1
|
Cadar E, Negreanu-Pirjol T, Pascale C, Sirbu R, Prasacu I, Negreanu-Pirjol BS, Tomescu CL, Ionescu AM. Natural Bio-Compounds from Ganoderma lucidum and Their Beneficial Biological Actions for Anticancer Application: A Review. Antioxidants (Basel) 2023; 12:1907. [PMID: 38001761 PMCID: PMC10669212 DOI: 10.3390/antiox12111907] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Ganoderma lucidum (G. lucidum) has been known for many centuries in Asian countries under different names, varying depending on the country. The objective of this review is to investigate the scientific research on the natural active bio-compounds in extracts obtained from G. lucidum with significant biological actions in the treatment of cancer. This review presents the classes of bio-compounds existing in G. lucidum that have been reported over time in the main databases and have shown important biological actions in the treatment of cancer. The results highlight the fact that G. lucidum possesses important bioactive compounds such as polysaccharides, triterpenoids, sterols, proteins, nucleotides, fatty acids, vitamins, and minerals, which have been demonstrated to exhibit multiple anticancer effects, namely immunomodulatory, anti-proliferative, cytotoxic, and antioxidant action. The potential health benefits of G. lucidum are systematized based on biological actions. The findings present evidence regarding the lack of certainty about the effects of G. lucidum bio-compounds in treating different forms of cancer, which may be due to the use of different types of Ganoderma formulations, differences in the study populations, or due to drug-disease interactions. In the future, larger clinical trials are needed to clarify the potential benefits of pharmaceutical preparations of G. lucidum, standardized by the known active components in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Emin Cadar
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Building C, 900470 Constanta, Romania; (E.C.); (B.-S.N.-P.)
| | - Ticuta Negreanu-Pirjol
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Building C, 900470 Constanta, Romania; (E.C.); (B.-S.N.-P.)
- Academy of Romanian Scientists, Ilfov Street, No. 3, 050044 Bucharest, Romania
| | - Carolina Pascale
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania;
| | - Rodica Sirbu
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania;
| | - Irina Prasacu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, Traian Vuia Street, No. 6, Sector 2, 020956 Bucharest, Romania;
| | - Bogdan-Stefan Negreanu-Pirjol
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Building C, 900470 Constanta, Romania; (E.C.); (B.-S.N.-P.)
| | - Cezar Laurentiu Tomescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania; (C.L.T.); (A.-M.I.)
- “Sf. Ap. Andrei” County Clinical Emergency Hospital, Tomis Bvd., No. 145, 900591 Constanta, Romania
| | - Ana-Maria Ionescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania; (C.L.T.); (A.-M.I.)
- Clinical Hospital C F Constanta, 1 Mai Bvd., No. 3–5, 900123 Constanta, Romania
| |
Collapse
|
2
|
Zhang RR, Zhang J, Guo X, Chen YY, Sun JY, Miao JL, Carpena M, Prieto M, Li NY, Zhou QX, Liu C. Molecular mechanisms of the chemical constituents from anti-inflammatory and antioxidant active fractions of Ganoderma neo-japonicum Imazeki. Curr Res Food Sci 2023; 6:100441. [PMID: 36756001 PMCID: PMC9900368 DOI: 10.1016/j.crfs.2023.100441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Ganoderma neo-japonicum Imazeki is a rare medicinal mushroom that has been reported to play a role in scavenging free radicals, protecting the liver, and inhibiting tumor cell activity. In this study, crude extracts were prepared, and 47 triterpenoids were identified by Ultra-high-performance liquid chromatography coupled with triple quadrupole time-of flight mass spectrometry (UHPLC-Triple TOF-MS/MS). Then, the crude extracts were subjected to column chromatography for the first time to obtain six fractions (Fr. (a), (b), (c), (d), (e) and (f)). Antioxidant and anti-inflammatory active tracking assays of all fractions found that Fr. (c) exhibited the strongest bioactivity. Subsequently, the chemical composition of Fr. (c) was clarified, and eight triterpenoids were determined in combination with the standard substances. In addition, this study demonstrated that Fr. (c) reduced the levels of inflammatory cytokines and reactive oxygen species (ROS) in LPS-stimulated RAW264.7 macrophages. Further studies showed that Fr. (c) could down-regulate the expression level of proteins associated of NF-κB signaling pathway, and upregulated Nrf2 and HO-1 protein level. In conclusion, our study showed that Fr. (c) inhibited LPS-mediated inflammatory response and oxidative stress by activating the Nrf2/HO-1 pathway and inactivating the NF-κB pathway. In the future, with the clearing of its composition and activity mechanism, Fr. (c) of G. neo-japonicum are expected to become a functional food for health and longevity.
