1
|
Bláha P, Koshlan NA, Koshlan IV, Petrova DV, Bogdanova YV, Govorun RD, Múčka V, Krasavin EA. Delayed effects of accelerated heavy ions on the induction of HPRT mutations in V79 hamster cells. Mutat Res 2017; 803-805:35-41. [PMID: 28910671 DOI: 10.1016/j.mrfmmm.2017.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/15/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
Fundamental research on the harmful effects of ionizing radiation on living cells continues to be of great interest. Recently, priority has been given to the study of high-charge and high-energy (HZE) ions that comprise a substantial part of the galactic cosmic ray (GCR) spectra that would be encountered during long-term space flights. Moreover, predictions of the delayed genetic effects of high linear energy transfer (LET) exposure is becoming more important as heavy ion therapy use is increasing. This work focuses mainly on the basic research on the delayed effects of HZE ions on V79 Chinese hamster cells, with emphasis on the induction of HPRT mutations after prolonged expression times (ET). The research was conducted under various irradiation conditions with accelerated ions 18O (E=35.2MeV/n), 20Ne (E=47.7MeV/n and 51.8MeV/n), and 11B (E=32.4MeV/n), with LET in the range from 49 to 149 keV/μm and with 60Co γ-rays. The HPRT mutant fractions (MF) were detected in irradiated cells in regular intervals during every cell culture recultivation (every 3days) up to approximately 40days (70-80 generations) after irradiation. The MF maximum was reached at different ET depending on ionizing radiation characteristics. The position of the maximum was shifting towards longer ET with increasing LET. We speculate that the delayed mutations are created de novo and that they are the manifestation of genomic instability. Although the exact mechanisms involved in genomic instability initiation are yet to be identified, we hypothesize that differences in induction of delayed mutations by radiations with various LET values are related to variations in energy deposition along the particle track. A dose dependence of mutation yield is discussed as well.
Collapse
Affiliation(s)
- Pavel Bláha
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot--Curie 6, 141980, Dubna, Moscow Region, Russia; Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 11519, Prague 1, Czech Republic.
| | - Nataliya A Koshlan
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot--Curie 6, 141980, Dubna, Moscow Region, Russia.
| | - Igor V Koshlan
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot--Curie 6, 141980, Dubna, Moscow Region, Russia; Dubna State University, Universitetskaya 19, 141980, Dubna, Moscow Region, Russia.
| | - Daria V Petrova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot--Curie 6, 141980, Dubna, Moscow Region, Russia. edv-@mail.ru
| | - Yulia V Bogdanova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot--Curie 6, 141980, Dubna, Moscow Region, Russia.
| | - Raisa D Govorun
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot--Curie 6, 141980, Dubna, Moscow Region, Russia.
| | - Viliam Múčka
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 11519, Prague 1, Czech Republic.
| | - Evgeny A Krasavin
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot--Curie 6, 141980, Dubna, Moscow Region, Russia.
| |
Collapse
|
2
|
Ojima M, Iwashita K, Kashino G, Kobashigawa S, Sasano N, Takeshita A, Ban N, Kai M. Early and Delayed Induction of DSBs by Nontargeted Effects in ICR Mouse Lymphocytes after In Vivo X Irradiation. Radiat Res 2016; 186:65-70. [PMID: 27351761 DOI: 10.1667/rr14053.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The goal of this study was to determine whether in vivo X irradiation induces nontargeted effects, such as delayed effects and bystander effects in ICR mouse lymphocytes. We first examined the generation of DNA double-strand breaks (DSBs) in lymphocytes, isolated from ICR mice exposed to 1 Gy X irradiation, by enumeration of p53 binding protein 1 (53BP1) foci, and observed that the number of 53BP1 foci reached their maximum 3 days postirradiation and decreased to background level 30 days postirradiation. However, the number of 53BP1 foci was significantly increased in lymphocytes isolated from ICR mice 90-365 days postirradiation. This result indicates that in vivo X irradiation induced delayed DSBs in ICR mouse lymphocytes. We next counted the number of 53BP1 foci in lymphocytes isolated from sham-irradiated ICR mice that had been co-cultured with lymphocytes isolated from 1 Gy X-irradiated ICR mice, and observed a significant increase in the number of 53BP1 foci 1-7 days postirradiation. This result indicates that in vivo X irradiation induced bystander effects in ICR mouse lymphocytes. These findings suggest that in vivo X irradiation induces early and delayed nontargeted effects in ICR mouse lymphocytes.
