1
|
Cole AP, Qian Z, Gupta N, Leapman M, Zurl H, Trinh QD, Sherman JD, Loeb S, Iyer HS. Urology on a changing planet: links between climate change and urological disease. Nat Rev Urol 2025; 22:208-222. [PMID: 39875561 DOI: 10.1038/s41585-024-00979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2024] [Indexed: 01/30/2025]
Abstract
Urological diseases and their varied forms of management warrant special attention in the setting of climate change. Regarding urological cancers, climate change will probably increase the incidence and severity of cancer diagnoses through exposures to certain environmental risk factors, while simultaneously disrupting cancer care delivery and downstream outcomes. Regarding benign urological diseases, a burgeoning body of work exists on climate-related heat waves, dehydration, urolithiasis, renal injury and infectious and vector-borne diseases. Adding to the potential effect on disease pathogenesis, many patients with urological diseases undergo high-tech, resource-intensive interventions, such as robotic surgery, and entail intensive longitudinal assessments over many years. These features incur a considerable carbon footprint, generate substantial waste, and can introduce vulnerabilities to climate-related weather events. Links exist between planetary health (the health of humans and the natural systems that support our health), climate change and urological disease and urological care providers face many challenges in the era of anthropogenic climate change. The next steps and priorities for research, management, and health care delivery include identification and prioritization of health care delivery strategies to minimize waste and carbon emissions, while supporting climate resilience. Examples include supporting telemedicine, limiting low-value care, and building resilience to minimize impacts of climate-related disasters to prepare for the challenges ahead.
Collapse
Affiliation(s)
- Alexander P Cole
- Department of Urology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Center for Surgery and Public Health, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Zhiyu Qian
- Department of Urology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Surgery and Public Health, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Natasha Gupta
- Department of Urology, New York University Langone Health, New York, NY, USA
- Department of Population Health, New York University Langone Health, New York, NY, USA
- Department of Surgery/Urology, Manhattan Veterans Affairs, New York, NY, USA
| | - Michael Leapman
- Department of Urology, Yale School of Medicine, New Haven, CT, USA
| | - Hanna Zurl
- Department of Urology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Surgery and Public Health, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Urology, Medical University of Graz, Graz, Austria
| | - Quoc-Dien Trinh
- Department of Urology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Surgery and Public Health, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jodi D Sherman
- Department of Anaesthesiology, Yale School of Medicine; Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Stacy Loeb
- Department of Urology, New York University Langone Health, New York, NY, USA
- Department of Population Health, New York University Langone Health, New York, NY, USA
- Department of Surgery/Urology, Manhattan Veterans Affairs, New York, NY, USA
| | - Hari S Iyer
- Section of Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute, New Brunswick, NJ, USA
| |
Collapse
|
2
|
Capezzone M, Torregrossa L, Poma AM, Cartocci A, Petrone L, Sparano C, Puccioni M, Barbaro D, Bigini D, Marcantonio A, Pupilli C, Ladu C, Gianetti E, Vezzosi C, Belardini V, Mancini V, Morabito EM, Dalmazio G, Tosti Balducci M, Decarli NL, Giubbolini G, Boccuzzi S, Alessandri M, Piacentini P, Di Cosmo C, De Servi M, Tomisti L, Pellegri M, Gravina G, Ceroti M, De Napoli L, Materazzi G. Epidemiology of Thyroid Cancer in Tuscany (Central Italy) 2013-2017: Not Just Overdiagnosis. Cancers (Basel) 2025; 17:717. [PMID: 40075565 PMCID: PMC11899145 DOI: 10.3390/cancers17050717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy, and its incidence continues to rise worldwide [...].
Collapse
Affiliation(s)
- Marco Capezzone
- UOSD of Endocrinology, Misericordia Hospital, Senese Street 146, 58100 Grosseto, Italy; (E.M.M.); (G.D.); (M.T.B.); (M.A.)
| | - Liborio Torregrossa
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, 56124 Pisa, Italy; (L.T.); (A.M.P.)
| | - Anello Marcello Poma
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, 56124 Pisa, Italy; (L.T.); (A.M.P.)
| | - Alessandra Cartocci
- Department of Medical Biotechnologies Bioengineering Lab, University of Siena, 53100 Siena, Italy;
| | - Luisa Petrone
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (L.P.); (C.S.); (M.P.)
| | - Clotilde Sparano
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (L.P.); (C.S.); (M.P.)
| | - Matteo Puccioni
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (L.P.); (C.S.); (M.P.)
| | - Daniele Barbaro
- U.O.S.D. Endocrinology in Livorno Hospital, USL Nordovest Toscana, 57100 Livorno, Italy
| | - Daniela Bigini
- UOSD Diagnostic Cytology ASL North West, 55049 Tuscany, Italy;
| | | | - Cinzia Pupilli
- SOSD Endocrinology ASL Center, 50125 Tuscany, Italy; (A.M.); (C.P.); (C.L.); (E.G.)
| | - Cristina Ladu
- SOSD Endocrinology ASL Center, 50125 Tuscany, Italy; (A.M.); (C.P.); (C.L.); (E.G.)
| | - Elena Gianetti
- SOSD Endocrinology ASL Center, 50125 Tuscany, Italy; (A.M.); (C.P.); (C.L.); (E.G.)
| | - Chiara Vezzosi
- Endocrinology Unit, San Donato Hospital, 52100 Arezzo, Italy; (C.V.); (V.B.)
| | - Valentina Belardini
- Endocrinology Unit, San Donato Hospital, 52100 Arezzo, Italy; (C.V.); (V.B.)
| | - Virginia Mancini
- Section of Pathology, Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Eugenia Maria Morabito
- UOSD of Endocrinology, Misericordia Hospital, Senese Street 146, 58100 Grosseto, Italy; (E.M.M.); (G.D.); (M.T.B.); (M.A.)
| | - Gilda Dalmazio
- UOSD of Endocrinology, Misericordia Hospital, Senese Street 146, 58100 Grosseto, Italy; (E.M.M.); (G.D.); (M.T.B.); (M.A.)
| | - Massimo Tosti Balducci
- UOSD of Endocrinology, Misericordia Hospital, Senese Street 146, 58100 Grosseto, Italy; (E.M.M.); (G.D.); (M.T.B.); (M.A.)
| | | | - Giacomo Giubbolini
- Department of Pathology, Misericordia Hospital, 58100 Grosseto, Italy; (N.L.D.); (G.G.)
| | - Simone Boccuzzi
- Department of Otorhinolaryngology, Misericordia Hospital, 58100 Grosseto, Italy;
| | - Massimo Alessandri
- UOSD of Endocrinology, Misericordia Hospital, Senese Street 146, 58100 Grosseto, Italy; (E.M.M.); (G.D.); (M.T.B.); (M.A.)
| | - Paolo Piacentini
- Unit of Epidemiology, Department of Prevention Misericordia Hospital, 58100 Grosseto, Italy;
| | - Caterina Di Cosmo
- UOSD of Endocrinology, Versilia Hospital, 55041 Lido di Camaiore, Italy;
| | - Melissa De Servi
- Endocrinology Unit, Massa-Carrara Hospital ASL North West, 54100 Tuscany, Italy; (M.D.S.); (L.T.)
| | - Luca Tomisti
- Endocrinology Unit, Massa-Carrara Hospital ASL North West, 54100 Tuscany, Italy; (M.D.S.); (L.T.)
| | - Marco Pellegri
- Nuclear Medicine Unit, San Luca Hospital, 55100 Lucca, Italy;
| | - Giovanni Gravina
- Endocrinology Section, Department of Medicine San Rossore Clinic, 56122 Pisa, Italy;
| | - Marco Ceroti
- Tuscany Cancer Registry, Clinical and Descriptive Epidemiology Unit, Institute for Cancer Research Prevention and Clinical Network (ISPRO), 50139 Florence, Italy;
| | - Luigi De Napoli
- Division of Endocrine Surgery, Department of Surgical Pathology, University Hospital of Pisa, 56124 Pisa, Italy; (L.D.N.); (G.M.)
| | - Gabriele Materazzi
- Division of Endocrine Surgery, Department of Surgical Pathology, University Hospital of Pisa, 56124 Pisa, Italy; (L.D.N.); (G.M.)
| |
Collapse
|
3
|
Maleki AS, Ghahremani MH, Shadboorestan A. Arsenic and Benzo[a]pyrene Co-exposure Effects on MDA-MB-231 Cell Viability and Migration. Biol Trace Elem Res 2025; 203:178-186. [PMID: 38602648 DOI: 10.1007/s12011-024-04170-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Although humans are frequently exposed to multiple pollutants simultaneously, research on their harmful effects on health has typically focused on studying each pollutant individually. Inorganic arsenic (As) and benzo[a]pyrene (BaP) are well-known pollutants with carcinogenic potential, but their co-exposure effects on breast cancer cell progression remain incompletely understood. This study aimed to assess the combined impact of BaP and As on the viability and migration of MDA-MB-231 cells. The results indicated that even at low levels, both inorganic As (0.01 μM, 0.1 μM, and 1 μM) and BaP (1 μM, 2.5 μM), individually or in combination, enhanced the viability and migration of the cells. However, the cell cycle analysis revealed no significant differences between the control group and the cells exposed to BaP and As. Specifically, exposure to BaP alone or in combination with As (As 0.01 μM + BaP 1 μM) for 24 h led to a significant increase in vimentin gene expression. Interestingly, short-term exposure to As not only did not induce EMT but also modulated the effects of BaP on vimentin gene expression. However, there were no observable changes in the expression of E-cadherin mRNA. Consequently, additional research is required to evaluate the prolonged effects of co-exposure to As and BaP on the initiation of EMT and the progression of breast cancer.
Collapse
Affiliation(s)
- Ahmad Safari Maleki
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Shadboorestan
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Marcoccia D, Tzanetou EN, Pietropaoli M, Roessink I, van der Steen J, Cuva C, Formato G, Kasiotis KM. Biomonitoring of particulate matter and volatile organic compounds using honey bees and their products. A contemporary overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177391. [PMID: 39505038 DOI: 10.1016/j.scitotenv.2024.177391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Airborne pollutants like particulate matter and volatile organic compounds can negatively impact microbial, plant, and animal life as well as human health. Traditional environmental monitoring, while crucial, often relies on expensive equipment at limited locations, leading to gaps in geographical coverage. To obtain a low-cost, easily deployed environmental monitoring grid, the use of European honey bees (Apis mellifera) as biomonitor can offer a promising alternative. Their extensive foraging in the landscape exposes them to environmental contaminants like particulate matter and organic compounds. Once collected, these pollutants are carried back into the hives, where they can subsequently be sampled and quantified using various techniques. This potentially makes honey bee colonies a cost-effective and valuable long-term monitoring tool for particulate matter and organic compounds. This review, through the critical insight of the most recent pertinent literature, explores the suitability of honey bees and their products as biomarkers for environmental monitoring of these pollutants, addressing sample preparation approaches and chemical analytical methods. Overall, the presented information will aid researchers in initiating further investigations in this pivotal field, incorporating additional chemicals and innovative, non-invasive sampling matrices compatible with the beehive environment.
Collapse
Affiliation(s)
- Daniele Marcoccia
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| | - Evangelia N Tzanetou
- Laboratory of Pesticides' Toxicology, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 145 61 Kifissia, Greece
| | - Marco Pietropaoli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy.
| | - Ivo Roessink
- Wageningen Environmental Research, Wageningen, the Netherlands
| | | | - Camilla Cuva
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| | - Giovanni Formato
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| | - Konstantinos M Kasiotis
- Laboratory of Pesticides' Toxicology, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 145 61 Kifissia, Greece
| |
Collapse
|
5
|
Pierozan P, Höglund A, Theodoropoulou E, Karlsson O. Perfluorooctanesulfonic acid (PFOS) induced cancer related DNA methylation alterations in human breast cells: A whole genome methylome study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174864. [PMID: 39032741 DOI: 10.1016/j.scitotenv.2024.174864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
DNA methylation plays a pivotal role in cancer. The ubiquitous contaminant perfluorooctanesulfonic acid (PFOS) has been epidemiologically associated with breast cancer, and can induce proliferation and malignant transformation of normal human breast epithelial cells (MCF-10A), but the information about its effect on DNA methylation is sparse. The aim of this study was to characterize the whole-genome methylome effects of PFOS in our breast cell model and compare the findings with previously demonstrated DNA methylation alterations in breast tumor tissues. The DNA methylation profile was assessed at single CpG resolution in MCF-10A cells treated with 1 μM PFOS for 72 h by using Enzymatic Methyl sequencing (EM-seq). We found 12,591 differentially methylated CpG-sites and 13,360 differentially methylated 100 bp tiles in the PFOS exposed breast cells. These differentially methylated regions (DMRs) overlapped with 2406 genes of which 494 were long non-coding RNA and 1841 protein coding genes. We identified 339 affected genes that have been shown to display altered DNA methylation in breast cancer tissue and several other genes related to cancer development. This includes hypermethylation of GACAT3, DELEC1, CASC2, LCIIAR, MUC16, SYNE1 and hypomethylation of TTN and KMT2C. DMRs were also found in estrogen receptor genes (ESR1, ESR2, ESRRG, ESRRB, GREB1) and estrogen responsive genes (GPER1, EEIG1, RERG). The gene ontology analysis revealed pathways related to cancer phenotypes such as cell adhesion and growth. These findings improve the understanding of PFOS's potential role in breast cancer and illustrate the value of whole-genome methylome analysis in uncovering mechanisms of chemical effects, identifying biomarker candidates, and strengthening epidemiological associations, potentially impacting risk assessment.
