1
|
Wang Y, Zhang A, Zhao W, Liu J, Yi H. Effect of triple helix polysaccharides from foxtail millet bran on millet starch gel formation. Int J Biol Macromol 2025; 304:140796. [PMID: 39924035 DOI: 10.1016/j.ijbiomac.2025.140796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 01/12/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Polysaccharides as modifiers can solve native starch gel problem of weaker gel strength and lower gelation trend. The key structures of foxtail millet bran polysaccharides (FMBPs) in improving millet starch gel properties were investigated. Results showed that FMBPs were high molecular weight (Mw) heteropolysaccharides and the distribution of total sugar, uronic acid and monosaccharides was non-uniform in four FMBPs. Structural analysis revealed triple helix polysaccharides (THPs) existed in independent triple helix (ITH) and aggregates forms. The redshift degree of Congo red-FMBP complexes illustrated that FMBP-S1 contain the most ITHs, followed by FMBP-S2 and FMBP-S4, and the least in FMBP-S3. The porous structure of FMBPs promoted the adsorption of Congo red, bringing about the increase in weight and volume of the complexes and eventual precipitation. Separation of THPs provided a new method to investigate its role in starch gel. The results showed FMBPs with more ITHs showed higher peak viscosity, breakdown and setback. The presence of ITHs could reduce gel point temperature (ΔT = 6.62-29.86 °C) and water holding capacity (from 50 to 66 ms to 231 ms), but improve the viscoelasticity of gel. The study not only improved the quality of starch-based gel but also achieved high-value utilization of foxtail millet bran.
Collapse
Affiliation(s)
- Yunting Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050050, China
| | - Aixia Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050050, China
| | - Wei Zhao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050050, China
| | - Jingke Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050050, China.
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
2
|
Feng X, Shang J, Wang Y, Chen Y, Liu Y. Exploring the Properties and Application Potential of β-Glucan in Skin Care. Food Sci Nutr 2025; 13:e70212. [PMID: 40291929 PMCID: PMC12023766 DOI: 10.1002/fsn3.70212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/02/2025] [Accepted: 04/14/2025] [Indexed: 04/30/2025] Open
Abstract
β-glucan is a natural polysaccharide widely found in plants, fungi, bacteria, and algae. Due to its significant immunomodulatory effects, it has become an important source for functional foods and pharmaceuticals. In addition to immune regulation, β-glucan also exhibits various bioactivities, including antioxidant, anti-inflammatory, barrier repair, and moisturizing effects, demonstrating great potential for applications in skin care. Its biological activity is influenced by factors such as its source, molecular structure, and physicochemical properties. This review systematically explores the relationship between the properties and functions of β- glucan, investigates its biological mechanisms, and summarizes its clinical applications and future prospects in skin care. The aim of this paper is to provide theoretical support for the development of β-glucan in the field of skin health and offer references for future related research and clinical practice.
Collapse
Affiliation(s)
- Xiaoyue Feng
- R&D DepartmentBeijing UPROVEN Medical Technology co., Ltd.BeijingChina
| | - Jianli Shang
- R&D DepartmentBeijing UPROVEN Medical Technology co., Ltd.BeijingChina
| | - Yuhui Wang
- R&D DepartmentBeijing UPROVEN Medical Technology co., Ltd.BeijingChina
| | - Yong Chen
- R&D DepartmentBeijing UPROVEN Medical Technology co., Ltd.BeijingChina
- Beijing UPROVEN Institute of DermatologyBeijingChina
| | - Youting Liu
- R&D DepartmentBeijing UPROVEN Medical Technology co., Ltd.BeijingChina
- Beijing UPROVEN Institute of DermatologyBeijingChina
| |
Collapse
|
3
|
Yang H, Wilde P, Wang R, Meng Q, Shi H, Yu H, Zhou Z, Han J, Liu W. Effect of Complexation with Different Molecular Weights of Oat β-Glucan and Sea Buckthorn Flavonoid on the Digestion of Rice Flour. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23567-23579. [PMID: 39392941 DOI: 10.1021/acs.jafc.4c06405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
The complex of oat β-glucan (OBG) and flavonoids hampered the digestion of starch-based food and retarded the blood glucose response; however, its effect on gastric emptying and its relative mechanism have not been thoroughly investigated. By using Fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), antioxidant ability, and enzymic inhibitory tests for the characterization and in vitro semi-dynamic digestion of complexes of OBG (high and low molecular weights) and sea buckthorn flavonoids, we found that the higher molecular weight complex (FU) exhibited stronger ABTS and DPPH radical scavenging abilities and higher α-glucosidase and α-amylase inhibition rates. Mice fed with rice flour with FU addition exhibited the slowest gastric emptying and intestinal propulsion rates and blood glucose rise and had the lowest activity of digestive enzymes and levels of insulin, ghrelin, motilin (MTL), and relevant gene (ghrelin and GHSR mRNA) expression than those in the control and low-molecular-weight groups. This study provided scientific data for the development of foods with delayed gastric rate and hypoglycemic index for specific populations.