Collapse
Affiliation(s)
- Mitsuaki Ojima
- a Department of Environmental Health Science, Oita University of Nursing and Health Sciences, Oita 840-1201, Japan
| | - Keiko Iwashita
- a Department of Environmental Health Science, Oita University of Nursing and Health Sciences, Oita 840-1201, Japan
| | - Genro Kashino
- b Advanced Molecular Center, Faculty of Medicine, Oita University, Yufu 879-5593, Japan
| | - Shinko Kobashigawa
- b Advanced Molecular Center, Faculty of Medicine, Oita University, Yufu 879-5593, Japan
| | - Noriko Sasano
- a Department of Environmental Health Science, Oita University of Nursing and Health Sciences, Oita 840-1201, Japan
| | - Akiko Takeshita
- a Department of Environmental Health Science, Oita University of Nursing and Health Sciences, Oita 840-1201, Japan
| | - Nobuhiko Ban
- c Tokyo Healthcare University, Tokyo 152-8558, Japan
| | - Michiaki Kai
- a Department of Environmental Health Science, Oita University of Nursing and Health Sciences, Oita 840-1201, Japan
| |
Collapse
|
3
|
Martínez-Espinosa R, Argüello-García R, Saavedra E, Ortega-Pierres G. Albendazole induces oxidative stress and DNA damage in the parasitic protozoan Giardia duodenalis. Front Microbiol 2015; 6:800. [PMID: 26300866 PMCID: PMC4526806 DOI: 10.3389/fmicb.2015.00800] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/22/2015] [Indexed: 12/15/2022] Open
Abstract
The control of Giardia duodenalis infections is carried out mainly by drugs, among these albendazole (ABZ) is commonly used. Although the cytotoxic effect of ABZ usually involves binding to β-tubulin, it has been suggested that oxidative stress may also play a role in its parasiticidal mechanism. In this work the effect of ABZ in Giardia clones that are susceptible or resistant to different concentrations (1.35, 8, and 250 μM) of this drug was analyzed. Reactive oxygen species (ROS) were induced by ABZ in susceptible clones and this was associated with a decrease in growth that was alleviated by cysteine supplementation. Remarkably, ABZ-resistant clones exhibited partial cross-resistance to H2O2, whereas a Giardia H2O2-resistant strain can grow in the presence of ABZ. Lipid oxidation and protein carbonylation in ABZ-treated parasites did not show significant differences as compared to untreated parasites; however, ABZ induced the formation of 8OHdG adducts and DNA degradation, indicating nucleic acid oxidative damage. This was supported by observations of histone H2AX phosphorylation in ABZ-susceptible trophozoites treated with 250 μM ABZ. Flow cytometry analysis showed that ABZ partially arrested cell cycle in drug-susceptible clones at G2/M phase at the expense of cells in G1 phase. Also, ABZ treatment resulted in phosphatidylserine exposure on the parasite surface, an event related to apoptosis. All together these data suggest that ROS induced by ABZ affect Giardia genetic material through oxidative stress mechanisms and subsequent induction of apoptotic-like events.
