1
|
Rios AS, Yogui GT, Müller MN, Almeida AO, Souza-Filho JF. Impact of dissolved/dispersed oil from a spill event on the development of embryos of the snapping shrimp Alpheus estuariensis (Caridea: Alpheidae). MARINE POLLUTION BULLETIN 2024; 209:117164. [PMID: 39461175 DOI: 10.1016/j.marpolbul.2024.117164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
This study characterized polycyclic aromatic hydrocarbons (PAHs) in oil pellets stranded at Fernando de Noronha Archipelago, equatorial Atlantic. It also characterized PAHs dissolved/dispersed in seawater (i.e. water accommodated fraction - WAF) and used them for investigating toxic effects on embryos of the snapping shrimp Alpheus estuariensis. In the experiment, WAF was diluted to six concentrations - 0 %, 20 %, 40 %, 60 %, 80 % and 100 %. A total of 28 embryonated eggs were exposed to each dilution for 7 days under controlled conditions. Daily, four embryos from each treatment were removed for a detailed examination. Among the 16 priority PAHs, 12 of them were detected in the samples. There was a statistically significant correlation concerning embryo mortality over time across all dilutions, except for the control (0 % WAF). It can be concluded that embryo development is affected by increasing WAF concentration and exposure time. These results demonstrate that WAF directly affects larval development and cause significant mortality after one day of exposure.
Collapse
Affiliation(s)
- Aline Santos Rios
- Department of Oceanography, Center of Technology and Geosciences, Federal University of Pernambuco, Recife - PE, 50740-550, Brazil; Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Centro de Biociências, Federal University of Pernambuco, Recife - PE, 50740-550, Brazil.
| | - Gilvan Takeshi Yogui
- Department of Oceanography, Center of Technology and Geosciences, Federal University of Pernambuco, Recife - PE, 50740-550, Brazil
| | - Marius Nils Müller
- Department of Oceanography, Center of Technology and Geosciences, Federal University of Pernambuco, Recife - PE, 50740-550, Brazil
| | - Alexandre Oliveira Almeida
- Department of Oceanography, Center of Technology and Geosciences, Federal University of Pernambuco, Recife - PE, 50740-550, Brazil; Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Centro de Biociências, Federal University of Pernambuco, Recife - PE, 50740-550, Brazil
| | - Jesser F Souza-Filho
- Department of Oceanography, Center of Technology and Geosciences, Federal University of Pernambuco, Recife - PE, 50740-550, Brazil
| |
Collapse
|
2
|
Holme JA, Vondráček J, Machala M, Lagadic-Gossmann D, Vogel CFA, Le Ferrec E, Sparfel L, Øvrevik J. Lung cancer associated with combustion particles and fine particulate matter (PM 2.5) - The roles of polycyclic aromatic hydrocarbons (PAHs) and the aryl hydrocarbon receptor (AhR). Biochem Pharmacol 2023; 216:115801. [PMID: 37696458 PMCID: PMC10543654 DOI: 10.1016/j.bcp.2023.115801] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Air pollution is the leading cause of lung cancer after tobacco smoking, contributing to 20% of all lung cancer deaths. Increased risk associated with living near trafficked roads, occupational exposure to diesel exhaust, indoor coal combustion and cigarette smoking, suggest that combustion components in ambient fine particulate matter (PM2.5), such as polycyclic aromatic hydrocarbons (PAHs), may be central drivers of lung cancer. Activation of the aryl hydrocarbon receptor (AhR) induces expression of xenobiotic-metabolizing enzymes (XMEs) and increase PAH metabolism, formation of reactive metabolites, oxidative stress, DNA damage and mutagenesis. Lung cancer tissues from smokers and workers exposed to high combustion PM levels contain mutagenic signatures derived from PAHs. However, recent findings suggest that ambient air PM2.5 exposure primarily induces lung cancer development through tumor promotion of cells harboring naturally acquired oncogenic mutations, thus lacking typical PAH-induced mutations. On this background, we discuss the role of AhR and PAHs in lung cancer development caused by air pollution focusing on the tumor promoting properties including metabolism, immune system, cell proliferation and survival, tumor microenvironment, cell-to-cell communication, tumor growth and metastasis. We suggest that the dichotomy in lung cancer patterns observed between smoking and outdoor air PM2.5 represent the two ends of a dose-response continuum of combustion PM exposure, where tumor promotion in the peripheral lung appears to be the driving factor at the relatively low-dose exposures from ambient air PM2.5, whereas genotoxicity in the central airways becomes increasingly more important at the higher combustion PM levels encountered through smoking and occupational exposure.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air Quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box PO Box 222 Skøyen, 0213 Oslo, Norway
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic
| | - Miroslav Machala
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | - Eric Le Ferrec
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Lydie Sparfel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Johan Øvrevik
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway; Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, 0213 Oslo, Norway.
| |
Collapse
|
3
|
Fu Y, Li X, Pan B, Niu Y, Zhang B, Zhao X, Nie J, Yang J. Effects of H19/SAHH/DNMT1 on the oxidative DNA damage related to benzo[a]pyrene exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11706-11718. [PMID: 36098921 DOI: 10.1007/s11356-022-22936-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
The mechanisms that long noncoding RNA (lncRNA) H19 binding to S-adenosylhomocysteine hydrolase (SAHH) interacted with DNA methyltransferase 1 (DNMT1) and then regulated DNA damage caused by polycyclic aromatic hydrocarbons (PAHs) remain unclear. A total of 146 occupational workers in a Chinese coke-oven plant in 2014 were included in the final analyses. We used high-performance liquid chromatography mass spectrometry (HPLC-MS) equipped to detect urine biomarkers of PAHs exposure, including 2-hydroxynaphthalene (2-NAP), 2-hydroxyfluorene (2-FLU), 9-hydroxyphenanthrene (9-PHE) and 1-hydroxypyrene (1-OHP). The levels of SAM and SAH in plasma were detected by HPLC-ultraviolet. By constructing various BEAS-2B cell models exposed to 16 μM benzo[a]pyrene (BaP) for 24 h, toxicological parameters reflecting distinct mechanisms were evaluated. We documented that urinary 1-hydroxypyrene (1-OHP) levels were positively associated with blood H19 RNA expression (OR: 1.51, 95% CI: 1.03-2.19), but opposite to plasma SAHH activity (OR: 0.63, 95% CI: 0.41-0.98) in coke oven workers. Moreover, by constructing various BEAS-2B cell models exposed to benzo[a]pyrene (BaP), we investigated that H19 binding to SAHH exaggerated DNMT1 expressions and activity. Suppression of H19 enhanced the interaction of SAHH and DNMT1 in BaP-treated cells, decreased eight-oxoguanine DNA glycosylase 1 (OGG1) methylation, reduced oxidative DNA damage and lessened S phase arrest. However, SAHH or DNMT1 single knockdown and SAHH/DNMT1 double knockdown showed the opposite trend. A H19/SAHH/DNMT1 axis was involved in OGG1 methylation, oxidative DNA damage and cell cycle arrest by carcinogen BaP.
Collapse
Affiliation(s)
- Ye Fu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- Department of Preventive Medicine, School of Public Health, Hubei University of Medicine, Shiyan, China
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Xuejing Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Baolong Pan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- General Hospital of Taiyuan Iron & Steel (Group) Co., Ltd, Taiyuan, China
| | - Yingying Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Bin Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Xinyu Zhao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Jisheng Nie
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Jin Yang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China.
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, China.
| |
Collapse
|
4
|
Martin NR, Patel R, Kossack ME, Tian L, Camarillo MA, Cintrón-Rivera LG, Gawdzik JC, Yue MS, Nwagugo FO, Elemans LMH, Plavicki JS. Proper modulation of AHR signaling is necessary for establishing neural connectivity and oligodendrocyte precursor cell development in the embryonic zebrafish brain. Front Mol Neurosci 2022; 15:1032302. [PMID: 36523606 PMCID: PMC9745199 DOI: 10.3389/fnmol.2022.1032302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/24/2022] [Indexed: 12/03/2022] Open
Abstract
2,3,7,8-tetrachlorodibenzo-[p]-dioxin (TCDD) is a persistent global pollutant that exhibits a high affinity for the aryl hydrocarbon receptor (AHR), a ligand activated transcription factor. Epidemiological studies have associated AHR agonist exposure with multiple human neuropathologies. Consistent with the human data, research studies using laboratory models have linked pollutant-induced AHR activation to disruptions in learning and memory as well as motor impairments. Our understanding of endogenous AHR functions in brain development is limited and, correspondingly, scientists are still determining which cell types and brain regions are sensitive to AHR modulation. To identify novel phenotypes resulting from pollutant-induced AHR activation and ahr2 loss of function, we utilized the optically transparent zebrafish model. Early embryonic TCDD exposure impaired embryonic brain morphogenesis, resulted in ventriculomegaly, and disrupted neural connectivity in the optic tectum, habenula, cerebellum, and olfactory bulb. Altered neural network formation was accompanied by reduced expression of synaptic vesicle 2. Loss of ahr2 function also impaired nascent network development, but did not affect gross brain or ventricular morphology. To determine whether neural AHR activation was sufficient to disrupt connectivity, we used the Gal4/UAS system to express a constitutively active AHR specifically in differentiated neurons and observed disruptions only in the cerebellum; thus, suggesting that the phenotypes resulting from global AHR activation likely involve multiple cell types. Consistent with this hypothesis, we found that TCDD exposure reduced the number of oligodendrocyte precursor cells and their derivatives. Together, our findings indicate that proper modulation of AHR signaling is necessary for the growth and maturation of the embryonic zebrafish brain.
