1
|
Singha UK, Pradhan S, Gurung P, Chhetri P, Chettri A, Dutta T, Sinha B. Synthesis and Characterization of Zn(II) Complex of 4-chloro-2-(((2-phenoxyphenyl)imino)methyl)phenol and its Biological Efficacies: DNA Interaction, ADMET, DFT and Molecular Docking Study. J Fluoresc 2025; 35:2695-2706. [PMID: 38613713 DOI: 10.1007/s10895-024-03687-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
Condensing 2-phenoxyaniline with 5-chlorosalicyldehyde under reflux conditions, a 4-chloro-2-(((2-phenoxyphenyl)imino)methyl)phenol Schiff base has been Synthesized. A zinc complex was synthesized by combining the ligand in a 1:1 molar ratio with zinc sulphateheptahydrate. Mass spectroscopy, NMR, infrared, and elemental analysis were used to characterize the ligand and zinc complex. By measuring the molar conductance, the non-electrolytic character of the complex was confirmed. The zinc ion is coordinated in a pentadentate manner, according to an IR and NMR investigation. Viscosity measurements, absorption and fluorescence spectroscopy were utilized to examine the complex's interaction with CT (calf thymus) DNA. Furthermore, the ligand and complex's ADMET characteristics were ascertained through the use of ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) study. Calculation of the different electronic parameters of the optimized structure through Density Functional Theory (DFT) indicated the stability of the Zn(II) complex. Molecular docking study reflected the future opportunity for the consideration of Zn(II) complex to fight against Alzheimer and Glaucoma diseases.
Collapse
Affiliation(s)
- Uttam Kumar Singha
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Sudarshan Pradhan
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Pritika Gurung
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Prajal Chhetri
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Anmol Chettri
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Tanmoy Dutta
- Department of Chemistry, JIS College of Engineering, Kalyani, 741235, India
| | - Biswajit Sinha
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India.
| |
Collapse
|
2
|
Pradhan S, Gurung P, Chettri A, Singha UK, Chhetri P, Dutta T, Sinha B. Synthesis of Novel [{(2-Amino-5-Nitro-N-[(E)-Thiophen-2-yl-Methylidene]Aniline-κ 3N 1:N 4:S)(Sulphato-κ 2O 1:O 3)}Zinc(II)] Complex with Physico-Chemical and Biological Perspective Exploration: A Combined Experimental and Computational Studies. J Fluoresc 2025; 35:1515-1528. [PMID: 38393498 DOI: 10.1007/s10895-024-03612-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/01/2024] [Indexed: 02/25/2024]
Abstract
A novel metal complex was synthesized using freshly prepared 2-Amino-5-nitro-N-[(E)-thiophen-2-yl-methylidene]aniline ligand with Zn (II) sulphate heptahydrate in a 1:1 molar ratio. The ligand and the complex were characterized using different spectroscopic techniques, and the complex was assigned a distorted square pyramidal geometry. Additionally, DNA binding assays and antibacterial activity were used to assess the biological perspectives for the synthesized complex, including the ligand and complex which was further confirmed by molecular docking. Fluorescence Spectroscopy, viscosity measurement, and adsorption measurement were used to investigate the interaction of the Zn (II) complex with CT-DNA. A comparative in vitro antibacterial activity study against Escherichia coli, Klebsiella pneumoniae, Bacillus subtilis, and Staphylococcus aureus strains were studied with free ligand and Zn (II) metal complex. The stable geometry of the complex was additionally established through computational simulation utilizing density functional theory, which was followed by the calculation of several electronic properties. The ADMET characteristics of the complex and ligand were also assessed using ADMET analysis. The in-silico ADMET properties pointed to a significant drug-likeness feature in the synthesized compounds, based on the Lipinski criteria.
Collapse
Affiliation(s)
- Sudarshan Pradhan
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Pritika Gurung
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Anmol Chettri
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Uttam Kumar Singha
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Prajal Chhetri
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Tanmoy Dutta
- Department of Chemistry, JIS College of Engineering, Kalyani, 741235, India
| | - Biswajit Sinha
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India.
| |
Collapse
|
3
|
Sharma U, Singh T, Agrawal V. Phytochemical Analysis, Isolation, and Characterization of Gentiopicroside from Gentiana kurroo and Cytotoxicity of Biosynthesized Silver Nanoparticles Against HeLa Cells. Appl Biochem Biotechnol 2025; 197:1831-1864. [PMID: 39621225 DOI: 10.1007/s12010-024-05114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 01/06/2025]
Abstract
Gentiana kurroo Royle, a critically endangered Himalayan herb, is valued in treating leucoderma, syphilis, bronchial asthma, hepatitis, etc. The current investigation performed quantitative and qualitative phytochemical analysis of G. kurroo root extracts prepared in chloroform, methanol, and ethyl acetate. The phenolic and flavonoid contents were the highest in methanol and chloroform extract, respectively. Several pharmacologically important compounds were identified through gas chromatography-mass spectrometry. Antioxidant analysis revealed methanolic extract to be the most efficient scavenger of 2,2-diphenyl-1-picrylhydrazyl (IC50 = 114 µg mL-1), hydrogen peroxide (IC50 = 109.9 µg mL-1), and superoxide (IC50 = 74.63 µg mL-1) radicals. Gentiopicroside was isolated from the methanolic root extract through silica-gel column-chromatography, and the characterization of concentrated fractions was achieved employing various analytical techniques. Pertaining to silver nanoparticle (GkAgNPs) synthesis, different physicochemical parameters were optimized and it was observed that root extract treated with silver-nitrate (0.5 mM) at 60 °C and incubated in dark for at least 120 min after initial color change, yielded GkAgNPs optimally. GkAgNPs were anisotropic and polydisperse and exhibited characteristic surface plasmon resonance (424 nm), crystalline face-centered cubic geometry, size (50-300 nm), and zeta-potential (- 16.3 mV). FT-IR spectra indicated the involvement of phenols and flavonoids in AgNPs synthesis. GkAgNPs were evidenced as strongly cytotoxic (IC50 = 1.964 µg mL-1) against HeLa cells and also showed deformed cellular morphology, a significant reduction in viable cell counts and colony-forming efficiency (4.08%). The findings suggest potential applications in drug development for treating serious human diseases. To the best of our knowledge, this study represents the first report on the isolation of gentiopicroside, the bio-fabrication of GkAgNPs using G.kurroo root extract, and their strong bioefficacy against HeLa cells.