Collapse
Affiliation(s)
- Hui Yang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Peter Wilde
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, U.K
| | - Ruijie Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qi Meng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hongyi Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Heng Yu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zijun Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jianzhong Han
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Weilin Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
4
|
Sajjadi Alhashem SH, Ehsani MR, Akhondzadeh Basti A, Sharifan A. Functional, nutritional, and sensorial evaluation of sorghum-based beverages produced by single- and two-stage acid, α-amylase enzyme, and germination treatments. Food Sci Nutr 2024; 12:8129-8136. [PMID: 39479664 PMCID: PMC11521709 DOI: 10.1002/fsn3.4299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 11/02/2024] Open
Abstract
Nowadays, the consumption of functional foods, such as plant-based beverages, is increasing due to their health-promoting properties. The low extraction yield of nutritional and functional components is considered a major challenge during the production of sorghum-based beverages (SBB), as well as their sensorial properties. This investigation studied the effects of various treatments (acidic using phosphoric acid, enzymatic using α-amylase, germination, germination-acidic, germination-enzymatic, and acidic-enzymatic) on the functional, nutritional, and sensorial properties of SBB. The two-stage acidic-enzymatic treatment demonstrated the highest extraction yield, dry matter, ash, carbohydrates, and reducing sugar contents, as well as the lowest starch content (p < .05). Furthermore, the highest protein content (0.98%) was achieved by the germination treatments of sorghum grains. While the highest fat content was achieved by the acidic treatment (1.38%), the germination-acidic treatment exhibited the highest energy value (26.02 kcal/100 mL). Moreover, the total phenolic content of the acidic-enzymatic treatment (44.56 mg GAE/L) was significantly higher than that of other treatments. However, all treatments demonstrated lower antioxidant properties compared to the control treatment (142.85 mg BHT eq./L). Furthermore, the sensory evaluation of the germination and germination-enzymatic treatments showed acceptable scores (≥7) for consumers. In conclusion, the results indicated that the two-stage treatments of sorghum, especially the acidic-enzymatic treatment, were more effective than single treatments for the extraction of functional and nutritional components during the production of SBB.
Collapse
Affiliation(s)
| | - Mohammad Reza Ehsani
- Department of Food Science and Technology, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Afshin Akhondzadeh Basti
- Department of Food Science and Technology, Science and Research BranchIslamic Azad UniversityTehranIran
- Department of Food Hygiene, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Anoosheh Sharifan
- Department of Food Science and Technology, Science and Research BranchIslamic Azad UniversityTehranIran
| |
Collapse
|
5
|
Song Z, Geng J, Wang D, Fang J, Wang Z, Wang C, Li M. Reparative effects of Schizophyllum commune oat bran fermentation broth on UVB-induced skin inflammation via the JAK/STAT pathway. BIORESOUR BIOPROCESS 2024; 11:73. [PMID: 39052177 PMCID: PMC11272765 DOI: 10.1186/s40643-024-00792-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Human immortal keratinocyte cells (HaCaT) are induced with UVB to establish an injury model. This model is utilized to investigate whether oat bran fermentation broth (OBF) has a reparative effect on skin inflammation and damage to the skin barrier caused by UVB irradiation. The results show that compared with unfermented oat bran (OB), OBF exhibits higher structural homogeneity, increased molecular weight size, active substances content, and in vitro antioxidant activity. OBF has a scavenging effect on excess reactive oxygen species (ROS) and increases the intracellular levels of antioxidant enzymes. It was found that OBF has a stronger inhibitory effect on the release of inflammatory factors than OB. It increases the synthesis of AQP3 and FLG proteins while decreasing the secretion of KLK-7. OBF can inhibit the transcription level of inflammatory factors by suppressing the JAK/STAT signaling pathway. Safety experiments demonstrate that OBF has a high safety profile.
