1
|
Almohdar D, Kamble P, Basavannacharya C, Gulkis M, Calbay O, Huang S, Narayan S, Çağlayan M. Impact of DNA ligase inhibition on the nick sealing of polβ nucleotide insertion products at the downstream steps of base excision repair pathway. Mutagenesis 2024; 39:263-279. [PMID: 38736258 PMCID: PMC11529620 DOI: 10.1093/mutage/geae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024] Open
Abstract
DNA ligase (LIG) I and IIIα finalize base excision repair (BER) by sealing a nick product after nucleotide insertion by DNA polymerase (pol) β at the downstream steps. We previously demonstrated that a functional interplay between polβ and BER ligases is critical for efficient repair, and polβ mismatch or oxidized nucleotide insertions confound the final ligation step. Yet, how targeting downstream enzymes with small molecule inhibitors could affect this coordination remains unknown. Here, we report that DNA ligase inhibitors, L67 and L82-G17, slightly enhance hypersensitivity to oxidative stress-inducing agent, KBrO3, in polβ+/+ cells more than polβ-/- null cells. We showed less efficient ligation after polβ nucleotide insertions in the presence of the DNA ligase inhibitors. Furthermore, the mutations at the ligase inhibitor binding sites (G448, R451, A455) of LIG1 significantly affect nick DNA binding affinity and nick sealing efficiency. Finally, our results demonstrated that the BER ligases seal a gap repair intermediate by the effect of polβ inhibitor that diminishes gap filling activity. Overall, our results contribute to understand how the BER inhibitors against downstream enzymes, polβ, LIG1, and LIGIIIα, could impact the efficiency of gap filling and subsequent nick sealing at the final steps leading to the formation of deleterious repair intermediates.
Collapse
Affiliation(s)
- Danah Almohdar
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, United States
| | - Pradnya Kamble
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, United States
| | - Chandrakala Basavannacharya
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, United States
| | - Mitchell Gulkis
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, United States
| | - Ozlem Calbay
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, United States
| | - Shuang Huang
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, United States
| | - Satya Narayan
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, United States
| | - Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, United States
| |
Collapse
|
2
|
DNA ligase I fidelity mediates the mutagenic ligation of pol β oxidized and mismatch nucleotide insertion products in base excision repair. J Biol Chem 2021; 296:100427. [PMID: 33600799 PMCID: PMC8024709 DOI: 10.1016/j.jbc.2021.100427] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 11/22/2022] Open
Abstract
DNA ligase I (LIG1) completes the base excision repair (BER) pathway at the last nick-sealing step after DNA polymerase (pol) β gap-filling DNA synthesis. However, the mechanism by which LIG1 fidelity mediates the faithful substrate-product channeling and ligation of repair intermediates at the final steps of the BER pathway remains unclear. We previously reported that pol β 8-oxo-2'-deoxyribonucleoside 5'-triphosphate insertion confounds LIG1, leading to the formation of ligation failure products with a 5'-adenylate block. Here, using reconstituted BER assays in vitro, we report the mutagenic ligation of pol β 8-oxo-2'-deoxyribonucleoside 5'-triphosphate insertion products and an inefficient ligation of pol β Watson-Crick-like dG:T mismatch insertion by the LIG1 mutant with a perturbed fidelity (E346A/E592A). Moreover, our results reveal that the substrate discrimination of LIG1 for the nicked repair intermediates with preinserted 3'-8-oxodG or mismatches is governed by mutations at both E346 and E592 residues. Finally, we found that aprataxin and flap endonuclease 1, as compensatory DNA-end processing enzymes, can remove the 5'-adenylate block from the abortive ligation products harboring 3'-8-oxodG or the 12 possible noncanonical base pairs. These findings contribute to the understanding of the role of LIG1 as an important determinant in faithful BER and how a multiprotein complex (LIG1, pol β, aprataxin, and flap endonuclease 1) can coordinate to prevent the formation of mutagenic repair intermediates with damaged or mismatched ends at the downstream steps of the BER pathway.