Collapse
Affiliation(s)
- Paula Pierozan
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18 Stockholm, Sweden; Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91 Stockholm, Sweden
| | - Andrey Höglund
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18 Stockholm, Sweden; Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91 Stockholm, Sweden
| | - Eleftheria Theodoropoulou
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18 Stockholm, Sweden; Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91 Stockholm, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18 Stockholm, Sweden; Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
6
|
Dehghani Z, Ranjbar S, Shahabinezhad F, Sabouri P, Mohammadi Bardbori A. A toxicogenomics-based identification of potential mechanisms and signaling pathways involved in PFCs-induced cancer in human. Toxicol Res (Camb) 2024; 13:tfae151. [PMID: 39323479 PMCID: PMC11420517 DOI: 10.1093/toxres/tfae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 08/14/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction The number of new diagnosed cancer cases and cancer deaths are increasing worldwide. Perfluorinated compounds (PFCs) are synthetic chemicals, which are possible inducers of cancer in human and laboratory animals. Studies showed that PFCs induce breast, prostate, kidney, liver and pancreas cancer by inducing genes being involved in carcinogenic pathways. Methodology This study reviews the association between PFCs induced up-regulation/down-regulation of genes and signaling pathways that are important in promoting different types of cancer. To obtain chemical-gene interactions, an advanced search was performed in the Comparative Toxicogenomics Database platform. Results Five most prevalent cancers were studied and the maps of their signaling pathways were drawn, and colored borders indicate significantly differentially expressed genes if there had been reports of alterations in expression in the presence of PFCs. Conclusion In general, PFCs are capable of inducing cancer in human via altering PPARα and PI3K pathways, evading apoptosis, inducing sustained angiogenesis, alterations in proliferation and blocking differentiation. However, more epidemiological data and mechanistic studies are needed to better understand the carcinogenic effects of PFCs in human.
Collapse
Affiliation(s)
- Zahra Dehghani
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz
University of Medical Sciences, Rokn Abad, Karafarin St., 7146864685,
Shiraz, Iran
| | - Sara Ranjbar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical
Sciences, Rokn Abad, Karafarin St., 7146864685, Shiraz, Iran
| | - Farbod Shahabinezhad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz
University of Medical Sciences, Rokn Abad, Karafarin St., 7146864685,
Shiraz, Iran
| | - Pooria Sabouri
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz
University of Medical Sciences, Rokn Abad, Karafarin St., 7146864685,
Shiraz, Iran
| | - Afshin Mohammadi Bardbori
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz
University of Medical Sciences, Rokn Abad, Karafarin St., 7146864685,
Shiraz, Iran
| |
Collapse
|
7
|
Kawamura T, Sekine Y, Sugai K, Yanagihara T, Saeki Y, Kitazawa S, Kobayashi N, Goto Y, Ichimura H, Ohigashi T, Maruo K, Sato Y. Three-dimensional analysis reveals a high incidence of lung adenocarcinoma in the upper region. Surg Today 2024; 54:634-641. [PMID: 38055104 DOI: 10.1007/s00595-023-02776-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/08/2023] [Indexed: 12/07/2023]
Abstract
PURPOSE The lung is a unique organ with a ventilation-perfusion mismatch, which can cause inhomogeneous incidence rates of lung cancer depending on the location in the lung. We aimed to evaluate the incidence of lung adenocarcinoma in each lobe by analyzing the incidence per unit volume, to evaluate the incidence without being affected by differences in the size of each lobe or in the size of the lungs between individuals. METHODS The number of adenocarcinomas in each lobe was counted. Lung volumes were measured using a three-dimensional computer workstation. The tumor incidence per unit volume was analyzed based on the number of tumors in each lobe. RESULTS The number of tumors per unit volume was 0.467 in the right upper lobe (RUL), 0.182 in the right middle lobe, 0.209 in the right lower lobe, 0.306 in the left upper segment (LUS), 0.083 in the left lingular segment, and 0.169 in the left lower lobe. The tumor incidence rate of RUL + LUS was 2.269 times that of the other lobes, a value that was significantly higher when using the bootstrap method (p < 0.001). CONCLUSIONS The incidence of adenocarcinoma per unit volume in both upper lobes was higher than that in other lobes.
Collapse
Affiliation(s)
- Tomoyuki Kawamura
- Department of Thoracic Surgery, University of Tsukuba, 1‑1‑1 Tennodai, Tsukuba, Ibaraki, 305‑8575, Japan
| | - Yasuharu Sekine
- Department of Thoracic Surgery, University of Tsukuba, 1‑1‑1 Tennodai, Tsukuba, Ibaraki, 305‑8575, Japan
| | - Kazuto Sugai
- Department of Thoracic Surgery, University of Tsukuba, 1‑1‑1 Tennodai, Tsukuba, Ibaraki, 305‑8575, Japan
| | - Takahiro Yanagihara
- Department of Thoracic Surgery, University of Tsukuba, 1‑1‑1 Tennodai, Tsukuba, Ibaraki, 305‑8575, Japan
| | - Yusuke Saeki
- Department of Thoracic Surgery, University of Tsukuba, 1‑1‑1 Tennodai, Tsukuba, Ibaraki, 305‑8575, Japan
| | - Shinsuke Kitazawa
- Department of Thoracic Surgery, University of Tsukuba, 1‑1‑1 Tennodai, Tsukuba, Ibaraki, 305‑8575, Japan
| | - Naohiro Kobayashi
- Department of Thoracic Surgery, University of Tsukuba, 1‑1‑1 Tennodai, Tsukuba, Ibaraki, 305‑8575, Japan
| | - Yukinobu Goto
- Department of Thoracic Surgery, University of Tsukuba, 1‑1‑1 Tennodai, Tsukuba, Ibaraki, 305‑8575, Japan
| | - Hideo Ichimura
- Department of Thoracic Surgery, University of Tsukuba, 1‑1‑1 Tennodai, Tsukuba, Ibaraki, 305‑8575, Japan
| | - Tomohiro Ohigashi
- Department of Biostatistics, Tsukuba Clinical Research and Development Organization, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kazushi Maruo
- Department of Biostatistics, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yukio Sato
- Department of Thoracic Surgery, University of Tsukuba, 1‑1‑1 Tennodai, Tsukuba, Ibaraki, 305‑8575, Japan.
| |
Collapse
|
8
|
Zhang Y, Gao Y, Liu QS, Zhou Q, Jiang G. Chemical contaminants in blood and their implications in chronic diseases. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133511. [PMID: 38262316 DOI: 10.1016/j.jhazmat.2024.133511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
Artificial chemical products are widely used and ubiquitous worldwide and pose a threat to the environment and human health. Accumulating epidemiological and toxicological evidence has elucidated the contributions of environmental chemical contaminants to the incidence and development of chronic diseases that have a negative impact on quality of life or may be life-threatening. However, the pathways of exposure to these chemicals and their involvements in chronic diseases remain unclear. We comprehensively reviewed the research progress on the exposure risks of humans to environmental contaminants, their body burden as indicated by blood monitoring, and the correlation of blood chemical contaminants with chronic diseases. After entering the human body through various routes of exposure, environmental contaminants are transported to target organs through blood circulation. The application of the modern analytical techniques based on human plasma or serum specimens is promising for determining the body burden of environmental contaminants, including legacy persistent organic pollutants, emerging pollutants, and inorganic elements. Furthermore, their body burden, as indicated by blood monitoring correlates with the incidence and development of metabolic syndromes, cancers, chronic nervous system diseases, cardiovascular diseases, and reproductive disorders. On this basis, we highlight the urgent need for further research on environmental pollution causing health problems in humans.
Collapse
Affiliation(s)
- Yuzhu Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yurou Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, PR China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, PR China
| |
Collapse
|
9
|
Liu T, Liu CA, Zhang QS, Zhang Q, Wang YM, Song MM, Lin SQ, Deng L, Wu SL, Shi HP. Association of the age of onset of metabolic syndrome with the risk of all cancer types. Diabetes Metab Syndr 2023; 17:102896. [PMID: 37913630 DOI: 10.1016/j.dsx.2023.102896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND The association between the age at onset of metabolic syndrome and cancer risk remains unknown. This study explored the association between age at metabolic syndrome onset and the risk of overall and site-specific cancer incidence. METHODS This study included 31,688 participants with new-onset metabolic syndrome and 31,688 participants matched according to sex, age (±1 y), and examination year among the 179,328 participants who underwent Kailuan health examinations from 2006 to 2017 in Tangshan, China. Weighted Cox regression was used to calculate the hazard ratios and 95% confidence intervals of new-onset metabolic syndrome for overall and site-specific cancer incidence across age groups. Population-attributable risk proportions were used to estimate the number of cases that could be prevented by eliminating the risk factors from the population. RESULTS During an average follow-up period of 10.22 y, we identified 2,710 cases of cancer and 4,218 deaths that occurred before the diagnosis of cancer. With an increase in metabolic syndrome onset age, the hazards of overall cancer incidence were gradually attenuated. The average hazard ratios (95% confidence intervals) of overall cancer were 1.94 (1.25-2.99) for metabolic syndrome onset age <45 year old, 1.41 (1.15-1.71) for age 45-54 years old, 1.38 (1.11-1.73) for age 55-64 years old, and 1.07 (0.89-1.28) for age ≥65 years old, respectively (p for interaction = 0.005). Similar results were obtained for colorectal, liver, and breast cancers in the site-specific analysis. CONCLUSIONS New-onset metabolic syndrome was associated with a higher risk of overall cancer and incidence of several types of cancer, and the associations were stronger with a younger age of onset. TRIAL REGISTRATION Kailuan Study, ChiCTR2000029767 (Registered February 12, 2020, https://www.chictr.org.cn/showprojEN.html?proj=48316).
Collapse
Affiliation(s)
- Tong Liu
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Laboratory for Clinical Medicine, Capital Medical University, China; Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Chen-An Liu
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Laboratory for Clinical Medicine, Capital Medical University, China; Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Qing-Song Zhang
- Department of General Surgery, Kailuan General Hospital, Tangshan, 063000, China
| | - Qi Zhang
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Yi-Ming Wang
- Department of Hepatobiliary Surgery, Kailuan General Hospital, Tangshan, 063000, China
| | - Meng-Meng Song
- Cardiovascular Research Institute, University of California, San Francisco, CA, 94158, USA
| | - Shi-Qi Lin
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Laboratory for Clinical Medicine, Capital Medical University, China; Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Li Deng
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Laboratory for Clinical Medicine, Capital Medical University, China; Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China.
| | - Shou-Ling Wu
- Department of Cardiology, Kailuan General Hospital, Tangshan, 063000, China.
| | - Han-Ping Shi
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Laboratory for Clinical Medicine, Capital Medical University, China; Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China.
| |
Collapse
|
10
|
Zhao F, Ding X, Liu Z, Yan X, Chen Y, Jiang Y, Chen S, Wang Y, Kang T, Xie C, He M, Zheng J. Application of CRISPR/Cas9-based genome editing in ecotoxicology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122458. [PMID: 37633433 DOI: 10.1016/j.envpol.2023.122458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Chemicals are widely used and released into the environment, and their degradation, accumulation, migration, and transformation processes in the environment can pose a threat to the ecosystem. The advancement in analytical methods with high-throughput screening of biomolecules has revolutionized the way toxicologists used to explore the effects of chemicals on organisms. CRISPR/Cas is a newly developed tool, widely used in the exploration of basic science and biologically engineered products given its high efficiency and low cost. For example, it can edit target genes efficiently, and save loss of the crop yield caused by environmental pollution as well as gain a better understanding of the toxicity mechanisms from various chemicals. This review briefly introduces the development history of CRISPR/Cas and summarizes the current application of CRISPR/Cas in ecotoxicology, including its application on improving crop yield and drug resistance towards agricultural pollution, antibiotic pollution and other threats. The benefits by applying the CRISPR/Cas9 system in conventional toxicity mechanism studies are fully demonstrated here together with its foreseeable expansions in other area of ecotoxicology. Finally, the prospects and disadvantages of CRISPR/Cas system in the field of ecotoxicology are also discussed.