Collapse
Affiliation(s)
- Nathan R. Martin
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Ratna Patel
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Michelle E. Kossack
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Lucy Tian
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Manuel A. Camarillo
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Layra G. Cintrón-Rivera
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Joseph C. Gawdzik
- Molecular and Environmental Toxicology Center, University of Wisconsin at Madison, Madison, WI, United States,Division of Pharmaceutical Sciences, University of Wisconsin at Madison, Madison, WI, United States
| | - Monica S. Yue
- Molecular and Environmental Toxicology Center, University of Wisconsin at Madison, Madison, WI, United States,Division of Pharmaceutical Sciences, University of Wisconsin at Madison, Madison, WI, United States
| | - Favour O. Nwagugo
- Department of Biology, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Loes M. H. Elemans
- Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands
| | - Jessica S. Plavicki
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States,*Correspondence: Jessica S. Plavicki,
| |
Collapse
|
5
|
Inhibition of Aryl Hydrocarbon Receptor (AhR) Expression Disrupts Cell Proliferation and Alters Energy Metabolism and Fatty Acid Synthesis in Colon Cancer Cells. Cancers (Basel) 2022; 14:cancers14174245. [PMID: 36077780 PMCID: PMC9454859 DOI: 10.3390/cancers14174245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/12/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Cancer cells undergo metabolic modifications in order to meet their high energetic demand. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcriptional factor primarily known as a xenobiotic sensor. However, this receptor seems to have a wide range of physiological roles in many processes including cell proliferation, migration or control of immune responses. AhR is often overexpressed in tumor cells of various tissue origin, and several studies have indicated that AhR may also contribute to regulation of cellular metabolism, including synthesis of fatty acids (FA), one of the major steps in metabolic transition. Potential links between the AhR and the control of tumor cell proliferation and metabolism thus deserve more attention. Abstract The aryl hydrocarbon receptor (AhR) plays a wide range of physiological roles in cellular processes such as proliferation, migration or control of immune responses. Several studies have also indicated that AhR might contribute to the regulation of energy balance or cellular metabolism. We observed that the AhR is upregulated in tumor epithelial cells derived from colon cancer patients. Using wild-type and the corresponding AhR knockout (AhR KO) variants of human colon cancer cell lines HCT116 and HT-29, we analyzed possible role(s) of the AhR in cell proliferation and metabolism, with a focus on regulation of the synthesis of fatty acids (FAs). We observed a decreased proliferation rate in the AhR KO cells, which was accompanied with altered cell cycle progression, as well as a decreased ATP production. We also found reduced mRNA levels of key enzymes of the FA biosynthetic pathway in AhR KO colon cancer cells, in particular of stearoyl-CoA desaturase 1 (SCD1). The loss of AhR was also associated with reduced expression and/or activity of components of the PI3K/Akt pathway, which controls lipid metabolism, and other lipogenic transcriptional regulators, such as sterol regulatory element binding transcription factor 1 (SREBP1). Together, our data indicate that disruption of AhR activity in colon tumor cells may, likely in a cell-specific manner, limit their proliferation, which could be linked with a suppressive effect on their endogenous FA metabolism. More attention should be paid to potential mechanistic links between overexpressed AhR and colon tumor cell metabolism.
Collapse
|
6
|
Müller MN, Yogui GT, Gálvez AO, Gustavo de Sales Jannuzzi L, Fidelis de Souza Filho J, de Jesus Flores Montes M, Mendes de Castro Melo PA, Neumann-Leitão S, Zanardi-Lamardo E. Cellular accumulation of crude oil compounds reduces the competitive fitness of the coral symbiont Symbiodinium glynnii. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117938. [PMID: 34391045 DOI: 10.1016/j.envpol.2021.117938] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Oil spill events in the marine environment can have a deleterious impact on the affected ecosystems, such as coral reefs, with direct consequences for their socioeconomic value. The mutualistic relationship between tropical corals and their dinoflagellate symbionts (Symbiodiniaceae) provide structural and nutritional basis for a high local biodiversity in oligotrophic waters. Here, we investigated effects of crude oil water-accommodated fraction on the competitive fitness of the model zooxanthellae species Symbiodinium glynnii. Results of laboratory essays demonstrate that crude oil carbon is incorporated into the cellular biomass with a concomitant change of δ13C isotopic value. Carcinogenic/mutagenic polycyclic aromatic hydrocarbons were identified in the culture media and were responsible for a linear reduction in population growth of S. glynnii, presumably related to energy relocation for DNA repair. Additionally, the experiments revealed that physiological effects induced by crude oil compounds are genetically inherited by the following generations under non-contaminated growth conditions, and induce a reduction in the competitive fitness to cope with other environmental parameters, such as low salinity. We suggest that the effects of crude oil contamination represent an imparing factor for S. glynnii coping with anthropogenic drivers (e.g. warming and acidification) and interfere with the delicate symbiont-host relationship of tropical corals. This is especially relevant in the coastal areas of northeastern Brazil where an oil spill event deposited crude oil on shallow water sediments with the potential to be resuspended to the water column by physical and/or biological activity, enhancing the risk of future coral bleaching events.
Collapse
Affiliation(s)
- Marius Nils Müller
- Department of Oceanography, Federal University of Pernambuco, Recife, 50740-550, Brazil.
| | - Gilvan Takeshi Yogui
- Department of Oceanography, Federal University of Pernambuco, Recife, 50740-550, Brazil
| | - Alfredo Olivera Gálvez
- Department of Fishing and Aquaculture, Federal Rural University of Pernambuco, Recife, 52171-900, Brazil
| | | | | | | | | | - Sigrid Neumann-Leitão
- Department of Oceanography, Federal University of Pernambuco, Recife, 50740-550, Brazil
| | | |
Collapse
|
7
|
Tooker BC, Quinn K, Armstrong M, Bauer AK, Reisdorph N. Comparing the effects of an exposure to a polycyclic aromatic hydrocarbon mixture versus individual polycyclic aromatic hydrocarbons during monocyte to macrophage differentiation: Mixture exposure results in altered immune metrics. J Appl Toxicol 2021; 41:1568-1583. [PMID: 33559210 PMCID: PMC8349383 DOI: 10.1002/jat.4147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/13/2021] [Accepted: 01/24/2021] [Indexed: 11/08/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are generated by the incomplete combustion of carbon. Exposures correlate with systemic immune dysfunction and overall immune suppression. Real-world exposures to PAHs are almost always encountered as mixtures; however, research overwhelmingly centers on isolated exposures to a single PAH, benzo[a]pyrene (B[a]P). Here, a human monocyte line (U937) was exposed to B[a]P, benz[a]anthracene (B[a]A), or a mixture of six PAHs (6-MIX) to assess the differential toxicity on monocytes. Further, monocytes were exposed to PAHs with and without CYP1A1 inhibitors during macrophage differentiation to delineate PAH exposure and PAH metabolism-driven alterations to the immune response. U937 monocytes exposed to B[a]P, B[a]A, or 6-MIX had higher levels of cellular health and growth not observed following equimolar exposures to other individual PAHs. PAH exposures during differentiation did not alter monocyte-derived macrophage (MDM) numbers; however, B[a]A and 6-MIX exposures significantly altered M1/M2 polarization in a CYP1A1-dependent manner. U937-MDM adherence was differentially suppressed by all three PAH treatments with 6-MIX exposed U937-MDM having significantly more adhesion than U937-MDM exposed to either individual PAH. Finally, 6-MIX exposures during differentiation reduced U937-MDM endocytic function significantly less than B[a]A exposed cells. Exposure to a unique PAH mixture during U937-MDM differentiation resulted in mixture-specific alterations of pro-inflammatory markers compared to individual PAH exposures. While subtle, these differences highlight the probability that using a model PAH, B[a]P, may not accurately reflect the effects of PAH mixture exposures. Therefore, future studies should include various PAH mixtures that encompass probable real-world PAH exposures for the endpoints under investigation.
Collapse
Affiliation(s)
- Brian C. Tooker
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kevin Quinn
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Michael Armstrong
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Alison K. Bauer
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
8
|
Lee I, Zhang G, Mesaros C, Penning TM. Estrogen receptor-dependent and independent roles of benzo[a]pyrene in Ishikawa cells. J Endocrinol 2020; 247:139-151. [PMID: 32992293 PMCID: PMC7534831 DOI: 10.1530/joe-19-0579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/26/2020] [Indexed: 01/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants generated from the incomplete combustion of organic material. PAHs have been studied as genotoxicants, but some also act via non-genotoxic mechanisms in estrogen-dependent malignancies, such as breast cancer. PAHs require metabolic activation to electrophilic metabolites to exert their genotoxicity but non-genotoxic properties may also contribute to their carcinogenicity. The role of PAHs in endometrial cancer, a cancer associated with unopposed estrogen action is unknown. We assessed the metabolism of the representative PAH, benzo[a]pyrene (B[a]P), to estrogenic compounds in Ishikawa human endometrial cells in the presence and absence of cytochrome P450 induction. Using stable-isotope dilution high-performance liquid chromatography and APCI tandem mass spectrometry in the selected reaction monitoring mode, we analyzed B[a]P metabolism in Ishikawa cells. Estrogenic activity of B[a]P metabolites was determined by the endogenous estrogen inducible alkaline phosphatase reporter gene and an exogenous estrogen response element (ERE) luciferase reporter gene construct. We also assessed whether PAHs can induce a proliferative phenotype via estrogen receptor (ER)- and non-ER-regulated pathways. We demonstrate that B[a]P can be metabolized in human endometrial cells into 3-OH-B[a]P and B[a]P-7,8-dione in sufficient amounts to activate ERs. We also show that only B[a]P-7,8-dione induces endometrial cell proliferation at concentrations lower than required to activate the ER; instead non-genomic signaling by the EGF receptor (EGFR) and activation of the mitogen-activated protein kinase (MAPK) pathway was responsible. This work indicates that human endometrial cells can metabolize PAHs into estrogenic metabolites, which may induce cell proliferation through non-ER-regulated pathways.