Collapse
Affiliation(s)
| | - Tikkam Singh
- Department of Botany, University of Delhi, Delhi, India
| | - Veena Agrawal
- Department of Botany, University of Delhi, Delhi, India.
| |
Collapse
|
4
|
Ramasami N, Dhayalan M, Selvaraj M, Riyaz SUM, Perumal P, Irudayaraj SS, Rajagopal R, Alfarhan A, Stalin A. Enhanced Bioactivity of Streptomycin Bioconjugated Metal Nanoparticles Against Streptomycin Resistant Bacillus Sp. Indian J Microbiol 2024; 64:1787-1804. [PMID: 39678979 PMCID: PMC11645358 DOI: 10.1007/s12088-024-01234-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/14/2024] [Indexed: 12/17/2024] Open
Abstract
The emergence of multidrug resistance in pathogenic organisms has caused growing concern, especially among healthcare providers, necessitating the development of new antimicrobial compounds. Resistance to metal nanoparticles is more challenging for any pathogen and thus paved a new avenue of research to formulate a new line of drugs combined with metal nanoparticles to treat microbial resistance. In this present investigation, green synthesised silver (AgNP), gold (AuNP), and platinum (PtNP) nanoparticles using the rind extract of the fruit of Garcinia mangostana L., were bioconjugated with Streptomycin. Visual colour change in solution was evidenced as the result of bioconjugation process and also significant shift in the UV-Vis spectra was recorded. The antibacterial activity against Streptomycin resistant Bacillus sp., was performed with bare and bioconjugates, AuNP and PtNP did not show any activity whereas their bioconjugates showed 100% activity and MIC was recorded as 0.1067ppm (SAuNP) and 34ppm (SPtNP), SAgNP and AgNP showed antibacterial activity but comparatively higher activity was exhibited by SAgNP. MIC for AgNP and SAgNP was recorded as 0.325 ppm and 0.187 ppm respectively. The results of cell viability test showed that the highest percentage of cell death was recorded with SAuNP treated cells (96%), followed by SPtNP (95.5%), SAgNP (95.4%) and AgNP (92.6%). The hemocompatibility was evaluated using human erythrocytes. No hemolysis was observed with any of the test compounds at their MIC. The results of SEM analysis supported the report as it showed the characteristic biconcave RBC cells with smooth surfaces, strongly suggesting hemocompatibility of the test compounds. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01234-5.
Collapse
Affiliation(s)
- Nishanthi Ramasami
- Department of Biotechnology, College of Science and Humanities, SRMIST, Kattankulathur, Tamil Nadu 603203 India
| | - Manikandan Dhayalan
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (Saveetha University), Chennai, TamilNadu 600 077 India
| | - Malathi Selvaraj
- Department of Biotechnology, Sri Sankara Arts and Science College, Enathur, Kanchipuram, India
| | - Savaas Umar Mohammed Riyaz
- PG & Research Department of Biotechnology, Islamiah College (Autonomous), Vaniyambadi, Tamil Nadu 635752 India
| | - Palani Perumal
- CAS in Botany, University of Madras, Guindy Campus, Chennai, Tamil Nadu 600 025 India
| | | | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box-2455, 11451 Riyadh, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box-2455, 11451 Riyadh, Saudi Arabia
| | - Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610 054 China
| |
Collapse
|
5
|
Abd-Elrasheed E, Fahim SA, Nessim CK, El-Helaly SN. Innovative anti-proliferative effect of the antiviral favipiravir against MCF-7 breast cancer cells using green nanoemulsion and eco-friendly assessment tools. Sci Rep 2024; 14:27939. [PMID: 39537766 PMCID: PMC11561084 DOI: 10.1038/s41598-024-78422-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Telomerase enzyme prevents telomere shortening during division, having human telomerase reverse transcriptase (hTERT) as its catalytic subunit. Favipiravir (FAV), an RNA-dependent RNA polymerases inhibitor, shared structural similarity with hTERT and thus assumed to have cytotoxic effect on cancer cells, in addition to its prophylactic effect to immunocompromised cancer patients. Nanoemulsion (NE) is a potential tumor cells targeting delivery system, thereby enhancing therapeutic efficacy at the intended site, mitigating systemic toxicity, and overcoming multidrug resistance. The objective of this study is to develop a green FAV nanoemulsion (FNE) that is environmentally friendly and safe for patients, while aiming to enhance its cytotoxic effects. The study also highlights the environmental sustainability of the developed RP-HPLC method and assesses its greenness impact. The FNE formulation underwent thermodynamic stability testing and invitro characterization. Greenness was assessed using advanced selected tools like the Analytical Eco-Scale (AES), Analytical Greenness Metric for Sample Preparation (AGREEprep), and green analytical procedure index (GAPI). The cytotoxic potential of FNE was screened against MCF-7 breast cancer and Vero normal cell lines using SRB assay. Stable and ecofriendly FNE was formulated having a particle size (PS) of 25.29 ± 0.57 nm and a zeta potential of -6.79 ± 5.52 mV. The cytotoxic effect of FNE on MCF-7 cells was more potent than FAV with lower IC50 while FNE showed non-toxic effect on VERO normal cell line. Therefore, the FAV nanoemulsion formulation showed targeted cytotoxicity on MCF-7 cells while being non-toxic on normal Vero cells.
Collapse
Affiliation(s)
- Eman Abd-Elrasheed
- Department of Pharmaceutics and Industrial pharmacy, Pharmacy Program, St. Petersburg University, Cairo, Egypt
| | - Sally A Fahim
- Department of Biochemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, km 22 Cairo-Alexandria Desert Road, Giza, 12577, Egypt.
| | - Christine K Nessim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ahram Canadian University, 6th October City, Cairo, Egypt
| | - Sara Nageeb El-Helaly
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Rani J, Singh S, Beniwal A, Kakkar S, Moond M, Sangwan S, Kumari S. Pomegranate peel mediated silver nanoparticles: antimicrobial action against crop pathogens, antioxidant potential and cytotoxicity assay. DISCOVER NANO 2024; 19:160. [PMID: 39356395 PMCID: PMC11447186 DOI: 10.1186/s11671-024-04103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 10/03/2024]
Abstract
Biologically produced silver nanoparticles are becoming a more appealing option than chemically produced antioxidants and antimicrobial agents, because they are safer, easier to manufacture and have medicinal properties at lower concentrations. In this work, we employed the aqueous pomegranate peel extract (PPE) to synthesize silver nanoparticles (PPE-AgNPs), as peel extract is a rich source of phytochemicals which functions as reducing agent for the synthesis of PPE-AgNPs. Additionally, the PPE was examined quantitatively for total phenolics and total flavonoids content. PPE-AgNPs were characterized using analytical techniques including UV-Vis spectroscopy, DLS, FTIR, XRD, HRTEM and FESEM, evaluated in vitro against the plant pathogenic microbes and also for antioxidant activities. Analytical techniques (HRTEM and FESEM) confirmed the spherical shape and XRD technique revealed the crystalline nature of synthesized PPE-AgNPs. Quantitative analysis revealed the presence of total phenolics (269.93 ± 1.01 mg GAE/g) and total flavonoids (119.70 ± 0.83 mg CE/g). Biosynthesized PPE-AgNPs exhibited significant antibacterial activity against Klebsiella aerogenes and Xanthomonas axonopodis, antifungal activity against Colletotrichum graminicola and Colletotrichum gloesporioides at 50 µg/mL concentration. The antioxidant potential of biosynthesized PPE-AgNPs was analysed via ABTS (IC50 4.25 µg/mL), DPPH (IC50 5.22 µg/mL), total antioxidant (86.68 g AAE/mL at 10 µg/mL) and FRAP (1.93 mM Fe(II)/mL at 10 µg/mL) assays. Cytotoxicity of PPE-AgNPs was valuated using MTT assay and cell viability of 83.32% was determined at 100 µg/mL concentration. These investigations suggest that synthesized PPE-AgNPs might prove useful for agricultural and medicinal purposes in the future.