Collapse
|
3
|
Çağlayan M. Interplay between DNA Polymerases and DNA Ligases: Influence on Substrate Channeling and the Fidelity of DNA Ligation. J Mol Biol 2019; 431:2068-2081. [PMID: 31034893 DOI: 10.1016/j.jmb.2019.04.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023]
Abstract
DNA ligases are a highly conserved group of nucleic acid enzymes that play an essential role in DNA repair, replication, and recombination. This review focuses on functional interaction between DNA polymerases and DNA ligases in the repair of single- and double-strand DNA breaks, and discusses the notion that the substrate channeling during DNA polymerase-mediated nucleotide insertion coupled to DNA ligation could be a mechanism to minimize the release of potentially mutagenic repair intermediates. Evidence suggesting that DNA ligases are essential for cell viability includes the fact that defects or insufficiency in DNA ligase are casually linked to genome instability. In the future, it may be possible to develop small molecule inhibitors of mammalian DNA ligases and/or their functional protein partners that potentiate the effects of chemotherapeutic compounds and improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
4
|
Çağlayan M, Wilson SH. Role of DNA polymerase β oxidized nucleotide insertion in DNA ligation failure. JOURNAL OF RADIATION RESEARCH 2017; 58:603-607. [PMID: 28992331 PMCID: PMC5737452 DOI: 10.1093/jrr/rrx027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/01/2017] [Indexed: 05/26/2023]
Abstract
Production of reactive oxygen and nitrogen species (ROS), such as hydrogen peroxide, superoxide and hydroxyl radicals, has been linked to cancer, and these oxidative molecules can damage DNA. Base excision repair (BER), a major repair system maintaining genome stability over a lifespan, has an important role in repairing oxidatively induced DNA damage. Failure of BER leads to toxic consequences in ROS-exposed cells, and ultimately can contribute to the pathobiology of disease. In our previous report, we demonstrated that oxidized nucleotide insertion by DNA polymerase β (pol β) impairs BER due to ligation failure and leads to formation of a cytotoxic repair intermediate. Biochemical and cytotoxic effects of ligation failure could mediate genome stability and influence cancer therapeutics. In this review, we discuss the importance of coordination between pol β and DNA ligase I during BER, and how this could be a fundamental mechanism underlying human diseases such as cancer and neurodegeneration. A summary of this work was presented in a symposium at the International Congress of Radiation Research 2015 in Kyoto, Japan.
Collapse
Affiliation(s)
- Melike Çağlayan
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
5
|
Çağlayan M, Horton JK, Dai DP, Stefanick DF, Wilson SH. Oxidized nucleotide insertion by pol β confounds ligation during base excision repair. Nat Commun 2017; 8:14045. [PMID: 28067232 PMCID: PMC5228075 DOI: 10.1038/ncomms14045] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/23/2016] [Indexed: 01/26/2023] Open
Abstract
Oxidative stress in cells can lead to accumulation of reactive oxygen species and oxidation of DNA precursors. Oxidized purine nucleotides can be inserted into DNA during replication and repair. The main pathway for correcting oxidized bases in DNA is base excision repair (BER), and in vertebrates DNA polymerase β (pol β) provides gap filling and tailoring functions. Here we report that the DNA ligation step of BER is compromised after pol β insertion of oxidized purine nucleotides into the BER intermediate in vitro. These results suggest the possibility that BER mediated toxic strand breaks are produced in cells under oxidative stress conditions. We observe enhanced cytotoxicity in oxidizing-agent treated pol β expressing mouse fibroblasts, suggesting formation of DNA strand breaks under these treatment conditions. Increased cytotoxicity following MTH1 knockout or treatment with MTH1 inhibitor suggests the oxidation of precursor nucleotides. Oxidative stress in cells leads to the oxidations of DNA precursors. Here the authors show that these oxidized precursors can be incorporated in vivo during base excision repair, leading to DNA breaks and cytotoxicity.