Collapse
Affiliation(s)
- Isabelle Lee
- Department of Systems Pharmacology & Translational Therapeutics Perelman School of Medicine University of Philadelphia, Pennsylvania, PA 19104
| | - Guannan Zhang
- Department of Systems Pharmacology & Translational Therapeutics Perelman School of Medicine University of Philadelphia, Pennsylvania, PA 19104
- Center of Excellence in Environmental Toxicology Perelman School of Medicine University of Philadelphia, Pennsylvania, PA 19104
| | - Clementina Mesaros
- Department of Systems Pharmacology & Translational Therapeutics Perelman School of Medicine University of Philadelphia, Pennsylvania, PA 19104
- Center of Excellence in Environmental Toxicology Perelman School of Medicine University of Philadelphia, Pennsylvania, PA 19104
| | - Trevor M. Penning
- Department of Systems Pharmacology & Translational Therapeutics Perelman School of Medicine University of Philadelphia, Pennsylvania, PA 19104
- Center of Excellence in Environmental Toxicology Perelman School of Medicine University of Philadelphia, Pennsylvania, PA 19104
| |
Collapse
|
9
|
Svobodová J, Procházková J, Kabátková M, Krkoška M, Šmerdová L, Líbalová H, Topinka J, Kléma J, Kozubík A, Machala M, Vondráček J. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) Disrupts Control of Cell Proliferation and Apoptosis in a Human Model of Adult Liver Progenitors. Toxicol Sci 2020; 172:368-384. [PMID: 31536130 DOI: 10.1093/toxsci/kfz202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) activation has been shown to alter proliferation, apoptosis, or differentiation of adult rat liver progenitors. Here, we investigated the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated AhR activation on a human model of bipotent liver progenitors, undifferentiated HepaRG cells. We used both intact undifferentiated HepaRG cells, and the cells with silenced Hippo pathway effectors, yes-associated protein 1 (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), which play key role(s) in tissue-specific progenitor cell self-renewal and expansion, such as in liver, cardiac, or respiratory progenitors. TCDD induced cell proliferation in confluent undifferentiated HepaRG cells; however, following YAP, and, in particular, double YAP/TAZ knockdown, TCDD promoted induction of apoptosis. These results suggested that, unlike in mature hepatocytes, or hepatocyte-like cells, activation of the AhR may sensitize undifferentiated HepaRG cells to apoptotic stimuli. Induction of apoptosis in cells with silenced YAP/TAZ was associated with upregulation of death ligand TRAIL, and seemed to involve both extrinsic and mitochondrial apoptosis pathways. Global gene expression analysis further suggested that TCDD significantly altered expression of constituents and/or transcriptional targets of signaling pathways participating in control of expansion or differentiation of liver progenitors, including EGFR, Wnt/β-catenin, or tumor growth factor-β signaling pathways. TCDD significantly upregulated cytosolic proapoptotic protein BMF (Bcl-2 modifying factor) in HepaRG cells, which could be linked with an enhanced sensitivity of TCDD-treated cells to apoptosis. Our results suggest that, in addition to promotion of cell proliferation and alteration of signaling pathways controlling expansion of human adult liver progenitors, AhR ligands may also sensitize human liver progenitor cells to apoptosis.
Collapse
Affiliation(s)
- Jana Svobodová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 61137, Czech Republic
| | - Jiřina Procházková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno 62100, Czech Republic
| | - Markéta Kabátková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
| | - Martin Krkoška
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 61137, Czech Republic
| | - Lenka Šmerdová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
| | - Helena Líbalová
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Jan Topinka
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Jiří Kléma
- Department of Computer Science, Czech Technical University, Prague 12135, Czech Republic
| | - Alois Kozubík
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno 62100, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
| |
Collapse
|
10
|
Environmental Benzopyrene Attenuates Stemness of Placenta-Derived Mesenchymal Stem Cells via Aryl Hydrocarbon Receptor. Stem Cells Int 2019; 2019:7414015. [PMID: 30766605 PMCID: PMC6350590 DOI: 10.1155/2019/7414015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/15/2018] [Accepted: 11/01/2018] [Indexed: 01/10/2023] Open
Abstract
The toxic effects of particulate matter have been linked to polycyclic aromatic hydrocarbons (PAHs) such as benzopyrene. PAHs are potent inducers of the aryl hydrocarbon receptor (AhR), which is an expressed nuclear receptor that senses environmental stimuli and modulates gene expression. Even though several studies have shown that the benzopyrene (BP) of chemical pollutants significantly impaired stem cell activity, the exact molecular mechanisms were not clearly elucidated. In the present study, we aimed to investigate the effects of BP on placenta-derived mesenchymal stem cells (PD-MSCs) in vitro. We found that the AhR in PD-MSCs was expressed under the treatment of BP, and its activation markedly disrupted osteogenic differentiation through the alteration of stemness activity of PD-MSCs. Moreover, BP treatment significantly reduced the proliferation activity of PD-MSCs and expression of pluripotent markers through the induction of AhR. Treatment with StemRegenin 1 (SR1), a purine derivative that antagonizes the AhR, effectively prevented BP-induced reduction of the proliferation and differentiation activity of PD-MSCs. In this study, we found that BP treatment in PD-MSCs markedly obstructs PD-MSC stemness through AhR signaling. Noteworthy, SR1-mediated MSC application will contribute to new perspectives on MSC-based therapies for air pollution-related bone diseases.
Collapse
|
11
|
Inevitable dietary exposure of Benzo[a]pyrene: carcinogenic risk assessment an emerging issues and concerns. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Propiconazole is an activator of AHR and causes concentration additive effects with an established AHR ligand. Arch Toxicol 2018; 92:3471-3486. [DOI: 10.1007/s00204-018-2321-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/26/2018] [Indexed: 02/08/2023]
|
13
|
Demetriou CA, Degli Esposti D, Pullen Fedinick K, Russo F, Robinson O, Vineis P. Filling the gap between chemical carcinogenesis and the hallmarks of cancer: A temporal perspective. Eur J Clin Invest 2018; 48:e12933. [PMID: 29604052 DOI: 10.1111/eci.12933] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/26/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Cancer is believed to arise through the perturbation of pathways and the order of pathway perturbation events can enhance understanding and evaluation of carcinogenicity. This order has not been examined so far, and this study aimed to fill this gap by attempting to gather evidence on the potential temporal sequence of events in carcinogenesis. DESIGN The methodology followed was to discuss first the temporal sequence of hallmarks of cancer from the point of view of pathological specimens of cancer (essentially branched mutations) and then to consider the hallmarks of cancer that one well-known carcinogen, benzo(a)pyrene, can modify. RESULTS Even though the sequential order of driving genetic alterations can vary between and within tumours, the main cancer pathways affected are almost ubiquitous and follow a generally common sequence: resisting cell death, insensitivity to antigrowth signals, sustained proliferation, deregulated energetics, replicative immortality and activation of invasion and metastasis. The first 3 hallmarks can be regarded as almost simultaneous while angiogenesis and avoiding immune destruction are perhaps the only hallmarks with a varying position in the above sequence. CONCLUSIONS Our review of hallmarks of cancer and their temporal sequence, based on mutational spectra in biopsies from different cancer sites, allowed us to propose a hypothetical temporal sequence of the hallmarks. This sequence can add molecular support to the evaluation of an agent as a carcinogen as it can be used as a conceptual framework for organising and evaluating the strength of existing evidence.
Collapse
Affiliation(s)
| | | | | | - Federica Russo
- Department of Philosophy, University of Amsterdam, Amsterdam, the Netherlands
| | - Oliver Robinson
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College, London, UK
| | - Paolo Vineis
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College, London, UK
- Italian Institute for Genomic Medicine, Torino, Italy
| |
Collapse
|
14
|
Hardonnière K, Huc L, Sergent O, Holme JA, Lagadic-Gossmann D. Environmental carcinogenesis and pH homeostasis: Not only a matter of dysregulated metabolism. Semin Cancer Biol 2017; 43:49-65. [PMID: 28088583 DOI: 10.1016/j.semcancer.2017.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/18/2022]
Abstract
According to the World Health Organization, around 20% of all cancers would be due to environmental factors. Among these factors, several chemicals are indeed well recognized carcinogens. The widespread contaminant benzo[a]pyrene (B[a]P), an often used model carcinogen of the polycyclic aromatic hydrocarbons' family, has been suggested to target most, if not all, cancer hallmarks described by Hanahan and Weinberg. It is classified as a group I carcinogen by the International Agency for Research on Cancer; however, the precise intracellular mechanisms underlying its carcinogenic properties remain yet to be thoroughly defined. Recently, the pH homeostasis, a well known regulator of carcinogenic processes, was suggested to be a key actor in both cell death and Warburg-like metabolic reprogramming induced upon B[a]P exposure. The present review will highlight those data with the aim of favoring research on the role of H+ dynamics in environmental carcinogenesis.
Collapse
Affiliation(s)
- Kévin Hardonnière
- Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset - Inserm UMR 1085), F-35043 Rennes, France; Université de Rennes 1, Structure fédérative de recherche Biosit, UMS CNRS 3480/US Inserm 018, F 35043 Rennes, France
| | - Laurence Huc
- INRA UMR 1331 ToxAlim (Research Center in Food Toxicology), University of Toulouse ENVT, INP, UPS, 180 Chemin de Tournefeuille, F-31027, France
| | - Odile Sergent
- Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset - Inserm UMR 1085), F-35043 Rennes, France; Université de Rennes 1, Structure fédérative de recherche Biosit, UMS CNRS 3480/US Inserm 018, F 35043 Rennes, France
| | - Jørn A Holme
- Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Dominique Lagadic-Gossmann
- Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset - Inserm UMR 1085), F-35043 Rennes, France; Université de Rennes 1, Structure fédérative de recherche Biosit, UMS CNRS 3480/US Inserm 018, F 35043 Rennes, France.
| |
Collapse
|
15
|
Vondráček J, Pěnčíková K, Neča J, Ciganek M, Grycová A, Dvořák Z, Machala M. Assessment of the aryl hydrocarbon receptor-mediated activities of polycyclic aromatic hydrocarbons in a human cell-based reporter gene assay. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:307-316. [PMID: 27692884 DOI: 10.1016/j.envpol.2016.09.064] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 06/06/2023]
Abstract
Activation of the aryl hydrocarbon receptor (AhR)-mediated activity is one of key events in toxicity of polycyclic aromatic hydrocarbons (PAHs). Although various classes of AhR ligands may differentially activate human and rodent AhR, there is presently a lack of data on the human AhR-inducing relative potencies (REPs) of PAHs. Here, we focused on estimation of the AhR-mediated activities of a large set of environmental PAHs in human gene reporter AZ-AhR cell line, with an aim to develop the human AhR-based REP values with potential implications for risk assessment of PAHs. The previously identified weakly active PAHs mostly failed to activate the AhR in human cells. The order for REPs of individual PAHs in human cells largely corresponded with the available data from rodent-based experimental systems; nevertheless, we identified differences up to one order of magnitude in REP values of PAHs between human and rodent cells. Higher REP values were found in human cells for some important environmental contaminants or suspected carcinogens, such as indeno[1,2,3-cd]pyrene, benz[a]anthracene or benzo[b]fluoranthene, while lower REP values were determined for methyl-substituted PAHs. Our results also indicate that a different rate of metabolism for individual PAHs in human vs. rodent cells may affect estimation of REP values in human cell-based assay, and potentially alter toxicity of some compounds, such as benzofluoranthenes, in humans. We applied the AZ-AhR assay to evaluation of the AhR-mediated activity of complex mixtures of organic compounds associated with diesel exhaust particles, and we identified the polar compounds present in these mixtures as being particularly highly active in human cells, as compared with rodent cells. The present data suggest that differences may exist between the AhR-mediated potencies of PAHs in human and rodent cells, and that the AhR-mediated effects of polar PAH derivatives and metabolites in human cell models deserve further attention.