Collapse
Affiliation(s)
- Fang Zhao
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China; State Environmental Protection Key laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Environmental Protection, Guangzhou, China; School of Public Health, Guizhou Medical University, Guizhou, China
| | - Xiaofan Ding
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Zimeng Liu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiao Yan
- State Environmental Protection Key laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Environmental Protection, Guangzhou, China
| | - Yanzhen Chen
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Yaxin Jiang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shunjie Chen
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yuanfang Wang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tingting Kang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chun Xie
- School of Public Health, Guizhou Medical University, Guizhou, China
| | - Mian He
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| | - Jing Zheng
- State Environmental Protection Key laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Environmental Protection, Guangzhou, China
| |
Collapse
|
11
|
Pierozan P, Kosnik M, Karlsson O. High-content analysis shows synergistic effects of low perfluorooctanoic acid (PFOS) and perfluorooctane sulfonic acid (PFOA) mixture concentrations on human breast epithelial cell carcinogenesis. ENVIRONMENT INTERNATIONAL 2023; 172:107746. [PMID: 36731186 DOI: 10.1016/j.envint.2023.107746] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Perfluoroalkyl substances (PFAS) have been associated with cancer, but the potential underlying mechanisms need to be further elucidated and include studies of PFAS mixtures. This mechanistic study revealed that very low concentrations (500 pM) of the binary PFOS and PFOA mixture induced synergistic effects on human epithelial breast cell (MCF-10A) proliferation. The cell proliferation was mediated by pregnane X receptor (PXR) activation, an increase in cyclin D1 and CDK6/4 levels, decrease in p21 and p53 levels, and by regulation of phosphor-Akt and β-catenin. The PFAS mixture also altered histone modifications, epigenetic mechanisms implicated in tumorigenesis, and promoted cell migration and invasion by reducing the levels of occludin. High-content screening using the cell painting assay, revealed that hundreds of cell features were affected by the PFAS mixture even at the lowest concentration tested (100 pM). The detailed phenotype profiling further demonstrated that the PFAS mixture altered cell morphology, mostly in parameters related to intensity and texture associated with mitochondria, endoplasmic reticulum, and nucleoli. Exposure to higher concentrations (≥50 µM) of the PFOS and PFOA mixture caused cell death through synergistic interactions that induced oxidative stress, DNA/RNA damage, and lipid peroxidation, illustrating the complexity of mixture toxicology. Increased knowledge about mixture-induced effects is important for better understanding of PFAS' possible role in cancer etiology, and may impact the risk assessment of these and other compounds. This study shows the potential of image-based multiplexed fluorescence assays and high-content screening for development of new approach methodologies in toxicology.
Collapse
Affiliation(s)
- Paula Pierozan
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Marissa Kosnik
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden.
| |
Collapse
|
12
|
Cazzolla Gatti R, Di Paola A, Monaco A, Velichevskaya A, Amoroso N, Bellotti R. The spatial association between environmental pollution and long-term cancer mortality in Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158439. [PMID: 36113788 DOI: 10.1016/j.scitotenv.2022.158439] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/18/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Tumours are nowadays the second world‑leading cause of death after cardiovascular diseases. During the last decades of cancer research, lifestyle and random/genetic factors have been blamed for cancer mortality, with obesity, sedentary habits, alcoholism, and smoking contributing as supposed major causes. However, there is an emerging consensus that environmental pollution should be considered one of the main triggers. Unfortunately, all this preliminary scientific evidence has not always been followed by governments and institutions, which still fail to pursue research on cancer's environmental connections. In this unprecedented national-scale detailed study, we analyzed the links between cancer mortality, socio-economic factors, and sources of environmental pollution in Italy, both at wider regional and finer provincial scales, with an artificial intelligence approach. Overall, we found that cancer mortality does not have a random or spatial distribution and exceeds the national average mainly when environmental pollution is also higher, despite healthier lifestyle habits. Our machine learning analysis of 35 environmental sources of pollution showed that air quality ranks first for importance concerning the average cancer mortality rate, followed by sites to be reclaimed, urban areas, and motor vehicle density. Moreover, other environmental sources of pollution proved to be relevant for the mortality of some specific cancer types. Given these alarming results, we call for a rearrangement of the priority of cancer research and care that sees the reduction and prevention of environmental contamination as a priority action to put in place in the tough struggle against cancer.
Collapse
Affiliation(s)
- Roberto Cazzolla Gatti
- Department of Biological Sciences, Geological and Environmental (BiGeA), Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
| | - Arianna Di Paola
- Institute for BioEconomy, National Research Council of Italy (IBE-CNR), 00100 Rome, Italy
| | - Alfonso Monaco
- Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi di Bari "A. Moro", 70126 Bari, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy.
| | | | - Nicola Amoroso
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy; Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "A. Moro", 70125 Bari, Italy
| | - Roberto Bellotti
- Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi di Bari "A. Moro", 70126 Bari, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy
| |
Collapse
|
13
|
Mun E, Cho J. Review of Internet of Things-Based Artificial Intelligence Analysis Method through Real-Time Indoor Air Quality and Health Effect Monitoring: Focusing on Indoor Air Pollution That Are Harmful to the Respiratory Organ. Tuberc Respir Dis (Seoul) 2023; 86:23-32. [PMID: 36288738 PMCID: PMC9816487 DOI: 10.4046/trd.2022.0087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/07/2022] [Accepted: 10/26/2022] [Indexed: 12/23/2022] Open
Abstract
Everyone is aware that air and environmental pollutants are harmful to health. Among them, indoor air quality directly affects physical health, such as respiratory rather than outdoor air. However, studies that have examined the correlation between environmental and health information have been conducted with public data targeting large cohorts, and studies with real-time data analysis are insufficient. Therefore, this research explores the research with an indoor air quality monitoring (AQM) system based on developing environmental detection sensors and the internet of things to collect, monitor, and analyze environmental and health data from various data sources in real-time. It explores the usage of wearable devices for health monitoring systems. In addition, the availability of big data and artificial intelligence analysis and prediction has increased, investigating algorithmic studies for accurate prediction of hazardous environments and health impacts. Regarding health effects, techniques to prevent respiratory and related diseases were reviewed.
Collapse
Affiliation(s)
- EunMi Mun
- Department of Software Engineering, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jaehyuk Cho
- Department of Software Engineering, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
14
|
Sun C, Li C, Liu W, Schiöth HB. Generation of Endogenous Promoter-Driven Luciferase Reporter System Using CRISPR/Cas9 for Investigating Transcriptional Regulation of the Core Clock Gene BMAL1. Biomedicines 2022; 10:biomedicines10123108. [PMID: 36551864 PMCID: PMC9775583 DOI: 10.3390/biomedicines10123108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Humans and other organisms are continuously exposed to thousands of chemicals through the atmosphere, drinking water, food, or direct contact. A large proportion of such chemicals are present in very low concentrations and may have synergistic effects, even at their no-observed-adverse-effect level (NOAEL). Complex mixtures of contaminants are very difficult to assess by traditional toxicological methods. There is increasing attention on how different pollutants induce adverse physiological functions in the human body through effects on the circadian rhythm. However, it is very difficult to screen for compounds with circadian-rhythm-disrupting effects from a large number of chemicals or their complex mixtures. We established a stable firefly luciferase reporter gene knock-in U2-OS cell line by CRISPR/Cas9 to screen circadian-rhythm-disrupting pollutants. The luciferase gene was inserted downstream of the core clock gene BMAL1 and controlled by an endogenous promoter. Compared to detection systems using exogenous promoters, these cells enable the detection of compounds that interfere with the circadian rhythm system mediated by BMAL1 gene expression. The U2-OS knock-in cells showed BMAL1 and luciferase activity had parallel changes when treated with BMAL1 inhibitor and activator. Furthermore, the luciferase reporter gene has high sensitivity and is faster and more cost-effective than classic toxicology methods. The knock-in cell line can be used for high-throughput and efficient screening of circadian-rhythm-disrupting chemicals such as drugs and pollutants.
Collapse
Affiliation(s)
- Chengxi Sun
- Department of Surgical Sciences, Uppsala University, 751 24 Uppsala, Sweden
- Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chen Li
- Department of Medical Biochemistry and Microbiology, Uppsala University, 752 36 Uppsala, Sweden
| | - Wen Liu
- Department of Surgical Sciences, Uppsala University, 751 24 Uppsala, Sweden
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Uppsala University, 751 24 Uppsala, Sweden
- Correspondence:
| |
Collapse
|
15
|
DeLouize AM, Eick G, Karam SD, Snodgrass JJ. Current and future applications of biomarkers in samples collected through minimally invasive methods for cancer medicine and population-based research. Am J Hum Biol 2022; 34:e23665. [PMID: 34374148 PMCID: PMC9894104 DOI: 10.1002/ajhb.23665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/04/2023] Open
Abstract
Despite advances in cancer medicine and research, invasive and potentially risky procedures such as biopsies, venous blood tests, imaging, colonoscopy, and pap smear tests are still primarily used for screening, staging, and assessing response to therapy. The development and interdisciplinary use of biomarkers from urine, feces, saliva, scent, and capillary blood collected with minimally invasive methods represents a potential opportunity for integration with biomarker analysis for cancers, both in clinical practice (e.g., in screening, treatment, and disease monitoring, and improved quality of life for patients) and population-based research (e.g., in epidemiology/public health, studies of social and environmental determinants, and evolutionary medicine). In this article, we review the scientific rationale, benefits, challenges, and potential opportunities for measuring cancer-related biomarkers in samples collected through minimally invasive methods.
Collapse
Affiliation(s)
| | - Geeta Eick
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - J. Josh Snodgrass
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
- Center for Global Health, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
16
|
Baek K, Park JT, Kwak K. Systematic review and meta-analysis of cancer risks in relation to environmental waste incinerator emissions: a meta-analysis of case-control and cohort studies. Epidemiol Health 2022; 44:e2022070. [PMID: 36097807 PMCID: PMC9849852 DOI: 10.4178/epih.e2022070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/01/2022] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES Various toxic substances can be generated from incinerators, exposing nearby residents, and epidemiological studies have shown wide variations in risk estimates for cancer risk in populations living close to incinerators. METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a literature search and systematic review were conducted to identify studies conducted on general populations exposed to environmental incinerator emissions and cancer outcomes. Meta-analysis was performed according to the cancer types for which 2 or more studies were reported. Subgroup analysis was done for sex, the exposure estimation method, the study period, and the type of outcome. RESULTS Eleven studies were found for the qualitative review and meta-analysis. Seven studies had a case-control design, and 4 had a cohort design. The pooled effect size was not significant for breast, colorectal, liver, lung, lymphohematopoietic, stomach, bladder, central nervous system, and laryngeal cancers, non-Hodgkin lymphoma, sarcoma, leukemia, and all cancers. In the subgroup analysis, the pooled effect size of laryngeal cancer in females was 1.82 (95% confidence interval, 1.10 to 3.01), although only 2 studies were identified. CONCLUSIONS The meta-analysis did not provide evidence of an increased risk for any cancer among populations living near waste incinerators, except for laryngeal cancer in females. However, since relatively few studies were reviewed and some cancer types showed significant increases in individual studies, this evidence needs to be updated regularly.