Collapse
Affiliation(s)
- Rodrigo Martínez-Espinosa
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional México City, Mexico
| | - Raúl Argüello-García
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional México City, Mexico
| | - Emma Saavedra
- Department of Biochemistry, Instituto Nacional de Cardiología Ignacio Chávez México City, Mexico
| | - Guadalupe Ortega-Pierres
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional México City, Mexico
| |
Collapse
|
4
|
Eidemüller M, Holmberg E, Jacob P, Lundell M, Karlsson P. Breast cancer risk and possible mechanisms of radiation-induced genomic instability in the Swedish hemangioma cohort after reanalyzed dosimetry. Mutat Res 2015; 775:1-9. [PMID: 25839758 DOI: 10.1016/j.mrfmmm.2015.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 06/04/2023]
Abstract
The cohort of 17,200 female Swedish hemangioma patients, who had been exposed to ionizing radiation because of skin hemangioma, was analyzed for breast cancer incidence with descriptive excess relative risk models and mechanistic models of carcinogenesis. The dosimetry system has recently been updated, leading to substantially reduced doses for the most highly exposed part of the Stockholm cohort. The follow-up includes persons until December 2009 with 877 breast cancer cases. All models agree on the risk estimates. The excess relative and excess absolute risk at the age of 50 years are 0.48 Gy(-1) (95% CI 0.28; 0.69) and 10.4 (10(4)PYR Gy)(-1) (95% CI 6.1; 14.4) (95% CI 6.1; 14.4), respectively. These risk estimates are about a factor of 2 higher than previous analyses of this cohort as a consequence of the re-evaluation of the dosimetry system. Explicit models incorporating effects of genomic instability were developed and applied to the hemangioma cohort. It was found that a radiation-induced transition towards genomic instability was highly significant. The models indicate that the main effect of radiation-induced genomic instability is to increase the rate of transition of non-initiated cells to initiated cells with a proliferative advantage. The magnitude of such an acceleration cannot be inferred from epidemiological data alone, but must be complemented by radiobiological measurements.
Collapse
Affiliation(s)
- Markus Eidemüller
- Helmholtz Zentrum München, Institute of Radiation Protection, 85764 Neuherberg, Germany.
| | - Erik Holmberg
- Department of Oncology, Sahlgrenska University Hospital, SE-413 45 Göteborg, Sweden
| | - Peter Jacob
- Helmholtz Zentrum München, Institute of Radiation Protection, 85764 Neuherberg, Germany
| | - Marie Lundell
- Department of Medical Physics and Oncology, Karolinska University Hospital and Karolinska Institute, SE-171 76 Stockholm, Sweden
| | - Per Karlsson
- Department of Oncology, Sahlgrenska University Hospital, SE-413 45 Göteborg, Sweden
| |
Collapse
|
5
|
Zhang SB, Yang S, Vidyasagar S, Zhang M, Casey-Sawicki K, Liu C, Yin L, Zhang L, Cao Y, Tian Y, Swarts S, Fenton BM, Keng P, Zhang L, Okunieff P. PicoGreen assay of circular DNA for radiation biodosimetry. Radiat Res 2015; 183:188-95. [PMID: 25574588 DOI: 10.1667/rr13556.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We developed a simple, rapid and quantitative assay using the fluorescent probe PicoGreen to measure the concentration of ionizing radiation-induced double-stranded DNA (dsDNA) in mouse plasma, and we correlated this concentration with the radiation dose. With 70 μl of blood obtained by fingerstick, this 30 min assay reduces protein interference without extending sample processing time. Plasma from nonirradiated mice (BALB/c and NIH Swiss) was pooled, diluted and spiked with dsDNA to establish sensitivity and reproducibility of the assay to quantify plasma dsDNA. The assay was then used to directly quantify dsDNA in plasma at 0-48 h after mice received 0-10 Gy total-body irradiation (TBI). There are three optimal conditions for this assay: 1:10 dilution of plasma in water; 1:200 dilution of PicoGreen reagent in water; and calibration of radiation-induced dsDNA concentration through a standard addition method using serial spiking of samples with genomic dsDNA. Using the internal standard calibration curve of the spiked samples method, the signal developed within 5 min, exhibiting a linear signal (r(2) = 0.997). The radiation-induced elevation of plasma DNA in mice started at 1-3 h, peaked at 9 h and gradually returned to baseline at 24 h after TBI (6 Gy). DNA levels in plasma collected from mice 9 h after 0-10 Gy TBI correlated strongly with dose (r(2) = 0.991 and 0.947 for BALB/c and NIH Swiss, respectively). Using the PicoGreen assay, we observed a radiation dose-dependent response in extracellular plasma DNA 9 h after irradiation with an assay time ≤ 30 min.
