziarani G, Amiri A, Badiei A. Direct monitoring of diclofenac using a supramolecular fluorescent approach based on β-cyclodextrin nanosponge. J Mol Liq 2021; 336:116104. [DOI: 10.1016/j.molliq.2021.116104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Dehghani A, Bahlakeh G, Ramezanzadeh B, Hossein Jafari Mofidabadi A, Hossein Mostafatabar A. Benzimidazole loaded β-cyclodextrin as a novel anti-corrosion system; coupled experimental/computational assessments. J Colloid Interface Sci 2021; 603:716-727. [PMID: 34225075 DOI: 10.1016/j.jcis.2021.06.130] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
HYPOTHESIS Silane (sol-gel)-based coatings have been introduced as an eco-friendly system for reducing the metals' corrosion in NaCl solutions. However, due to the lack of active protection property for this type of coatings, their modification is totally recommended for achieving durable protection properties. The present study introduces Beta-cyclodextrin (β-CD) as a novel/effective organic nano-container for Benzimidazole (BM) encapsulation to obtain reliable active protection property via a controlled-release property. EXPERIMENTS The chemical structure of the β-CD-BM macromolecule was explored by Fourier-transform infrared spectroscopy (FT-IR), X-Ray diffraction (XRD), and Ultraviolet-visible spectroscopy (UV-Vis). Besides, the Electrochemical Impedance Spectroscopy (EIS) and polarization (potentiodynamic) tests were carried out for investigating the inhibition impacts of the constructed containers. The exposed and unexposed samples' surfaces were analyzed by Field Emission Scanning Electron Microscope (FE-SEM), Energy Dispersive Spectroscopy (EDS)/mapping, and Grazing incidence X-ray diffraction (GIXRD) experiments. Also, the EIS test was conducted over the Silane-based composite film (SCF) for analyzing the anti-corrosion performance of the constructed composites. FINDINGS The EIS achievements demonstrated that by the addition of β-CD-BM complexes to the saline solution, the mild steel corrosion was mitigated by about 84%. The EIS results also displayed that the total resistance of the modified composite was enhanced from 5540 Ω.cm2 to 10967 Ω.cm2 and the intact coating provided a total resistance of 80254 Ω.cm2. The dispersion-corrected Density Functional Theory (DFT)-D explorations ascertained the inclusion capacity of benzimidazole inside the β-CD. The Monte Carlo/Molecular Dynamics (MC/MD) calculations strongly affirmed the adsorption of BM and β-CD-BM over the substrate.
Collapse
Affiliation(s)
- Ali Dehghani
- Department of Chemical Engineering, Faculty of Engineering, Golestan University, Iran; Department of Surface Coatings and Corrosion, ICST, Tehran, Iran
| | - Ghasem Bahlakeh
- Department of Chemical Engineering, Faculty of Engineering, Golestan University, Iran.
| | | | | | | |
Collapse
|
20
|
Abstract
The recent development of several methods for extracting curcumin from the root of the plant Curcuma longa has led to intensified research on the properties of curcumin and its fields of application. Following the studies and the accreditation of curcumin as a natural compound with antifungal, antiviral, and antibacterial properties, new fields of application have been developed in two main directions—food and medical, respectively. This review paper aims to synthesize the fields of application of curcumin as an additive for the prevention of spoilage, safety, and quality of food. Simultaneously, it aims to present curcumin as an additive in products for the prevention of bacterial infections and health care. In both cases, the types of curcumin formulations in the form of (nano)emulsions, (nano)particles, or (nano)composites are presented, depending on the field and conditions of exploitation or their properties to be used. The diversity of composite materials that can be designed, depending on the purpose of use, leaves open the field of research on the conditioning of curcumin. Various biomaterials active from the antibacterial and antibiofilm point of view can be intuited in which curcumin acts as an additive that potentiates the activities of other compounds or has a synergistic activity with them.
Collapse
|
21
|
Bhardwaj V, Nurchi VM, Sahoo SK. Mercury Toxicity and Detection Using Chromo-Fluorogenic Chemosensors. Pharmaceuticals (Basel) 2021; 14:123. [PMID: 33562543 PMCID: PMC7915024 DOI: 10.3390/ph14020123] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/27/2022] Open
Abstract
Mercury (Hg), this non-essential heavy metal released from both industrial and natural sources entered into living bodies, and cause grievous detrimental effects to the human health and ecosystem. The monitoring of Hg2+ excessive accumulation can be beneficial to fight against the risk associated with mercury toxicity to living systems. Therefore, there is an emergent need of novel and facile analytical approaches for the monitoring of mercury levels in various environmental, industrial, and biological samples. The chromo-fluorogenic chemosensors possess the attractive analytical parameters of low-cost, enhanced detection ability with high sensitivity, simplicity, rapid on-site monitoring ability, etc. This review was narrated to summarize the mercuric ion selective chromo-fluorogenic chemosensors reported in the year 2020. The design of sensors, mechanisms, fluorophores used, analytical performance, etc. are summarized and discussed.
Collapse
Affiliation(s)
- Vinita Bhardwaj
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat 395007, India;
| | - Valeria M. Nurchi
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, Cittadella Universitaria, 09042 Monserrato-Cagliari, Italy
| | - Suban K. Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat 395007, India;
| |
Collapse
|
22
|
Al Shehab S, Patra D. Binding of metal ions to the curcumin mediated methoxy polyethylene glycol thiol conjugated greenly synthesized gold nanoparticles: A fluorescence spectroscopic study. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Prabu S, Samad NA, Ahmad NA, Jumbri K, Raoov M, Rahim NY, Samikannu K, Mohamad S. Studies on the supramolecular complex of a guanosine with beta-cyclodextrin and evaluation of its anti-proliferative activity. Carbohydr Res 2020; 497:108138. [DOI: 10.1016/j.carres.2020.108138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/01/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022]
|
24
|
Nazerdeylami S, Ghasemi JB, Amiri A, Mohammadi Ziarani G, Badiei A. A highly sensitive fluorescence measurement of amphetamine using 8-hydroxyquinoline-β-cyclodextrin grafted on graphene oxide. DIAMOND AND RELATED MATERIALS 2020; 109:108032. [DOI: 10.1016/j.diamond.2020.108032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
25
|
Synthesis of a triethylene glycol-capped benzo[1,2-c:4,5-c']bis[2]benzopyran-5,12-dione: A highly soluble dilactone-bridged p-terphenyl with a crankshaft architecture. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Zarandona I, Barba C, Guerrero P, de la Caba K, Maté J. Development of chitosan films containing β-cyclodextrin inclusion complex for controlled release of bioactives. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105720] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|