Collapse
Affiliation(s)
- Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic.
| | - Kateřina Pěnčíková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Jiří Neča
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Miroslav Ciganek
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Aneta Grycová
- Department of Cell Biology and Genetics, Faculty of Science, Šlechtitelů 11, Palacky University, 78371 Olomouc, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Šlechtitelů 11, Palacky University, 78371 Olomouc, Czech Republic
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic.
| |
Collapse
|
16
|
Environmental Ligands of the Aryl Hydrocarbon Receptor and Their Effects in Models of Adult Liver Progenitor Cells. Stem Cells Int 2016; 2016:4326194. [PMID: 27274734 PMCID: PMC4870370 DOI: 10.1155/2016/4326194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/07/2016] [Indexed: 12/20/2022] Open
Abstract
The toxicity of environmental and dietary ligands of the aryl hydrocarbon receptor (AhR) in mature liver parenchymal cells is well appreciated, while considerably less attention has been paid to their impact on cell populations exhibiting phenotypic features of liver progenitor cells. Here, we discuss the results suggesting that the consequences of the AhR activation in the cellular models derived from bipotent liver progenitors could markedly differ from those in hepatocytes. In contact-inhibited liver progenitor cells, the AhR agonists induce a range of effects potentially linked with tumor promotion. They can stimulate cell cycle progression/proliferation and deregulate cell-to-cell communication, which is associated with downregulation of proteins forming gap junctions, adherens junctions, and desmosomes (such as connexin 43, E-cadherin, β-catenin, and plakoglobin), as well as with reduced cell adhesion and inhibition of intercellular communication. At the same time, toxic AhR ligands may affect the activity of the signaling pathways contributing to regulation of liver progenitor cell activation and/or differentiation, such as downregulation of Wnt/β-catenin and TGF-β signaling, or upregulation of transcriptional targets of YAP/TAZ, the effectors of Hippo signaling pathway. These data illustrate the need to better understand the potential role of liver progenitors in the AhR-mediated liver carcinogenesis and tumor promotion.
Collapse
|
17
|
The aryl hydrocarbon receptor-dependent disruption of contact inhibition in rat liver WB-F344 epithelial cells is linked with induction of survivin, but not with inhibition of apoptosis. Toxicology 2015; 333:37-44. [DOI: 10.1016/j.tox.2015.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 11/23/2022]
|
18
|
Hu Z, Brooks SA, Dormoy V, Hsu CW, Hsu HY, Lin LT, Massfelder T, Rathmell WK, Xia M, Al-Mulla F, Al-Temaimi R, Amedei A, Brown DG, Prudhomme KR, Colacci A, Hamid RA, Mondello C, Raju J, Ryan EP, Woodrick J, Scovassi AI, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Salem HK, Lowe L, Jensen L, Bisson WH, Kleinstreuer N. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: focus on the cancer hallmark of tumor angiogenesis. Carcinogenesis 2015; 36 Suppl 1:S184-S202. [PMID: 26106137 PMCID: PMC4492067 DOI: 10.1093/carcin/bgv036] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 01/09/2023] Open
Abstract
One of the important 'hallmarks' of cancer is angiogenesis, which is the process of formation of new blood vessels that are necessary for tumor expansion, invasion and metastasis. Under normal physiological conditions, angiogenesis is well balanced and controlled by endogenous proangiogenic factors and antiangiogenic factors. However, factors produced by cancer cells, cancer stem cells and other cell types in the tumor stroma can disrupt the balance so that the tumor microenvironment favors tumor angiogenesis. These factors include vascular endothelial growth factor, endothelial tissue factor and other membrane bound receptors that mediate multiple intracellular signaling pathways that contribute to tumor angiogenesis. Though environmental exposures to certain chemicals have been found to initiate and promote tumor development, the role of these exposures (particularly to low doses of multiple substances), is largely unknown in relation to tumor angiogenesis. This review summarizes the evidence of the role of environmental chemical bioactivity and exposure in tumor angiogenesis and carcinogenesis. We identify a number of ubiquitous (prototypical) chemicals with disruptive potential that may warrant further investigation given their selectivity for high-throughput screening assay targets associated with proangiogenic pathways. We also consider the cross-hallmark relationships of a number of important angiogenic pathway targets with other cancer hallmarks and we make recommendations for future research. Understanding of the role of low-dose exposure of chemicals with disruptive potential could help us refine our approach to cancer risk assessment, and may ultimately aid in preventing cancer by reducing or eliminating exposures to synergistic mixtures of chemicals with carcinogenic potential.
Collapse
Affiliation(s)
- Zhiwei Hu
- To whom correspondence should be addressed. Tel: +1 614 685 4606; Fax: +1-614-247-7205;
| | - Samira A. Brooks
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Valérian Dormoy
- INSERM U1113, team 3 “Cell Signalling and Communication in Kidney and Prostate Cancer”, University of Strasbourg, Facultée de Médecine, 67085 Strasbourg, France
- Department of Cell and Developmental Biology, University of California, Irvine, CA 92697, USA
| | - Chia-Wen Hsu
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Hsue-Yin Hsu
- Department of Life Sciences, Tzu-Chi University, Taiwan, Republic of China
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, Taipei Medical University, Taiwan, Republic of China
| | - Thierry Massfelder
- INSERM U1113, team 3 “Cell Signalling and Communication in Kidney and Prostate Cancer”, University of Strasbourg, Facultée de Médecine, 67085 Strasbourg, France
| | - W. Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Fahd Al-Mulla
- Department of Life Sciences, Tzu-Chi University, Taiwan, Republic of China
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
| | - Dustin G. Brown
- Department of Environmental and Radiological Health Sciences
, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523, USA
| | - Kalan R. Prudhomme
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, Italy
| | - Roslida A. Hamid
- Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor, Malaysia
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Jayadev Raju
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate
, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences
, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523, USA
| | - Jordan Woodrick
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, WashingtonDC 20057, USA
| | - A. Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advance Research), King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, Italy
| | - Rabindra Roy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, WashingtonDC 20057, USA
| | - Stefano Forte
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Hosni K. Salem
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia B2N 1X5, Canada
| | - Lasse Jensen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden and
| | - William H. Bisson
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | - Nicole Kleinstreuer
- Integrated Laboratory Systems, Inc., in support of the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, NIEHS, MD K2-16, RTP, NC 27709, USA
| |
Collapse
|
19
|
Nahta R, Al-Mulla F, Al-Temaimi R, Amedei A, Andrade-Vieira R, Bay S, G. Brown D, Calaf GM, Castellino RC, Cohen-Solal KA, Colacci A, Cruickshanks N, Dent P, Di Fiore R, Forte S, Goldberg GS, Hamid RA, Krishnan H, Laird DW, Lasfar A, Marignani PA, Memeo L, Mondello C, Naus CC, Ponce-Cusi R, Raju J, Roy D, Roy R, P. Ryan E, Salem HK, Scovassi AI, Singh N, Vaccari M, Vento R, Vondráček J, Wade M, Woodrick J, Bisson WH. Mechanisms of environmental chemicals that enable the cancer hallmark of evasion of growth suppression. Carcinogenesis 2015; 36 Suppl 1:S2-S18. [PMID: 26106139 PMCID: PMC4565608 DOI: 10.1093/carcin/bgv028] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 09/01/2014] [Accepted: 09/19/2014] [Indexed: 12/18/2022] Open
Abstract
As part of the Halifax Project, this review brings attention to the potential effects of environmental chemicals on important molecular and cellular regulators of the cancer hallmark of evading growth suppression. Specifically, we review the mechanisms by which cancer cells escape the growth-inhibitory signals of p53, retinoblastoma protein, transforming growth factor-beta, gap junctions and contact inhibition. We discuss the effects of selected environmental chemicals on these mechanisms of growth inhibition and cross-reference the effects of these chemicals in other classical cancer hallmarks.
Collapse
Affiliation(s)
- Rita Nahta
- *To whom correspondence should be addressed.
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy
| | - Rafaela Andrade-Vieira
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Sarah Bay
- Program in Genetics and Molecular Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | - Dustin G. Brown
- Department of Environmental and Radiological Health Sciences/Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Gloria M. Calaf
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
- Instituto de Alta Investigacion, Universidad de Tarapaca, Arica 8097877, Chile
| | - Robert C. Castellino
- Division of Hematology and Oncology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| | - Karine A. Cohen-Solal
- Department of Medicine/Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901-1914, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Nichola Cruickshanks
- Departments of Neurosurgery and Biochemistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 980033, USA
| | - Paul Dent
- Departments of Neurosurgery and Biochemistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 980033, USA
| | - Riccardo Di Fiore
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, Polyclinic Plexus, University of Palermo, 90127 Palermo, Italy
| | - Stefano Forte
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Gary S. Goldberg
- Graduate School of Biomedical Sciences and Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084-1501, USA
| | - Roslida A. Hamid
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia
| | - Harini Krishnan
- Graduate School of Biomedical Sciences and Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084-1501, USA
| | - Dale W. Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ahmed Lasfar
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 60503, USA
| | - Paola A. Marignani
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, 27100 Pavia, Italy
| | - Christian C. Naus
- Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Richard Ponce-Cusi
- Instituto de Alta Investigacion, Universidad de Tarapaca, Arica 8097877, Chile
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Debasish Roy
- Department of Natural Science, The City University of New York at Hostos Campus, Bronx, NY 10451, USA
| | - Rabindra Roy
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences/Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Hosni K. Salem
- Urology Dept., kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - A. Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, 27100 Pavia, Italy
| | - Neetu Singh
- Advanced Molecular Science Research Centre, King George’s Medical University, Lucknow, UP 226003, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Renza Vento
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, Polyclinic Plexus, University of Palermo, 90127 Palermo, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics AS CR, Brno 612 65, Czech Republic
| | - Mark Wade
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan 16163, Italy and
| | - Jordan Woodrick
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - William H. Bisson
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
20
|
The aryl hydrocarbon receptor-mediated and genotoxic effects of fractionated extract of standard reference diesel exhaust particle material in pulmonary, liver and prostate cells. Toxicol In Vitro 2015; 29:438-48. [DOI: 10.1016/j.tiv.2014.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 12/28/2022]
|
21
|
Cerezo MI, Agustí S. PAHs reduce DNA synthesis and delay cell division in the widespread primary producer Prochlorococcus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 196:147-155. [PMID: 25463708 DOI: 10.1016/j.envpol.2014.09.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/22/2014] [Accepted: 09/25/2014] [Indexed: 06/04/2023]
Abstract
The cyanobacteria Prochlorococcus is the most abundant primary producer in the ocean. In a global study across the Atlantic, Indian and Pacific Oceans, we tested the effect of organic pollutants on the growth and cell division of natural Prochlorococcus populations. Sub-lethal concentrations of Polycyclic Aromatic Hydrocarbons (PAHs) altered Prochlorococcus cell division by reducing DNA synthesis and decreasing the percentage of cells entering mitosis. Cell division time increased with PAHs dosage by 1.2 h per μg L(-1) of mixture added. At PAHs dosages >1 μg L(-1), Prochlorococcus cell division tended to arrest at S-phase (DNA synthesis). As a consequence, population growth was significantly reduced in the presence of PAHs. The presence of PAHs resulted in a predictable alteration of the cell cycle of the widespread cyanobacteria.The dosages tested are above concentrations in the open ocean, but found in the coastal ocean, where Prochlorococcus growth must be inhibited.