Collapse
Affiliation(s)
- Steven B Zhang
- a Department of Radiation Oncology, University of Florida Health Cancer Center, Gainesville, Florida 32610
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Neural stem cells (NSCs) are highly susceptible to DNA double-strand breaks; however, little is known about the effects of radiation in cells surviving radiation. Although the nestin-positive NSCs predominantly became glial fibrillary acidic protein (GFAP)-positive in differentiation-permissive medium, little or no cells were GFAP positive in proliferation-permissive medium. We found that more than half of the cells surviving X-rays became GFAP positive in proliferation-permissive medium. Moreover, localized irradiation stimulated differentiation of cells outside the irradiated area. These results indicate for the first time that ionizing radiation is able to stimulate astrocyte-specific differentiation of surviving NSCs, whose process is mediated both by the direct activation of nuclear factor-κB and by the indirect bystander effect induced by X-irradiation.
Collapse
|
7
|
Bensimon J, Altmeyer-Morel S, Benjelloun H, Chevillard S, Lebeau J. CD24(-/low) stem-like breast cancer marker defines the radiation-resistant cells involved in memorization and transmission of radiation-induced genomic instability. Oncogene 2012; 32:251-8. [PMID: 22330142 DOI: 10.1038/onc.2012.31] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A growing body of evidence attributes properties of chemo- and/or radiation-resistance to cancer stem cells (CSCs). Moreover, non-targeted delayed effects such as genomic instability, transmitted through many generations, can be observed in the progeny of surviving irradiated cells. As a consequence, we propose that radiation-resistance properties associated to CSCs could confer a key role to this subpopulation in the transmission of genomic instability. To test this hypothesis, we searched the CSC markers associated to radiation-resistance in breast cancer cell lines and studied the role of the resistant cells in the transmission of genomic instability. First, we show that irradiation induces a 2-4 weeks period of intense cell death leading to the emergence of chromosomal unstable cells during more than 35 population doublings. Then, among seven breast CSC markers, we identify CD24(-/low) labelling as a marker of radiation-resistance. We demonstrate that CD24(+) progeny of irradiated cells exclusively descends from CD24(-/low) cells. Finally, we show that delayed chromosomal instability is only expressed by CD24(+) cells, but is transmitted by stable surviving CD24(-/low) cells. So, for the first time a CSC marker, CD24, is associated with the transmission of genomic instability. This work may assign a new deleterious role to breast CSCs in aggressive recurrence after radiotherapy, as the transmitted genomic instability potentially leads tumour cells to acquire more aggressive characteristics.
Collapse
Affiliation(s)
- J Bensimon
- CEA, DSV, iRCM, SREIT, Laboratoire de Cancérologie Expérimentale (LCE), Fontenay-aux-Roses, France
| | | | | | | | | |
Collapse
|
8
|
Pauwels EKJ, Bourguignon MH. Radiation dose features and solid cancer induction in pediatric computed tomography. Med Princ Pract 2012; 21:508-15. [PMID: 22472997 DOI: 10.1159/000337404] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 01/24/2012] [Indexed: 12/17/2022] Open
Abstract
Over the past two decades technical advances and improvements have made computed tomography (CT) a valuable and essential tool in the array of diagnostic imaging modalities. CT uses ionizing radiation (X-rays) which may damage DNA and increase the risk of carcinogenesis. This is especially pertinent in pediatric CT as children are more radiosensitive and have a longer life expectancy than adults. The purpose of this paper is to review and elucidate the potential harmful effects of ionizing radiation in terms of solid cancer induction from pediatric CT scanning. In the light of scientific and technical developments, we will also discuss the possible strategies and ongoing efforts to reduce CT radiation exposure in pediatric patients. In this context, we will not ignore the fact that a well-justified CT scan may exceed its risk and have a favorable impact.