Collapse
Affiliation(s)
- Melike Çağlayan
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Julie K Horton
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Da-Peng Dai
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Donna F Stefanick
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
6
|
Crouse GF. Non-canonical actions of mismatch repair. DNA Repair (Amst) 2016; 38:102-109. [PMID: 26698648 PMCID: PMC4740236 DOI: 10.1016/j.dnarep.2015.11.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 09/06/2015] [Accepted: 11/30/2015] [Indexed: 12/13/2022]
Abstract
At the heart of the mismatch repair (MMR) system are proteins that recognize mismatches in DNA. Such mismatches can be mispairs involving normal or damaged bases or insertion/deletion loops due to strand misalignment. When such mispairs are generated during replication or recombination, MMR will direct removal of an incorrectly paired base or block recombination between nonidentical sequences. However, when mispairs are recognized outside the context of replication, proper strand discrimination between old and new DNA is lost, and MMR can act randomly and mutagenically on mispaired DNA. Such non-canonical actions of MMR are important in somatic hypermutation and class switch recombination, expansion of triplet repeats, and potentially in mutations arising in nondividing cells. MMR involvement in damage recognition and signaling is complex, with the end result likely dependent on the amount of DNA damage in a cell.
Collapse
Affiliation(s)
- Gray F Crouse
- Department of Biology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
7
|
Dong L, Wang H, Niu J, Zou M, Wu N, Yu D, Wang Y, Zou Z. Echinacoside induces apoptotic cancer cell death by inhibiting the nucleotide pool sanitizing enzyme MTH1. Onco Targets Ther 2015; 8:3649-64. [PMID: 26677335 PMCID: PMC4677763 DOI: 10.2147/ott.s94513] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Inhibition of the nucleotide pool sanitizing enzyme MTH1 causes extensive oxidative DNA damages and apoptosis in cancer cells and hence may be used as an anticancer strategy. As natural products have been a rich source of medicinal chemicals, in the present study, we used the MTH1-catalyzed enzymatic reaction as a high-throughput in vitro screening assay to search for natural compounds capable of inhibiting MTH1. Echinacoside, a compound derived from the medicinal plants Cistanche and Echinacea, effectively inhibited the catalytic activity of MTH1 in an in vitro assay. Treatment of various human cancer cell lines with Echinacoside resulted in a significant increase in the cellular level of oxidized guanine (8-oxoguanine), while cellular reactive oxygen species level remained unchanged, indicating that Echinacoside also inhibited the activity of cellular MTH1. Consequently, Echinacoside treatment induced an immediate and dramatic increase in DNA damage markers and upregulation of the G1/S-CDK inhibitor p21, which were followed by marked apoptotic cell death and cell cycle arrest in cancer but not in noncancer cells. Taken together, these studies identified a natural compound as an MTH1 inhibitor and suggest that natural products can be an important source of anticancer agents.
Collapse
Affiliation(s)
- Liwei Dong
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Hongge Wang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Jiajing Niu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Mingwei Zou
- Department of Psychology, College of Liberal Arts and Social Sciences, University of Houston, Houston, TX, USA
| | - Nuoting Wu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Debin Yu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Ye Wang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Zhihua Zou
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| |
Collapse
|
8
|
Dong L, Yu D, Wu N, Wang H, Niu J, Wang Y, Zou Z. Echinacoside Induces Apoptosis in Human SW480 Colorectal Cancer Cells by Induction of Oxidative DNA Damages. Int J Mol Sci 2015; 16:14655-68. [PMID: 26132569 PMCID: PMC4519864 DOI: 10.3390/ijms160714655] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/10/2015] [Accepted: 06/24/2015] [Indexed: 02/06/2023] Open
Abstract
Echinacoside is a natural compound with potent reactive oxygen species (ROS)-scavenging and anti-oxidative bioactivities, which protect cells from oxidative damages. As cancer cells are often under intense oxidative stress, we therefore tested if Echinacoside treatment would promote cancer development. Surprisingly, we found that Echinacoside significantly inhibited the growth and proliferation of a panel of cancer cell lines. Treatment of the human SW480 cancer cells with Echinacoside resulted in marked apoptosis and cell cycle arrest, together with a significant increase in active caspase 3 and cleaved PARP, and upregulation of the G1/S-CDK blocker CDKN1B (p21). Interestingly, immunocytochemistry examination of drug-treated cancer cells revealed that Echinacoside caused a significant increase of intracellular oxidized guanine, 8-oxoG, and dramatic upregulation of the double-strand DNA break (DSB)-binding protein 53BP1, suggesting that Echinacoside induced cell cycle arrest and apoptosis in SW480 cancer cells via induction of oxidative DNA damages. These results establish Echinacoside as a novel chemical scaffold for development of anticancer drugs.