Collapse
Affiliation(s)
- Maria Isabel Cerezo
- Department of Global Change Research, IMEDEA (CSIC-UIB), Instituto Mediterraneo de Estudios Avanzados, Miquel Marques 21, 07190 Esporles,
| | | |
Collapse
|
22
|
Kabátková M, Svobodová J, Pěnčíková K, Mohatad DS, Šmerdová L, Kozubík A, Machala M, Vondráček J. Interactive effects of inflammatory cytokine and abundant low-molecular-weight PAHs on inhibition of gap junctional intercellular communication, disruption of cell proliferation control, and the AhR-dependent transcription. Toxicol Lett 2015; 232:113-21. [DOI: 10.1016/j.toxlet.2014.09.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/23/2014] [Accepted: 09/26/2014] [Indexed: 12/11/2022]
|
23
|
Šmerdová L, Svobodová J, Kabátková M, Kohoutek J, Blažek D, Machala M, Vondráček J. Upregulation of CYP1B1 expression by inflammatory cytokines is mediated by the p38 MAP kinase signal transduction pathway. Carcinogenesis 2014; 35:2534-43. [DOI: 10.1093/carcin/bgu190] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
24
|
Recent advances in particulate matter and nanoparticle toxicology: a review of the in vivo and in vitro studies. BIOMED RESEARCH INTERNATIONAL 2013; 2013:279371. [PMID: 23865044 PMCID: PMC3705851 DOI: 10.1155/2013/279371] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/08/2013] [Accepted: 05/22/2013] [Indexed: 12/11/2022]
Abstract
Epidemiological and clinical studies have linked exposure to particulate matter (PM) to adverse health effects, which may be registered as increased mortality and morbidity from various cardiopulmonary diseases. Despite the evidence relating PM to health effects, the physiological, cellular, and molecular mechanisms causing such effects are still not fully characterized. Two main approaches are used to elucidate the mechanisms of toxicity. One is the use of in vivo experimental models, where various effects of PM on respiratory, cardiovascular, and nervous systems can be evaluated. To more closely examine the molecular and cellular mechanisms behind the different physiological effects, the use of various in vitro models has proven to be valuable. In the present review, we discuss the current advances on the toxicology of particulate matter and nanoparticles based on these techniques.
Collapse
|
25
|
The evolving role of the aryl hydrocarbon receptor (AHR) in the normophysiology of hematopoiesis. Stem Cell Rev Rep 2013; 8:1223-35. [PMID: 22628113 DOI: 10.1007/s12015-012-9384-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In addition to its role as a toxicological signal mediator, the Aryl Hydrocarbon Receptor (AHR) is also a transcription factor known to regulate cellular responses to oxidative stress and inflammation through transcriptional regulation of molecules involved in the signaling of nucear factor-erythroid 2-related factor-2 (Nrf2), p53 (TRP53), retinoblastoma (RB1), and NFκB. Recent research suggests that AHR activation of these signaling pathways may provide the molecular basis for understanding AHR's evolving role in endogenous developmental functions during hematopoietic stem-cell maintenance and differentiation. Recent developments into the hematopoietic roles for AHR are reviewed, aiming to reconcile divergent findings as to the endogenous function of AHR in hematopoiesis. Potential mechanistic explanations for AHR's involvement in hematopoietic differentiation are discussed, focusing on its known role as a cell cycle mediator and its interactions with Hypoxia-inducible transcription factor-1 alpha (HIF1-α). Understanding the physiological mechanisms of AHR activation and signaling have far reaching implications ranging from explaining the action of various toxicological agents to providing novel ways to expand stem cell populations ex vivo for use in transplant therapies.
Collapse
|
26
|
Bhattacharya S, Shoda LKM, Zhang Q, Woods CG, Howell BA, Siler SQ, Woodhead JL, Yang Y, McMullen P, Watkins PB, Andersen ME. Modeling drug- and chemical-induced hepatotoxicity with systems biology approaches. Front Physiol 2012; 3:462. [PMID: 23248599 PMCID: PMC3522076 DOI: 10.3389/fphys.2012.00462] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/21/2012] [Indexed: 12/22/2022] Open
Abstract
We provide an overview of computational systems biology approaches as applied to the study of chemical- and drug-induced toxicity. The concept of “toxicity pathways” is described in the context of the 2007 US National Academies of Science report, “Toxicity testing in the 21st Century: A Vision and A Strategy.” Pathway mapping and modeling based on network biology concepts are a key component of the vision laid out in this report for a more biologically based analysis of dose-response behavior and the safety of chemicals and drugs. We focus on toxicity of the liver (hepatotoxicity) – a complex phenotypic response with contributions from a number of different cell types and biological processes. We describe three case studies of complementary multi-scale computational modeling approaches to understand perturbation of toxicity pathways in the human liver as a result of exposure to environmental contaminants and specific drugs. One approach involves development of a spatial, multicellular “virtual tissue” model of the liver lobule that combines molecular circuits in individual hepatocytes with cell–cell interactions and blood-mediated transport of toxicants through hepatic sinusoids, to enable quantitative, mechanistic prediction of hepatic dose-response for activation of the aryl hydrocarbon receptor toxicity pathway. Simultaneously, methods are being developing to extract quantitative maps of intracellular signaling and transcriptional regulatory networks perturbed by environmental contaminants, using a combination of gene expression and genome-wide protein-DNA interaction data. A predictive physiological model (DILIsym™) to understand drug-induced liver injury (DILI), the most common adverse event leading to termination of clinical development programs and regulatory actions on drugs, is also described. The model initially focuses on reactive metabolite-induced DILI in response to administration of acetaminophen, and spans multiple biological scales.
Collapse
Affiliation(s)
- Sudin Bhattacharya
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences Research Triangle Park, NC, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hur D, Hong S. Cloning and characterization of a fish specific gelsolin family gene, ScinL, in olive flounder (Paralichthys olivaceus). Comp Biochem Physiol B Biochem Mol Biol 2012; 164:89-98. [PMID: 23159325 DOI: 10.1016/j.cbpb.2012.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/07/2012] [Accepted: 11/07/2012] [Indexed: 12/23/2022]
Abstract
Scinderin like (ScinL) gene is a unique gelsolin family gene found only in fish. In this study ScinL gene was cloned in olive flounder for the first time and characterized its expression and function. Flounder ScinL cDNA consists of 2911 nucleotides encoding a putative protein of 720 amino acids (79.4 kDa). In phylogenetic analysis, flounder ScinL is closely related to ScinL of zebra fish, anableps, and fugu with the similarity of 51-72%. Fish ScinLs are positioned between gelsolin and scinderin of other species. Flounder ScinL protein has the highly conserved actin and PIP2 binding sites, Ca(2+) coordination site, and a C-terminal latch helix preventing the activation of ScinL protein in the absence of Ca(2+). Putative binding sites for NFAT and AP-1 were found in 5' flanking region. Constitutive ScinL expression was found in most organs and the expression level was higher in gill, head kidney, trunk kidney, spleen and skin than muscle, stomach, intestine and brain. In Q-PCR analysis ScinL and CYP1A1 gene expression were significantly upregulated by BaP in head kidney in vivo and in vitro, and in macrophage cells. Upregulated ScinL expression by BaP was blocked by EGTA, indicating a calcium dependent regulation of ScinL expression.