Collapse
Affiliation(s)
- Zixin Song
- College of Light Industry Science and Engineering, Beijing Technology & Business University, 11 Fucheng Road, Haidian District, Beijing, 100048, China
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| | - Jiman Geng
- College of Light Industry Science and Engineering, Beijing Technology & Business University, 11 Fucheng Road, Haidian District, Beijing, 100048, China
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| | - Dongdong Wang
- College of Light Industry Science and Engineering, Beijing Technology & Business University, 11 Fucheng Road, Haidian District, Beijing, 100048, China.
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China.
| | - Jiaxuan Fang
- College of Light Industry Science and Engineering, Beijing Technology & Business University, 11 Fucheng Road, Haidian District, Beijing, 100048, China
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| | - Ziwen Wang
- College of Light Industry Science and Engineering, Beijing Technology & Business University, 11 Fucheng Road, Haidian District, Beijing, 100048, China
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| | - Changtao Wang
- College of Light Industry Science and Engineering, Beijing Technology & Business University, 11 Fucheng Road, Haidian District, Beijing, 100048, China.
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China.
| | - Meng Li
- College of Light Industry Science and Engineering, Beijing Technology & Business University, 11 Fucheng Road, Haidian District, Beijing, 100048, China
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| |
Collapse
|
6
|
Queffelec J, Flórez-Fernández N, Torres MD, Domínguez H. Evernia prunastri lichen as a source of bioactive glucans with potential for topical applications. Int J Biol Macromol 2024; 258:128859. [PMID: 38134984 DOI: 10.1016/j.ijbiomac.2023.128859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Microwave hydrothermal treatment was selected to extract valuable fractions with bioactive and gelling properties from Evernia prunastri lichen with potential for topical applications. The impact of the extraction processing conditions on the soluble extracts, mucilage fraction and residual solid phase was analyzed within a lichen global valorization approach. A particular stress was made on the thermo-rheological and structural characteristics of the extracted glucan and galactomannan polymers, the corresponding gelled matrices, and their cosmetic feasibility. Results revealed that the proposed microwave-assisted treatment showed a relevant influence on the phytochemical features of the aqueous soluble extracts, accounting the major protein content at 120 °C and the enhanced antioxidant and anti-tyrosinase properties at 140 °C. Extracts at 200 °C showed the highest anti-inflammatory (COX-1 and COX-2 inhibition) efficacies. The biopolymer analyses indicated that those recovered after lichen hydrothermal treatment at 160 °C featured a good extraction performance, the highest molecular weight, apparent viscosity, and antiproliferative potential. The thermo-rheological properties of the corresponding matrices formulated at 10 % and 60 or 80 °C exhibited the strongest and most thermo-reversible characteristics, as well as antifreezing feasibility. Another advantage of the selected fractions was the absence of skin irritation according to the in vitro skin irritation assay.
Collapse
Affiliation(s)
- J Queffelec
- CINBIO, Universidade de Vigo, Department of Chemical Engineering, 32004 Ourense, Spain
| | - N Flórez-Fernández
- CINBIO, Universidade de Vigo, Department of Chemical Engineering, 32004 Ourense, Spain
| | - M D Torres
- CINBIO, Universidade de Vigo, Department of Chemical Engineering, 32004 Ourense, Spain.
| | - H Domínguez
- CINBIO, Universidade de Vigo, Department of Chemical Engineering, 32004 Ourense, Spain
| |
Collapse
|
7
|
Cao H, Li R, Shi M, Song H, Li S, Guan X. Promising effects of β-glucans on gelation in protein-based products: A review. Int J Biol Macromol 2024; 256:127574. [PMID: 37952797 DOI: 10.1016/j.ijbiomac.2023.127574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023]
Abstract
Gel property is one of the most important abilities to endow protein-based food products with a unique texture and higher overall acceptability. Cereal β-glucan (BG) is widely applied in protein-based products to improve the stability of the protein gel by increasing water holding capacity, storage modulus (G'), loss modulus (G") and linking with protein through more exposed sites, making it easier to form a stronger three-dimensional gel network. In addition, BG may be cross-linked with proteins, or physically embedded and covered in protein network structures, interacting with proteins mainly through non-covalent bonds including hydrogen bonding and electrostatic interaction. Furthermore, the transition of the α-helix to the β-form in the protein secondary structure also contributes to the stability of the protein gel. The practical applications of BG from different cereals in protein-based products are summarized, and the rheological properties, microstructure of protein as well as the underlying interaction mechanisms between BG and protein are discussed. In conclusion, cereal BG is a promising polysaccharide in developing nutritional protein-based products with better sensory properties.