Collapse
Affiliation(s)
- Liwei Dong
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Debin Yu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Nuoting Wu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Hongge Wang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Jiajing Niu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Ye Wang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Zhihua Zou
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| |
Collapse
|
9
|
Replicative DNA polymerase δ but not ε proofreads errors in Cis and in Trans. PLoS Genet 2015; 11:e1005049. [PMID: 25742645 PMCID: PMC4351087 DOI: 10.1371/journal.pgen.1005049] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 02/02/2015] [Indexed: 01/18/2023] Open
Abstract
It is now well established that in yeast, and likely most eukaryotic organisms, initial DNA replication of the leading strand is by DNA polymerase ε and of the lagging strand by DNA polymerase δ. However, the role of Pol δ in replication of the leading strand is uncertain. In this work, we use a reporter system in Saccharomyces cerevisiae to measure mutation rates at specific base pairs in order to determine the effect of heterozygous or homozygous proofreading-defective mutants of either Pol ε or Pol δ in diploid strains. We find that wild-type Pol ε molecules cannot proofread errors created by proofreading-defective Pol ε molecules, whereas Pol δ can not only proofread errors created by proofreading-defective Pol δ molecules, but can also proofread errors created by Pol ε-defective molecules. These results suggest that any interruption in DNA synthesis on the leading strand is likely to result in completion by Pol δ and also explain the higher mutation rates observed in Pol δ-proofreading mutants compared to Pol ε-proofreading defective mutants. For strains reverting via AT→GC, TA→GC, CG→AT, and GC→AT mutations, we find in addition a strong effect of gene orientation on mutation rate in proofreading-defective strains and demonstrate that much of this orientation dependence is due to differential efficiencies of mispair elongation. We also find that a 3′-terminal 8 oxoG, unlike a 3′-terminal G, is efficiently extended opposite an A and is not subject to proofreading. Proofreading mutations have been shown to result in tumor formation in both mice and humans; the results presented here can help explain the properties exhibited by those proofreading mutants. Many DNA polymerases are able to proofread their errors: after incorporation of a wrong base, the resulting mispair invokes an exonuclease activity of the polymerase that removes the mispaired base and allows replication to continue. Elimination of the proofreading activity thus results in much higher mutation rates. We demonstrate that the two major replicative DNA polymerases in yeast, Pol δ and Pol ε, have different proofreading abilities. In diploid cells, Pol ε is not able to proofread errors created by other Pol ε molecules, whereas Pol δ can proofread not only errors created by other Pol δ molecules but also errors created by Pol ε molecules. We also find that mispaired bases not corrected by proofreading have much different likelihoods of being extended, depending on the particular base-base mismatch. In humans, defects in Pol δ or Pol ε proofreading can lead to cancer, and these results help explain the formation of those tumors and the finding that Pol ε mutants seem to be found as frequently, or more so, in human tumors as Pol δ mutants.
Collapse
|
10
|
Sibon O, Hayflick S, Tiranti V. Modeling PKAN in Mice and Flies. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00059-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
11
|
Fowler AK, Thompson J, Chen L, Dagda M, Dertien J, Dossou KSS, Moaddel R, Bergeson SE, Kruman II. Differential sensitivity of prefrontal cortex and hippocampus to alcohol-induced toxicity. PLoS One 2014; 9:e106945. [PMID: 25188266 PMCID: PMC4154772 DOI: 10.1371/journal.pone.0106945] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/12/2014] [Indexed: 12/30/2022] Open
Abstract
The prefrontal cortex (PFC) is a brain region responsible for executive functions including working memory, impulse control and decision making. The loss of these functions may ultimately lead to addiction. Using histological analysis combined with stereological technique, we demonstrated that the PFC is more vulnerable to chronic alcohol-induced oxidative stress and neuronal cell death than the hippocampus. This increased vulnerability is evidenced by elevated oxidative stress-induced DNA damage and enhanced expression of apoptotic markers in PFC neurons. We also found that one-carbon metabolism (OCM) impairment plays a significant role in alcohol toxicity to the PFC seen from the difference in the effects of acute and chronic alcohol exposure on DNA repair and from exaggeration of the damaging effects upon additional OCM impairment in mice deficient in a key OCM enzyme, methylenetetrahydrofolate reductase (MTHFR). Given that damage to the PFC leads to loss of executive function and addiction, our study may shed light on the mechanism of alcohol addiction.