Collapse
Affiliation(s)
- Deokhwe Hur
- Department of Marine Biotechnology, Gangneung Wonju National University, Gangneung 210-702, South Korea
| | | |
Collapse
|
28
|
Andrysík Z, Procházková J, Kabátková M, Umannová L, Šimečková P, Kohoutek J, Kozubík A, Machala M, Vondráček J. Aryl hydrocarbon receptor-mediated disruption of contact inhibition is associated with connexin43 downregulation and inhibition of gap junctional intercellular communication. Arch Toxicol 2012; 87:491-503. [DOI: 10.1007/s00204-012-0963-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/11/2012] [Indexed: 11/29/2022]
|
29
|
Rossner P, Svecova V, Schmuczerova J, Milcova A, Tabashidze N, Topinka J, Pastorkova A, Sram RJ. Analysis of biomarkers in a Czech population exposed to heavy air pollution. Part I: bulky DNA adducts. Mutagenesis 2012; 28:89-95. [PMID: 23047913 DOI: 10.1093/mutage/ges057] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The health of human populations living in industrial regions is negatively affected by exposure to environmental air pollutants. In this study, we investigated the impact of air pollution on a cohort of subjects living in Ostrava, a heavily polluted industrial region and compared it with a cohort of individuals from the relatively clean capital city of Prague. This study consisted of three sampling periods differing in the concentrations of major air pollutants (winter 2009, summer 2009 and winter 2010). During all sampling periods, the study subjects from Ostrava region were exposed to significantly higher concentrations of benzo[a]pyrene (B[a]P) and benzene than the subjects in Prague as measured by personal monitors. Pollution by B[a]P, particulate matter of aerodynamic diameter <2.5 µm (PM2.5) and benzene in the Ostrava region measured by stationary monitors was also higher than in Prague, with the exception of PM2.5 in summer 2009 when concentration of the pollutant was significantly elevated in Prague. To evaluate DNA damage in subjects from both locations we determined the levels of bulky DNA adducts in peripheral blood lymphocytes using the (32)P-postlabeling method. Despite higher B[a]P air pollution in the Ostrava region during all sampling periods, the levels of B[a]P-like DNA adducts per 10(8) nucleotides were significantly higher in the Ostrava subjects only in winter 2009 (mean ± SD: 0.21 ± 0.06 versus 0.28 ± 0.08 adducts/10(8) nucleotides, P < 0.001 for Prague and Ostrava subjects, respectively; P < 0.001). During the other two sampling periods, the levels of B[a]P-like DNA adducts were significantly higher in the Prague subjects (P < 0.001). Multivariate analyses conducted among subjects from Ostrava and Prague separately during all sampling periods revealed that exposure to B[a]P and PM2.5 significantly increased levels of B[a]P-like DNA adducts in the Ostrava subjects, but not in subjects from Prague.
Collapse
Affiliation(s)
- Pavel Rossner
- Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Vitte I, Duran R, Hernandez-Raquet G, Mounier J, Jézéquel R, Bellet V, Balaguer P, Caumette P, Cravo-Laureau C. Dynamics of metabolically active bacterial communities involved in PAH and toxicity elimination from oil-contaminated sludge during anoxic/oxic oscillations. Appl Microbiol Biotechnol 2012; 97:4199-211. [DOI: 10.1007/s00253-012-4219-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 05/30/2012] [Accepted: 05/31/2012] [Indexed: 10/28/2022]
|
31
|
Lanham KA, Prasch AL, Weina KM, Peterson RE, Heideman W. A dominant negative zebrafish Ahr2 partially protects developing zebrafish from dioxin toxicity. PLoS One 2011; 6:e28020. [PMID: 22194803 PMCID: PMC3240621 DOI: 10.1371/journal.pone.0028020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 10/30/2011] [Indexed: 01/12/2023] Open
Abstract
The toxicity by 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) is thought to be caused by activation of the aryl hydrocarbon receptor (AHR). However, our understanding of how AHR activation by TCDD leads to toxic effects is poor. Ideally we would like to manipulate AHR activity in specific tissues and at specific times. One route to this is expressing dominant negative AHRs (dnAHRs). This work describes the construction and characterization of dominant negative forms of the zebrafish Ahr2 in which the C-terminal transactivation domain was either removed, or replaced with the inhibitory domain from the Drosophila engrailed repressor protein. One of these dnAhr2s was selected for expression from the ubiquitously active e2fα promoter in transgenic zebrafish. We found that these transgenic zebrafish expressing dnAhr2 had reduced TCDD induction of the Ahr2 target gene cyp1a, as measured by 7-ethoxyresorufin-O-deethylase activity. Furthermore, the cardiotoxicity produced by TCDD, pericardial edema, heart malformation, and reduced blood flow, were all mitigated in the zebrafish expressing the dnAhr2. These results provide in vivo proof-of-principle results demonstrating the effectiveness of dnAHRs in manipulating AHR activity in vivo, and demonstrating that this approach can be a means for blocking TCDD toxicity.
Collapse
Affiliation(s)
- Kevin A. Lanham
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Amy L. Prasch
- NimbleGen, Madison, Wisconsin, United States of America
| | - Kasia M. Weina
- School of Pharmacy, University of London, London, England
| | - Richard E. Peterson
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Warren Heideman
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
32
|
Andrysík Z, Vondráček J, Marvanová S, Ciganek M, Neča J, Pěnčíková K, Mahadevan B, Topinka J, Baird WM, Kozubík A, Machala M. Activation of the aryl hydrocarbon receptor is the major toxic mode of action of an organic extract of a reference urban dust particulate matter mixture: the role of polycyclic aromatic hydrocarbons. Mutat Res 2011; 714:53-62. [PMID: 21762708 DOI: 10.1016/j.mrfmmm.2011.06.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 06/07/2011] [Accepted: 06/28/2011] [Indexed: 11/19/2022]
Abstract
Many of the toxic and carcinogenic effects of urban air pollution have been linked to polycyclic aromatic hydrocarbons (PAHs) adsorbed to airborne particulate matter (PM). The carcinogenic properties of PAHs in complex organic mixtures derived from PM have been chiefly attributed to their mutagenicity. Nevertheless, PAHs are also potent activators of the aryl hydrocarbon receptor (AhR), which may contribute to their nongenotoxic effects, including tumor promotion. As the genotoxicity of carcinogenic PAHs in complex mixtures derived from urban PM is often inhibited by other mixture constituents, the AhR-mediated activity of urban PM extracts might significantly contribute to the carcinogenic activity of such mixtures. In the present study, we used an organic extract of the urban dust standard reference material, SRM1649a, as a model mixture to study a range of toxic effects related to DNA damage and AhR activation. Both the organic extract and its neutral aromatic fraction formed a low number of DNA adducts per nucleotide in the liver epithelial WB-F344 cells model, without inducing DNA damage response, such as tumor suppressor p53 activation and apoptosis. In contrast, we found that this extract, as well as its neutral and polar fractions, were potent inducers of a range of AhR-mediated responses, including induction of the AhR-mediated transcription, such as cytochrome P450 1A1/1B1 expression, and the AhR-dependent cell proliferation. Importantly, these toxic events occurred at doses one order of magnitude lower than DNA damage. The AhR-mediated activity of the neutral fraction was linked to PAHs and their derivatives, as polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls were only minor contributors to the overall AhR-mediated activity. Taken together, our data suggest that more attention should be paid to the AhR-dependent nongenotoxic events elicited by urban PM constituents, especially PAHs and their derivatives.
Collapse
Affiliation(s)
- Zdeněk Andrysík
- Department of Cytokinetics, Institute of Biophysics AS CR, Královopolská 135, 61265 Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Trilecová L, Krčková S, Marvanová S, Pěnčíková K, Krčmář P, Neča J, Hulinková P, Pálková L, Ciganek M, Milcová A, Topinka J, Vondráček J, Machala M. Toxic Effects of Methylated Benzo[a]pyrenes in Rat Liver Stem-Like Cells. Chem Res Toxicol 2011; 24:866-76. [DOI: 10.1021/tx200049x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Magkoufopoulou C, Claessen S, Jennen D, Kleinjans J, van Delft J. Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis 2011; 26:593-604. [DOI: 10.1093/mutage/ger021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
35
|
Procházková J, Kabátková M, Bryja V, Umannová L, Bernatík O, Kozubík A, Machala M, Vondráček J. The Interplay of the Aryl Hydrocarbon Receptor and β-Catenin Alters Both AhR-Dependent Transcription and Wnt/β-Catenin Signaling in Liver Progenitors. Toxicol Sci 2011; 122:349-60. [DOI: 10.1093/toxsci/kfr129] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
36
|
Dumas I, Diorio C. Polymorphisms in genes involved in the estrogen pathway and mammographic density. BMC Cancer 2010; 10:636. [PMID: 21092186 PMCID: PMC3000407 DOI: 10.1186/1471-2407-10-636] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 11/22/2010] [Indexed: 11/18/2022] Open
Abstract
Background Single nucleotide polymorphisms (SNPs) in genes involved in the estrogen pathway appear to be associated with breast cancer risk and possibly with mammographic density (MD), but little is known of these associations among premenopausal women. This study examines the association of 11 polymorphisms in five estrogen-related genes (estrogen receptors alpha and beta (ERα, ERβ), 17β-hydroxysteroid dehydrogenase 1 (HSD17B1), catechol-O-methyltransferase (COMT), cytochrome P450 1B1 (CYP1B1)) with premenopausal MD. Effect modification of four estrogen-related factors (parity, age at menarche, hormonal derivatives use and body mass index (BMI)) on this relation is also assessed. Methods Polymorphisms were genotyped in 741 premenopausal Caucasian women whose MD was measured in absolute density (AD, cm2) and percent density using a computer-assisted method. Multivariate linear models were used to examine the associations (Ptrend) and interactions (Pi). Results None of the SNPs showed a statistically significant association with AD. However, each additional rare allele of rs1056836 CYP1B1 was associated with a reduction in AD among nulliparous women (Ptrend = 0.004), while no association was observed among parous women (Ptrend = 0.62; Pi = 0.02). An increase in the number of rare alleles of the HSD17B1 SNP (rs598126 and rs2010750) was associated with an increase in AD among women who never used hormonal derivatives (Ptrend = 0.06 and Ptrend = 0.04, respectively), but with a decrease in AD among past hormonal derivatives users (Ptrend = 0.04; Pi = 0.02 and Ptrend = 0.08; Pi = 0.01, respectively). Moreover, a negative association of rs598126 HSD17B1 SNP with AD was observed among women with higher BMI (>median) (Ptrend = 0.01; Pi = 0.02). A negative association between an increased number of rare alleles of COMT rs4680 SNP and AD was limited to women who never used hormonal derivatives (Ptrend = 0.02; Pi = 0.03) or with late age at menarche (>median) (Ptrend = 0.03; Pi = 0.02). No significant association was observed between polymorphisms in the ERα or ERβ genes and AD. Similar results, although less significant, were observed when MD was assessed in percent density. Conclusion SNPs located in CYP1B1, COMT or HSD17B1 genes seem to be associated with MD in some strata of estrogen-related factors. Our findings suggest that modifying effects of estrogen-related factors should be considered when evaluating associations of polymorphisms in estrogen-related genes with premenopausal mammographic density.