Collapse
Affiliation(s)
- Kiook Baek
- Department of Occupational and Environmental Medicine, Yeungnam University Hospital, Daegu, Korea
| | - Jong-Tae Park
- Department of Occupational and Environmental Medicine, Korea University Ansan Hospital, Ansan, Korea
| | - Kyeongmin Kwak
- Department of Occupational and Environmental Medicine, Korea University Ansan Hospital, Ansan, Korea,Correspondence: Kyeongmin Kwak Department of Occupational and Environmental Medicine, Korea University Ansan Hospital, 123 Jeokgeum-ro, Danwon-gu, Ansan 15355, Korea E-mail:
| |
Collapse
|
17
|
Tian Y, Rimal B, Gui W, Koo I, Yokoyama S, Perdew GH, Patterson AD. Early Life Short-Term Exposure to Polychlorinated Biphenyl 126 in Mice Leads to Metabolic Dysfunction and Microbiota Changes in Adulthood. Int J Mol Sci 2022; 23:8220. [PMID: 35897801 PMCID: PMC9330872 DOI: 10.3390/ijms23158220] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 01/02/2023] Open
Abstract
Early life exposure to environmental pollutants may have long-term consequences and harmful impacts on health later in life. Here, we investigated the short- and long-term impact of early life 3,3',4,4',5-pentacholorobiphenyl (PCB 126) exposure (24 μg/kg body weight for five days) in mice on the host and gut microbiota using 16S rRNA gene sequencing, metagenomics, and 1H NMR- and mass spectrometry-based metabolomics. Induction of Cyp1a1, an aryl hydrocarbon receptor (AHR)-responsive gene, was observed at 6 days and 13 weeks after PCB 126 exposure consistent with the long half-life of PCB 126. Early life, Short-Term PCB 126 exposure resulted in metabolic abnormalities in adulthood including changes in liver amino acid and nucleotide metabolism as well as bile acid metabolism and increased hepatic lipogenesis. Interestingly, early life PCB 126 exposure had a greater impact on bacteria in adulthood at the community structure, metabolic, and functional levels. This study provides evidence for an association between early life environmental pollutant exposure and increased risk of metabolic disorders later in life and suggests the microbiome is a key target of environmental chemical exposure.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (Y.T.); (B.R.); (I.K.); (S.Y.); (G.H.P.)
| | - Bipin Rimal
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (Y.T.); (B.R.); (I.K.); (S.Y.); (G.H.P.)
| | - Wei Gui
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (Y.T.); (B.R.); (I.K.); (S.Y.); (G.H.P.)
| | - Shigetoshi Yokoyama
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (Y.T.); (B.R.); (I.K.); (S.Y.); (G.H.P.)
| | - Gary H. Perdew
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (Y.T.); (B.R.); (I.K.); (S.Y.); (G.H.P.)
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (Y.T.); (B.R.); (I.K.); (S.Y.); (G.H.P.)
| |
Collapse
|
18
|
Xu W, Wu L, Xu M, Luo J, Chen G. Ethanol Exposure Up-Regulates PD-L1/PD-1 Immune Checkpoint Pathway and Promotes Mammary Tumor Development. Front Oncol 2022; 12:874156. [PMID: 35756611 PMCID: PMC9213659 DOI: 10.3389/fonc.2022.874156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022] Open
Abstract
Alcohol consumption in women enhances breast cancer incidence and ethanol is the main causal factor. Compromised host immunity through immunosuppression facilitates the development of many types of cancer, including breast cancer. Immune cells in breast tissues, particularly tumor-infiltrating CD8 cytotoxic T cells, play a critical role in the host anti-tumor immunity against breast tumorigenesis. These cytotoxic T cells are the major immune cells to carry out anti-tumor immunity through their cytotoxic effector function, which can be regulated by immune checkpoint pathways. The PD-1/PD-L1 pathway (the interaction between programmed death-1, PD-1, and its ligand, programmed death-ligand 1, PD-L1) is the best characterized one. However, the effects of ethanol exposure on T cell anti-tumor immunity and how that may contribute to ethanol-enhanced mammary tumorigenicity remain unknown. FVB.Cg-Tg(Wnt1)1Hev/J transgenic mice develop spontaneous mammary tumors starting around the age of 2-3 months and have been a widely-used mouse model for breast cancer research. Using this mouse model, the current study determined the effects of ethanol on the PD-L1/PD-1 pathway and how that may contribute to mammary tumorigenesis. The results indicated that ethanol exposure enhanced mammary tumor formation accompanied with an up-regulation of PD-1/PD-L1 pathway (increased PD-L1 levels in tumor tissue cells and the amount of PD-1-expressing tumor-infiltrating CD8 T cells) and inhibited T cell anti-tumor function, while inhibition of PD-1/PD-L1 restored T cell anti-tumor effector function and mitigated ethanol-enhanced tumorigenesis.
Collapse
Affiliation(s)
- Wenhua Xu
- Department Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
- Department of Neurology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Linqing Wu
- Department Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Mei Xu
- Department Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Jia Luo
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Gang Chen
- Department Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| |
Collapse
|
19
|
Lagunas‐Rangel FA, Linnea‐Niemi JV, Kudłak B, Williams MJ, Jönsson J, Schiöth HB. Role of the Synergistic Interactions of Environmental Pollutants in the Development of Cancer. GEOHEALTH 2022; 6:e2021GH000552. [PMID: 35493962 PMCID: PMC9036628 DOI: 10.1029/2021gh000552] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/01/2022] [Accepted: 04/04/2022] [Indexed: 05/08/2023]
Abstract
There is a growing awareness that the large number of environmental pollutants we are exposed to on a daily basis are causing major health problems. Compared to traditional studies that focus on individual pollutants, there are relatively few studies on how pollutants mixtures interact. Several studies have reported a relationship between environmental pollutants and the development of cancer, even when pollutant levels are below toxicity reference values. The possibility of synergistic interactions between different pollutants could explain how even low concentrations can cause major health problems. These intricate that molecular interactions can occur through a wide variety of mechanisms, and our understanding of the physiological effects of mixtures is still limited. The purpose of this paper is to discuss recent reports that address possible synergistic interactions between different types of environmental pollutants that could promote cancer development. Our literature studies suggest that key biological pathways are frequently implicated in such processes. These include increased production of reactive oxygen species, activation by cytochrome P450, and aryl hydrocarbon receptor signaling, among others. We discuss the need to understand individual pathological vulnerability not only in relation to basic genetics and gene expression, but also in terms of measurable exposure to contaminants. We also mention the need for significant improvements in future studies using a multitude of disciplines, such as the development of high-throughput study models, better tools for quantifying pollutants in cancer patients, innovative pharmacological and toxicological studies, and high-efficiency computer analysis, which allow us to analyze the molecular mechanisms of mixtures.
Collapse
Affiliation(s)
| | - Jenni Viivi Linnea‐Niemi
- Department of Surgical Sciences, Functional Pharmacology and NeuroscienceUppsala UniversityUppsalaSweden
| | - Błażej Kudłak
- Faculty of ChemistryDepartment of Analytical ChemistryGdańsk University of TechnologyGdańskPoland
| | - Michael J. Williams
- Department of Surgical Sciences, Functional Pharmacology and NeuroscienceUppsala UniversityUppsalaSweden
| | - Jörgen Jönsson
- Department of Surgical Sciences, Functional Pharmacology and NeuroscienceUppsala UniversityUppsalaSweden
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and NeuroscienceUppsala UniversityUppsalaSweden
- Institute of Translational Medicine and BiotechnologyI. M. Sechenov First Moscow State Medical UniversityMoscowRussia
| |
Collapse
|
20
|
Pierozan P, Cattani D, Karlsson O. Tumorigenic activity of alternative per- and polyfluoroalkyl substances (PFAS): Mechanistic in vitro studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151945. [PMID: 34843762 DOI: 10.1016/j.scitotenv.2021.151945] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/29/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Environmental contaminants including long-chain per- and polyfluoroalkyl substances (PFAS) have been linked to cancer, which is a central cause of mortality in humans and many wildlife species. Today shorter-chain PFAS are extensively used as replacement compounds and commonly found in the environment. Mechanistic studies are important for a better understanding of their toxicological potential and possible role in cancer etiology. Here, we treated normal human breast epithelial cells (MCF-10A) with 500 pM to 500 μM of perfluorohexane sulfonate (PFHxS), undecafluorohexanoic acid (PFHxA), hexafluoropropylene oxide-dimer acid (GenX), perfluoro 3,6 dioxaoctanoic acid (PFO2OA), heptafluorobutyric acid (HFBA) and perfluorobutanesulfonic acid (PFBS) for 72 h to investigate potential effects on cell proliferation and neoplastic transformation. PFHxA, GenX, PFO2OA, HFBA and PFBS induced no alterations compared to controls at any of the concentrations tested. Exposure to 100 μM PFHxS on the other hand was shown to affect important regulatory cell-cycle proteins (cyclin D1, CDK6, p27, p53 and ERK) and induced cell proliferation, at least in part through activation of the constitutive androstane receptor (CAR) and the peroxisome proliferator-activated receptor alpha (PPARα). PFHxS also altered histone modifications and induced cell malignance by reducing the levels of adhesion proteins (E-cadherin and β-integrin) and promoting cell migration and invasion. These results demonstrate that five out of six alternative PFAS tested are clearly less harmful to MCF-10A cells than previously studied PFOS and PFOA, but raise concerns about PFHxS that also has been associated with breast cancer in epidemiological studies.
Collapse
Affiliation(s)
- Paula Pierozan
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Daiane Cattani
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden.
| |
Collapse
|
21
|
Lagunas-Rangel FA, Liu W, Schiöth HB. Can Exposure to Environmental Pollutants Be Associated with Less Effective Chemotherapy in Cancer Patients? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042064. [PMID: 35206262 PMCID: PMC8871977 DOI: 10.3390/ijerph19042064] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023]
Abstract
Since environmental pollutants are ubiquitous and many of them are resistant to degradation, we are exposed to many of them on a daily basis. Notably, these pollutants can have harmful effects on our health and be linked to the development of disease. Epidemiological evidence together with a better understanding of the mechanisms that link toxic substances with the development of diseases, suggest that exposure to some environmental pollutants can lead to an increased risk of developing cancer. Furthermore, several studies have raised the role of low-dose exposure to environmental pollutants in cancer progression. However, little is known about how these compounds influence the treatments given to cancer patients. In this work, we present a series of evidences suggesting that environmental pollutants such as bisphenol A (BPA), benzo[a]pyrene (BaP), persistent organic pollutants (POPs), aluminum chloride (AlCl3), and airborne particulate matter may reduce the efficacy of some common chemotherapeutic drugs used in different types of cancer. We discuss the potential underlying molecular mechanisms that lead to the generation of this chemoresistance, such as apoptosis evasion, DNA damage repair, activation of pro-cancer signaling pathways, drug efflux and action of antioxidant enzymes, among others.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, BMC Box 593, Husargatan 3, 75124 Uppsala, Sweden;
- Correspondence: (F.A.L.-R.); (H.B.S.)
| | - Wen Liu
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, BMC Box 593, Husargatan 3, 75124 Uppsala, Sweden;
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, BMC Box 593, Husargatan 3, 75124 Uppsala, Sweden;
- Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str. Moscow, 119991 Moscow, Russia
- Correspondence: (F.A.L.-R.); (H.B.S.)
| |
Collapse
|
22
|
Chen KC, Tsai SW, Shie RH, Zeng C, Yang HY. Indoor Air Pollution Increases the Risk of Lung Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031164. [PMID: 35162188 PMCID: PMC8834322 DOI: 10.3390/ijerph19031164] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023]
Abstract
(1) Background: Cooking and burning incense are important sources of indoor air pollutants. No studies have provided biological evidence of air pollutants in the lungs to support this association. Analysis of pleural fluid may be used to measure the internal exposure dose of air pollutants in the lung. The objective of this study was to provide biological evidence of indoor air pollutants and estimate their risk of lung cancer. (2) Methods: We analyzed 14 common air pollutants in the pleural fluid of 39 cases of lung adenocarcinoma and 40 nonmalignant controls by gas chromatography-mass spectrometry. (3) Results: When we excluded the current smokers and adjusted for age, the adjusted odds ratios (ORs) were 2.22 (95% confidence interval CI = 0.77-6.44) for habitual cooking at home and 3.05 (95% CI = 1.06-8.84) for indoor incense burning. In females, the adjusted ORs were 5.39 (95% CI = 1.11-26.20) for habitual cooking at home and 6.01 (95% CI = 1.14-31.66) for indoor incense burning. In pleural fluid, the most important exposure biomarkers for lung cancer were naphthalene, ethylbenzene, and o-xylene. (4) Conclusions: Habitual cooking and indoor incense burning increased the risk of lung adenocarcinoma.