Collapse
Affiliation(s)
- Ernest K J Pauwels
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands. ernestpauwels @ gmail.com
| | | |
Collapse
|
9
|
Rello-Varona S, Kepp O, Vitale I, Michaud M, Senovilla L, Jemaà M, Joza N, Galluzzi L, Castedo M, Kroemer G. An automated fluorescence videomicroscopy assay for the detection of mitotic catastrophe. Cell Death Dis 2011; 1:e25. [PMID: 21364633 PMCID: PMC3032329 DOI: 10.1038/cddis.2010.6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitotic catastrophe can be defined as a cell death mode that occurs during or shortly after a prolonged/aberrant mitosis, and can show apoptotic or necrotic features. However, conventional procedures for the detection of apoptosis or necrosis, including biochemical bulk assays and cytofluorometric techniques, cannot discriminate among pre-mitotic, mitotic and post-mitotic death, and hence are inappropriate to monitor mitotic catastrophe. To address this issue, we generated isogenic human colon carcinoma cell lines that differ in ploidy and p53 status, yet express similar amounts of fluorescent biosensors that allow for the visualization of chromatin (histone H2B coupled to green fluorescent protein (GFP)) and centrosomes (centrin coupled to the Discosoma striata red fluorescent protein (DsRed)). By combining high-resolution fluorescence videomicroscopy and automated image analysis, we established protocols and settings for the simultaneous assessment of ploidy, mitosis, centrosome number and cell death (which in our model system occurs mainly by apoptosis). Time-lapse videomicroscopy showed that this approach can be used for the high-throughput detection of mitotic catastrophe induced by three mechanistically distinct anti-mitotic agents (dimethylenastron (DIMEN), nocodazole (NDZ) and paclitaxel (PTX)), and – in this context – revealed an important role of p53 in the control of centrosome number.
Collapse
|
10
|
Pinto MMPDL, Santos NFG, Amaral A. Current status of biodosimetry based on standard cytogenetic methods. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2010; 49:567-81. [PMID: 20617329 DOI: 10.1007/s00411-010-0311-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 06/19/2010] [Indexed: 05/19/2023]
Abstract
Knowledge about dose levels in radiation protection is an important step for risk assessment. However, in most cases of real or suspected accidental exposures to ionizing radiation (IR), physical dosimetry cannot be performed for retrospective estimates. In such situations, biological dosimetry has been proposed as an alternative for investigation. Briefly, biodosimetry can be defined as individual dose evaluation based on biological endpoints induced by IR (so-called biomarkers). The relationship between biological endpoints and absorbed dose is not always straightforward: nausea, vomiting and diarrhoea, for example, are the most well-known biological effects of individual irradiation, but a precise correlation between those symptoms and absorbed dose is hardly achieved. The scoring of unstable chromosomal-type aberrations (such as dicentrics and rings) and micronuclei in mitogen-stimulated peripheral blood, up till today, has been the most extensively biodosimetry assay employed for such purposes. Dicentric assay is the gold standard in biodosimetry, since its presence is generally considered to be specific to radiation exposure; scoring of micronuclei (a kind of by-product of chromosomal damages) is easier and faster than that of dicentrics for dose assessment. In this context, the aim of this work is to present an overview on biodosimetry based on standard cytogenetic methods, highlighting its advantages and limitations as tool in monitoring of radiation workers' doses or investigation into accidental exposures. Recent advances and perspectives are also briefly presented.
Collapse
|
11
|
Eidemüller M, Ostroumova E, Krestinina L, Epiphanova S, Akleyev A, Jacob P. Comparison of mortality and incidence solid cancer risk after radiation exposure in the Techa River Cohort. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2010; 49:477-490. [PMID: 20461395 DOI: 10.1007/s00411-010-0289-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 04/17/2010] [Indexed: 05/29/2023]
Abstract
In the present paper, analysis of solid cancer mortality and incidence risk after radiation exposure in the Techa River Cohort in the Southern Urals region of Russia is described. Residents along the Techa River received protracted exposure to ionizing radiation in the 1950s due to the releases of radioactive materials from the Mayak Production Association. The current follow-up through December 2003 includes individuals exposed on the Techa riverside within the Chelyabinsk and Kurgan oblasts using mortality data, and within the Chelyabinsk oblast using incidence data. The analysis was performed by means of the biologically based two-stage clonal expansion (TSCE) model and conventional excess relative risk models. For the mortality and incidence cohorts, central estimates of the excess relative risk per dose of 0.85 Gy(-1) (95% CI 0.36; 1.38) and 0.91 Gy(-1) (95% CI 0.35; 1.52) were found, respectively. For both the mortality and incidence cohorts, the best description of the radiation risk was achieved with the same TSCE model including a lifelong radiation effect on the promotion rate of initiated cells. An increase in the excess risk with attained age was observed, whereas no significant change of risk with age at exposure was seen. Direct comparison of the mortality and incidence cohorts showed that the excess relative risk estimates agreed very well in both cohorts, as did the excess absolute risk and the hazard after correction for the different background rates.