Collapse
Affiliation(s)
- Isabelle Dumas
- Université Laval, Département de médecine sociale et préventive, Quebec City, QC, Canada
| | | |
Collapse
|
37
|
Procházková J, Kozubík A, Machala M, Vondráček J. Differential effects of indirubin and 2,3,7,8-tetrachlorodibenzo-p-dioxin on the aryl hydrocarbon receptor (AhR) signalling in liver progenitor cells. Toxicology 2010; 279:146-54. [PMID: 20951181 DOI: 10.1016/j.tox.2010.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 09/21/2010] [Accepted: 10/07/2010] [Indexed: 11/29/2022]
Abstract
In the present study, we investigated the effects of potential endogenous ligand indirubin on the aryl hydrocarbon receptor (AhR) signalling, with a focus on the AhR-dependent gene expression and cell cycle progression in rat liver progenitor cells, and compared them with the effects of a model toxic AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The low (picomolar and nanomolar) doses of indirubin, corresponding to expected endogenous levels, induced a transient translocation of AhR to the nucleus, while high (micromolar) doses induced a long-term AhR nuclear translocation, followed by its degradation, similar to the effects of TCDD. Whereas high doses of indirubin recruited AhR/ARNT1 dimer to rat Cyp1a1 promoter, the low doses did not induce its DNA binding, as revealed by the chromatin immunoprecipitation assay. This corresponded with the fact that the micromolar doses of indirubin significantly increased Cyp1a1/1b1 mRNA in a way similar to TCDD, while the low doses of indirubin were only poor inducers of Cyp1a1/1b1 expression. Comparable patterns of expression were observed also for other AhR gene targets, such as Nqo1 and Nrf2. Also, only micromolar doses of indirubin were able to mimic the effects of TCDD on cell cycle and proliferation of liver progenitor cells or hepatoma cells. Nevertheless, indirubin at low concentrations may have unique effects on gene expression in non-tumorigenic cells. Although both TCDD and the high doses of indirubin repressed plakoglobin (Jup) expression, the picomolar doses of indirubin, unlike the equimolar doses of TCDD, increased mRNA levels of this important desmosomal and adherens junctions constituent. These present data suggest that the outcome of AhR activation induced by indirubin at concentrations expected in vivo may differ from the AhR signalling triggered by exogenous toxic ligands, such as TCDD.
Collapse
Affiliation(s)
- Jiřina Procházková
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic
| | | | | | | |
Collapse
|
38
|
Dietrich C, Kaina B. The aryl hydrocarbon receptor (AhR) in the regulation of cell-cell contact and tumor growth. Carcinogenesis 2010; 31:1319-28. [PMID: 20106901 PMCID: PMC6276890 DOI: 10.1093/carcin/bgq028] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 01/21/2010] [Accepted: 01/24/2010] [Indexed: 01/26/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor, which is activated by a large group of environmental pollutants including polycyclic aromatic hydrocarbons, dioxins and planar polychlorinated biphenyls. Ligand binding leads to dimerization of the AhR with aryl hydrocarbon receptor nuclear translocator and transcriptional activation of several xenobiotic phase I and phase II metabolizing enzymes, such as cytochrome P4501A1 and glutathione-S-transferase, respectively. Since phase I enzymes convert inert carcinogens to active genotoxins, the AhR plays a key role in tumor initiation. Besides this classical route, the AhR mediates tumor promotion and recent evidence suggests that the AhR also plays a role in tumor progression. To date, no mechanistic link could be established between the canonical pathway involving xenobiotic metabolism and AhR-dependent tumor promotion and progression. A hallmark of tumor promotion is unbalanced proliferation, whereas tumor progression is characterized by dedifferentiation, increased motility and metastasis of tumor cells. Tumor progression and presumably also tumor promotion are triggered by loss of cell-cell contact. Cell-cell contact is known to be a critical regulator of proliferation, differentiation and cell motility in vitro and in vivo. Increasing evidence suggests that activation of the AhR may lead to deregulation of cell-cell contact, thereby inducing unbalanced proliferation, dedifferentiation and enhanced motility. In line with this is the finding of increased AhR expression and malignancy in some animal and human cancers. Here, we summarize our current knowledge on non-canonical AhR-driven pathways being involved in deregulation of cell-cell contact and discuss the data with respect to tumor initiation, promotion and progression.
Collapse
Affiliation(s)
- Cornelia Dietrich
- Institute of Toxicology, Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
| | | |
Collapse
|
39
|
Downregulation of Cdc2/CDK1 kinase activity induces the synthesis of noninfectious human papillomavirus type 31b virions in organotypic tissues exposed to benzo[a]pyrene. J Virol 2010; 84:4630-45. [PMID: 20181698 DOI: 10.1128/jvi.02431-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epidemiological studies suggest that human papillomavirus (HPV)-infected women who smoke face an increased risk for developing cervical cancer. We have previously reported that exposure of HPV-positive organotypic cultures to benzo[a]pyrene (BaP), a major carcinogen in cigarette smoke, resulted in enhanced viral titers. Since BaP is known to deregulate multiple pathways of cellular proliferation, enhanced virion synthesis could result from carcinogen/host cell interaction. Here, we report that BaP-mediated upregulation of virus synthesis is correlated to an altered balance between cell cycle-specific cyclin-dependent kinase (CDK) activity profile compared with controls. Specifically, BaP treatment increased accumulation of hyperphosphorylated retinoblastoma protein (pRb) which coincided with increased cdc2/CDK1 kinase activity, but which further conflicted with the simultaneous upregulation of CDK inhibitors p16(INK4) and p27(KIP1), which normally mediate pRb hypophosphorylation. In contrast, p21(WAF1) and p53 levels remained unchanged. Under these conditions, CDK6 and CDK2 kinase activities were decreased, whereas CDK4 kinase activity remained unchanged. The addition of purvalanol A, a specific inhibitor of CDK1 kinase, to BaP-treated cultures, resulted in the production of noninfectious HPV type 31b (HPV31b) particles. In contrast, infectivity of control virus was unaffected by purvalanol A treatment. BaP targeting of CDK1 occurred independently of HPV status, since BaP treatment also increased CDK1 activity in tissues derived from primary keratinocytes. Our data indicate that HPV31b virions synthesized in the presence of BaP were dependent on BaP-mediated alteration in CDK1 kinase activity for maintaining their infectivity.
Collapse
|
40
|
Neurogenic-committed human pre-adipocytes express CYP1A isoforms. Chem Biol Interact 2010; 184:474-83. [PMID: 20080079 DOI: 10.1016/j.cbi.2010.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 12/23/2009] [Accepted: 01/05/2010] [Indexed: 01/22/2023]
Abstract
Stem cell models offer an opportunity both for therapeutic use and for the assessment of alternative in vitro models. Human lipoaspirate is a source of adult stem cells (pre-adipocytes), which are able to differentiate into various phenotypes, such as neurogenic lineage. Here, we analyse the suitability of these in vitro models in screening exogenous compounds, such as environmental pollutants, that may affect adipose cells and neurogenic development. To evaluate neurogenic differentiation, we analysed expression of cholinergic system and acetylcholinesterase immunoreactivity. Heterocyclic derivatives of polycyclic aromatic hydrocarbons (PAHs) are often significant components of environmental contaminants. As they contain inducers of cytochrome P450 1A1 (CYP1A1), we explored the activity of CYP1A1-related enzymes, i.e. 7-ethoxycoumarin- and 7-ethoxyresorufin-O-deethylase (ECOD and EROD) in both cell systems in basal conditions and after exposure to non-cytotoxic doses of beta-naphthoflavone (BNF), a well-known PAH-type inducer. Both cell models showed basal and inducible levels of ECOD. Analysis of CYP1A1 protein expression and EROD-related enzyme activity confirmed the inducibility of the CYP1A1 isoform by BNF. These results demonstrate that mesenchymal adult stem cells can constitute innovative models. We therefore propose the use of pre-adipocytes and their neurogenic derivates to evaluate the cytotoxic/biological effects of unintended exposure to contaminants.
Collapse
|
41
|
Kaisarevic S, Varel ULV, Orcic D, Streck G, Schulze T, Pogrmic K, Teodorovic I, Brack W, Kovacevic R. Effect-directed analysis of contaminated sediment from the wastewater canal in Pancevo industrial area, Serbia. CHEMOSPHERE 2009; 77:907-913. [PMID: 19767056 DOI: 10.1016/j.chemosphere.2009.08.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 08/20/2009] [Accepted: 08/23/2009] [Indexed: 05/28/2023]
Abstract
Wastewater canal (WWC) in Pancevo industrial area in Serbia, whose main environmental receptor is the River Danube, is a well known hot-spot of contamination. WWC sediments have been assessed by UNEP based on chemical target analysis. However, integrative biological data on exposure to hazardous compounds are only provided by the present study which aims at evaluating whether the monitored compounds sufficiently reflect potential hazards and to suggest additional compounds to include in monitoring and hazard assessment by applying effect-directed analysis (EDA) based on arylhydrocarbon receptor-mediated activity and cytotoxicity. Multistep NP-HPLC fractionation provided 18 fractions co-eluting with polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), polycyclic aromatic hydrocarbons (PAHs) and more polar compounds. PAHs fractions exhibited great potencies to induce ethoxyresorufin-o-deethylase (EROD) in H4IIE rat hepatoma cell line expressed as 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TCDD-EQ) (0.1-34.6 x 10(3) pg g(-1)dry weight). Chemical analysis of the most active fractions revealed great concentrations of PAHs (up to 292 x 10(2)ngg(-1) sediment equivalents (SEQ)), methylated PAHs (up to 900 x 10(2) ng g(-1) SEQ), and other alkyl-substituted PAHs. Only minor portions of biologically derived TCDD-EQs could be attributed to monitored PAHs with known relative potencies (REPs). We hypothesize that a major part of the activity is due to non-monitored alkylated and heterocyclic PAHs. Results of the cell cytotoxicity/proliferation assay on H4IIE cell line suggest the presence of sediment pollutants with pronounced potency to disturb cell growth.
