1
|
Matsuyama T, Osaka N, Yamaguchi M, Kanamaru N, Wada K, Kawakita A, Murata K, Sugimoto K, Okamoto K. Evaluation of Phototoxicity of Short-Wavelength Laser Light Utilizing PCNA Accumulation. MICROMACHINES 2024; 15:646. [PMID: 38793219 PMCID: PMC11124252 DOI: 10.3390/mi15050646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
In recent years, diseases such as age-related macular degeneration and retinal pigment degeneration caused by excessive exposure to short-wavelength visible light have become significant concerns. With the aim of quantitatively evaluating the toxicity of short-wavelength light, proliferating cell nuclear antigen (PCNA) accumulation at the irradiation site was investigated using live cell imaging techniques to irradiate individual living cells with short-wavelength laser light. By examining the dependency of PCNA accumulation on the irradiation site within the cells and their cell cycle, it was observed that PCNA accumulation occurred only when the cell nucleus of cells in the S phase of the cell cycle was irradiated. We investigated the accumulation of PCNA at the laser irradiation site using laser light at wavelengths of 405 nm and 375 nm, with intensities ranging from 0.5 μW to 9.0 μW. The results confirmed an increase in PCNA accumulation with increasing intensity, and a higher accumulation was observed with laser light irradiation at a wavelength of 375 nm compared to 405 nm. By comparing the PCNA accumulation and 24 h cell viability, we demonstrated the feasibility of quantitatively assessing laser light toxicity through the measurement of PCNA accumulation.
Collapse
Affiliation(s)
- Tetsuya Matsuyama
- Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Noboru Osaka
- Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Mikiya Yamaguchi
- Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Naohiro Kanamaru
- Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Kenji Wada
- Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Ai Kawakita
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Kaori Murata
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Kenji Sugimoto
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Koichi Okamoto
- Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| |
Collapse
|
2
|
Nozeret K, Loll F, Cardoso GM, Escudé C, Boutorine AS. Interaction of fluorescently labeled pyrrole-imidazole polyamide probes with fixed and living murine and human cells. Biochimie 2018; 149:122-134. [DOI: 10.1016/j.biochi.2018.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 03/14/2018] [Indexed: 12/26/2022]
|
3
|
Nozeret K, Bonan M, Yarmoluk SM, Novopashina DS, Boutorine AS. Synthesis of mouse centromere-targeted polyamides and physico-chemical studies of their interaction with the target double-stranded DNA. Bioorg Med Chem 2015; 23:5932-45. [PMID: 26190459 DOI: 10.1016/j.bmc.2015.06.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/21/2015] [Accepted: 06/24/2015] [Indexed: 11/18/2022]
Abstract
Synthetic minor groove-binding pyrrole-imidazole polyamides labeled by fluorophores are promising candidates for fluorescence imaging of double-stranded DNA in isolated chromosomes or fixed and living cells. We synthesized nine hairpin and two head-to-head tandem polyamides targeting repeated sequences from mouse major satellites. Their interaction with synthetic target dsDNA has been studied by physico-chemical methods in vitro before and after coupling to various fluorophores. Great variability in affinities and fluorescence properties reveals a conclusion that these properties do not only rely on recognition rules, but also on other known and unknown structural factors. Individual testing of each probe is needed before cellular applications.
Collapse
Affiliation(s)
- Karine Nozeret
- Structure and Instability of Genomes, Sorbonne Universités, Muséum National d'Histoire Naturelle, INSERM U 1154, CNRS UMR 7196, 57 rue Cuvier, C.P. 26, 75231 Paris cedex 05, France.
| | - Marc Bonan
- Structure and Instability of Genomes, Sorbonne Universités, Muséum National d'Histoire Naturelle, INSERM U 1154, CNRS UMR 7196, 57 rue Cuvier, C.P. 26, 75231 Paris cedex 05, France; Université Paris René Descartes, 12 Rue de l'École de Médecine, 75006 Paris, France.
| | - Serguiy M Yarmoluk
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, ul. Zabolotnogo, 150, P.O. 88, 03187 Kiev, Ukraine.
| | - Darya S Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Lavrentyev prosp., 8, 630090 Novosibirsk, Russia.
| | - Alexandre S Boutorine
- Structure and Instability of Genomes, Sorbonne Universités, Muséum National d'Histoire Naturelle, INSERM U 1154, CNRS UMR 7196, 57 rue Cuvier, C.P. 26, 75231 Paris cedex 05, France.