Collapse
Affiliation(s)
- Jyoti Rani
- Department of Chemistry, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Sushila Singh
- Department of Chemistry, CCS Haryana Agricultural University, Hisar, 125004, India.
| | - Anuradha Beniwal
- Department of Chemistry, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Simran Kakkar
- Department of Chemistry, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Monika Moond
- Department of Chemistry, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Seema Sangwan
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Sachin Kumari
- Department of Chemistry, CCS Haryana Agricultural University, Hisar, 125004, India
| |
Collapse
|
7
|
Sahu K, Kurrey R, Pillai AK. Green synthesis of silver nanoparticles from Manilkara zapota leaf extract for the detection of aminoglycoside antibiotics and other applications. RSC Adv 2024; 14:23240-23256. [PMID: 39045403 PMCID: PMC11265568 DOI: 10.1039/d4ra01906g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024] Open
Abstract
Antibiotics of aminoglycoside (AMG) class, such as streptomycin (STR), have been widely used to treat infectious diseases caused by Gram-negative bacteria in livestock and humans. In this study, a selective and sensitive colorimetric probe for the determination of STR was proposed based on eco-friendly green synthesized AgNPs from the leaf extract of Manilkara zapota. The mechanism for the detection of STR is based on the electrostatic interaction of opposite charges between negatively charged silver nanoparticle-Manilkara zapota leaf (AgNP-MZL) and STR, causing an aggregation-induced characteristic shift of the SPR band (from 390 nm to 570 nm wavelength) of AgNP-MZL. The morphology, size distribution and optical properties of AgNP-MZL were characterized using UV/visible absorption spectroscopy, FTIR spectroscopy, XRD, DLS, zeta-potential measurements and TEM. The selective determination of STR was experimentally confirmed by performing controlled testing with other classes of antibiotics. To test the sensitivity level of this method, the ratio of these two A 390/A 570 absorbance wavelengths was selected to provide a linear concentration plot between 5 and 100 ng mL-1 STR. The LOD and LOQ were calculated to be 3.5 ng mL-1 and 26.8 ng mL-1, respectively. Good precision was evaluated with a standard deviation of 0.45 ng mL-1 and a relative standard deviation of 2.0% (intraday) and 2.42% (interday) at 10 ng mL-1 for 3 replicate measurements. Advantages of the green synthesis of AgNP-MZL include its eco-friendly nature and it is easy, efficient, cost effective and selective for the detection of the AMG class of antibiotics, i.e. STR, in agricultural and environmental samples.
Collapse
Affiliation(s)
- Khushboo Sahu
- Govt. V. Y. T. Post Graduate Autonomous College Durg-491 001 Chhattisgarh India +917882 393644
| | - Ramsingh Kurrey
- National Center for Natural Resources, Pt. Ravishankar Shukla University Raipur-492 010 Chhattisgarh India
| | - Ajai Kumar Pillai
- Govt. V. Y. T. Post Graduate Autonomous College Durg-491 001 Chhattisgarh India +917882 393644
| |
Collapse
|
8
|
El Fadly EB, Salah AS, Abdella B, Al Ali A, AlShmrany H, ElBaz AM, Abdelatty NS, Khamis EF, Maagouz OF, Salamah MA, Saleh MN, Sakr HK, El-Kemary MA. Mapping a sustainable approach: biosynthesis of lactobacilli-silver nanocomposites using whey-based medium for antimicrobial and bioactivity applications. Microb Cell Fact 2024; 23:195. [PMID: 38971787 PMCID: PMC11227706 DOI: 10.1186/s12934-024-02428-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/17/2024] [Indexed: 07/08/2024] Open
Abstract
This study explores a sustainable approach for synthesizing silver nanocomposites (AgNCs) with enhanced antimicrobial and bioactivity using safe Lactobacillus strains and a whey-based medium (WBM). WBM effectively supported the growth of Lactobacillus delbrueckii and Lactobacillus acidophilus, triggering a stress response that led to AgNCs formation. The synthesized AgNCs were characterized using advanced spectroscopic and imaging techniques such as UV‒visible, Fourier transform infrared (FT-IR) spectroscopy, transmission electron (TEM), and scanning electron microscopy with energy dispersive X-ray analysis (SEM-Edx). Lb acidophilus-synthesized AgNCs in WBM (had DLS size average 817.2-974.3 ± PDI = 0.441 nm with an average of metal core size 13.32 ± 3.55 nm) exhibited significant antimicrobial activity against a broad spectrum of pathogens, including bacteria such as Escherichia coli (16.47 ± 2.19 nm), Bacillus cereus (15.31 ± 0.43 nm), Clostridium perfringens (25.95 ± 0.03 mm), Enterococcus faecalis (32.34 ± 0.07 mm), Listeria monocytogenes (23.33 ± 0.05 mm), methicillin-resistant Staphylococcus aureus (MRSA) (13.20 ± 1.76 mm), and filamentous fungi such as Aspergillus brasiliensis (33.46 ± 0.01 mm). In addition, Lb acidophilus-synthesized AgNCs in WBM exhibit remarkable free radical scavenging abilities, suggesting their potential as bioavailable antioxidants. These findings highlight the dual functionality of these biogenic AgNCs, making them promising candidates for applications in both medicine and nutrition.
Collapse
Affiliation(s)
- E B El Fadly
- Department of Dairy Sciences, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt.
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt.
| | - A S Salah
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - B Abdella
- Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - A Al Ali
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, 57714, Bisha, Saudi Arabia
| | - H AlShmrany
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince, Sattam Bin Abdulaziz University, 11942, Alkharj, Saudi Arabia
| | - A M ElBaz
- Dairy Microbiology Research Department, Agriculture Research Center, Animal Production Research Institute, Giza, 12611, Egypt
| | - N S Abdelatty
- Department of Dairy Sciences, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - E F Khamis
- Dairy Chemistry Research Department, Agriculture Research Center, Animal Production Research Institute, Giza, 12611, Egypt
| | - O F Maagouz
- Dairy Chemistry Research Department, Agriculture Research Center, Animal Production Research Institute, Giza, 12611, Egypt
| | - M A Salamah
- Agricultural Research Center, Food Technology Research Institute, Giza, 12611, Egypt
| | - M N Saleh
- Agricultural Research Center, Food Technology Research Institute, Giza, 12611, Egypt
| | - H K Sakr
- Agricultural Research Center, Food Technology Research Institute, Giza, 12611, Egypt
| | - M A El-Kemary
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt.
- Nile Valley University, Fayum, Egypt.
| |
Collapse
|
9
|
Akhter MS, Rahman MA, Ripon RK, Mubarak M, Akter M, Mahbub S, Al Mamun F, Sikder MT. A systematic review on green synthesis of silver nanoparticles using plants extract and their bio-medical applications. Heliyon 2024; 10:e29766. [PMID: 38828360 PMCID: PMC11140609 DOI: 10.1016/j.heliyon.2024.e29766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/04/2024] [Accepted: 04/15/2024] [Indexed: 06/05/2024] Open
Abstract
Nanoparticles have recently become considered as a crucial player in contemporary medicine, with therapeutic uses ranging from contrast agents in imaging to carriers for the transport of drugs and genes into a specific target. Nanoparticles have the ability to have more precise molecular interactions with the human body in order to target specific cells and tissues with minimal adverse effects and maximal therapeutic outcomes. With the least number of side effects and the greatest possible therapeutic benefit, nanoparticles can target particular cells and tissues through more precise molecular interactions with the human body. The majority of global public health problems are now treated with green synthesized silver nanoparticles (AgNPs), which substantially affect the fundamental structure of DNA and proteins and thus display their antimicrobial action. AgNPs can inhibit the proliferation of tumor cells and induce oxidative stress. By inhibiting vascular endothelial growth factor (HIF)-1, pro-inflammatory mediators generated by silver nanoparticles are reduced, mucin hypersecretion is lessened, and gene activity is subsequently regulated to prevent infections. The biogenic synthesis of silver nanoparticles (AgNPs) using various plants and their applications in antibacterial, antifungal, antioxidant, anticancer, anti-inflammatory, and antidiabetic activities have been extensively discussed in this article. Also, because only natural substances are utilized in the manufacturing process, the particles that are created naturally are coated, stabilized, and play a vital role in these biomedical actions. The characterization of AgNPs, possibility of preparing AgNPSs with different shapes using biological method and their impact on functions and toxicities, impact of size, shape and other properties on AgNPs functions and toxicity profiles, limitations, and future prospects of green-mediated AgNPs have also been reported in this study. The major goal of this study is to provide readers with a comprehensive, informed, and up-to-date summary of the various AgNPs production and characterization methods and their under-investigational antioxidant, antibacterial, and anticancer, antidiabetic, antifungal and anti-inflammatory properties. This review provides instructions and suggestions for additional studies based on AgNPs. This evaluation also pushes researchers to look into natural resources like plant parts in order to create useful nanobiotechnology.