Collapse
Affiliation(s)
- M Eidemüller
- Helmholtz Zentrum München, Institute of Radiation Protection, 85764 Neuherberg, Germany.
| | | | | | | | | | | |
Collapse
|
12
|
Vinnikov VA, Maznyk NA, Lloyd D. Delayed chromosomal instability in lymphocytes of cancer patients after radiotherapy. Int J Radiat Biol 2010; 86:271-82. [PMID: 20353337 DOI: 10.3109/09553000903564026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To assess possible delayed chromosomal instability (DCI) expressed as elevated chromatid breakage in cells containing previously formed chromosome type aberrations in cultured blood lymphocytes of cancer patients after radiotherapy (RT). MATERIALS AND METHODS Twenty patients treated for uterine cancer with external Co(60) RT, without chemotherapy, were selected. Blood was taken before, 1-2 days after RT and one year later. Lymphocytes were cultured for 50 and 100 h. Metaphases were stained with fluorescence-plus-Giemsa and analysed for chromosome and chromatid aberrations in 1st (M1) and 3rd plus later (M3+) mitoses. RESULTS RT caused a significant increase of radiation-specific chromosome aberrations in patients' lymphocytes together with DCI, which was observed as an excessive yield of cells containing both chromosome and chromatid aberrations (defined as C(acs&act)). This DCI passed successfully through mitoses in vitro, and at the end of RT a mean yield of 'extra' C(acs&act) was 3 x 10(-3) x cell(-1) amongst either M1 or M3+ cells. At the end of RT and one year later DCI in M1 lymphocytes appeared at random amongst patients, but some inter-individual variation was found for DCI presence in M3+ cells at both post-irradiation samplings. As time passed, the mean yield of lymphocytes exhibiting DCI decreased in vivo and one year after RT reached the pre-treatment level of 1 x 10(-3) x cell(-1). CONCLUSIONS DCI was demonstrated in descendants of human lymphocytes after therapeutic irradiation. The effect diminished one year later, suggesting that the progeny of patients' irradiated stem cells did not produce new daughter lymphocytes exhibiting DCI during the studied post-irradiation period.
Collapse
Affiliation(s)
- Volodymyr A Vinnikov
- Radiation Cytogenetics Laboratory, Institute for Medical Radiology AMS of Ukraine, Kharkiv, Ukraine.
| | | | | |
Collapse
|
13
|
Eidemüller M, Holmberg E, Jacob P, Lundell M, Karlsson P. Breast cancer risk among Swedish hemangioma patients and possible consequences of radiation-induced genomic instability. Mutat Res 2009; 669:48-55. [PMID: 19416732 DOI: 10.1016/j.mrfmmm.2009.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 04/20/2009] [Accepted: 04/25/2009] [Indexed: 05/27/2023]
Abstract
Breast cancer incidence among 17,158 female Swedish hemangioma patients was analyzed with empirical excess relative risk models and with a biologically-based model of carcinogenesis. The patients were treated in infancy mainly by external application of radium-226. The mean and median absorbed doses to the breast were 0.29 and 0.04Gy, and a total of 678 breast cancer cases have been observed. Both models agree very well in the risk estimates with an excess relative risk and excess absolute risk at the age of 50 years, about the mean age of breast cancer incidence, of 0.25Gy(-1)(95% CI 0.14; 0.37) and 30.7 (10(5) BYR Gy)(-1) (95% CI 16.9; 42.8), respectively. Models incorporating effects of radiation-induced genomic instability were developed and applied to the hemangioma cohort. The biologically-based description of the radiation risk was significantly improved with a model of genomic instability at an early stage of carcinogenesis.