Collapse
Affiliation(s)
- Anna-Kate Fowler
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Jeremy Thompson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Lixia Chen
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Marisela Dagda
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Janet Dertien
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Katina Sylvestre S. Dossou
- Laboratory of Clinical Investigation, NIA, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Ruin Moaddel
- Laboratory of Clinical Investigation, NIA, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Susan E. Bergeson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Inna I. Kruman
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| |
Collapse
|
12
|
Nagy GN, Leveles I, Vértessy BG. Preventive DNA repair by sanitizing the cellular (deoxy)nucleoside triphosphate pool. FEBS J 2014; 281:4207-23. [PMID: 25052017 DOI: 10.1111/febs.12941] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 07/01/2014] [Accepted: 07/16/2014] [Indexed: 01/24/2023]
Abstract
The occurrence of modified bases in DNA is attributed to some major factors: incorporation of altered nucleotide building blocks and chemical reactions or radiation effects on bases within the DNA structure. Several enzyme families are involved in preventing the incorporation of noncanonical bases playing a 'sanitizing' role. The catalytic mechanism of action of these enzymes has been revealed for a number of representatives in clear structural and kinetic detail. In this review, we focus in detail on those examples where clear evidence has been produced using high-resolution structural studies. Comparing the protein fold and architecture of the enzyme active sites, two main classes of sanitizing deoxyribonucleoside triphosphate pyrophosphatases can be assigned that are distinguished by the site of nucleophilic attack. In enzymes associated with attack at the α-phosphorus, it is shown that coordination of the γ-phosphate group is also ensured by multiple interactions. By contrast, enzymes catalyzing attack at the β-phosphorus atom mainly coordinate the α- and the β-phosphate only. Characteristic differences are also observed with respect to the role of the metal ion cofactor (Mg(2+) ) and the coordination of nucleophilic water. Using different catalytic mechanisms embedded in different protein folds, these enzymes present a clear example of convergent evolution.
Collapse
Affiliation(s)
- Gergely N Nagy
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary; Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Hungary
| | | | | |
Collapse
|
13
|
Yamamoto A, Nakashima K, Kawamorita S, Sugiyama A, Miura M, Kamitai Y, Kato Y. Protective effects of raw and cooked blackcurrant extract on DNA damage induced by hydrogen peroxide in human lymphoblastoid cells. PHARMACEUTICAL BIOLOGY 2014; 52:782-788. [PMID: 24392718 DOI: 10.3109/13880209.2013.836721] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Blackcurrant (Ribes nigrum L.) is a classical fruit that has long been used to make juice, liqueur and sometimes medicines in Europe. The beneficial effects of blackcurrant, which are inhibition of lipopolysaccharide-stimulated inflammatory, anticarcinogenesis and other health effects, have been reported. OBJECTIVE Previously, we reported the antimutagenic activities of blackcurrant using a yeast gene mutation assay. In this study, we investigated whether this antimutagenicity of blackcurrant was confirmed in human cells. MATERIALS AND METHODS We prepared four types of aqueous blackcurrant extracts (BCE) from mature and premature with or without heat treatment by microwave. Antioxidant activities of BCE were measured by the DPPH radical scavenger assay. In the DPPH radical scavenger assay, the maximum concentration of BCE was 1.6 mg/reaction. We investigated the antigenotoxic activities of BCE by the comet assay and micronucleus test using the human lymphoblastoid cell line TK6. In the comet assay, TK6 was treated with 300 μM H2O2 without or with BCE at concentrations of 0.5, 1.0, 2.0 and 3.0 mg/mL. In the micronucleus test, TK6 was treated with 1 mg/mL BCE without or with H2O2. RESULTS All BCEs exhibited more than 90% of inhibition rates of DPPH radicals at the maximum concentration of BCE. DNA damage and micronuclei induced by H2O2 significantly decreased in the each BCE-treated condition. CONCLUSION The results suggest that BCE treatment can reduce the genomic instability induced by H2O2 in human cells. We consider that these antigenotoxic effects are related to polyphenols, l-ascorbic acid and other antioxidant compounds.