Collapse
Affiliation(s)
- Sonja Kaisarevic
- LECOTOX, Department of Biology and Ecology, Faculty of Science, University of Novi Sad, 21000 Novi Sad, Serbia.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhang Y, Zhang X, Wu B, Zhao D, Li M, Cui Y, Ford T, Cheng S. Degradation of benzo(a)pyrene in Yangtze River source water with functional strains. ECOTOXICOLOGY (LONDON, ENGLAND) 2009; 18:742-747. [PMID: 19499330 DOI: 10.1007/s10646-009-0344-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 05/18/2009] [Indexed: 05/27/2023]
Abstract
Degradation of benzo(a)pyrene (BaP) existing in the Yangtze River, used as source water for Nanjing City, China, was investigated with functional strains. The removal rates of BaP were 37.5, 20.8 and 70.8% for the three strains of the native bacterium NJ, and the two functional strains of Xhhh and Fhhh, respectively. The Fhhh specific degradation rate of BaP was 3.02 x 10(-6) day(-1), which was 1.9-fold of the rate with NJ and 3.7-fold of the rate with Xhhh. The concentrations of BaP in the source water, tap water and Fhhh reactor effluent were 8.3-, 7.6-, and 2.4-fold of that of the oral carcinogenicity unit risk. The results suggest that the functional strain Fhhh could be used for the reduction of BaP concentrations in source water and hence reduction of carcinogenic risk.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment at Nanjing University, 210093 Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Vondráček J, Krčmář P, Procházková J, Trilecová L, Gavelová M, Skálová L, Szotáková B, Bunček M, Radilová H, Kozubík A, Machala M. The role of aryl hydrocarbon receptor in regulation of enzymes involved in metabolic activation of polycyclic aromatic hydrocarbons in a model of rat liver progenitor cells. Chem Biol Interact 2009; 180:226-37. [DOI: 10.1016/j.cbi.2009.03.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 03/10/2009] [Accepted: 03/16/2009] [Indexed: 11/30/2022]
|
44
|
Limón-Pacheco J, Gonsebatt ME. The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2009; 674:137-47. [DOI: 10.1016/j.mrgentox.2008.09.015] [Citation(s) in RCA: 438] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 09/18/2008] [Indexed: 01/05/2023]
|
45
|
Ma C, Marlowe JL, Puga A. The aryl hydrocarbon receptor at the crossroads of multiple signaling pathways. EXS 2009; 99:231-57. [PMID: 19157064 DOI: 10.1007/978-3-7643-8336-7_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The aryl hydrocarbon receptor (AHR) has long been recognized as a ligand-activated transcription factor responsible for the induction of drug-metabolizing enzymes. Its role in the combinatorial matrix of cell functions was established long before the first report of an AHR cDNA sequence was published. It is only recently that other functions of this protein have begun to be recognized, and it is now clear that the AHR also functions in pathways outside of its well-characterized role in xenobiotic enzyme induction. Perturbation of these pathways by xenobiotic ligands may ultimately explain much of the toxicity of these compounds. This chapter focuses on the interactions of the AHR in pathways critical to cell cycle regulation, mitogen-activated protein kinase cascades, differentiation and apoptosis. Ultimately, the effect of a particular AHR ligand on the biology of the organism will depend on the milieu of critical pathways and proteins expressed in specific cells and tissues with which the AHR itself interacts.
Collapse
Affiliation(s)
- Ci Ma
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA.
| | | | | |
Collapse
|
46
|
Kung T, Murphy KA, White LA. The aryl hydrocarbon receptor (AhR) pathway as a regulatory pathway for cell adhesion and matrix metabolism. Biochem Pharmacol 2008; 77:536-46. [PMID: 18940186 DOI: 10.1016/j.bcp.2008.09.031] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/17/2008] [Accepted: 09/19/2008] [Indexed: 01/07/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is an orphan receptor in the basic helix-loop-helix PAS family of transcriptional regulators. Although the endogenous regulator of this pathway has not been identified, the AhR is known to bind and be activated by a variety of compounds ranging from environmental contaminants to flavanoids. The function of this receptor is still unclear; however, animal models indicate that the AhR is important for normal development. One hypothesis is that the AhR senses cellular stress and initiates the cellular response by altering gene expression and inhibiting cell cycle progression and that activation of the AhR by exogenous environmental chemicals results in the dysregulation of this normal function. In this review we will examine the role of the AhR in the regulation of genes and proteins involved in cell adhesion and matrix remodeling, and discuss the implications of these changes in development and disease. In addition, we will discuss evidence suggesting that the AhR pathway is responsive to changes in matrix composition as well as cell-cell and cell-matrix interactions.
Collapse
Affiliation(s)
- Tiffany Kung
- Department of Biochemistry and Microbiology, Rutgers, The State University of NJ, New Brunswick, NJ 08901, USA
| | | | | |
Collapse
|
47
|
Puga A, Ma C, Marlowe JL. The aryl hydrocarbon receptor cross-talks with multiple signal transduction pathways. Biochem Pharmacol 2008; 77:713-22. [PMID: 18817753 DOI: 10.1016/j.bcp.2008.08.031] [Citation(s) in RCA: 321] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 08/20/2008] [Accepted: 08/21/2008] [Indexed: 12/13/2022]
Abstract
Exposure to toxic polycyclic aromatic hydrocarbons raises a number of toxic and carcinogenic responses in experimental animals and humans mediated for the most part by the aryl hydrocarbon -- or dioxin -- receptor (AHR). The AHR is a ligand-activated transcription factor whose central role in the induction of drug-metabolizing enzymes has long been recognized. For quite some time now, it has become clear that the AHR also functions in pathways outside of its role in detoxification and that perturbation of these pathways by xenobiotic ligands may be an important part of the toxicity of these compounds. AHR activation by some of its ligands participates among others in pathways critical to cell cycle regulation, mitogen-activated protein kinase cascades, immediate-early gene induction, cross-talk within the RB/E2F axis and mobilization of crucial calcium stores. Ultimately, the effect of a particular AHR ligand may depend as much on the adaptive interactions that it established with pathways and proteins expressed in a specific cell or tissue as on the toxic responses that it raises.
Collapse
Affiliation(s)
- Alvaro Puga
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA.
| | | | | |
Collapse
|
48
|
Kummer V, Masková J, Zralý Z, Neca J, Simecková P, Vondrácek J, Machala M. Estrogenic activity of environmental polycyclic aromatic hydrocarbons in uterus of immature Wistar rats. Toxicol Lett 2008; 180:212-21. [PMID: 18634860 DOI: 10.1016/j.toxlet.2008.06.862] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 06/11/2008] [Accepted: 06/12/2008] [Indexed: 02/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are an important group of environmental pollutants, known for their mutagenic and carcinogenic activities. Many PAHs are aryl hydrocarbon receptor (AhR) ligands and several recent studies have suggested that PAHs or their metabolites may activate estrogen receptors (ER). The present study investigated possible estrogenic/antiestrogenic effects of abundant environmental contaminants benzo[a]pyrene (BaP), benz[a]anthracene (BaA), fluoranthene (Fla) and benzo[k]fluoranthene (BkF) in vivo, using the immature rat uterotrophic assay. The present results suggest that BaA, BaP and Fla behaved as estrogen-like compounds in immature Wistar rats, when applied for 3 consecutive days at 10mg/kg/day, as documented by a significant increase of uterine weight and hypertrophy of luminal epithelium. These effects were likely to be mediated by ERalpha, a major subtype of ER present in uterus, as they were inhibited by treatment with ER antagonist ICI 182,780. BaA, the most potent of studied PAHs, induced a significant estrogenic effect within a concentration range 0.1-50mg/kg/day; however, it did not reach the maximum level induced by reference estrogens. The proposed antiestrogenicity of the potent AhR agonist BkF was not confirmed in the present in vivo study; the exposure to BkF did not significantly affect the uterine weight, although a weak suppression of ERalpha immunostaining was observed in luminal and glandular epithelium, possibly related to its AhR-mediated activity. The PAHs under study did not induce marked genotoxic damage in uterine tissues, as documented by the lack of Ser-15-phoshorylated p53 protein staining. With the exception of Fla, all three remaining compounds increased CYP1-dependent monooxygenation activities in liver at the doses used, suggesting that the potential tissue-specific antiestrogenic effects of PAHs mediated by metabolization of 17beta-estradiol also cannot be excluded. Taken together, these environmentally relevant PAHs induced estrogenic effects in vivo, which might affect their toxic impact and carcinogenicity.
Collapse
|
49
|
Effects of methylated chrysenes on AhR-dependent and -independent toxic events in rat liver epithelial cells. Toxicology 2008; 247:93-101. [DOI: 10.1016/j.tox.2008.02.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/15/2008] [Accepted: 02/18/2008] [Indexed: 01/09/2023]
|
50
|
Umannová L, Machala M, Topinka J, Nováková Z, Milcová A, Kozubík A, Vondrácek J. Tumor necrosis factor-alpha potentiates genotoxic effects of benzo[a]pyrene in rat liver epithelial cells through upregulation of cytochrome P450 1B1 expression. Mutat Res 2008; 640:162-169. [PMID: 18336843 DOI: 10.1016/j.mrfmmm.2008.02.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 01/21/2008] [Accepted: 02/01/2008] [Indexed: 05/26/2023]
Abstract
Benzo[a]pyrene (BaP) is a ubiquitous environmental pollutant, which may contribute to the development of human cancer. The ultimate carcinogenic BaP metabolite produced by cytochrome P450 enzymes (CYP), such as CYP1A1 and CYP1B1, anti-BaP-7,8-diol-9,10-epoxide, binds covalently to DNA and causes mutations. The levels of various CYP isoforms can be significantly modulated under inflammatory conditions. As the chronic inflammation is known to contribute to carcinogenesis, we investigated interactions of a major proinflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha), and BaP in regulation of the expression of CYP1A1/1B1 and induction of DNA damage in rat liver epithelial WB-F344 cells. TNF-alpha enhanced induction of CYP1B1, while it simultaneously suppressed the BaP-induced CYP1A1 expression. The observed deregulation of CYP1 induction was found to be associated with a significantly enhanced formation of DNA adducts. The elevated DNA damage corresponded with increased phosphorylation of p53 tumor suppressor at Ser-15 residue, enhanced accumulation of cells in the S-phase of cell cycle and potentiation of BaP-induced apoptosis. Inhibition of CYP1B1 by fluoranthene significantly decreased both the formation of DNA adducts and the induction of apoptosis in WB-F344 cells treated with BaP and TNF-alpha, thus suggesting that this isoform might be responsible for genotoxic effects of BaP in nonparenchymal liver cells. Our results seem to indicate that inflammatory conditions might enhance genotoxic effects of carcinogenic polycyclic aromatic hydrocarbons through upregulation of CYP1B1 expression.
Collapse
Affiliation(s)
- Lenka Umannová
- Department of Cytokinetics, Institute of Biophysics, AS CR, 612 65 Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|