Collapse
Affiliation(s)
- Mst. Sanjida Akhter
- Health and Environmental Epidemiology Laboratory (HEEL), Department of Public Health and Informatics, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Md. Ataur Rahman
- Department of Pharmacy, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Rezaul Karim Ripon
- Department of Environmental Health Epidemiology, Harvard T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Mahfuza Mubarak
- Health and Environmental Epidemiology Laboratory (HEEL), Department of Public Health and Informatics, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Mahmuda Akter
- Faculty of Arts and Science, New York University Shanghai, Shanghai, China
| | - Shamim Mahbub
- Nuclear Safety, Security & Safeguards Division, Bangladesh Atomic Energy Regulatory Authority, 12/A, Shahid Shahabuddin Shorok, Agargaon, Dhaka, 1207, Bangladesh
| | - Firoj Al Mamun
- Department of Public Health, University of South Asia, Dhaka, Bangladesh
| | - Md. Tajuddin Sikder
- Health and Environmental Epidemiology Laboratory (HEEL), Department of Public Health and Informatics, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| |
Collapse
|
10
|
Irshad M, Mukhtar A, Nadeem Tabish A, Bilal Hanif M, Sheraz M, Berezenko V, Zubair Khan M, Batool F, Imran M, Rafique M, Gurgul J, Alshahrani T, Mosiałek M, Kim J, Baker RT, Motola M. Harnessing bio-based chelating agents for sustainable synthesis of AgNPs: Evaluating their inherent attributes and antimicrobial potency in conjunction with honey. Heliyon 2024; 10:e31424. [PMID: 38818153 PMCID: PMC11137562 DOI: 10.1016/j.heliyon.2024.e31424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
Greenly synthesized nanoparticles have garnered attention due to their low environmental footprint, but impurities limit their applications. A novel semi-organic method for synthesizing silver nanoparticles (AgNPs) using bio-based chelating fuels (Beta vulgaris subsp., Spinacia oleracea, and Ipomoea batatas) reduces the undesirable impurities. The study also showcases the impact of bio-based chelating fuel on various characteristics of AgNPs in comparison to synthetic chelating fuel. The antimicrobial efficacy of the synthesized AgNPs in conjunction with honey was also assessed against E. coli. The XRD analysis showed cubic structure of AgNPs. The FESEM and TEM analysis showed that the well-connected spherical-shaped AgNPs (∼3-120 nm diameter) while EDS confirmed the presence of Ag in all samples. The TEM analysis also revealed layers of carbonates in AgNPs synthesized using bio-based chelating fuels. XPS investigation confirmed the absence of any prominent impurities in prepared samples and AgNPs have not experienced oxidation on their surface. However, notable surface charging effects due to the uneven conductivity of the particles were observed. The broth dilution method showed that all mixtures containing AgNPs in combination with honey exhibited a significant bacterial growth reduction over a period of 120 h. The highest growth reduction of ∼75 % is obtained for the mixture having AgNPs (Ipomoea batatas) while the least growth reduction of ∼51 % is obtained for the mixture having AgNPs (Beta vulgaris subsp.). The findings affirm that AgNPs can be successfully synthesized using bio-based chelating fuels with negligible ecological consequences and devoid of contaminants. Moreover, the synthesized AgNPs can be employed in conjunction with honey for antibacterial purposes.
Collapse
Affiliation(s)
- Muneeb Irshad
- Department of Physics, University of Engineering and Technology, Lahore, 54890, Pakistan
| | - Anum Mukhtar
- Department of Physics, University of Engineering and Technology, Lahore, 54890, Pakistan
| | - Asif Nadeem Tabish
- Department of Chemical Engineering, University of Engineering and Technology, New Campus, Lahore, 39021, Pakistan
| | - Muhammad Bilal Hanif
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, Mlynska Dolina, 842 15, Bratislava, Slovakia
| | - Mahshab Sheraz
- Advanced Textile R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan-si, 15588, Republic of Korea
| | - Viktoriia Berezenko
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, Mlynska Dolina, 842 15, Bratislava, Slovakia
- Department of Environmental Ecology and Landscape Management, Faculty of Natural 11 Sciences, Comenius University Bratislava, Ilkovicova 6, 842 15, Bratislava, Slovakia
| | - Muhammad Zubair Khan
- Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology Mang, Haripur, 22621, KPK, Pakistan
| | - Farwa Batool
- Department of Physics, University of Engineering and Technology, Lahore, 54890, Pakistan
| | - Muhammad Imran
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Rafique
- Department of Physics, University of Sahiwal, 57000, Sahiwal, Pakistan
| | - Jacek Gurgul
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL–30239 Krakow, Poland
| | - Thamraa Alshahrani
- Department of Physics, College of Sciences, Princess Nourah Bint Abdulrahman University (PNU), P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Michał Mosiałek
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL–30239 Krakow, Poland
| | - Juran Kim
- Advanced Textile R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan-si, 15588, Republic of Korea
- HYU-KITECH Joint Department, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Richard T. Baker
- School of Chemistry, University of St. Andrews, St. Andrews, Fife, KY16 9AJ, United Kingdom
| | - Martin Motola
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, Mlynska Dolina, 842 15, Bratislava, Slovakia
| |
Collapse
|
11
|
Kaur N. An innovative outlook on utilization of agro waste in fabrication of functional nanoparticles for industrial and biological applications: A review. Talanta 2024; 267:125114. [PMID: 37683321 DOI: 10.1016/j.talanta.2023.125114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
The burning of an agro waste residue causes air pollution, global warming and lethal effects. To overcome these obstacles, the transformation of agro waste into nanoparticles (NPs) reduces industrial expenses and amplifies environmental sustainability. The concept of green nanotechnology is considered as a versatile tool for the development of valuable products. Although a plethora of literature on the NPs is available, but, still scientists are exploring to design more novel particles possessing unique shape and properties. So, this review basically summarises about the synthesis, characterizations, advantages and outcomes of the various agro waste derived NPs.