Collapse
Affiliation(s)
- Ayumi Yamamoto
- Faculty of Chemical and Biological Engineering, Hachinohe National College of Technology , Aomori , Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Lyu LD, Tang BK, Fan XY, Ma H, Zhao GP. Mycobacterial MazG safeguards genetic stability via housecleaning of 5-OH-dCTP. PLoS Pathog 2013; 9:e1003814. [PMID: 24339782 PMCID: PMC3855555 DOI: 10.1371/journal.ppat.1003814] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/23/2013] [Indexed: 01/05/2023] Open
Abstract
Generation of reactive oxygen species and reactive nitrogen species in phagocytes is an important innate immune response mechanism to eliminate microbial pathogens. It is known that deoxynucleotides (dNTPs), the precursor nucleotides to DNA synthesis, are one group of the significant targets for these oxidants and incorporation of oxidized dNTPs into genomic DNA may cause mutations and even cell death. Here we show that the mycobacterial dNTP pyrophosphohydrolase MazG safeguards the bacilli genome by degrading 5-OH-dCTP, thereby, preventing it from incorporation into DNA. Deletion of the (d)NTP pyrophosphohydrolase-encoding mazG in mycobacteria leads to a mutator phenotype both under oxidative stress and in the stationary phase of growth, resulting in increased CG to TA mutations. Biochemical analyses demonstrate that mycobacterial MazG can efficiently hydrolyze 5-OH-dCTP, an oxidized nucleotide that induces CG to TA mutation upon incorporation by polymerase. Moreover, chemical genetic analyses show that direct incorporation of 5-OH-dCTP into mazG-null mutant strain of Mycobacterium smegmatis (Msm) leads to a dose-dependent mutagenesis phenotype, indicating that 5-OH-dCTP is a natural substrate of mycobacterial MazG. Furthermore, deletion of mazG in Mycobacterium tuberculosis (Mtb) leads to reduced survival in activated macrophages and in the spleen of infected mice. This study not only characterizes the mycobacterial MazG as a novel pyrimidine-specific housecleaning enzyme that prevents CG to TA mutation by degrading 5-OH-dCTP but also reveals a genome-safeguarding mechanism for survival of Mtb in vivo. The cellular nucleotide pool is a significant target for oxidation by reactive oxygen species and reactive nitrogen species. Misincorporation of these oxidized non-canonical nucleotides into DNA is known to cause mutations, and may be related to carcinogenesis, aging and neurodegeneration. Cells have evolved a group of bio-degradation housecleaning enzymes that may specifically eliminate certain non-canonical nucleotide from the nucleotide pool and thus prevent their incorporation into DNA. The most well-characterized housecleaning enzymes are the MutT-like proteins which specifically hydrolyze the oxidized purine nucleotides, such as 8-oxo-dGTP and 2-OH-dATP. Lack of MutT activity in cells leads to significant increase of AT-CG mutation and genetic instability. However, housecleaning enzymes specific for oxidized pyrimidine nucleotides are yet to be identified. Here we show that the dNTP pyrophosphohydrolase MazG from mycobacteria is a 5-OH-dCTP-specific housecleaning enzyme. Deletion of mazG in mycobacteria results in increased CG to TA mutation under oxidative stress and in the stationary phase of growth. Both biochemical and chemical genetic analyses demonstrate that 5-OH-dCTP is a natural substrate of mycobacterial MazG. Furthermore, deletion of mazG in Mtb leads to reduced survival in activated macrophages and in the spleen of infected mice. These results reveal a novel housecleaning pathway for mycobacteria to maintain genetic stability and survival in vivo.