Collapse
Affiliation(s)
- Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Ranqing Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Mengmeng Shi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China.
| |
Collapse
|
8
|
Zhang Y, Li J, Xie J, Xue B, Li X, Gan J, Sun T. The Impact of Food Processing on the Structure and Hypoglycemic Effect of Oat β-glucan. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:506-511. [PMID: 37624567 DOI: 10.1007/s11130-023-01095-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
The impact of food processing including baking, steaming and bread making, on the structure and hypoglycemic effect of oat β-glucan was studied. The structural analysis revealed the β-D-glucopyranosyl units of β-glucan was unchanged in aforementioned processing. The baking processing endowed β-glucan with increased molecular weight (Mw) and viscosity, which enhanced the capacity of β-glucan to delay starch digestion in vitro, such as the rapidly-digestible starch content decreased, the slowly-digestible and resistant starch content increased, and the glycemic index (GI) value decreased. Meanwhile, the inhibitory activity of β-glucan against α-glucosidase and α-amylase was enhanced by baking processing. By contrast, during steaming and bread making processing, β-glucan showed decreased Mw and viscosity, which accelerated starch digestion in vitro and reduced the inhibitory activity of β-glucan against α-glucosidase and α-amylase. Apart from that, baking processing promoted the physiological and antioxidant properties of β-glucan, but the properties decreased during steaming and bread making processing. The results suggest that oat raw materials can be treated with dry heat and high temperature, avoiding moist heat and fermentation treatments to maximize the hypoglycemic effect of β-glucan.
Collapse
Affiliation(s)
- Yi Zhang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinran Li
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Bin Xue
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaohui Li
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jianhong Gan
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Tao Sun
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
9
|
Zhang M, Zuo Z, Zhang X, Wang L. Food biopolymer behaviors in the digestive tract: implications for nutrient delivery. Crit Rev Food Sci Nutr 2023; 64:8709-8727. [PMID: 37216487 DOI: 10.1080/10408398.2023.2202778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Biopolymers are prevalent in both natural and processed foods, serving as thickeners, emulsifiers, and stabilizers. Although specific biopolymers are known to affect digestion, the mechanisms behind their influence on the nutrient absorption and bioavailability in processed foods are not yet fully understood. The aim of this review is to elucidate the complex interplay between biopolymers and their behavior in vivo, and to provide insights into the possible physiological consequences of their consumption. The colloidization process of biopolymer in various phases of digestion was analyzed and its impact on nutrition absorption and gastrointestinal tract was summarized. Furthermore, the review discusses the methodologies used to assess colloidization and emphasizes the need for more realistic models to overcome challenges in practical applications. By controlling macronutrient bioavailability using biopolymers, it is possible to enhance health benefits, such as improving gut health, aiding in weight management, and regulating blood sugar levels. The physiological effect of extracted biopolymers utilized in modern food structuring technology cannot be predicted solely based on their inherent functionality. It is essential to account for factors such as their initial consuming state and interactions with other food components to better understand the potential health benefits of biopolymers.
Collapse
Affiliation(s)
- Ming Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhongyu Zuo
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xinxia Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li Wang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, Jiangnan University, Wuxi, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Babolanimogadam N, Gandomi H, Akhondzadeh Basti A, Taherzadeh MJ. Nutritional, functional, and sensorial properties of oat milk produced by single and combined acid, alkaline, α-amylase, and sprouting treatments. Food Sci Nutr 2023; 11:2288-2297. [PMID: 37181303 PMCID: PMC10171527 DOI: 10.1002/fsn3.3171] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
In this study, the effects of different treatments of the oat slurry on the nutritional, functional, and sensorial properties of oat milk were evaluated. The sprouting and sprouting-acidic treatments have the highest oat milk yield (91.70%) and protein extraction yield (82.74%), respectively. The protein concentrations of alkali, sprouting-acidic, and α-amylase-alkali treatments were significantly (p < .05) higher than other treatments. The alkali treatments showed higher fat content (0.66%). In addition, acidic and alkali treatments in single or combined with other treatments showed the highest dry matter and energy value. The carbohydrate content of α-amylase-alkali treatment (4.35%) was higher than other treatments and also, all acidic treatments showed higher ash content (>1) compared to the other treatments. Furthermore, the sprouting-α-amylase and acidic-α-amylase showed the lowest starch (0.28%) and the highest reducing sugar content (3.15%) compared to the other treatments, respectively. Moreover, the α-amylase-alkali treatment showed the highest total phenolic content and antioxidant activity (342.67 mg GAE/L and 183.08 mg BHT eq/L, respectively). Furthermore, sensory evaluation of most treatments showed acceptable scores (≥7) for consumers, especially in the case of α-amylase, sprouting, and α-amylase-sprouting treatments. Results show that the different treatments had different effects on the nutritional, functional, and sensorial properties of oat milk. In conclusion, from the nutritional and functional point of view, the two-stage treatments were more effective than singular treatments on investigated factors proposing their application in functional plant milk preparation.