Collapse
Affiliation(s)
- Navpreet Kaur
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32 C, Chandigarh, India.
| |
Collapse
|
12
|
Gattupalli M, Dashora K, Mishra M, Javed Z, Tripathi GD. Microbial bioprocess performance in nanoparticle-mediated composting. Crit Rev Biotechnol 2023; 43:1193-1210. [PMID: 36510336 DOI: 10.1080/07388551.2022.2106178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/10/2022] [Indexed: 12/15/2022]
Abstract
Microbial composting is one of the most cost-effective techniques for degradation, remediation, nutrition, etc. Currently, there is faster growth and development in nanotechnology in different sectors. This development leads nanoparticles (NPs) to enter into the composts in different ways. First, unintentional entry of NPs into the composts via: waste discharge, buried solid waste, surface runoff, direct disposal into wastes (consumer goods, food, pharmaceuticals, and personal care products). Second, intentional mediation of the NPs in the composting process is a novel approach developed to enhance the degradation rate of wastes and as a nutrient for plants. The presence of NPs in the composts can cause nanotoxicity. Conversely, their presence might also be beneficial, such as soil reclamations, degradation, etc. Alternatively, metal NPs are also helpful for all living organisms, including microorganisms, in various biological processes, such as DNA replication, precursor biosynthesis, respiration, oxidative stress responses, and transcription. NPs show exemplary performance in multiple fields, whereas their role in composting process is worth studying. Consequently, this article aids the understanding of the role of NPs in the composting process and how far their presence can be beneficial. This article reviews the significance of NPs in: the composting process, microbial bioprocess performance during nano composting, basic life cycle assessment (LCA) of NP-mediated composting, and mode of action of the NPs in the soil matrix. This article also sheds insight on the notion of nanozymes and highlights their biocatalytic characterization, which will be helpful in future composting research.
Collapse
Affiliation(s)
- Meghana Gattupalli
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi, India
| | - Kavya Dashora
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi, India
| | - Mansi Mishra
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi, India
| | - Zoya Javed
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi, India
| | - Gyan Datta Tripathi
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
13
|
Namdar NZ, Roufegarinejad L, Alizadeh A, Asefi N, Jafari SM, Sarabandi K. Protection of navy-bean bioactive peptides within nanoliposomes: morphological, structural and biological changes. BIORESOUR BIOPROCESS 2023; 10:87. [PMID: 38647940 PMCID: PMC10992752 DOI: 10.1186/s40643-023-00709-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/22/2023] [Indexed: 04/25/2024] Open
Abstract
This study aimed to produce bioactive peptides from navy-bean protein with alcalase and pepsin enzymes (30-300 min) and to load them into a nanoliposome system to stabilize and improve their bioavailability. The degree of hydrolysis and biological activities (scavenging of DPPH, OH, and ABTS free radicals, reducing power, and chelating metal ions) of navy-bean protein were affected by the type of enzyme and hydrolysis time. The average particle size (83-116 nm), PDI (0.23-0.39), zeta potential (- 13 to - 20 mV), and encapsulation efficiency (80-91%) of nanoliposomes were influenced by the type and charge of peptides. The storage temperature and the type of loaded peptide greatly affected the physical stability of nanocarriers and maintaining EE during storage. The FTIR results suggested the effect of enzymatic hydrolysis on the secondary structures of protein and the effective placement of peptides inside polar-regions and the phospholipid monolayer membrane. SEM images showed relatively uniform-sized particles with irregular structures, which confirmed the results of DLS. The antioxidant activity of primary peptides affected the free radical scavenging of loaded nanoliposomes. Liposomes loaded with navy-bean peptides can be used as a health-giving formula in enriching all kinds of drinks, desserts, confectionery products, etc.
Collapse
Affiliation(s)
- Nazila Zeynali Namdar
- Department of Food Science and Technology, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Leila Roufegarinejad
- Department of Food Science and Technology, Islamic Azad University, Tabriz Branch, Tabriz, Iran.
| | - Ainaz Alizadeh
- Department of Food Science and Technology, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Narmela Asefi
- Department of Food Science and Technology, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials & Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Khashayar Sarabandi
- Research Institute of Food Science and Technology (RIFST), Km 12 Mashhad-Quchan Highway, PO Box: 91895-157-356, Mashhad, Iran.
| |
Collapse
|
14
|
Mora P, Rimdusit S, Karagiannidis P, Srisorrachatr U, Jubsilp C. Mechanical properties and curing kinetics of bio-based benzoxazine-epoxy copolymer for dental fiber post. BIORESOUR BIOPROCESS 2023; 10:62. [PMID: 38647586 PMCID: PMC10991436 DOI: 10.1186/s40643-023-00684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/03/2023] [Indexed: 04/25/2024] Open
Abstract
Biocopolymers based on vanillin/fufurylamine-biobenzoxazine (V-fa) and epoxide castor oil (ECO), a bioepoxy, were prepared for application as dental fiber-reinforced composite post. The mechanical and thermal properties of the V-fa/ECO biocopolymers were assessed with regard to the influence of ECO content. The addition of the ECO at an amount of 20% by weight into the poly(V-fa) preserved the stiffness, glass transition temperature and thermal stability nearly to the poly(V-fa). Differential scanning calorimetry (DSC) was used to examine the curing kinetics of the V-fa/ECO monomer system with different heating rates. To determine the activation energy (Ea), the experimental data were subjected to the isoconversional methods, namely Flynn-Wall-Ozawa (FWO) and Friedman (FR). The V-fa/ECO monomer mixture showed average Ea values of 105 kJ/mol and 94 kJ/mol. The results derived using the curing reaction model and the experimental data were in good agreement, demonstrating the efficacy of the FWO method for determining the curing kinetics parameters. The simulated mechanical response to external applied loads by finite-element analysis of the tooth model restored with glass fiber-reinforced V-fa/ECO biocopolymer post showed a similar stress field to the tooth model restored with a commercial glass fiber post. Therefore, based on the findings in this work, it is evident that the bio-based benzoxazine/epoxy copolymer possesses a great potential to be used for dental fiber post.
Collapse
Affiliation(s)
- Phattarin Mora
- Department of Chemical Engineering, Faculty of Engineering, Srinakharinwirot University, Nakhonnayok, 26120, Thailand
| | - Sarawut Rimdusit
- Center of Excellence in Polymeric Materials for Medical Practice Devices, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Ukrit Srisorrachatr
- Department of Medical Services, Institute of Dentistry, Nonthaburi, 11000, Thailand
| | - Chanchira Jubsilp
- Department of Chemical Engineering, Faculty of Engineering, Srinakharinwirot University, Nakhonnayok, 26120, Thailand.
| |
Collapse
|
15
|
Pratap-Singh A, Guo Y, Baldelli A, Singh A. Concept for a Unidirectional Release Mucoadhesive Buccal Tablet for Oral Delivery of Antidiabetic Peptide Drugs Such as Insulin, Glucagon-like Peptide 1 (GLP-1), and their Analogs. Pharmaceutics 2023; 15:2265. [PMID: 37765234 PMCID: PMC10534625 DOI: 10.3390/pharmaceutics15092265] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 09/29/2023] Open
Abstract
Injectable peptides such as insulin, glucagon-like peptide 1 (GLP-1), and their agonists are being increasingly used for the treatment of diabetes. Currently, the most common route of administration is injection, which is linked to patient discomfort as well as being subjected to refrigerated storage and the requirement for efficient supply chain logistics. Buccal and sublingual routes are recognized as valid alternatives due to their high accessibility and easy administration. However, there can be several challenges, such as peptide selection, drug encapsulation, and delivery system design, which are linked to the enhancement of drug efficacy and efficiency. By using hydrophobic polymers that do not dissolve in saliva, and by using neutral or positively charged nanoparticles that show better adhesion to the negative charges generated by the sialic acid in the mucus, researchers have attempted to improve drug efficiency and efficacy in buccal delivery. Furthermore, unidirectional films and tablets seem to show the highest bioavailability as compared to sprays and other buccal delivery vehicles. This advantageous attribute can be attributed to their capability to mitigate the impact of saliva and inadvertent gastrointestinal enzymatic digestion, thereby minimizing drug loss. This is especially pertinent as these formulations ensure a more directed drug delivery trajectory, leading to heightened therapeutic outcomes. This communication describes the current state of the art with respect to the creation of nanoparticles containing peptides such as insulin, glucagon-like peptide 1 (GLP-1), and their agonists, and theorizes the production of mucoadhesive unidirectional release buccal tablets or films. Such an approach is more patient-friendly and can improve the lives of millions of diabetics around the world; in addition, these shelf-stable formulations ena a more environmentally friendly and sustainable supply chain network.