Collapse
Affiliation(s)
- Rui-rui Zhang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, PR China,Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, PR China
| | - Jing Zhang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, PR China
| | - Xu Guo
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, PR China
| | - Ying-ying Chen
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, PR China
| | - Jin-yue Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, PR China
| | - Jia-lin Miao
- Weihai Yuwang Group CO., LTD, Wei Hai, 264209, Shandong, PR China
| | - M. Carpena
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004, Ourense, Spain
| | - M.A. Prieto
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004, Ourense, Spain,Agrifood Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Spain,Corresponding authors. Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004, Ourense, Spain.
| | - Ning-yang Li
- College Food Science and Engineering, Shandong Agricultural University, Tai An, 271018, Shandong, PR China,Corresponding author.
| | - Qing-xin Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, PR China,Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, PR China,Corresponding authors. Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, PR China.
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, PR China,Weihai Yuwang Group CO., LTD, Wei Hai, 264209, Shandong, PR China,Corresponding author. Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, PR China.
| |
Collapse
|
3
|
Liu X, Huang L, Shi Y, Wang X, Luo Y, Wei S, Qin Y, Lu Y, Zhang W, Ju Y, Yan Y, Liao Y. Ganoderma lingzhi culture enhance growth performance via improvement of antioxidant activity and gut probiotic proliferation in Sanhuang broilers. Front Vet Sci 2023; 10:1143649. [PMID: 37138906 PMCID: PMC10150954 DOI: 10.3389/fvets.2023.1143649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction The experiment was conducted to evaluate the effects of Ganoderma lingzhi culture (GLC) as a fermented feed on growth performance, serum biochemical profile, meat quality, and intestinal morphology and microbiota in Sanhuang broilers. In addition, the association between gut bacteria and metabolites was investigated via untargeted metabolomic analysis. Methods A total of 192 Sanhuang broilers (112 days old) with an initial body weight of 1.62 ± 0.19 kg were randomly allocated to four treatments, six replicate pens per treatment with 8 broilers per pen. The four treatments contain a control diet (corn-soybean meal basal diet, CON), a positive control diet (basal diet + 75 mg/kg chlortetracycline, PCON), and the experimental diets supplemented with 1.5 and 3% of GLC, respectively. The trial includes phase 1 (day 1-28) and phase 2 (day 29-56). Results The results showed that broilers in PCON and GLC-added treatments showed a lower FCR (P < 0.05) in phase 2 and overall period and a higher ADG (P < 0.05) in phase 2. On day 56, the concentrations of serum SOD (P < 0.05), and HDL (P < 0.05) and cecal SCFA contents (P < 0.05) were increased in broilers fed GLC diets. Broilers fed GLC also showed a higher microbiota diversity and an elevated abundance of SCFA-related bacteria in the caecum. The association between intestinal bacteria and metabolites was investigated via correlation analysis. The differential metabolites in the caecum, such as L-beta-aspartyl-L-aspartic acid and nicotinamide riboside, were identified. Conclusion In summary, dietary GCL supplementation could increase growth performance to some extent. Moreover, GLC might benefit broilers' health by improving serum HDL content, antioxidant status, SCFAs contents, bacterial diversity, and probiotic proliferation in the caecum.
Collapse
Affiliation(s)
- Xuzhou Liu
- Institute of Microbiology, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Liling Huang
- Institute of Microbiology, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yan Shi
- Guangxi Veterinary Research Institute, Nanning, China
| | - Xiaoguo Wang
- Institute of Microbiology, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yanglan Luo
- Institute of Microbiology, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Shiyan Wei
- Institute of Microbiology, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yanchun Qin
- Yulin Institute of Microbiology, Yulin, China
| | - Yuwen Lu
- Yulin Institute of Microbiology, Yulin, China
| | - Wenlong Zhang
- Institute of Microbiology, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Ying Ju
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yong Yan
- Institute of Microbiology, Guangxi Academy of Agricultural Sciences, Nanning, China
- *Correspondence: Yong Yan
| | - Yuying Liao
- Guangxi Veterinary Research Institute, Nanning, China
- Yuying Liao
| |
Collapse
|
4
|
Li Y, Liang W, Han Y, Zhao W, Wang S, Qin C. Triterpenoids and Polysaccharides from Ganoderma lucidum Improve the Histomorphology and Function of Testes in Middle-Aged Male Mice by Alleviating Oxidative Stress and Cellular Apoptosis. Nutrients 2022; 14:nu14224733. [PMID: 36432421 PMCID: PMC9696538 DOI: 10.3390/nu14224733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Aging is an inevitable physiological process accompanied by a decline in body physiology, including male fertility. A preparation from Ganoderma lucidum (GL) containing triterpenes and polysaccharides has been shown to have anti-aging properties. In the current study, the effects of GL on mating ability, testosterone secretion, and testicular structure and function were observed in middle-aged male mice. The GL preparation was administered orally to mice for 2 to 5 months, and then behavioral, serological, and histopathological examinations were performed. Results showed that in the GL group of mice, the mating latency was shortened, the number of pursuits within 20 min was increased, and the mating success rate was higher compared to control mice. Additionally, the levels of serum testosterone, cell proliferation (Ki67), and sperm-specific lactate dehydrogenase (LDH)-C4 were increased, while the levels of senescence-related protein p16 and cellular apoptosis were decreased in GL mice. Testicular spermatogenic cells and sperm and stromal cells were reduced and exhibited structural disorder in 11- and 14-month-old control mice, while these changes were improved compared to age-matched mice receiving the GL preparation. Furthermore, the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and the pro-apoptotic protein Bax were decreased, while the anti-apoptotic protein Bcl-2 was increased in GL mice. Finally, the mitochondrial structure was relatively complete in GL mice compared to controls. Therefore, GL has the potential to improve testicular structure and function in middle-aged male mice by alleviating oxidative stress, maintaining mitochondrial homeostasis, and reducing cellular apoptosis.