Collapse
Affiliation(s)
- Markus Eidemüller
- Helmholtz Zentrum München, Institute of Radiation Protection, Neuherberg, Germany.
| | | | | | | | | |
Collapse
|
14
|
Chen S, Zhao Y, Zhao G, Han W, Bao L, Yu KN, Wu L. Up-regulation of ROS by mitochondria-dependent bystander signaling contributes to genotoxicity of bystander effects. Mutat Res 2009; 666:68-73. [PMID: 19393669 DOI: 10.1016/j.mrfmmm.2009.04.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 03/13/2009] [Accepted: 04/15/2009] [Indexed: 05/27/2023]
Abstract
Genomic instability can be observed in bystander cells. However, the underlying mechanism(s) is still relatively unclear. In a previous study, we found that irradiated cells released mitochondria-dependent intracellular factor(s) which could lead to bystander gamma-H2AX induction. In this paper, we used normal (rho(+)) and mtDNA-depleted (rho(0)) human-hamster hybrid cells to investigate mitochondrial effects on the genotoxicity in bystander effect through medium transfer experiments. Through the detection of DNA double-strand breaks with gamma-H2AX, we found that the fraction of gamma-H2AX positive cells changed with time when irradiation conditioned cell medium (ICCM) were harvested. ICCM harvested from irradiated rho(+) cells at 10 min post-irradiation (rho(+) ICCM(10 min)) caused larger increases of bystander gamma-H2AX induction comparing to rho(0) ICCM(10 min), which only caused a slight increase of bystander gamma-H2AX induction. The rho(+) ICCM(10 min) could also result in the up-regulation of ROS production (increased by 35% at 10 min), while there was no significant increase in cells treated with rho(0) ICCM(10 min). We treated cells with dimethyl sulfoxide (DMSO), the scavenger of ROS, and quenched gamma-H2AX induction by rho(+) ICCM. Furthermore, after the medium had been transferred and the cells were continuously cultured for 7 days, we found significantly increased CD59(-) gene loci mutation (increased by 45.9%) and delayed cell death in the progeny of rho(+) ICCM-treated bystander cells. In conclusion, the work presented here suggested that up-regulation of the mitochondria-dependent ROS might be very important in mediating genotoxicity of bystander effects.
Collapse
Affiliation(s)
- Shaopeng Chen
- Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
15
|
Munro AJ. Bystander effects and their implications for clinical radiotherapy. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2009; 29:A133-A142. [PMID: 19454811 DOI: 10.1088/0952-4746/29/2a/s09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Radiation-induced bystander effects are defined as those biological effects expressed, after irradiation, by cells whose nuclei have not been directly irradiated. Radiation oncologists are only gradually beginning to appreciate the clinical relevance of radiation-induced bystander effects and associated phenomena: adaptive responses, genomic instability and abscopal effects. Incorporating bystander effects into the science underpinning clinical radiotherapy will involve moving beyond simple mechanistic models and towards a more systems-based approach. It is, given the protean nature of bystander effects, difficult to devise a coherent research strategy to investigate the clinical impact and relevance of bystander phenomena. Epidemiological approaches will be required, the traditional research models based on randomised controlled trials are unlikely to be adequate for the task. Any consideration of bystander effects challenges not only clinicians' preconceptions concerning the effects of radiation on tumours and normal tissues but also their ingenuity. This review covers, from a clinical perspective, the issues and problems associated with radiation-induced bystander effects.
Collapse
Affiliation(s)
- Alastair J Munro
- Radiation Oncology, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK.
| |
Collapse
|
16
|
Edin NJ, Sandvik JA, Olsen DR, Pettersen EO. The Elimination of Low-Dose Hyper-radiosensitivity by Transfer of Irradiated-Cell Conditioned Medium Depends on Dose Rate. Radiat Res 2009; 171:22-32. [DOI: 10.1667/rr1143.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 06/24/2008] [Indexed: 11/03/2022]
|
17
|
Radiation induction of delayed recombination in Schizosaccharomyces pombe. DNA Repair (Amst) 2008; 7:1250-61. [PMID: 18547878 DOI: 10.1016/j.dnarep.2008.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 02/15/2008] [Accepted: 04/05/2008] [Indexed: 11/24/2022]
Abstract
Ionizing radiation is known to induce delayed chromosome and gene mutations in the descendants of the irradiated tissue culture cells. Molecular mechanisms of such delayed mutations are yet to be elucidated, since high genomic complexity of mammalian cells makes it difficult to analyze. We now tested radiation induction of delayed recombination in the fission yeast Schizosaccharomyces pombe by monitoring the frequency of homologous recombination after X-irradiation. A reporter with 200 bp tandem repeats went through spontaneous recombination at a frequency of 1.0 x 10(-4), and the frequency increased dose-dependently to around 10 x 10(-4) at 500 Gy of X-irradiation. Although the repair of initial DNA damage was thought to be completed before the restart of cell division cycle, the elevation of the recombination frequency persisted for 8-10 cell generations after irradiation (delayed recombination). The delayed recombination suggests that descendants of the irradiated cells keep a memory of the initial DNA damage which upregulates recombination machinery for 8-10 generations even in the absence of DNA double-strand breaks (DSBs). Since radical scavengers were ineffective in inhibiting the delayed recombination, a memory by continuous production of DNA damaging agents such as reactive oxygen species (ROS) was excluded. Recombination was induced in trans in a reporter on chromosome III by a DNA DSB at a site on chromosome I, suggesting the untargeted nature of delayed recombination. Interestingly, Rad22 foci persisted in the X-irradiated population in parallel with the elevation of the recombination frequency. These results suggest that the epigenetic damage memory induced by DNA DSB upregulates untargeted and delayed recombination in S. pombe.