Collapse
Affiliation(s)
- Liang-Dong Lyu
- CAS-Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
- * E-mail: (LDL); (GPZ)
| | - Bi-Kui Tang
- CAS-Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Anhui Key Laboratory of Infection and Immunity, Department of Life Science, Bengbu Medical College, Bengbu, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center Affiliated with Fudan University, Shanghai, China
| | - Hui Ma
- Shanghai Public Health Clinical Center Affiliated with Fudan University, Shanghai, China
| | - Guo-Ping Zhao
- CAS-Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
- Key Laboratory of Medical Molecular Virology affiliated with the Ministry of Education and Health, Shanghai Medical College, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai-MOST Key Laboratory for Health and Disease Genomics, Chinese National Human Genome Center, Shanghai, China
- * E-mail: (LDL); (GPZ)
| |
Collapse
|
15
|
Oxidative damage and mutagenesis in Saccharomyces cerevisiae: genetic studies of pathways affecting replication fidelity of 8-oxoguanine. Genetics 2013; 195:359-67. [PMID: 23893481 PMCID: PMC3781965 DOI: 10.1534/genetics.113.153874] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Oxidative damage to DNA constitutes a major threat to the faithful replication of DNA in all organisms and it is therefore important to understand the various mechanisms that are responsible for repair of such damage and the consequences of unrepaired damage. In these experiments, we make use of a reporter system in Saccharomyces cerevisiae that can measure the specific increase of each type of base pair mutation by measuring reversion to a Trp+ phenotype. We demonstrate that increased oxidative damage due to the absence of the superoxide dismutase gene, SOD1, increases all types of base pair mutations and that mismatch repair (MMR) reduces some, but not all, types of mutations. By analyzing various strains that can revert only via a specific CG → AT transversion in backgrounds deficient in Ogg1 (encoding an 8-oxoG glycosylase), we can study mutagenesis due to a known 8-oxoG base. We show as expected that MMR helps prevent mutagenesis due to this damaged base and that Pol η is important for its accurate replication. In addition we find that its accurate replication is facilitated by template switching, as loss of either RAD5 or MMS2 leads to a significant decrease in accurate replication. We observe that these ogg1 strains accumulate revertants during prolonged incubation on plates, in a process most likely due to retromutagenesis.
Collapse
|
16
|
McLennan AG. Substrate ambiguity among the nudix hydrolases: biologically significant, evolutionary remnant, or both? Cell Mol Life Sci 2013; 70:373-85. [PMID: 23184251 PMCID: PMC11113851 DOI: 10.1007/s00018-012-1210-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/01/2012] [Accepted: 11/05/2012] [Indexed: 12/20/2022]
Abstract
Many members of the nudix hydrolase family exhibit considerable substrate multispecificity and ambiguity, which raises significant issues when assessing their functions in vivo and gives rise to errors in database annotation. Several display low antimutator activity when expressed in bacterial tester strains as well as some degree of activity in vitro towards mutagenic, oxidized nucleotides such as 8-oxo-dGTP. However, many of these show greater activity towards other nucleotides such as ADP-ribose or diadenosine tetraphosphate (Ap(4)A). The antimutator activities have tended to gain prominence in the literature, whereas they may in fact represent the residual activity of an ancestral antimutator enzyme that has become secondary to the more recently evolved major activity after gene duplication. Whether any meaningful antimutagenic function has also been retained in vivo requires very careful assessment. Then again, other examples of substrate ambiguity may indicate as yet unexplored regulatory systems. For example, bacterial Ap(4)A hydrolases also efficiently remove pyrophosphate from the 5' termini of mRNAs, suggesting a potential role for Ap(4)A in the control of bacterial mRNA turnover, while the ability of some eukaryotic mRNA decapping enzymes to degrade IDP and dIDP or diphosphoinositol polyphosphates (DIPs) may also be indicative of new regulatory networks in RNA metabolism. DIP phosphohydrolases also degrade diadenosine polyphosphates and inorganic polyphosphates, suggesting further avenues for investigation. This article uses these and other examples to highlight the need for a greater awareness of the possible significance of substrate ambiguity among the nudix hydrolases as well as the need to exert caution when interpreting incomplete analyses.