Collapse
Affiliation(s)
- Ke-Cheng Chen
- Division of Thoracic Surgery, Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan;
- Department of Surgery, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Shih-Wei Tsai
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei 10055, Taiwan;
- Department of Public Health, National Taiwan University College of Public Health, Taipei 10055, Taiwan
| | - Ruei-Hao Shie
- Green Energy & Environmental Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan;
| | - Chian Zeng
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei 10055, Taiwan;
| | - Hsiao-Yu Yang
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei 10055, Taiwan;
- Department of Public Health, National Taiwan University College of Public Health, Taipei 10055, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
- Correspondence: ; Tel.: +886-2-3366-8102
| |
Collapse
|
23
|
Guimarães RM, Dutra VGP, Ayres ARG, Garbin HBDR, Martins TCDF, Meira KC. Exposição ocupacional e câncer: uma revisão guarda-chuva. REVISTA BRASILEIRA DE SAÚDE OCUPACIONAL 2022. [DOI: 10.1590/2317-6369/37620pt2022v47e14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Resumo Objetivo: fornecer uma visão geral das associações entre exposição ocupacional e risco da ocorrência ou morte por câncer. Métodos: esta revisão guarda-chuva da literatura utilizou as bases Medline e Web of Science. A partir de protocolo de busca, foram incluídas metanálises para diversas circunstâncias ocupacionais e cânceres selecionados que possuíssem algum nível de evidência para associação com ocupação. Resultados: foram incluídas 37 metanálises, abrangendo 18 localizações de câncer. Considerando a avaliação da heterogeneidade dos estudos, da qualidade da evidência e da força de associação, obteve-se evidências altamente sugestivas de associações entre exposição a solvente e mieloma múltiplo; amianto e câncer de pulmão; hidrocarbonetos e câncer de trato aerodigestivo superior; e estresse ocupacional e câncer colorretal. Conclusão: há evidências robustas para associar exposições ocupacionais e tipos de câncer não previstos, inicialmente, nas orientações de vigilância do câncer relacionado ao trabalho no Brasil. Permanecem lacunas sobre exposições de grande relevância, que carecem de metanálises mais consistentes, por exemplo, exposição a poeiras inorgânicas e câncer de pulmão e mesotelioma; exposição a solventes e tumores hematológicos. Evidências de câncer em outras regiões anatômicas foram menos robustas, apresentando indícios de incerteza ou viés.
Collapse
|
24
|
Guimarães RM, Dutra VGP, Ayres ARG, Garbin HBDR, Martins TCDF, Meira KC. Occupational exposure and cancer: an umbrella review. REVISTA BRASILEIRA DE SAÚDE OCUPACIONAL 2022. [DOI: 10.1590/2317-6369/37620en2022v47e14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract Objective: to provide an overview of the associations between occupational exposure and risk of occurrence or death from cancer. Methods: this umbrella review used the Medline and Web of Science databases. Based on the search protocol, meta-analysis was included for several occupational circumstances and selected cancers that had some level of evidence associated with the occupation. Results: 37 meta-analysis were included, covering 18 cancer locations. By assessing the heterogeneity of studies, quality of evidence, and strength of association, results highly indicated associations between solvent exposure and multiple myeloma, asbestos and lung cancer, hydrocarbons and upper aerodigestive tract cancer, occupational stress and colorectal cancer. Conclusion: robust evidence shows an association between occupational exposures and types of cancer not initially foreseen in the guidelines for work-related cancer surveillance in Brazil. Gaps in relevant exposures require further research and more consistent meta-analysis, including: exposure to inorganic dust and lung cancer and mesothelioma; solvents and hematological tumors. Evidence of cancer in other anatomical regions was less robust, showing signs of uncertainty or bias.
Collapse
|
25
|
Influence of the Aryl Hydrocarbon Receptor Activating Environmental Pollutants on Autism Spectrum Disorder. Int J Mol Sci 2021; 22:ijms22179258. [PMID: 34502168 PMCID: PMC8431328 DOI: 10.3390/ijms22179258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Autism spectrum disorder (ASD) is an umbrella term that includes many different disorders that affect the development, communication, and behavior of an individual. Prevalence of ASD has risen exponentially in the past couple of decades. ASD has a complex etiology and traditionally recognized risk factors only account for a small percentage of incidence of the disorder. Recent studies have examined factors beyond the conventional risk factors (e.g., environmental pollution). There has been an increase in air pollution since the beginning of industrialization. Most environmental pollutants cause toxicities through activation of several cellular receptors, such as the aryl hydrocarbon receptor (AhR)/cytochrome P450 (CYPs) pathway. There is little research on the involvement of AhR in contributing to ASD. Although a few reviews have discussed and addressed the link between increased prevalence of ASD and exposure to environmental pollutants, the mechanism governing this effect, specifically the role of AhR in ASD development and the molecular mechanisms involved, have not been discussed or reviewed before. This article reviews the state of knowledge regarding the impact of the AhR/CYP pathway modulation upon exposure to environmental pollutants on ASD risk, incidence, and development. It also explores the molecular mechanisms involved, such as epigenesis and polymorphism. In addition, the review explores possible new AhR-mediated mechanisms of several drugs used for treatment of ASD, such as sulforaphane, resveratrol, haloperidol, and metformin.
Collapse
|
26
|
Ciocan C, Franco N, Pira E, Mansour I, Godono A, Boffetta P. Methodological issues in descriptive environmental epidemiology. The example of study Sentieri. LA MEDICINA DEL LAVORO 2021; 112:15-33. [PMID: 33635292 PMCID: PMC8023053 DOI: 10.23749/mdl.v112i1.10099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Descriptive epidemiology identifies associations between environmental exposures and health effects that require results from methodologically stronger studies before causation can be considered. OBJECTIVE To critically review the methodology and results of Sentieri, a descripitive study on residence in areas with one or more industrial source of pollution. METHODS We systematically reviewed the literature quoted by Sentieri for the selection of health effects of nine types of pollution sources of a-priori interest. We also reviewed and meta-analyzed the results of the first report of Sentieri, that analyzed mortality in 44 polluted sites (PS), and 17 causes of deaths during 1995-2002. RESULTS Among 159 study results quoted by Sentieri, 23.9 % were supportive of an association between residence near a pollution source and a health effect, 30.2 % were partially supportive, 10.7 % were not supportive, and 35.2 % were not relevant. Among 653 standardized mortality ratios for associations between PS-specific pollution sources and causes of death, 14.4% were significantly above 1.02, and 9.0% were significantly below 0.98. Among 48 meta-analysis, seven were significantly above 1.0, including five on exposure to asbestos. CONCLUSIONS Sentieri exemplifies the limitations of descriptive environmental epidemiology studies, in which most hypotheses have limited prior support, most results do not show associations, data on potential confounders and other sources of bias are not available. Such studies tend to replicate well-known associations and occasionally can identify critical situations requiring more investigation, but cannot be used to infer causality either in general or in specific circumstances.
Collapse
Affiliation(s)
- Catalina Ciocan
- Department of Public Health Sciences and Pediatrics, University of Turin, Turin, Italy.
| | - Nicolò Franco
- Department of Public Health Sciences and Pediatrics, University of Turin, Turin, Italy.
| | - Enrico Pira
- Department of Public Health Sciences and Pediatrics, University of Turin, Turin, Italy.
| | - Ihab Mansour
- Department of Public Health Sciences and Pediatrics, University of Turin, Turin, Italy.
| | | | - Paolo Boffetta
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
27
|
Gariazzo C, Binazzi A, Alfò M, Massari S, Stafoggia M, Marinaccio A. Predictors of Lung Cancer Risk: An Ecological Study Using Mortality and Environmental Data by Municipalities in Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1896. [PMID: 33669318 PMCID: PMC7922734 DOI: 10.3390/ijerph18041896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 01/04/2023]
Abstract
Lung cancer (LC) mortality remains a consistent part of the total deaths occurring worldwide. Its etiology is complex as it involves multifactorial components. This work aims in providing an epidemiological assessment on occupational and environmental factors associated to LC risk by means of an ecological study involving the 8092 Italian municipalities for the period 2006-2015. We consider mortality data from mesothelioma as proxy of asbestos exposure, as well as PM2.5 and radon levels as a proxy of environmental origin. The compensated cases for occupational respiratory diseases, urbanization and deprivation were included as predictors. We used a negative binomial distribution for the response, with analysis stratified by gender. We estimated that asbestos is responsible for about 1.1% (95% CI: 0.8, 1.4) and 0.5% (95% CI: 0.2, 0.8) of LC mortality in males and females, respectively. The corresponding figures are 14.0% (95% CI: 12.5, 15.7) and 16.3% (95% CI: 16.2, 16.3) for PM2.5 exposure, and 3.9% (95% CI: 3.5, 4.2) and 1.6% (95% CI: 1.4, 1.7) for radon exposure. The assessment of determinants contribution to observed LC deaths is crucial for improving awareness of its origin, leading to increase the equity of the welfare system.
Collapse
Affiliation(s)
- Claudio Gariazzo
- Occupational and Environmental Medicine Epidemiology and Hygiene Department, Italian Workers’ Compensation Authority (INAIL), 00144 Rome, Italy; (A.B.); (S.M.); (A.M.)
| | - Alessandra Binazzi
- Occupational and Environmental Medicine Epidemiology and Hygiene Department, Italian Workers’ Compensation Authority (INAIL), 00144 Rome, Italy; (A.B.); (S.M.); (A.M.)
| | - Marco Alfò
- Department of Statistic, University of Roma “Sapienza”, 00185 Rome, Italy;
| | - Stefania Massari
- Occupational and Environmental Medicine Epidemiology and Hygiene Department, Italian Workers’ Compensation Authority (INAIL), 00144 Rome, Italy; (A.B.); (S.M.); (A.M.)
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Regional Health Service, ASL Roma 1, 00154 Rome, Italy;
| | - Alessandro Marinaccio
- Occupational and Environmental Medicine Epidemiology and Hygiene Department, Italian Workers’ Compensation Authority (INAIL), 00144 Rome, Italy; (A.B.); (S.M.); (A.M.)
| |
Collapse
|
28
|
Surien O, Ghazali AR, Masre SF. Histopathological effect of pterostilbene as chemoprevention in N-nitroso-tri-chloroethylurea (NTCU)-induced lung squamous cell carcinoma (SCC) mouse model. Histol Histopathol 2020; 35:1159-1170. [PMID: 32893871 DOI: 10.14670/hh-18-247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related deaths, and squamous cell carcinoma (SCC) is one of the most common types of lung cancer. Chemoprevention of lung cancer has gained increasing popularity as an alternative to treatment in reducing the burden of lung cancer. Pterostilbene (PS) may be developed as a chemopreventive agent due to its pharmacological activities, such as anti-proliferative, anti-inflammatory and antioxidant properties. This study aimed to investigate the effect of PS on the development of lung SCC in the mouse model. METHODS A total of 24 seven-week-old female Balb/C mice were randomly categorised into four groups, including two control groups comprising the N-nitroso-trischloroethylurea (NTCU)-induced lung SCC and vehicle control (VC) groups and two treatment groups comprising the 10mg/kg PS (PS10) and 50mg/kg PS (PS50) groups. All lung organs were harvested at week 26 for histopathological analysis. RESULTS All PS treatment groups showed chemopreventive activity by inhibiting the progression of lung SCC formation with PS10, resulting in mild hyperplasia, and PS50 was completely reversed in the normal bronchial epithelium layer compared with the VC group. PS treatment also reduced the expression of cytokeratin 5/6 in the bronchial epithelium layer. Both PS10 and PS50 significantly reduced the epithelium thickness compared to the NTCU group (p<0.05). PS is a potential chemopreventive agent against lung SCC growth by suppressing the progression of pre-malignant lesions and reducing the thickness of the bronchial epithelium. CONCLUSIONS The underlying molecular mechanisms of PS in lung SCC should be further studied.
Collapse
Affiliation(s)
- Omchit Surien
- Biomedical Science Programme, Centre for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur
| | - Ahmad Rohi Ghazali
- Biomedical Science Programme, Centre for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur
| | - Siti Fathiah Masre
- Biomedical Science Programme, Centre for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur.
| |
Collapse
|
29
|
Fathoming the link between anthropogenic chemical contamination and thyroid cancer. Crit Rev Oncol Hematol 2020; 150:102950. [DOI: 10.1016/j.critrevonc.2020.102950] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/12/2020] [Accepted: 04/02/2020] [Indexed: 01/08/2023] Open
|
30
|
Does Daily Physical Activity Level Determine the Physical Efficiency of Children After Treatment of Leukemia? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17010307. [PMID: 31906384 PMCID: PMC6982369 DOI: 10.3390/ijerph17010307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/23/2019] [Accepted: 12/30/2019] [Indexed: 11/24/2022]
Abstract
The aim of the study was to assess daily physical activity level and its influence on the physical efficiency of children after the treatment of leukemia. The study was comprised of 34 children (23 boys and 11 girls) after the treatment of acute lymphoblastic leukemia or myeloid leukemia (mean age of 11.29 ± 2.81 years, mean body height of 146.88 ± 16.11 cm, and mean body weight of 43.68 ± 13.93 kg). The mean time since treatment completion was 3.09 ± 1.80 years. The level of physical activity was assessed with the Health Behavior in School-Aged Children questionnaire (HBSC). Physical efficiency was assessed based on the palant ball throw (assessment of strength, coordination, and upper limb speed), the long jump (assessment of jumping ability, speed and coordination) and the 60 m run (assessment of speed). Measurements of motor skills were normalized, classified according to age and sex, and converted into grades. The mean values obtained in the run and the ball throw showed low pass grades in the study group. In the case of the long jump, satisfactory grades were obtained. A correlation of r = 0.512 was found between vigorous physical activity (HBSC 3) and the grade in the run. A correlation of r = −0.437 was observed between the duration of computer use in leisure time (HBSC 6) and the grade in the long jump, whereas correlations of r = −0.482 and −0.485 were noted between the number hours per week spent on games (HBSC 5) and the duration of computer use in leisure time (HBSC 6) and the grade obtained in the ball throw, respectively. In addition, different levels of physical activity and physical efficiency were demonstrated depending on the time elapsed since treatment completion. Supervised programs promoting daily physical activity should include children after the treatment of leukemia. These programs should also be aimed at improving their physical efficiency.