Collapse
Affiliation(s)
- Nima Babolanimogadam
- Department of Food Hygiene, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Hassan Gandomi
- Department of Food Hygiene, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | | | | |
Collapse
|
11
|
Sushytskyi L, Synytsya A, Čopíková J, Lukáč P, Rajsiglová L, Tenti P, Vannucci LE. Perspectives in the Application of High, Medium, and Low Molecular Weight Oat β-d-Glucans in Dietary Nutrition and Food Technology-A Short Overview. Foods 2023; 12:foods12061121. [PMID: 36981048 PMCID: PMC10048208 DOI: 10.3390/foods12061121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
For centuries human civilization has cultivated oats, and now they are consumed in various forms of food, from instant breakfasts to beverages. They are a nutrient-rich food containing linear mixed-linkage (1 → 3) (1 → 4)-β-d-glucans, which are relatively well soluble in water and responsible for various biological effects: the regulation of the blood cholesterol level, as well as being anti-inflammatory, prebiotic, antioxidant, and tumor-preventing. Numerous studies, especially in the last two decades, highlight the differences in the biological properties of the oat β-d-glucan fractions of low, medium, and high molecular weight. These fractions differ in their features due to variations in bioavailability related to the rheological properties of these polysaccharides, and their association with food matrices, purity, and mode of preparation or modification. There is strong evidence that, under different conditions, the molecular weight may determine the potency of oat-extracted β-d-glucans. In this review, we intend to give a concise overview of the properties and studies of the biological activities of oat β-d-glucan preparations depending on their molecular weight and how they represent a prospective ingredient of functional food with the potential to prevent or modulate various pathological conditions.
Collapse
Affiliation(s)
- Leonid Sushytskyi
- Department of Carbohydrates and Cereals, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Andriy Synytsya
- Department of Carbohydrates and Cereals, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic
| | - Jana Čopíková
- Department of Carbohydrates and Cereals, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic
| | - Pavol Lukáč
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
| | - Lenka Rajsiglová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
| | - Paolo Tenti
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
| | - Luca E Vannucci
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
12
|
Deng G, Nagy C, Yu P. Combined molecular spectroscopic techniques (SR-FTIR, XRF, ATR-FTIR) to study physiochemical and nutrient profiles of Avena sativa grain and nutrition and structure interactive association properties. Crit Rev Food Sci Nutr 2022; 63:7225-7237. [PMID: 35236186 DOI: 10.1080/10408398.2022.2045470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Synchrotron radiation based on Fourier transform infrared radiation (SR-FTIR), X-ray fluorescence (XRF) and attenuated total reflection based on Fourier transform infrared radiation (ATR-FTIR) spectroscopy are both fast determining and minimal sample preparing techniques. They are capable of detecting the internal molecular structures. However, these techniques are still not well understood by nutrition researchers for the analysis of feed. The purpose of this review is to introduce advanced SR-FTIR, XRF, and ATR-FTIR molecular techniques, use these techniques to study chemical and nutrient profiles of Avena sativa grain, and lastly to study the nutrition and structure interactive association properties. The review mainly focuses on the following aspects: 1) the background information of Avena sativa grain; its history, chemical composition, nutrient profile, inherent structure, and production; 2) molecular spectroscopic techniques; principles and spectral analysis methodology of SR-FTIR, XRF and ATR-FTIR; 3) the application of SR-FTIR, XRF, and ATR-FTIR as a novel approach. This review provides an insight on how molecular spectroscopic techniques could be used for the study of nutrition and structure interactive association properties.