Collapse
Affiliation(s)
- Anubhav Pratap-Singh
- Food, Nutrition, and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Yigong Guo
- Food, Nutrition, and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
- Natural Health and Food Products Research Group, Centre for Applied Research & Innovation (CARI), British Columbia Institute of Technology, Burnaby, BC V5G 3H2, Canada
| | - Alberto Baldelli
- Food, Nutrition, and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Anika Singh
- Food, Nutrition, and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
- Natural Health and Food Products Research Group, Centre for Applied Research & Innovation (CARI), British Columbia Institute of Technology, Burnaby, BC V5G 3H2, Canada
| |
Collapse
|
16
|
Hosseini SM, Soltanabadi A, Abdouss M, Mazinani S. Investigating the structure of the product of graphene oxide reaction with folic acid and chitosan: density functional theory calculations. J Biomol Struct Dyn 2022; 40:14146-14159. [PMID: 34791994 DOI: 10.1080/07391102.2021.2001372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chitosan biopolymer was used to modify the level of graphene oxide. And the composite prepared from graphene oxide/chitosan, due to its favorable physical and chemical properties, have been used as a drug delivery system. In this study, the adsorption of Folic acid on the carrier was investigated using density functional theory (DFT). The geometry optimizations, electronic structures, and gas-phase properties of widely applicable graphene (G), graphene oxide (GO), chitosan (CS), folic acid (FA), GO-CS and GO-CS-FA were investigated using DFT. The studied molecules are based on graphene oxide. In GO-CS, DFT calculation show that two Chitosan connected to the GO molecule on both opposite sides, so that two Chitosan have maximum distance from each other. Finally, the electronic structure of FA was obtained with this molecule calculated and discussed. The interaction of hydrogen bonds in the most stable pair formers between molecules were determined. Furthermore, the hydrogen bonds were studied by atom in molecules natural bond orbital analyses.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Azim Soltanabadi
- Department of Physical Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Saeedeh Mazinani
- New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
17
|
Unal İ, Egri S, Ates M. Green Synthesis (Paeonia kesrouanensis) of Silver Nanoparticles and Toxicity Studies in Artemia salina. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:1150-1154. [PMID: 35997791 DOI: 10.1007/s00128-022-03601-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
This study aims to describe a simple and environmentally friendly procedure for producing silver nanoparticles (AgNPs) using Paeonia kesrouanensis (P. kesrouanensis) extracts and to determine the toxic effect in the aquatic environment. The morphologies, size, size distributions, and structural properties were analyzed using SEM-EDX, TEM, DLS, zeta potential, FTIR, and XRD. AgNPs were applied to Artemia salina (A.salina), aquatic organism individuals at 7 different concentrations (0.0, 0.2, 1, 5, 10, 25, 50 mg/L) for 24, 48, and 72 h. AgNPs accumulation and elimination, ion release amounts, and the survival rates of organisms were determined at periods of 24, 48, and 72nd hours. The highest accumulation was observed at the 24th hour at the 50 mg/L exposure level. The survival rate decreased as exposure time increased at all concentrations.
Collapse
Affiliation(s)
- İlkay Unal
- Department of Gastronomy and Culinary Arts, Faculty of Fine Arts, Design and Architecture Education, Munzur University, Tunceli, Turkey.
| | - Sinan Egri
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Gaziosmanpaşa University, Tokat, Turkey
| | - Mehmet Ates
- Department of Gastronomy and Culinary Arts, Faculty of Fine Arts, Design and Architecture Education, Munzur University, Tunceli, Turkey
| |
Collapse
|
18
|
Anitha S, Selvapriya R, Shankar R, Nalini B, Sasirekha V, Mayandi J. Evidence of charge donation through synergistic effect of bioconjugated silver nanoparticles with flavanols accomplishing augmented antimicrobial and antioxidant activities. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Aravind M, Kumarisubitha T, Ahmed N, Velusamy P. DFT, Molecular docking, Photocatalytic and Antimicrobial activity of coumarin enriched Cinnamon barkextract mediated silver nanoparticles. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Dhaka A, Raj S, Githala CK, Chand Mali S, Trivedi R. Balanites aegyptiaca leaf extract-mediated synthesis of silver nanoparticles and their catalytic dye degradation and antifungal efficacy. Front Bioeng Biotechnol 2022; 10:977101. [PMID: 36267455 PMCID: PMC9576921 DOI: 10.3389/fbioe.2022.977101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/02/2022] [Indexed: 12/04/2022] Open
Abstract
This study describes the biosynthesis of silver nanoparticles (AgNPs) using Balanites aegyptiaca (B. aegyptiaca) leaf extract. The biosynthesized AgNPs were characterized by UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy with (SEM-EDS). The AgNPs showed an average size of 10–20 nm, spherical shape, and crystalline nature. The application of these synthesized AgNPs to dye degradation showed that the AgNPs removed the two organic pollutants methylene blue (MB, 93.47%) and congo red (CR, (78.57%). In vitro investigation of the antifungal activity of the AgNPs against Fusarium oxysporum, a phytopathogenic fungus, showed a maximum percent radial growth inhibition of 82.00 ± 1.00% and a spore percent inhibition of 73.66 ± 3.94 for 150 μg/ml of biosynthesized AgNPs.
Collapse
Affiliation(s)
| | - Shani Raj
- *Correspondence: Shani Raj, ; Rohini Trivedi,
| | | | | | | |
Collapse
|
21
|
Anjum S, Chaudhary R, Khan AK, Hashim M, Anjum I, Hano C, Abbasi BH. Light-emitting diode (LED)-directed green synthesis of silver nanoparticles and evaluation of their multifaceted clinical and biological activities. RSC Adv 2022; 12:22266-22284. [PMID: 36043104 PMCID: PMC9364226 DOI: 10.1039/d2ra03503k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
The trend of using plant extracts for the synthesis of nanoparticles has increased in recent years due to environmental safety, low cost, simplicity and sustainability of the green route. Moreover, the morphology of NPs can be fine-tuned by applying abiotic factors such as LEDs, which enhance the bio-reduction of the precursor salt and excite phytochemicals during their green synthesis. Considering this, in present study, the green synthesis of AgNPs was carried out using Dalbergia sissoo leaf extract under the illumination of red, green, blue, yellow and white LEDs. The phytochemical profile of the leaf extract in terms of total phenolic and flavonoid content was responsible for the effective synthesis of AgNPs, where alcohols and phenols were mainly involved in the capping and bio-reduction of the NPs. Moreover, the XRD data showed the face center cubic crystalline nature of the AgNPs with the interesting finding that the LEDs helped to reduce the size of the AgNPs significantly. Among the samples, Y-DS-AgNPs (34.63 nm) were the smallest in size, with the control having a size of 87.35 nm. The LEDs not only reduced the size of the AgNPs but also resulted in the synthesis of non-agglomerated AgNPs with different shapes including spherical, triangular, and hexagonal compared to the mixed-shape control AgNPs, as shown by the SEM analysis. These LED-directed AgNPs showed extraordinary therapeutic potential especially B-DS-AgNPs, which exhibited the highest anti-oxidant, anti-glycation and anti-bacterial activities. Alternatively, Y-DS-AgNPs were the most cytotoxic towards HepG2 cells, inducing intracellular ROS/RNS production, accompanied by a disruption in the mitochondrial membrane potential, caspase-3 gene activation and induction of caspase-3/7 activity. Lastly, AgNPs showed mild toxicity towards brine shrimp and moderately hemolyzed hRBCs, showing their biosafe nature. Here, we conclude that external factors such as LEDs are effective in controlling the morphology of AgNPs, which further enhanced their therapeutic efficacy.