| |
Collapse
|
4
|
Yasui M, Kamoshita N, Nishimura T, Honma M. Mechanism of induction of binucleated cells by multiwalled carbon nanotubes as revealed by live-cell imaging analysis. Genes Environ 2015; 37:6. [PMID: 27350803 PMCID: PMC4910772 DOI: 10.1186/s41021-015-0003-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/17/2015] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Asbestos-induced formation of mesothelioma has been attributed to phenotypic and morphological changes in cells caused by polyploidization and aneuploidization, and multiwalled carbon nanotubes (MWCNTs) are suspected to have similar adverse effects due to the similarity in their physical form. MWCNTs and crocidolite, a kind of asbestos, show similar genotoxicity characteristics in vitro, including induction of binucleated cells. We here focused on the mechanisms underlying polyploidization during cell division on exposure to MWCNTs and conducted confocal live-cell imaging analysis using MDA-435 human breast cancer cells in which chromosomes and centromeres were visualized using fluorescent proteins. FINDINGS During anaphase, relatively short MWCNT fibers (approximately 5 μm) migrated rapidly to either of the daughter cells, whereas some long MWCNT fibers (approximately 20 μm) remained inside the contractile ring and induced the formation of binucleated cells through impairment of cytokinesis. This toxicity mechanism has also been observed with crocidolite. CONCLUSIONS Our findings indicate that the mechanism of polyploidization by MWCNTs is very similar to that observed with crocidolite.
Collapse
Affiliation(s)
- Manabu Yasui
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 Japan
| | - Nagisa Kamoshita
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 Japan
| | - Tetsuji Nishimura
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano, Nakano-ku, Tokyo 164-8530 Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 Japan
| |
Collapse
|
5
|
Nozeret K, Loll F, Escudé C, Boutorine AS. Polyamide fluorescent probes for visualization of repeated DNA sequences in living cells. Chembiochem 2015; 16:549-54. [PMID: 25639955 DOI: 10.1002/cbic.201402676] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Indexed: 11/07/2022]
Abstract
DNA imaging in living cells usually requires transgenic approaches that modify the genome. Synthetic pyrrole-imidazole polyamides that bind specifically to the minor groove of double-stranded DNA (dsDNA) represent an attractive approach for in-cell imaging that does not necessitate changes to the genome. Nine hairpin polyamides that target mouse major satellite DNA were synthesized. Their interactions with synthetic target dsDNA fragments were studied by thermal denaturation, gel-shift electrophoresis, circular dichroism, and fluorescence spectroscopy. The polyamides had different affinities for the target DNA, and fluorescent labeling of the polyamides affected their affinity for their targets. We validated the specificity of the probes in fixed cells and provide evidence that two of the probes detect target sequences in mouse living cell lines. This study demonstrates for the first time that synthetic compounds can be used for the visualization of the nuclear substructures formed by repeated DNA sequences in living cells.
Collapse
Affiliation(s)
- Karine Nozeret
- Structure and Instability of Genomes, Sorbonne Universités, Muséum national d'Histoire naturelle, INSERM U 1154, CNRS UMR 7196, 57 rue Cuvier, C.P. 26, 75231 Paris Cedex 05 (France)
| | | | | | | |
Collapse
|
6
|
Boutorine AS, Novopashina DS, Krasheninina OA, Nozeret K, Venyaminova AG. Fluorescent probes for nucleic Acid visualization in fixed and live cells. Molecules 2013; 18:15357-97. [PMID: 24335616 PMCID: PMC6270009 DOI: 10.3390/molecules181215357] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/20/2013] [Accepted: 12/05/2013] [Indexed: 12/13/2022] Open
Abstract
This review analyses the literature concerning non-fluorescent and fluorescent probes for nucleic acid imaging in fixed and living cells from the point of view of their suitability for imaging intracellular native RNA and DNA. Attention is mainly paid to fluorescent probes for fluorescence microscopy imaging. Requirements for the target-binding part and the fluorophore making up the probe are formulated. In the case of native double-stranded DNA, structure-specific and sequence-specific probes are discussed. Among the latest, three classes of dsDNA-targeting molecules are described: (i) sequence-specific peptides and proteins; (ii) triplex-forming oligonucleotides and (iii) polyamide oligo(N-methylpyrrole/N-methylimidazole) minor groove binders. Polyamides seem to be the most promising targeting agents for fluorescent probe design, however, some technical problems remain to be solved, such as the relatively low sequence specificity and the high background fluorescence inside the cells. Several examples of fluorescent probe applications for DNA imaging in fixed and living cells are cited. In the case of intracellular RNA, only modified oligonucleotides can provide such sequence-specific imaging. Several approaches for designing fluorescent probes are considered: linear fluorescent probes based on modified oligonucleotide analogs, molecular beacons, binary fluorescent probes and template-directed reactions with fluorescence probe formation, FRET donor-acceptor pairs, pyrene excimers, aptamers and others. The suitability of all these methods for living cell applications is discussed.