Collapse
Affiliation(s)
- Ganqi Deng
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Carlene Nagy
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Peiqiang Yu
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
13
|
Li YC, Luo Y, Meng FB, Li J, Chen WJ, Liu DY, Zou LH, Zhou L. Preparation and characterization of feruloylated oat β-glucan with antioxidant activity and colon-targeted delivery. Carbohydr Polym 2022; 279:119002. [PMID: 34980350 DOI: 10.1016/j.carbpol.2021.119002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 01/04/2023]
Abstract
Ferulic acid (FA) is an effective chemopreventive and therapeutic agent for colorectal cancer. However, FA cannot stably reach the colon through human digestive system, and it can be grafted into oligosaccharides to improve its digestion stability. Therefore, in this study, different degrees of substitution of feruloylated oat β-glucan (FA-OβG) were prepared by grafting FA onto water soluble oat β-glucan. FA grafting changed the crystallinity and surface morphology of OβG, and the thermal stability of the FA-OβG improved. As the DS increased, the antioxidant activity of FA-OβG increased, and FA-OβG III with DS of 0.184 showed the same antioxidant activities compared to the equal amount of free FA. The FA-OβG showed higher stability under gastrointestinal and colonic conditions than free FA. Furthermore, the FA-OβG conjugates exhibited good in vitro anticancer activity against human colorectal cancer cells, while FA-OβG III showed better anticancer activity than an equal amount of free FA.
Collapse
Affiliation(s)
- Yun-Cheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu 610106, China
| | - Yan Luo
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Sichuan Research Institute, Shanghai Jiao Tong University, Chengdu 610106, China
| | - Fan-Bing Meng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Jian Li
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Wei-Jun Chen
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Da-Yu Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Long-Hua Zou
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Li Zhou
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
14
|
Wan Y, Xu X, Gilbert RG, Sullivan MA. A Review on the Structure and Anti-Diabetic (Type 2) Functions of β-Glucans. Foods 2021; 11:57. [PMID: 35010185 PMCID: PMC8750484 DOI: 10.3390/foods11010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes, a long-term chronic metabolic disease, causes severe and increasing economic and health problems globally. There is growing evidence that β-glucans can function as bioactive macromolecules that help control type 2 diabetes with minimal side effects. However, conflicting conclusions about the antidiabetic activities of β-glucans have been published, potentially resulting from incomplete understanding of their precise structural characteristics. This review aims to increase clarity on the structure-function relationships of β-glucans in treating type 2 diabetes by examining detailed structural and conformational features of naturally derived β-glucans, as well as both chemical and instrumental methods used in their characterization, and their underlying anti-diabetic mechanisms. This may help to uncover additional structure and function relationships and to expand applications of β-glucans.
Collapse
Affiliation(s)
- Yujun Wan
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China;
| | - Robert G. Gilbert
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia;
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Mitchell A. Sullivan
- Glycation and Diabetes Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4072, Australia
| |
Collapse
|
15
|
Contessa CR, Souza NB, Almeida LDS, Burkert JFDM, Lucchese MM, Costa Moraes C. Compounds extracted from solid fermentation of
Pleurotus sajor‐caju
for application as a natural antibacterial agent. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Camila Ramão Contessa
- Program in Materials Science and Engineering Federal University of Pampa Bagé Brazil
| | - Nathieli Bastos Souza
- Program in Food Engineering and Science School of Chemistry and Food Federal University of Rio Grande Rio Grande Brazil
| | | | | | | | - Caroline Costa Moraes
- Program in Materials Science and Engineering Federal University of Pampa Bagé Brazil
| |
Collapse
|
16
|
Zhang Y, Li Y, Xia Q, Liu L, Wu Z, Pan D. Recent advances of cereal β-glucan on immunity with gut microbiota regulation functions and its intelligent gelling application. Crit Rev Food Sci Nutr 2021:1-17. [PMID: 34748438 DOI: 10.1080/10408398.2021.1995842] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
β-glucan from cereals such as wheat, barley, oats and rye are a water-soluble dietary fiber, which are composed of repeating (1→4)-β-bond β-D-glucopyranosyl units and a single (1→3)-β-D-bond separated unit. β-glucan has a series of physicochemical properties (such as viscosity, gelling properties, solubility, etc.), which can be used as a food gel and fat substitute. Its structure endows the healthy functions, including anti-oxidative stress, lowering blood glucose and serum cholesterol, regulating metabolic syndrome and exerting gut immunity via gut microbiota. Due to their unique structural properties and efficacy, cereal β-glucan are not only applied in food substrates in the food industry, but also in food coatings and packaging. This article reviewed the applications of cereal β-glucan in hydrogels, aerogels, intelligent packaging systems and targeted delivery carriers in recent years. Cereal β-glucan in edible film and gel packaging applications are becoming more diversified and intelligent in recent years. Those advances provide a potential solution based on cereal β-glucan as biodegradable substances for immune regulation delivery system and intelligent gelling material in the biomedicine field.