Collapse
|
31
|
Lee S, Ahn RM, Kim JH, Han YD, Lee JH, Son BS, Lee K. Study Design, Rationale and Procedures for Human Biomonitoring of Hazardous Chemicals from Foods and Cooking in Korea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16142583. [PMID: 31331024 PMCID: PMC6678262 DOI: 10.3390/ijerph16142583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/08/2019] [Accepted: 07/16/2019] [Indexed: 11/16/2022]
Abstract
Objectives: A nationwide biomonitoring program identified the long-term trends of environmental exposures to hazardous chemicals in the general population and found geographical locations where body burdens of an exposed group significantly differed from those of the general population. The purpose of this study is to analyze the hazardous compounds associated with foods and cooking in the nationwide general population for evaluation of the environmental exposures and health risk factors and for the establishment of the reference levels at the national level. Methods: During 2009–2010, the National Institute of Food and Drug Safety Evaluation (NIFDS) conducted a nationwide human biomonitoring study, including a questionnaire survey and environmental exposure assessments for specific hazardous compounds from foods and cooking among the general population in South Korea. Results: A total of 2139 individuals voluntarily participated in 98 survey units in South Korea, including 889 (41.6%) men and 1250 women (58.4%). Bio-specimens (serum and urine) and questionnaires were collected from the study population. Acrylamides, heterocyclic amines (HCAs), phenols, and phthalates were analyzed from urine, and perfluorinated compounds (PFCs) and organic chloride pesticides (OCPs) were analyzed from serum samples. The information on exposure pathway and geographical locations for all participants was collected by questionnaire interviews, which included demographic characteristics, socioeconomic status, history of family diseases, conditions of the indoor and outdoor environment, lifestyles, occupational history, and food and dietary information. Conclusion: We describe the design of the study and sampling of human biospecimen procedures including bio-sample repository systems. The resources produced from this nationwide human biomonitoring study and survey will be valuable for use in future biomarkers studies and for the assessment of exposure to hazardous compounds associated with foods and cooking.
Collapse
Affiliation(s)
- Seokwon Lee
- Samsung Health Research Institute, Samsung Electronics Co., Ltd. 1 Samsungjeonja-ro, Hwaseong, Gyeonggi-do 18448, Korea
| | - Ryoung Me Ahn
- Department of Health Sciences, Dongduk Women's University, 13 gil, 60 Hwarang-ro, Seoul 02748, Korea
| | - Jae Hyoun Kim
- Department of Health Sciences, Dongduk Women's University, 13 gil, 60 Hwarang-ro, Seoul 02748, Korea
| | - Yoon-Deok Han
- Department of Environmental Health Science, College of Natural Science, Soonchunhyang University, 22 Soonchunhyang-ro, Asan 31538, Korea
| | - Jin Heon Lee
- Department of Environmental Education, Kongju National University, Gongju 32588, Korea
| | - Bu-Soon Son
- Department of Environmental Health Science, College of Natural Science, Soonchunhyang University, 22 Soonchunhyang-ro, Asan 31538, Korea.
| | - Kyoungho Lee
- Samsung Health Research Institute, Samsung Electronics Co., Ltd. 1 Samsungjeonja-ro, Hwaseong, Gyeonggi-do 18448, Korea.
| |
Collapse
|
32
|
JNK 1/2 represses Lkb 1-deficiency-induced lung squamous cell carcinoma progression. Nat Commun 2019; 10:2148. [PMID: 31089135 PMCID: PMC6517592 DOI: 10.1038/s41467-019-09843-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 03/22/2019] [Indexed: 12/13/2022] Open
Abstract
Mechanisms of lung squamous cell carcinoma (LSCC) development are poorly understood. Here, we report that JNK1/2 activities attenuate Lkb1-deficiency-driven LSCC initiation and progression through repressing ΔNp63 signaling. In vivo Lkb1 ablation alone is sufficient to induce LSCC development by reducing MKK7 levels and JNK1/2 activities, independent of the AMPKα and mTOR pathways. JNK1/2 activities is positively regulated by MKK7 during LSCC development. Pharmaceutically elevated JNK1/2 activities abates Lkb1 dependent LSCC formation while compound mutations of Jnk1/2 and Lkb1 further accelerate LSCC progression. JNK1/2 is inactivated in a substantial proportion of human LSCC and JNK1/2 activities positively correlates with survival rates of lung, cervical and head and neck squamous cell carcinoma patients. These findings not only determine a suppressive role of the stress response regulators JNK1/2 on LSCC development by acting downstream of the key LSCC suppresser Lkb1, but also demonstrate activating JNK1/2 activities as a therapeutic approach against LSCC. LKB1 is frequently mutated in lung squamous cell carcinomas. Here, the authors show that sole LKB1 depletion is sufficient to drive the development of this cancer, where downstream defective MKK7-JNK1/2 signalling activates the ∆Np63/p63 pathway to induce subsequent epithelial cells transformation and tumour progression.
Collapse
|
33
|
Cigarette smoke or exhaust gas from waste incineration – where are more dioxins? ACTA INNOVATIONS 2019. [DOI: 10.32933/actainnovations.31.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In Poland, incineration is a relatively new method of waste treatment. Modern installations for waste incineration have two functions: they reduce the quantity (volume) of the waste and are a source of electricity and/or heat. During all combustion processes including waste incineration, polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCD/Fs) (well known as dioxins) are formed. These compounds are considered to be extremely dangerous for living organisms including human beings.
Dioxins are formed in any process of combustion of solid and liquid fuels in the presence of chlorine, oxygen and organic matter at appropriate temperatures. Combustion processes also occur during cigarette smoking, which is also a source of dioxin emissions. Although smoking has been classified as a less important source of dioxins in the environment, it directly affects our health.
This work’s aim is to determine and compare the degree of harmfulness caused by the amount of inhaled dioxins: cigarette smoking or living near a waste incineration plant.
Based on literature and experimental data, the concentration of dioxins in cigarette smoke and exhaust gases generated by municipal waste incineration plants as well as number of dioxins absorbed per day by the body will be presented.
Collapse
|
34
|
Tapia V, Carbajal L, Vásquez V, Espinoza R, Vásquez-Velásquez C, Steenland K, Gonzales GF. [Traffic regulation and environmental pollution by particulate material (2.5 and 10), sulfur dioxide, and nitrogen dioxide in Metropolitan Lima, Peru]. REVISTA PERUANA DE MEDICINA EXPERIMENTAL Y SALUD PUBLICA 2019. [PMID: 30183915 DOI: 10.17843/rpmesp.2018.352.3250.] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE. To assess the change in environmental levels of PM2.5, PM10, SO2, and NO2, after the application of a traffic regulation plan in Abancay Avenue between the years 2013-2015 vs. to 2007-2009, and comparing it against two other avenues, in which no traffic regulation was implemented: Guillermo de La Fuente Avenue in the district of Comas and Cesar Vallejo Avenue in El Agustino. MATERIALS AND METHODS. Environmental data were collected by three air monitors from the Ministry of Health's Environmental Health and Food Safety General Directorate (Dirección General de Salud Ambiental e Inocuidad Alimentaria) that are part of the Air Quality Surveillance network of the city of Lima. The beta coefficient of the linear regression allowed to assess change in the concentration of each pollutant. RESULTS. The traffic regulation plan of Abancay Av. reduced the levels of PM2.5 by 62%; 55% for PM10 levels; 65% for the NO2 levels, and 82% for the SO2 levels. In the other two avenues assess, this reduction was not observed. A significant reduction in PM2.5 (β: -53.11 μg/m3; 95% CI: -63.92 to -42.30), PM10 (β: -47.99 μg/m3; 95% CI: -62.61 to -33.37), NO2 (β: -41.71 μg/m3; 95% CI: -48.18 to -35.23), and SO2 (β: -28.59 μg/m3; 95% CI: -35.23 to -21.95) was observed in Abancay Av., with respect to the other two avenues, after the traffic regulation plan was implemented. CONCLUSIONS. Traffic regulation can contribute to the continuous reduction of different air pollutants. The expansion of this measure could improve air quality and the health status of the residents of Lima.
Collapse
Affiliation(s)
- Vilma Tapia
- Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia. Lima, Perú
| | - Luz Carbajal
- Departamento de Estadística, Demografía, Humanidades y Ciencias Sociales, Universidad Peruana Cayetano Heredia. Lima, Perú
| | - Vanessa Vásquez
- Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia. Lima, Perú
| | - Rocío Espinoza
- Dirección General de Salud Ambiental e Inocuidad Alimentaria (DIGESA). Ministerio de Salud. Lima, Perú
| | - Cinthya Vásquez-Velásquez
- Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia. Lima, Perú
| | - Kyle Steenland
- Department of Environmental Health, Rollins School of Public Health, Emory University. Atlanta, GA, USA
| | - Gustavo F Gonzales
- Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia. Lima, Perú
| |
Collapse
|
35
|
Benmarhnia T, Delpla I, Schwarz L, Rodriguez MJ, Levallois P. Heterogeneity in the Relationship between Disinfection By-Products in Drinking Water and Cancer: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15050979. [PMID: 29757939 PMCID: PMC5982018 DOI: 10.3390/ijerph15050979] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/02/2022]
Abstract
The epidemiological evidence demonstrating the effect of disinfection by-products (DBPs) from drinking water on colon and rectal cancers is well documented. However, no systematic assessment has been conducted to assess the potential effect measure modification (EMM) in the relationship between DBPs and cancer. The objective of this paper is to conduct a systematic literature review to determine the extent to which EMM has been assessed in the relationship between DBPs in drinking water in past epidemiological studies. Selected articles (n = 19) were reviewed, and effect estimates and covariates that could have been used in an EMM assessment were gathered. Approximately half of the studies assess EMM (n = 10), but the majority of studies only estimate it relative to sex subgroups (n = 6 for bladder cancer and n = 2 both for rectal and colon cancers). Although EMM is rarely assessed, several variables that could have a potential modification effect are routinely collected in these studies, such as socioeconomic status or age. The role of environmental exposures through drinking water can play an important role and contribute to cancer disparities. We encourage a systematic use of subgroup analysis to understand which populations or territories are more vulnerable to the health impacts of DBPs.
Collapse
Affiliation(s)
- Tarik Benmarhnia
- Department of Family Medicine and Public Health & Scripps Institution of Oceanography, University of California, San Diego, CA 92093, USA.
| | - Ianis Delpla
- École Supérieure D'aménagement du Territoire et de Développement Régional (ESAD), Université Laval, 1624 Pavillon Savard, Québec, QC G1K-7P4, Canada.
| | - Lara Schwarz
- Department of Family Medicine and Public Health & Scripps Institution of Oceanography, University of California, San Diego, CA 92093, USA.
| | - Manuel J Rodriguez
- École Supérieure D'aménagement du Territoire et de Développement Régional (ESAD), Université Laval, 1624 Pavillon Savard, Québec, QC G1K-7P4, Canada.
| | - Patrick Levallois
- Direction de la Santé Environnementale et de la Toxicologie, Institut National de Santé Publique du Québec, Québec, QC G1V 5B3, Canada.