Collapse
Affiliation(s)
- Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women 92-Jail Road Lahore-54000 Pakistan +92-3006957038
| | - Rimsha Chaudhary
- Department of Biotechnology, Kinnaird College for Women 92-Jail Road Lahore-54000 Pakistan +92-3006957038
| | - Amna Komal Khan
- Department of Biotechnology, Kinnaird College for Women 92-Jail Road Lahore-54000 Pakistan +92-3006957038
| | - Mariam Hashim
- Department of Biotechnology, Kinnaird College for Women 92-Jail Road Lahore-54000 Pakistan +92-3006957038
| | - Iram Anjum
- Department of Biotechnology, Kinnaird College for Women 92-Jail Road Lahore-54000 Pakistan +92-3006957038
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, University of Orleans 45067 Orléans CEDEX 2 France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University Islamabad-45320 Pakistan
| |
Collapse
|
22
|
Mansour H, Abd El.Halium EM, Alrasheedi NF, Zoromba M, Al-Hossainy AF. Physical properties and DFT calculations of the hybrid organic polymeric nanocomposite thin film [P(An+o-Aph)+Glycine/TiO2/]HNC with 7.42% power conversion efficiency. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Mazmancı B, Könen Adıgüzel S, Sadak YS, Yetkin D, Ay H, Adıgüzel AO. Antimicrobial, antibiofilm, and anticancer potential of silver nanoparticles synthesized using pigment-producing Micromonospora sp. SH121. Prep Biochem Biotechnol 2022; 53:475-487. [PMID: 35857430 DOI: 10.1080/10826068.2022.2101001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Silver nanoparticles (AgNPs) have gained interest as an alternative pharmaceutical agent because of antimicrobial resistance and drug toxicity. Considering the increasing request, eco-friendly, sustainable, and cost-effective synthesis of versatile AgNPs has become necessary. In this study, green-made AgNPs were successfully synthesized using Micromonospora sp. SH121 (Mm-AgNPs). Synthesis was verified by surface plasmon resonance (SPR) peak at 402 nm wavelength in the UV-Visible (UV-Vis) absorption spectrum. Scanning electron microscopy (SEM) analysis depicted that Mm-AgNPs were in the size range of 10-30 nm and spherical. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of bioactive molecules on the surface of nanoparticles. The X-ray diffraction (XRD) analysis revealed the face-centered cubic (fcc) structure of the Mm-AgNPs. Their polydispersity index (PDI) and zeta potential were 0. 284 and -35.3 mV, respectively. Mm-AgNPs (4-32 µg/mL) exhibited strong antimicrobial activity against Bacillus cereus, Enterococcus faecalis, Enterococcus hirae, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas putida, Staphylococcus epidermidis, Streptococcus pneumoniae, and Aspergillus flavus. Mm-AgNPs partially inhibited the biofilm formation in Acinetobacter baumannii, E. coli, K. pneumoniae, and Pseudomonas aeruginosa. Furthermore, results showed that low concentrations of Mm-AgNPs (1 and 10 µg/mL) caused higher cytotoxicity and apoptosis in DU 145 cells than human fibroblast cells. Based on the results, Mm-AgNPs have an excellent potential for treating infectious diseases and prostate cancer.
Collapse
Affiliation(s)
- Birgül Mazmancı
- Department of Nanotechnology and Advanced Material, Science Institute, Mersin University, Mersin, Turkey.,Department of Biology, Faculty of Science and Letter, Mersin University, Mersin, Turkey
| | - Serpil Könen Adıgüzel
- Department of Biology, Faculty of Science and Letter, Süleyman Demirel University, Isparta, Turkey
| | - Yiğit Süha Sadak
- Department of Biology, Faculty of Science and Letter, Mersin University, Mersin, Turkey
| | - Derya Yetkin
- Faculty of Science and Letter, Advanced Technology Education Research and Application Center, Süleyman Demirel University, Isparta, Turkey
| | - Hilal Ay
- Department of Molecular Biology and Genetics, Faculty of Science and Letter, Ondokuz Mayıs University, Samsun, Turkey
| | - Ali Osman Adıgüzel
- Department of Molecular Biology and Genetics, Faculty of Science and Letter, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
24
|
Nguyen NTT, Nguyen LM, Nguyen TTT, Liew RK, Nguyen DTC, Tran TV. Recent advances on botanical biosynthesis of nanoparticles for catalytic, water treatment and agricultural applications: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154160. [PMID: 35231528 DOI: 10.1016/j.scitotenv.2022.154160] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Green synthesis of nanoparticles using plant extracts minimizes the usage of toxic chemicals or energy. Here, we concentrate on the green synthesis of nanoparticles using natural compounds from plant extracts and their applications in catalysis, water treatment and agriculture. Polyphenols, flavonoid, rutin, quercetin, myricetin, kaempferol, coumarin, and gallic acid in the plant extracts engage in the reduction and stabilization of green nanoparticles. Ten types of nanoparticles involving Ag, Au, Cu, Pt, CuO, ZnO, MgO, TiO2, Fe3O4, and ZrO2 with emphasis on their formation mechanism are illuminated. We find that green nanoparticles serve as excellent, and recyclable catalysts for reduction of nitrophenols and synthesis of organic compounds with high yields of 83-100% and at least 5 recycles. Many emerging pollutants such as synthetic dyes, antibiotics, heavy metal and oils are effectively mitigated (90-100%) using green nanoparticles. In agriculture, green nanoparticles efficiently immobilize toxic compounds in soil. They are also sufficient nanopesticides to kill harmful larvae, and nanoinsecticides against dangerous vectors of pathogens. As potential nanofertilizers and nanoagrochemicals, green nanoparticles will open a revolution in green agriculture for sustainable development.