Collapse
Affiliation(s)
- Yunzhen Zhang
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Yueqin Li
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Qiang Xia
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Lianliang Liu
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Zufang Wu
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Daodong Pan
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| |
Collapse
|
17
|
Li Y, You M, Liu H, Liu X. Comparison of distribution and physicochemical properties of β-glucan extracted from different fractions of highland barley grains. Int J Biol Macromol 2021; 189:91-99. [PMID: 34418418 DOI: 10.1016/j.ijbiomac.2021.08.094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/22/2021] [Accepted: 08/11/2021] [Indexed: 11/19/2022]
Abstract
Highland barley grains were roller-milled to produce five different fractions (B-1, B-2, B-3, B-4, and B-5). The distribution and physicochemical properties of β-glucans from five roller-milled fractions were investigated. The B-4 fraction contained the highest concentration of β-glucan (4.40%), and the outermost bran (B-1) had the lowest β-glucan content (1.01%). Besides, β-glucans from inner core B-5 (BG-5) had higher Mw (6.482 × 105 g/mol), whereas β-glucans from outer bran B-1 (BG-1) showed lower Mw (5.859 × 104 g/mol) than those from other fractions. Accordingly, the viscosity of BG-5 was highest (0.038-0.365 Pa·s), and the water solubility index of BG-1 was highest (50.43-90.71%). BG-5 showed stronger foam stability and emulsifying properties but weaker foaming capability, while BG-1 exhibited stronger foaming capability. The foaming capability and emulsifying properties of β-glucan samples were better under the neutral condition (pH = 7). The foam capabilities of all β-glucan samples displayed higher values at 65 °C, and emulsifying properties exhibited higher values at 45 °C. This study is expected to promote the application of highland barley β-glucans in food industry.
Collapse
Affiliation(s)
- Yao Li
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Maolan You
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Haibo Liu
- College of Food Science, Southwest University, Chongqing 400715, China; College of Food, XinYang Agriculture and Forestry University, XinYang 464000, China
| | - Xiong Liu
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
18
|
Kurek MA, Moczkowska-Wyrwisz M, Wyrwisz J, Karp S. Development of Gluten-Free Muffins with β-Glucan and Pomegranate Powder Using Response Surface Methodology. Foods 2021; 10:foods10112551. [PMID: 34828832 PMCID: PMC8619912 DOI: 10.3390/foods10112551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022] Open
Abstract
More consumers are being diagnosed with celiac disease or diseases in which wheat products should be avoided. For this reason, it is important to increase the range of gluten-free products available. In this study, it was decided to optimize the technology for the creation of a muffin with β-glucan (BG) and pomegranate (PG), while establishing water share (WT), using the response surface methodology. It was shown that β-glucan and water had the most significant influence on specific volume and moisture (p ≤ 0.001). However, the increase of hardness, color, and total phenolic content (TPC) was mainly influenced by the increase of pomegranate content (p ≤ 0.01 for harness and color and p ≤ 0.001 for TPC). Consumers accepted products high in β-glucan more than high in pomegranate. Optimization ended with a composition that included 1.89% BG, 9.51% PG, and 77.87% WT. There were no significant differences between the model and the experimental sample, apart from higher consumer acceptability.
Collapse
|
19
|
Recent advances on the one-pot synthesis to assemble size-controlled glycans and glycoconjugates and polysaccharides. Carbohydr Polym 2021; 258:117672. [DOI: 10.1016/j.carbpol.2021.117672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/18/2020] [Accepted: 01/07/2021] [Indexed: 12/20/2022]
|
20
|
Preparation and Characterization of Fish Skin Collagen Material Modified with β-Glucan as Potential Wound Dressing. MATERIALS 2021; 14:ma14061322. [PMID: 33801809 PMCID: PMC8000014 DOI: 10.3390/ma14061322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 11/17/2022]
Abstract
Collagen possesses unique properties, e.g., biocompatibility, biodegradability, and non-toxicity. However, collagen material degrades too quickly and has low mechanical properties. One of the methods of polymers' modification is mixing them to obtain blends. In this study, the influence of β-glucan for collagen material was analyzed. The interaction between the functional groups of the polymer was analyzed by ATR-FTIR (attenuated total reflection-fourier transform infrared) spectroscopy. The influence of β-glucan on mechanical properties was evaluated. The surface properties of materials were assessed using contact angle measurements and the topography of materials was evaluated by AFM (atomic force microscope). The structure of materials was analyzed according to SEM (scanning electron microscopy) pictures. Moreover, the DPPH-free radicals' scavenging ability and biocompatibility against erythrocytes and HaCaT cells were evaluated. Collagen and β-glucan were bound together by a hydrogen bond. β-glucan addition increased the roughness of the surface of the film and resulted in a more rigid character of the materials. A small addition of β-glucan to collagen provided a more hydrophilic character. All the materials could swell in in vitro conditions and showed antioxidant activity. Materials do not cause erythrocyte hemolysis. Finely, our cytotoxicity studies indicated that β-glucan can be safely added at small (10% or less) quantity to collagen matrix, they sufficiently support cell growth, and the degradation products of such matrices may actually provide some beneficial effects to the surrounding cells/tissues.