Collapse
Affiliation(s)
- Alexandre S. Boutorine
- Muséum National d’Histoire Naturelle, CNRS, UMR 7196, INSERM, U565, 57 rue Cuvier, B.P. 26, Paris Cedex 05, F-75231, France; E-Mail:
| | - Darya S. Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Lavrentyev Ave., 8, Novosibirsk 630090, Russia; E-Mails: (D.S.N.); (O.A.K.); (A.G.V.)
| | - Olga A. Krasheninina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Lavrentyev Ave., 8, Novosibirsk 630090, Russia; E-Mails: (D.S.N.); (O.A.K.); (A.G.V.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova Str., 2, Novosibirsk 630090, Russia
| | - Karine Nozeret
- Muséum National d’Histoire Naturelle, CNRS, UMR 7196, INSERM, U565, 57 rue Cuvier, B.P. 26, Paris Cedex 05, F-75231, France; E-Mail:
| | - Alya G. Venyaminova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Lavrentyev Ave., 8, Novosibirsk 630090, Russia; E-Mails: (D.S.N.); (O.A.K.); (A.G.V.)
| |
Collapse
|
7
|
Nagaki K, Yamamoto M, Yamaji N, Mukai Y, Murata M. Chromosome dynamics visualized with an anti-centromeric histone H3 antibody in Allium. PLoS One 2012; 7:e51315. [PMID: 23236469 PMCID: PMC3517398 DOI: 10.1371/journal.pone.0051315] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 10/30/2012] [Indexed: 11/22/2022] Open
Abstract
Due to the ease with which chromosomes can be observed, the Allium species, and onion in particular, have been familiar materials employed in cytogenetic experiments in biology. In this study, centromeric histone H3 (CENH3)-coding cDNAs were identified in four Allium species (onion, welsh onion, garlic and garlic chives) and cloned. Anti-CENH3 antibody was then raised against a deduced amino acid sequence of CENH3 of welsh onion. The antibody recognized all CENH3 orthologs of the Allium species tested. Immunostaining with the antibody enabled clear visualization of chromosome behavior during mitosis in the species. Furthermore, three-dimensional (3D) observation of mitotic cell division was achieved by subjecting root sections to immunohistochemical techniques. The 3D dynamics of the cells and position of cell-cycle marker proteins (CENH3 and α-tubulin) were clearly revealed by immunohistochemical staining with the antibodies. The immunohistochemical analysis made it possible to establish an overview of the location of dividing cells in the root tissues. This breakthrough in technique, in addition to the two centromeric DNA sequences isolated from welsh onion by chromatin immuno-precipitation using the antibody, should lead to a better understanding of plant cell division. A phylogenetic analysis of Allium CENH3s together with the previously reported plant CENH3s showed two separate clades for monocot species tested. One clade was made from CENH3s of the Allium species with those of Poaceae species, and the other from CENH3s of a holocentric species (Luzula nivea). These data may imply functional differences of CENH3s between holocentric and monocentric species. Centromeric localization of DNA sequences isolated from welsh onion by chromatin immuno-precipitation (ChIP) using the antibody was confirmed by fluorescence in situ hybridization and ChIP-quantitative PCR.
Collapse
Affiliation(s)
- Kiyotaka Nagaki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan.
| | | | | | | | | |
Collapse
|
8
|
Abstract
Although micronuclei (MNi) have been extensively used to evaluate genotoxic effects and chromosome instability, the most basic issue regarding their formation was not completely addressed until recently, due to limitations of traditional experimental methods. The development of live-cell imaging, combined with genetically engineered chromosome labelling techniques makes it possible to investigate the origin of a micronucleus in a single cell in a real-time and high-throughput manner. Here, we review all the available studies on the origins of MNi in live cells and discuss novel findings based on this recently emerged methodology. Some unsolved questions on MNi formation and limitations of live-cell imaging in the investigation of MNi have also been discussed.