- Axe Santé des Populations et Pratiques Optimales en Santé, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Québec, QC G1V 2M2, Canada.
| |
Collapse
|
36
|
Calder PC, Bosco N, Bourdet-Sicard R, Capuron L, Delzenne N, Doré J, Franceschi C, Lehtinen MJ, Recker T, Salvioli S, Visioli F. Health relevance of the modification of low grade inflammation in ageing (inflammageing) and the role of nutrition. Ageing Res Rev 2017; 40:95-119. [PMID: 28899766 DOI: 10.1016/j.arr.2017.09.001] [Citation(s) in RCA: 309] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 08/03/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023]
Abstract
Ageing of the global population has become a public health concern with an important socio-economic dimension. Ageing is characterized by an increase in the concentration of inflammatory markers in the bloodstream, a phenomenon that has been termed "inflammageing". The inflammatory response is beneficial as an acute, transient reaction to harmful conditions, facilitating the defense, repair, turnover and adaptation of many tissues. However, chronic and low grade inflammation is likely to be detrimental for many tissues and for normal functions. We provide an overview of low grade inflammation (LGI) and determine the potential drivers and the effects of the "inflamed" phenotype observed in the elderly. We discuss the role of gut microbiota and immune system crosstalk and the gut-brain axis. Then, we focus on major health complications associated with LGI in the elderly, including mental health and wellbeing, metabolic abnormalities and infections. Finally, we discuss the possibility of manipulating LGI in the elderly by nutritional interventions. We provide an overview of the evidence that exists in the elderly for omega-3 fatty acid, probiotic, prebiotic, antioxidant and polyphenol interventions as a means to influence LGI. We conclude that slowing, controlling or reversing LGI is likely to be an important way to prevent, or reduce the severity of, age-related functional decline and the onset of conditions affecting health and well-being; that there is evidence to support specific dietary interventions as a strategy to control LGI; and that a continued research focus on this field is warranted.
Collapse
Affiliation(s)
- Philip C Calder
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Nabil Bosco
- Nestlé Research Center Asia, 21 Biopolis Road, 138567, Singapore
| | | | - Lucile Capuron
- INRA, Nutrition and Integrative Neurobiology, 33076 Bordeaux, France; Nutrition and Integrative Neurobiology (NutriNeuro), UMR 1286, University of Bordeaux, 33076 Bordeaux, France
| | - Nathalie Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Catholic University of Louvain, B-1200 Brussels, Belgium
| | - Joel Doré
- MetaGénoPolis, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Claudio Franceschi
- IRCCS, Institute of Neurological Sciences of Bologna, Bologna 40124, Italy
| | - Markus J Lehtinen
- DuPont Nutrition and Health, Global Health and Nutrition Science, 02460 Kantvik, Finland
| | - Tobias Recker
- International Life Sciences Institute European Branch, 1200 Brussels, Belgium.
| | - Stefano Salvioli
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
| | - Francesco Visioli
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; IMDEA-Food, 28049 Madrid, Spain
| |
Collapse
|
37
|
Han Y, Li N, Oda Y, Ma M, Rao K, Wang Z, Jin W, Hong G, Li Z, Luo Y. Evaluation of genotoxic effects of surface waters using a battery of bioassays indicating different mode of action. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 133:448-456. [PMID: 27517142 DOI: 10.1016/j.ecoenv.2016.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/17/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
With the burgeoning contamination of surface waters threatening human health, the genotoxic effects of surface waters have received much attention. Because mutagenic and carcinogenic compounds in water cause tumors by different mechanisms, a battery of bioassays that each indicate a different mode of action (MOA) is required to evaluate the genotoxic effects of contaminants in water samples. In this study, 15 water samples from two source water reservoirs and surrounding rivers in Shijiazhuang city of China were evaluated for genotoxic effects. Target chemical analyses of 14 genotoxic pollutants were performed according to the Environmental quality standards for surface water of China. Then, the in vitro cytokinesis-block micronucleus (CBMN) assay, based on a high-content screening technique, was used to detect the effect of chromosome damage. The SOS/umu test using strain TA1535/pSK1002 was used to detect effects on SOS repair of gene expression. Additionally, two other strains, NM2009 and NM3009, which are highly sensitive to aromatic amines and nitroarenes, respectively, were used in the SOS/umu test to avoid false negative results. In the water samples, only two of the genotoxic chemicals listed in the water standards were detected in a few samples, with concentrations that were below water quality standards. However, positive results for the CBMN assay were observed in two river samples, and positive results for the induction of umuC gene expression in TA1535/pSK1002 were observed in seven river samples. Moreover, positive results were observed for NM2009 with S9 and NM3009 without S9 in some samples that had negative results using the strain TA1535/pSK1002. Based on the results with NM2009 and NM3009, some unknown or undetected aromatic amines and nitroarenes were likely in the source water reservoirs and the surrounding rivers. Furthermore, these compounds were most likely the causative pollutants for the genotoxic effect of these water samples. Therefore, to identify causative pollutants with harmful biological effects, chemical analyses for the pollutants listed in water quality standards is not sufficient, and single-endpoint bioassays may underestimate adverse effects. Thus, a battery of bioassays based on different MOAs is required for the comprehensive detection of harmful biological effects. In conclusion, for genotoxicity screening of surface waters, the SOS/umu test system by using different strains combined with the CBMN assay was a useful approach.
Collapse
Affiliation(s)
- Yingnan Han
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Yoshimitsu Oda
- Institute of Life and Environmental Sciences, Osaka Shin-Ai College, 6-2-28 Tsurumi, Tsurumi-Ku, Osaka 538-0053, Japan.
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Kaifeng Rao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Zijian Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Wei Jin
- Shijiazhuang Environmental Monitoring Center, Shijiazhuang 050000, PR China
| | - Gang Hong
- Shijiazhuang Environmental Monitoring Center, Shijiazhuang 050000, PR China
| | - Zhiguo Li
- Shijiazhuang Environmental Monitoring Center, Shijiazhuang 050000, PR China
| | - Yi Luo
- Shijiazhuang Environmental Monitoring Center, Shijiazhuang 050000, PR China
| |
Collapse
|
38
|
Palacio IC, Oliveira IF, Franklin RL, Barros SBM, Roubicek DA. Evaluating the mutagenicity of the water-soluble fraction of air particulate matter: A comparison of two extraction strategies. CHEMOSPHERE 2016; 158:124-130. [PMID: 27258903 DOI: 10.1016/j.chemosphere.2016.05.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/19/2016] [Indexed: 06/05/2023]
Abstract
Many studies have focused on assessing the genotoxic potential of the organic fraction of airborne particulate matter. However, the determination of water-soluble compounds, and the evaluation of the toxic effects of these elements can also provide valuable information for the development of novel strategies to control atmospheric air pollution. To determine an appropriate extraction method for assessing the mutagenicity of the water-soluble fraction of PM, we performed microwave assisted (MW) and ultrasonic bath (US) extractions, using water as solvent, in eight different air samples (TSP and PM10). Mutagenicity and extraction performances were evaluated using the Salmonella/microsome assay with strains TA98 and TA100, followed by chemical determination of water-soluble metals. Additionally, we evaluated the chemical and biological stability of the extracts testing their mutagenic potential and chemically determining elements present in the samples along several periods after extraction. Reference material SRM 1648a was used. The comparison of MW and US extractions did not show differences on the metals concentrations, however positive mutagenic responses were detected with TA98 strain in all samples extracted using the MW method, but not with the US bath extraction. The recovery, using reference material was better in samples extracted with MW. We concluded that the MW extraction is more efficient to assess the mutagenic activity of the soluble fraction of airborne PM. We also observed that the extract freezing and storage over 60 days has a significant effect on the mutagenic and analytical results on PM samples, and should be avoided.
Collapse
Affiliation(s)
- Isabel C Palacio
- Dept. Environmental Analyses, São Paulo State Environmental Agency, CETESB, Av. Prof. Frederico Hermann Jr, 345, 05459-900, São Paulo, SP, Brazil; Dept. Clinical Analyses and Toxicology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Professor Lineu Prestes, 580, 05508-000, São Paulo, SP, Brazil.
| | - Ivo F Oliveira
- Dept. Environmental Analyses, São Paulo State Environmental Agency, CETESB, Av. Prof. Frederico Hermann Jr, 345, 05459-900, São Paulo, SP, Brazil.
| | - Robson L Franklin
- Dept. Environmental Analyses, São Paulo State Environmental Agency, CETESB, Av. Prof. Frederico Hermann Jr, 345, 05459-900, São Paulo, SP, Brazil.
| | - Silvia B M Barros
- Dept. Clinical Analyses and Toxicology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Professor Lineu Prestes, 580, 05508-000, São Paulo, SP, Brazil.
| | - Deborah A Roubicek
- Dept. Environmental Analyses, São Paulo State Environmental Agency, CETESB, Av. Prof. Frederico Hermann Jr, 345, 05459-900, São Paulo, SP, Brazil.
| |
Collapse
|
39
|
Kasi PD, Tamilselvam R, Skalicka-Woźniak K, Nabavi SF, Daglia M, Bishayee A, Pazoki-toroudi H, Nabavi SM. Molecular targets of curcumin for cancer therapy: an updated review. Tumour Biol 2016; 37:13017-13028. [DOI: 10.1007/s13277-016-5183-y] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 07/13/2016] [Indexed: 01/27/2023] Open
|
40
|
The SDF-1 rs1801157 Polymorphism is Associated with Cancer Risk: An Update Pooled Analysis and FPRP Test of 17,876 Participants. Sci Rep 2016; 6:27466. [PMID: 27265091 PMCID: PMC4893747 DOI: 10.1038/srep27466] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/17/2016] [Indexed: 02/05/2023] Open
Abstract
The stromal cell derived factor-1 (SDF-1) rs1801157 gene polymorphism has been implicated in susceptibility to cancer, but the results were inconclusive. The current study was to precisely investigate the association between SDF-1 rs1801157 polymorphism and cancer risk using meta-analysis and the false positive report probability (FPRP) test. All 17,876 participants were included in the study. The meta-analysis results indicated a significant association between the SDF-1 rs1801157 polymorphism and cancer risk. By subgroup analyses, the results detected that the SDF-1 rs1801157 polymorphism was associated with cancer susceptibility among Asians and Caucasians. Additionally, we also found significant associations between the SDF-1 rs1801157 polymorphism and susceptibility to different types of cancer. However, to avoid a "false positive report", we further investigated the significant associations observed in the present meta-analysis using the FPRP test. Interestingly, the results of the FPRP test indicated that only 4 gene models were truly associated with cancer risk, especially in Asians. Moreover, we confirmed that the SDF-1 rs1801157 gene polymorphism was only associated with lung and urologic cancer risk. In summary, this study suggested that the SDF-1 rs1801157 polymorphism may serve as a risk factor for cancer development among Asians, especially an increased risk of urologic and lung cancers.
Collapse
|
41
|
Russo M, Russo GL, Daglia M, Kasi PD, Ravi S, Nabavi SF, Nabavi SM. Understanding genistein in cancer: The "good" and the "bad" effects: A review. Food Chem 2016; 196:589-600. [PMID: 26593532 DOI: 10.1016/j.foodchem.2015.09.085] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/29/2015] [Accepted: 09/23/2015] [Indexed: 02/07/2023]
Abstract
Nowadays, diet and specific dietary supplements are seen as potential adjuvants to prevent different chronic diseases, including cancer, or to ameliorate pharmacological therapies. Soybean is one of the most important food components in Asian diet. A plethora of evidence supports the in vitro and in vivo anticancer effects of genistein, a soybean isoflavone. Major tumors affected by genistein here reviewed are breast, prostate, colon, liver, ovarian, bladder, gastric, brain cancers, neuroblastoma and chronic lymphocytic leukemia. However, it is not always clear if and when genistein is beneficial against tumors (the "good" effects), or the opposite, when the same molecule exerts adverse effects (the "bad" effects), favouring cancer cell proliferation. This review will critically evaluate this concept in the light of the different molecular mechanisms of genistein which occur when the molecule is administered at low doses (chemopreventive effects), or at high doses (pharmacological effects).