Collapse
|
21
|
Kitahara C, Sakurai T, Furuta K, Katsumata T. Inhibition of lipid digestion by β-glucanase-treated Candida utilis. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Chie Kitahara
- Food Science Research Laboratories, Mitsubishi Corporation Life Sciences Limited
| | - Takanobu Sakurai
- Food Science Research Laboratories, Mitsubishi Corporation Life Sciences Limited
| | - Kaori Furuta
- Food Science Research Laboratories, Mitsubishi Corporation Life Sciences Limited
| | - Tadayoshi Katsumata
- Food Science Research Laboratories, Mitsubishi Corporation Life Sciences Limited
| |
Collapse
|
22
|
Physicochemical, Sensory, and Cooking Qualities of Pasta Enriched with Oat β-Glucans, Xanthan Gum, and Vital Gluten. Foods 2020; 9:foods9101412. [PMID: 33028017 PMCID: PMC7601156 DOI: 10.3390/foods9101412] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 01/01/2023] Open
Abstract
The functional properties of β-glucans derived from oats and barley are confirmed by numerous in vitro and in vivo studies. This study aimed to assess the effect of adding 0, 5, 10, 15, and 20% oat (1,3)(1,4)-β-D-glucans to physicochemical properties, as well as the cooking and sensory qualities of durum wheat pasta. Additionally, to improve the cooking and sensory qualities of pasta, we added 5% of xanthan gum and vital gluten. The present study showed that the addition of β-glucans led to an increase of the water absorption index (WAI), water solubility index (WSI), and viscosity of products. At the same time, an increase in the content of fat, ash, and dietary fiber was observed. The addition of (1,3)(1,4)-β-D-glucans influenced the cooking quality of the pasta, extending the minimum cooking time and increasing the loss of dry matter. At the same time, the color of the product changed. In the case of cooked pasta, the addition of β-glucans decreased the brightness and increased the yellowness and redness. It was found that the products enriched with 10–15% of β-glucans, as well as 5% of xanthan gum and vital gluten would yield functional pasta that may offer health benefits beyond its nutritional value. Further, this could influence high cooking and sensory quality.
Collapse
|
23
|
Aparicio-García N, Martínez-Villaluenga C, Frias J, Peñas E. Sprouted oat as a potential gluten-free ingredient with enhanced nutritional and bioactive properties. Food Chem 2020; 338:127972. [PMID: 32932082 DOI: 10.1016/j.foodchem.2020.127972] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/17/2020] [Accepted: 08/29/2020] [Indexed: 12/24/2022]
Abstract
This study is aimed to produce and characterize a novel gluten-free ingredient from oat through sprouting at 18 °C for 96 h. The nutritional and bioactive properties as well as key enzymatic activities were studied in sprouted oat powder and compared with those of oat grain powder (control). Sprouted oat powder was an excellent source of protein (10.7%), β-glucan (2.1%), thiamine (687.1 μg/100 g), riboflavin (218.4 μg/100 g), and minerals (P, K, Mg and Ca), and presented better amino acid and fatty acid compositions and levels of γ-aminobutyric acid (54.9 mg/100 g), free phenolics (507.4 mg GA/100 g) and antioxidant capacity (1744.3 mg TE/100 g) than control. Enhanced protease and α-amylase and reduced lipase activities were observed in sprouted oat powder, which are promising features to improve its nutritional, sensorial and health-promoting properties. These results support the use of sprouted oat powder as a promising gluten-free functional ingredient.
Collapse
Affiliation(s)
- Natalia Aparicio-García
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | | | - Juana Frias
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Elena Peñas
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|