Collapse
Affiliation(s)
- Ngoan Thi Thao Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Luan Minh Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Rock Keey Liew
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; NV WESTERN PLT, No. 208B, Jalan Macalister, Georgetown 10400, Pulau Pinang, Malaysia
| | - Duyen Thi Cam Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| |
Collapse
|
25
|
Mosa WFA, Mackled MI, Abdelsalam NR, Behiry SI, Al-Askar AA, Basile A, Abdelkhalek A, Elsharkawy MM, Salem MZM. Impact of Silver Nanoparticles on Lemon Growth Performance: Insecticidal and Antifungal Activities of Essential Oils From Peels and Leaves. FRONTIERS IN PLANT SCIENCE 2022; 13:898846. [PMID: 35677237 PMCID: PMC9168914 DOI: 10.3389/fpls.2022.898846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/25/2022] [Indexed: 05/06/2023]
Abstract
Ten-year-old lemon (Citrus limon L. cv. Eureka) was used during the 2019 and 2020 seasons to investigate the effect of AgNPs at control, 5, 7.5, and 10 mg/L as a foliar application on vegetative growth, yield, and fruit quality. The selected trees were subjected to agricultural practices applied in the field during the study. The results indicated that the foliar application of AgNPs positively improved the shoot length, total chlorophyll, flower, and fruit set percentage, fruit yield, physical and chemical characteristics of fruits, and leaf mineral composition from macro and micronutrients compared to control in both seasons. The foliar application of AgNPs at 10 mg/L showed the highest mean values followed by 7.5 and 5 mg/L, respectively, for the previous characteristics. The treated leaves and fruit peels were hydrodistillated to extract the essential oils (EOs), and GC-MS analysis of leaf EOs. The analysis of leaves EOs showed the presence of neral, geranial, neryl acetate, and limonene as the main abundant bioactive compounds. While in peel the main compounds were neral, geranial, neryl acetate, D-limonene, geraniol acetate, linalool, and citronellal. Toxin effect of both EOs from leaves and peels were evaluated on the rice weevils (Sitophilus oryzae) and the results indicated a higher effect of lemon peel EOs than leaves based on mortality percentage and the values of LC50 and LC95 mg/L. Melia azedarach wood samples loaded with the produced lemon EOs were evaluated for their antifungal activity against the molecularly identified fungus, Fusarium solani (acc # OL410542). The reduction in mycelial growth was increased gradually with the applied treatments. The most potent activity was found in lemon leaf EOs, while peel EOs showed the lowest reduction values. The mycelial growth reduction percentages reached 72.96 and 52.59%, by 0.1% leaf and peel EOs, respectively, compared with control.
Collapse
Affiliation(s)
- Walid F. A. Mosa
- Department of Plant Production (Horticulture-Pomology), Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Marwa I. Mackled
- Department of Stored Product Pests, Plant Protection Institute, Agriculture Research Center, Alexandria, Egypt
| | - Nader R. Abdelsalam
- Department of Agricultural Botany, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Said I. Behiry
- Department of Agricultural Botany, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Adriana Basile
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Ahmed Abdelkhalek
- Department of Plant Protection and Biomolecular Diagnosis, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications, New Borg El Arab City, Egypt
| | - Mohsen M. Elsharkawy
- Department of Agricultural Botany, Faculty of Agriculture, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Mohamed Z. M. Salem
- Department of Forestry and Wood Technology, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt
| |
Collapse
|
26
|
Desai AS, Singh A, Edis Z, Haj Bloukh S, Shah P, Pandey B, Agrawal N, Bhagat N. An In Vitro and In Vivo Study of the Efficacy and Toxicity of Plant-Extract-Derived Silver Nanoparticles. J Funct Biomater 2022; 13:jfb13020054. [PMID: 35645262 PMCID: PMC9149986 DOI: 10.3390/jfb13020054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/17/2022] [Accepted: 05/05/2022] [Indexed: 02/05/2023] Open
Abstract
Silver nanoparticles (AgNPs) display unique plasmonic and antimicrobial properties, enabling them to be helpful in various industrial and consumer products. However, previous studies showed that the commercially acquired silver nanoparticles exhibit toxicity even in small doses. Hence, it was imperative to determine suitable synthesis techniques that are the most economical and least toxic to the environment and biological entities. Silver nanoparticles were synthesized using plant extracts and their physico-chemical properties were studied. A time-dependent in vitro study using HEK-293 cells and a dose-dependent in vivo study using a Drosophila model helped us to determine the correct synthesis routes. Through biological analyses, we found that silver nanoparticles’ cytotoxicity and wound-healing capacity depended on size, shape, and colloidal stability. Interestingly, we observed that out of all the synthesized AgNPs, the ones derived from the turmeric extract displayed excellent wound-healing capacity in the in vitro study. Furthermore, the same NPs exhibited the least toxic effects in an in vivo study of ingestion of these NPs enriched food in Drosophila, which showed no climbing disability in flies, even at a very high dose (250 mg/L) for 10 days. We propose that stabilizing agents played a superior role in establishing the bio-interaction of nanoparticles. Our study reported here verified that turmeric-extract-derived AgNPs displayed biocompatibility while exhibiting the least cytotoxicity.
Collapse
Affiliation(s)
- Anjana S. Desai
- Department of Applied Science, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune 412115, India; (A.S.D.); (B.P.)
| | - Akanksha Singh
- Department of Zoology, University of Delhi, New Delhi 110007, India;
| | - Zehra Edis
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Correspondence: (Z.E.); (N.A.); (N.B.); Tel.: +971-5-6694-7751 (Z.E.)
| | - Samir Haj Bloukh
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Department of Clinical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Prasanna Shah
- Department of Physics, Acropolis Institute of Technology and Research, Indore 453771, India;
| | - Brajesh Pandey
- Department of Applied Science, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune 412115, India; (A.S.D.); (B.P.)
| | - Namita Agrawal
- Department of Zoology, University of Delhi, New Delhi 110007, India;
- Correspondence: (Z.E.); (N.A.); (N.B.); Tel.: +971-5-6694-7751 (Z.E.)
| | - Neeru Bhagat
- Department of Applied Science, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune 412115, India; (A.S.D.); (B.P.)
- Correspondence: (Z.E.); (N.A.); (N.B.); Tel.: +971-5-6694-7751 (Z.E.)
| |
Collapse
|
27
|
Shahabadi N, Mahdavi M. Green synthesized silver nanoparticles obtained from Stachys schtschegleevii extract: ct-DNA interaction and in silico and in vitro investigation of antimicrobial activity. J Biomol Struct Dyn 2022; 41:2175-2188. [PMID: 35048781 DOI: 10.1080/07391102.2022.2028680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The aim of this study was the synthesis of Ag nanoparticles (AgNPs) by using Stachys schtschegleevii extract and checking the composition, morphology and size of the green synthesized AgNPs using the analytical techniques (UV-vis, DLS, zeta potential, SEM-EDX, FT-IR and TEM). The TEM images of AgNPs represent a smooth surface and are spherical in shape with an average particle size of 31.43 nm. The antioxidant activities of green synthesized AgNPs were appraised by radical scavenging 1, 1-diphenyl-2-picrylhydrazyl test and the green synthesized AgNPs showed a strong ability to scavenge free radicals. In addition, AgNPs displayed a remarkable antibacterial and antifungal activity against various microorganisms. We employed molecular docking to investigate the AgNPs interaction with Dihydrofolate reductase (DHFR) of Escherichia coli, Staphylococcus aureus, and Candida albicans and there is a good agreement between molecular docking and our experimental results. The result of ct-DNA-AgNPs interaction demonstrated that AgNPs can bind to ct-DNA through partial intercalation binding mode.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran.,Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Mahdavi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
28
|
Saikia M, Das T, Saikia BK. A novel rapid synthesis of highly stable silver nanoparticle/carbon quantum dot nanocomposites derived from low-grade coal feedstock. NEW J CHEM 2022. [DOI: 10.1039/d1nj04039a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Coal-based highly stable carbon quantum dot/silver nanocomposites.
Collapse
Affiliation(s)
- Monikankana Saikia
- Coal & Energy Group, Materials Science and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat 785006, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Tonkeswar Das
- Coal & Energy Group, Materials Science and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat 785006, India
| | - Binoy K Saikia
- Coal & Energy Group, Materials Science and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat 785006, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|