Collapse
Affiliation(s)
- Alexander G McLennan
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown St., Liverpool, L69 7ZB, UK.
| |
Collapse
|
17
|
Ventura I, Russo MT, De Nuccio C, De Luca G, Degan P, Bernardo A, Visentin S, Minghetti L, Bignami M. hMTH1 expression protects mitochondria from Huntington's disease-like impairment. Neurobiol Dis 2012; 49:148-58. [PMID: 22974734 PMCID: PMC3507627 DOI: 10.1016/j.nbd.2012.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 08/28/2012] [Accepted: 09/01/2012] [Indexed: 11/21/2022] Open
Abstract
Huntington disease (HD) is a neurodegenerative disease caused by expansion of CAG repeats in the huntingtin (Htt) gene. The expression of hMTH1, the human hydrolase that degrades oxidized purine nucleoside triphosphates, grants protection in a chemical HD mouse model in which HD-like features are induced by the mitochondrial toxin 3-nitropropionic acid (3-NP). To further examine the relationship between oxidized dNTPs and HD-like neurodegeneration, we studied the effects of hMTH1 expression in a genetic cellular model for HD, such as striatal cells expressing mutant htt (HdhQ111). hMTH1 expression protected these cells from 3-NP and H2O2-induced killing, by counteracting the mutant htt-dependent increased vulnerability and accumulation of nuclear and mitochondrial DNA 8-hydroxyguanine levels. hMTH1 expression reverted the decreased mitochondrial membrane potential characteristic of HdhQ111 cells and delayed the increase in mitochondrial reactive oxygen species associated with 3-NP treatment. Further indications of hMTH1-mediated mitochondrial protection are the partial reversion of 3-NP-induced alterations in mitochondrial morphology and the modulation of DRP1 and MFN1 proteins, which control fusion/fission rates of mitochondria. Finally, in line with the in vitro findings, upon 3-NP in vivo treatment, 8-hydroxyguanine levels in mitochondrial DNA from heart, muscle and brain are significantly lower in transgenic hMTH1-expressing mice than in wild-type animals.
Collapse
Affiliation(s)
- Ilenia Ventura
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Maria Teresa Russo
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Chiara De Nuccio
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Gabriele De Luca
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Paolo Degan
- Department of Epidemiology, Prevention and Special Function, Istituto Nazionale per la Ricerca sul Cancro, Lgo Rosanna Benzi 10, 16123 Genova, Italy
| | - Antonietta Bernardo
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Sergio Visentin
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Luisa Minghetti
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Margherita Bignami
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
18
|
Brun P, Brun P, Vono M, Venier P, Tarricone E, Deligianni V, Martines E, Zuin M, Spagnolo S, Cavazzana R, Cardin R, Castagliuolo I, Valerio ALG, Leonardi A. Disinfection of ocular cells and tissues by atmospheric-pressure cold plasma. PLoS One 2012; 7:e33245. [PMID: 22432007 PMCID: PMC3303808 DOI: 10.1371/journal.pone.0033245] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 02/13/2012] [Indexed: 01/05/2023] Open
Abstract
Background Low temperature plasmas have been proposed in medicine as agents for tissue disinfection and have received increasing attention due to the frequency of bacterial resistance to antibiotics. This study explored whether atmospheric-pressure cold plasma (APCP) generated by a new portable device that ionizes a flow of helium gas can inactivate ocular pathogens without causing significant tissue damage. Methodology/Principal Findings We tested the APCP effects on cultured Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Candida albicans, Aspergillus fumigatus and Herpes simplex virus-1, ocular cells (conjunctival fibroblasts and keratocytes) and ex-vivo corneas. Exposure to APCP for 0.5 to 5 minutes significantly reduced microbial viability (colony-forming units) but not human cell viability (MTT assay, FACS and Tunel analysis) or the number of HSV-1 plaque-forming units. Increased levels of intracellular reactive oxygen species (ROS) in exposed microorganisms and cells were found using a FACS-activated 2′,7′-dichlorofluorescein diacetate probe. Immunoassays demonstrated no induction of thymine dimers in cell cultures and corneal tissues. A transient increased expression of 8-OHdG, genes and proteins related to oxidative stress (OGG1, GPX, NFE2L2), was determined in ocular cells and corneas by HPLC, qRT-PCR and Western blot analysis. Conclusions A short application of APCP appears to be an efficient and rapid ocular disinfectant for bacteria and fungi without significant damage on ocular cells and tissues, although the treatment of conjunctival fibroblasts and keratocytes caused a time-restricted generation of intracellular ROS and oxidative stress-related responses.
Collapse
Affiliation(s)
- Paola Brun
- Histology Unit, Department of Biomedical Sciences, University of Padua, Padua, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|