Collapse
Affiliation(s)
- Yun Huang
- Laboratory of Molecular and Cell Genetics, Department of Biochemistry and Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | | | | |
Collapse
|
9
|
Yasui M, Koyama N, Koizumi T, Senda-Murata K, Takashima Y, Hayashi M, Sugimoto K, Honma M. Live cell imaging of micronucleus formation and development. Mutat Res 2010; 692:12-18. [PMID: 20691709 DOI: 10.1016/j.mrfmmm.2010.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 07/26/2010] [Accepted: 07/28/2010] [Indexed: 05/29/2023]
Abstract
The micronucleus (MN) test is widely used to biomonitor humans exposed to clastogens and aneugens, but little is known about MN development. Here we used confocal time-lapse imaging and a fluorescent human lymphoblastoid cell line (T105GTCH), in which histone H3 and α-tubulin stained differentially, to record the emergence and behavior of micronuclei (MNi) in cells exposed to MN-inducing agents. In mitomycin C (MMC)-treated cells, MNi originated in early anaphase from lagging chromosome fragments just after chromosome segregation. In γ-ray-treated cells showing multipolar cell division, MN originated in late anaphase from lagging chromosome fragments generated by the abnormal cell division associated with supernumerary centrosomes. In vincristine(VC)-treated cells, MN formation was similar to that in MMC-treated cells, but MNi were also derived from whole chromosomes that did not align properly on the metaphase plate. Thus, the MN formation process induced by MMC, γ-rays, and VC, were strikingly different, suggesting that different mechanisms were involved. MN stability, however, was similar regardless of the treatment and unrelated to MN formation mechanisms. MNi were stable in daughter cells, and MN-harboring cells tended to die during cell cycle progression with greater frequency than cells without MN. Because of their persistence, MN may have significant impact on cells, causing genomic instability and abnormally transcribed genes.
Collapse
Affiliation(s)
- Manabu Yasui
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tokyo 158-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Sugimoto K, Tone S. Imaging of mitotic cell division and apoptotic intra-nuclear processes in multicolor. Methods Mol Biol 2010; 591:135-146. [PMID: 19957128 DOI: 10.1007/978-1-60761-404-3_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
To follow the cell division cycle in the living state, certain biological activity or morphological changes must be monitored keeping the cells intact. Mitotic events from prophase to telophase are well defined by morphology or movement of chromatin, nuclear envelope, centrosomes, and/or spindles. To paint or simultaneously visualize these mitotic subcellular structures, we have been using ECFP-histone H3 for chromatin and chromosomes, EGFP-Aurora-A for centrosomes and kinetochore spindles and DsRed-fused truncated peptide of importin alpha for the outer surface of nuclear envelope as living cell markers. Time-lapse images from prophase through to early G1 phase can be obtained by constructing a triple-fluorescent cell line (Sugimoto et al., Cell Struct. Funct. 27, 457-467, 2002). Here, we describe the multicolor imaging of mitosis of a human breast cancer cell line, MDA435, and a further application to characterizing the apoptotic chromatin condensation process in isolated nuclei by simultaneously visualizing kinetochores with EGFP and chromatin with a fluorescent dye, SYTO 59.
Collapse
Affiliation(s)
- Kenji Sugimoto
- Live Cell Imaging Institute, Osaka Prefecture University, Sakai, Osaka, Japan
| | | |
Collapse
|
11
|
Visualization of aberrant perinuclear microtubule aster organization by microtubule-destabilizing agents. Biosci Biotechnol Biochem 2009; 73:1192-6. [PMID: 19420700 DOI: 10.1271/bbb.80754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To analyze aberrant spindle formation by microtubule-targeting drugs, live cell imaging was performed using multi-fluorescent human MDA-MB-435 cells in which several spindle components were visualized. Time-lapse images revealed that nocodazole and vinblastine induced additional perinuclear asters at the onset of mitosis. These results imply that these drugs stimulate the microtubule-organizing activity, despite their microtubule-destabilizing properties.
Collapse
|