Collapse
Affiliation(s)
- Maria Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy.
| | - Gian Luigi Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, 27100 Pavia, Italy
| | - Pandima Devi Kasi
- Department of Biotechnology, Alagappa University, Karaikudi 630 004, Tamil Nadu, India.
| | - Sakthivel Ravi
- Department of Biotechnology, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Hagedoorn P, Vandenheede H, Willaert D, Vanthomme K, Gadeyne S. Regional Inequalities in Lung Cancer Mortality in Belgium at the Beginning of the 21st Century: The Contribution of Individual and Area-Level Socioeconomic Status and Industrial Exposure. PLoS One 2016; 11:e0147099. [PMID: 26760040 PMCID: PMC4711966 DOI: 10.1371/journal.pone.0147099] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/29/2015] [Indexed: 11/19/2022] Open
Abstract
Being a highly industrialized country with one of the highest male lung cancer mortality rates in Europe, Belgium is an interesting study area for lung cancer research. This study investigates geographical patterns in lung cancer mortality in Belgium. More specifically it probes into the contribution of individual as well as area-level characteristics to (sub-district patterns in) lung cancer mortality. Data from the 2001 census linked to register data from 2001-2011 are used, selecting all Belgian inhabitants aged 65+ at time of the census. Individual characteristics include education, housing status and home ownership. Urbanicity, unemployment rate, the percentage employed in mining and the percentage employed in other high-risk industries are included as sub-district characteristics. Regional variation in lung cancer mortality at sub-district level is estimated using directly age-standardized mortality rates. The association between lung cancer mortality and individual and area characteristics, and their impact on the variation of sub-district level is estimated using multilevel Poisson models. Significant sub-district variations in lung cancer mortality are observed. Individual characteristics explain a small share of this variation, while a large share is explained by sub-district characteristics. Individuals with a low socioeconomic status experience a higher lung cancer mortality risk. Among women, an association with lung cancer mortality is found for the sub-district characteristics urbanicity and unemployment rate, while for men lung cancer mortality was associated with the percentage employed in mining. Not just individual characteristics, but also area characteristics are thus important determinants of (regional differences in) lung cancer mortality.
Collapse
Affiliation(s)
- Paulien Hagedoorn
- Interface Demography, Department of Sociology, Faculty of Economic and Social Sciences and Solvay Business School, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hadewijch Vandenheede
- Interface Demography, Department of Sociology, Faculty of Economic and Social Sciences and Solvay Business School, Vrije Universiteit Brussel, Brussels, Belgium
| | - Didier Willaert
- Interface Demography, Department of Sociology, Faculty of Economic and Social Sciences and Solvay Business School, Vrije Universiteit Brussel, Brussels, Belgium
| | - Katrien Vanthomme
- Interface Demography, Department of Sociology, Faculty of Economic and Social Sciences and Solvay Business School, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sylvie Gadeyne
- Interface Demography, Department of Sociology, Faculty of Economic and Social Sciences and Solvay Business School, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
43
|
Conover HN, Argueso JL. Contrasting mechanisms of de novo copy number mutagenesis suggest the existence of different classes of environmental copy number mutagens. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:3-9. [PMID: 26247157 DOI: 10.1002/em.21967] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/05/2015] [Accepted: 07/07/2015] [Indexed: 05/23/2023]
Abstract
While gene copy number variations (CNVs) are abundant in the human genome, and often are associated with disease consequences, the mutagenic pathways and environmental exposures that cause these large structural mutations are understudied relative to conventional nucleotide substitutions in DNA. The members of the environmental mutagenesis community are currently seeking to remedy this deficiency, and there is a renewed interest in the development of mutagenicity assays to identify and characterize compounds that may induce de novo CNVs in humans. To achieve this goal, it is critically important to acknowledge that CNVs exist in two very distinct classes: nonrecurrent and recurrent CNVs. The goal of this commentary is to emphasize the deep contrasts that exist between the proposed pathways that lead to these two mutation classes. Nonrecurrent de novo CNVs originate primarily in mitotic cells through replication-dependent DNA repair pathways that involve microhomologies (<10 bp), and are detected at higher frequency in children of older fathers. In contrast, recurrent de novo CNVs are most often formed in meiotic cells through homologous recombination between nonallelic large low-copy repeats (>10,000 bp), without an associated paternal age effect. Given the biological differences between the two CNV classes, it is our belief that nonrecurrent and recurrent CN mutagens will probably differ substantially in their modes of action. Therefore, each CNV class may require their own uniquely designed assays, so that we as a field may succeed in uncovering the broadest possible spectrum of environmental CN mutagens.
Collapse
Affiliation(s)
- Hailey N Conover
- Department of Environmental and Radiological Health Sciences, Cell and Molecular Biology Graduate Program, Institute for Genome Architecture and Function, Colorado State University, Fort Collins, Colorado
| | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Cell and Molecular Biology Graduate Program, Institute for Genome Architecture and Function, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
44
|
Ducasse H, Ujvari B, Solary E, Vittecoq M, Arnal A, Bernex F, Pirot N, Misse D, Bonhomme F, Renaud F, Thomas F, Roche B. Can Peto's paradox be used as the null hypothesis to identify the role of evolution in natural resistance to cancer? A critical review. BMC Cancer 2015; 15:792. [PMID: 26499116 PMCID: PMC4619987 DOI: 10.1186/s12885-015-1782-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/12/2015] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Carcinogenesis affects not only humans but almost all metazoan species. Understanding the rules driving the occurrence of cancers in the wild is currently expected to provide crucial insights into identifying how some species may have evolved efficient cancer resistance mechanisms. Recently the absence of correlation across species between cancer prevalence and body size (coined as Peto's paradox) has attracted a lot of attention. Indeed, the disparity between this null hypothesis, where every cell is assumed to have an identical probability to undergo malignant transformation, and empirical observations is particularly important to understand, due to the fact that it could facilitate the identification of animal species that are more resistant to carcinogenesis than expected. Moreover it would open up ways to identify the selective pressures that may be involved in cancer resistance. However, Peto's paradox relies on several questionable assumptions, complicating the interpretation of the divergence between expected and observed cancer incidences. DISCUSSIONS Here we review and challenge the different hypotheses on which this paradox relies on with the aim of identifying how this null hypothesis could be better estimated in order to provide a standard protocol to study the deviation between theoretical/theoretically predicted and observed cancer incidence. We show that due to the disproportion and restricted nature of available data on animal cancers, applying Peto's hypotheses at species level could result in erroneous conclusions, and actually assume the existence of a paradox. Instead of using species level comparisons, we propose an organ level approach to be a more accurate test of Peto's assumptions. SUMMARY The accuracy of Peto's paradox assumptions are rarely valid and/or quantifiable, suggesting the need to reconsider the use of Peto's paradox as a null hypothesis in identifying the influence of natural selection on cancer resistance mechanisms.
Collapse
Affiliation(s)
- Hugo Ducasse
- MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France.
- CREEC, 911 Avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France.
- Université Montpellier, 163 rue Auguste Broussonnet, 34090, Montpellier, France.
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Vic, Australia
| | - Eric Solary
- INSERM U1009, Université Paris-Sud, Gustave Roussy, Villejuif, France
| | - Marion Vittecoq
- MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France
- CREEC, 911 Avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France
- Centre de Recherche de la Tour du Valat, Le Sambuc, 13200, Arles, France
| | - Audrey Arnal
- MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France
- CREEC, 911 Avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France
| | - Florence Bernex
- CREEC, 911 Avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France
- Université Montpellier, 163 rue Auguste Broussonnet, 34090, Montpellier, France
- RHEM, Réseau d'Histologie Expérimentale de Montpellier, IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, U1194 Montpellier France, Montpellier, France
- ICM, 208 Avenue des Apothicaires, Montpellier, 34298, France
| | - Nelly Pirot
- CREEC, 911 Avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France
- Université Montpellier, 163 rue Auguste Broussonnet, 34090, Montpellier, France
- RHEM, Réseau d'Histologie Expérimentale de Montpellier, IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, U1194 Montpellier France, Montpellier, France
- ICM, 208 Avenue des Apothicaires, Montpellier, 34298, France
| | - Dorothée Misse
- MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France
- CREEC, 911 Avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France
| | - François Bonhomme
- ISEM, UMR CNRS/IRD/EPHE/UM 5554, Place Eugène Bataillon, Montpellier Cedex 5, 34095, France
| | - François Renaud
- MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France
- CREEC, 911 Avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France
| | - Frédéric Thomas
- MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France
- CREEC, 911 Avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France
| | - Benjamin Roche
- MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France
- CREEC, 911 Avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France
- UMMISCO, UMI IRD/UPMC, 32 Avenue Henri Varagnat, 93143, Bondy Cedex, France
| |
Collapse
|
45
|
Devi KP, Rajavel T, Habtemariam S, Nabavi SF, Nabavi SM. Molecular mechanisms underlying anticancer effects of myricetin. Life Sci 2015; 142:19-25. [PMID: 26455550 DOI: 10.1016/j.lfs.2015.10.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
Dietary guidelines published in the past two decades have acknowledged the beneficial effects of myricetin, an important and common type of herbal flavonoid, against several human diseases such as inflammation, cardiovascular pathologies, and cancer. An increasing number of studies have shown the beneficial effects of myricetin against different types of cancer by modifying several cancer hallmarks including aberrant cell proliferation, signaling pathways, apoptosis, angiogenesis, and tumor metastasis. Most importantly, myricetin interacts with oncoproteins such as protein kinase B (PKB) (Akt), Fyn, MEK1, and JAK1-STAT3 (Janus kinase-signal transducer and activator of transcription 3), and it attenuates the neoplastic transformation of cancer cells. In addition, myricetin exerts antimitotic effects by targeting the overexpression of cyclin-dependent kinase 1 (CDK1) in liver cancer. Moreover, it also targets the mitochondria and promotes different kinds of cell death in various cancer cells. In the present paper, a critical review of the available literature is presented to identify the molecular targets underlying the anticancer effects of myricetin.
Collapse
Affiliation(s)
- Kasi Pandima Devi
- Department of Biotechnology, Science Block, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Tamilselvam Rajavel
- Department of Biotechnology, Science Block, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories, Medway School of Science, University of Greenwich, Kent, UK
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Thiebault T, Guégan R, Boussafir M. Adsorption mechanisms of emerging micro-pollutants with a clay mineral: Case of tramadol and doxepine pharmaceutical products. J Colloid Interface Sci 2015; 453:1-8. [DOI: 10.1016/j.jcis.2015.04.029] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/07/2015] [Accepted: 04/12/2015] [Indexed: 10/23/2022]
|
47
|
Lu Y, Song S, Wang R, Liu Z, Meng J, Sweetman AJ, Jenkins A, Ferrier RC, Li H, Luo W, Wang T. Impacts of soil and water pollution on food safety and health risks in China. ENVIRONMENT INTERNATIONAL 2015; 77:5-15. [PMID: 25603422 DOI: 10.1016/j.envint.2014.12.010] [Citation(s) in RCA: 448] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/25/2014] [Accepted: 12/31/2014] [Indexed: 05/21/2023]
Abstract
Environmental pollution and food safety are two of the most important issues of our time. Soil and water pollution, in particular, have historically impacted on food safety which represents an important threat to human health. Nowhere has that situation been more complex and challenging than in China, where a combination of pollution and an increasing food safety risk have affected a large part of the population. Water scarcity, pesticide over-application, and chemical pollutants are considered to be the most important factors impacting on food safety in China. Inadequate quantity and quality of surface water resources in China have led to the long-term use of waste-water irrigation to fulfill the water requirements for agricultural production. In some regions this has caused serious agricultural land and food pollution, especially for heavy metals. It is important, therefore, that issues threatening food safety such as combined pesticide residues and heavy metal pollution are addressed to reduce risks to human health. The increasing negative effects on food safety from water and soil pollution have put more people at risk of carcinogenic diseases, potentially contributing to 'cancer villages' which appear to correlate strongly with the main food producing areas. Currently in China, food safety policies are not integrated with soil and water pollution management policies. Here, a comprehensive map of both soil and water pollution threats to food safety in China is presented and integrated policies addressing soil and water pollution for achieving food safety are suggested to provide a holistic approach.
Collapse
Affiliation(s)
- Yonglong Lu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Shuai Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruoshi Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoyang Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Meng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andrew J Sweetman
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK; Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | - Alan Jenkins
- Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | | | - Hong Li
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK; Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | - Wei Luo
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tieyu Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
48
|
Claxton LD. The history, genotoxicity, and carcinogenicity of carbon-based fuels and their emissions: Part 5. Summary, comparisons, and conclusions. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 763:103-47. [DOI: 10.1016/j.mrrev.2014.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 10/04/2014] [Accepted: 10/06/2014] [Indexed: 12/19/2022]
|
49
|
Nonionic organoclay: A ‘Swiss Army knife’ for the adsorption of organic micro-pollutants? J Colloid Interface Sci 2015; 437:71-79. [DOI: 10.1016/j.jcis.2014.09.043] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/05/2014] [Accepted: 09/16/2014] [Indexed: 11/21/2022]
|
50
|
The history, genotoxicity, and carcinogenicity of carbon-based fuels and their emissions: 1. Principles and background. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 762:76-107. [DOI: 10.1016/j.mrrev.2014.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/17/2014] [Accepted: 07/20/2014] [Indexed: 12/30/2022]
|