Collapse
|
18
|
Hamada N, Hara T, Omura-Minamisawa M, Funayama T, Sakashita T, Sora S, Nakano T, Kobayashi Y. The survival of heavy ion-irradiated Bcl-2 overexpressing radioresistant tumor cells and their progeny. Cancer Lett 2008; 268:76-81. [PMID: 18450372 DOI: 10.1016/j.canlet.2008.03.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Revised: 02/11/2008] [Accepted: 03/25/2008] [Indexed: 11/15/2022]
Abstract
Here, we investigated the cell killing effectiveness of heavy-ion radiation in Bcl-2 overexpressing radioresistant tumor cells. First, irradiated cells underwent primary colony formation. Radioresistance decreased with increasing linear energy transfer (LET), indicating that heavy ions may be a promising therapeutic modality for Bcl-2 overexpressing tumors. Second, cells in primary colonies were reseeded for secondary colony formation. The incidence of delayed reproductive death increased with LET irrespective of Bcl-2 overexpression, suggesting that Bcl-2 overexpression may not facilitate heavy ion-induced genomic instability.
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Department of Quantum Biology, Division of Bioregulatory Medicine, Gunma University Graduate School of Medicine, Gunma 370-1292, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Hamada N, Hara T, Funayama T, Sakashita T, Kobayashi Y. Energetic heavy ions accelerate differentiation in the descendants of irradiated normal human diploid fibroblasts. Mutat Res 2007; 637:190-6. [PMID: 17716694 DOI: 10.1016/j.mrfmmm.2007.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 07/12/2007] [Accepted: 07/12/2007] [Indexed: 11/17/2022]
Abstract
Ionizing radiation-induced genomic instability has been demonstrated in a variety of endpoints such as delayed reproductive death, chromosome instability and mutations, which occurs in the progeny of survivors many generations after the initial insult. Dependence of these effects on the linear energy transfer (LET) of the radiation is incompletely characterized; however, our previous work has shown that delayed reductions in clonogenicity can be most pronounced at LET of 108 keV/microm. To gain insight into potential cellular mechanisms involved in LET-dependent delayed loss of clonogenicity, we investigated morphological changes in colonies arising from normal human diploid fibroblasts exposed to gamma-rays or energetic carbon ions (108 keV/microm). Exposure of confluent cultures to carbon ions was 4-fold more effective at inactivating cellular clonogenic potential and produced more abortive colonies containing reduced number of cells per colony than gamma-rays. Second, colonies were assessed for clonal morphotypic heterogeneity. The yield of differentiated cells was elevated in a dose- and LET-dependent fashion in clonogenic colonies, whereas differentiated cells predominated to a comparable extent irrespective of radiation type or dose in abortive colonies. The incidence of giant or multinucleated cells was also increased but much less frequent than that of differentiated cells. Collectively, our results indicate that carbon ions facilitate differentiation more effectively than gamma-rays as a major response in the progeny of irradiated fibroblasts. Accelerated differentiation may account, at least in part, for dose- and LET-dependent delayed loss of clonogenicity in normal human diploid cells, and could be a defensive mechanism that minimizes further expansion of aberrant cells.
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Department of Quantum Biology, Division of Bioregulatory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| | | | | | | | | |
Collapse
|