Collapse
Affiliation(s)
- Yanhong Li
- Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing 100021, China
- NHC Key Laboratory of Human Diseases Comparative Medicine, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- National Human Diseases Animal Model Resource Center, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
| | - Wei Liang
- Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing 100021, China
- NHC Key Laboratory of Human Diseases Comparative Medicine, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- National Human Diseases Animal Model Resource Center, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
| | - Yunlin Han
- Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing 100021, China
- NHC Key Laboratory of Human Diseases Comparative Medicine, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- National Human Diseases Animal Model Resource Center, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
| | - Wenjie Zhao
- Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing 100021, China
- NHC Key Laboratory of Human Diseases Comparative Medicine, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- National Human Diseases Animal Model Resource Center, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
| | - Siyuan Wang
- Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing 100021, China
- NHC Key Laboratory of Human Diseases Comparative Medicine, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- National Human Diseases Animal Model Resource Center, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
| | - Chuan Qin
- Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing 100021, China
- NHC Key Laboratory of Human Diseases Comparative Medicine, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- National Human Diseases Animal Model Resource Center, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- Correspondence: ; Tel.: +86-010-87778141
| |
Collapse
|
5
|
Tang S, Jin L, Lei P, Shao C, Wu S, Yang Y, He Y, Ren R, Xu J. Whole-genome assembly and analysis of a medicinal fungus: Inonotus hispidus. Front Microbiol 2022; 13:967135. [PMID: 36147857 PMCID: PMC9485836 DOI: 10.3389/fmicb.2022.967135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Inonotus hispidus (I. hispidus) is a medicinal macrofungus that plays a key role in anti-tumor and antioxidant functions. To further understand and enhance the value of I. hispidus, we performed whole-genome sequencing and an analysis of its strain for the first time. I. hispidus was sequenced using the Illumina NovaSeq high-throughput sequencing platform. The genome length was 35,688,031 bp and 30 contigs, with an average length of 1,189,601.03 bp. Moreover, database alignment annotated 402 CAZyme genes and 93 functional genes involved in regulating secondary metabolites in the I. hispidus genome to find the greatest number of genes involved in terpenes in that genome, thus providing a theoretical basis for its medicinal value. Finally, the phylogenetic analysis and comparative genomic analysis of single-copy orthologous protein genes from other fungi in the same family were conducted; it was found that I. hispidus and Sanghuangporus baumii have high homology. Our results can be used to screen candidate genes for the nutritional utilization of I. hispidus and the development of high-yielding and high-quality I. hispidus via genetic means.
Collapse
|
6
|
Ahmad R, Riaz M, Khan A, Aljamea A, Algheryafi M, Sewaket D, Alqathama A. Ganoderma lucidum (Reishi) an edible mushroom; a comprehensive and critical review of its nutritional, cosmeceutical, mycochemical, pharmacological, clinical, and toxicological properties. Phytother Res 2021; 35:6030-6062. [PMID: 34411377 DOI: 10.1002/ptr.7215] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022]
Abstract
Reishi owes an exceptional value in nutritional, cosmeceutical, and medical treatments; however, none of the studies has provided its future-driven critical assessment. This study documents an up-to-date review (2015-2020, wherever applicable) and provide valuable insights (preclinical and clinical evidence-based) with comprehensive and critical assessments. Various databases 'Google scholar', 'Web of Science', 'ScienceDirect', 'PubMed', 'Springer Link', books, theses, and library resources were used. The taxonomic chaos of G. lucidum and its related species was discussed in detail with solution-oriented emphasis. Reishi contains polysaccharides (α/β-D-glucans), alkaloids, triterpenoids (ganoderic acids, ganoderenic acids, ganoderol, ganoderiol, lucidenic acids), sterols/ergosterol, proteins (LZ-8, LZ-9), nucleosides (adenosine, inosine, uridine), and nucleotides (guanine, adenine). Some active drugs are explored at an optimum level to make them potential drug candidates. The pharmacological potential was observed in diabetes, inflammation, epilepsy, neurodegeneration, cancer, anxiety, sedation, cardiac diseases, depression, hepatic diseases, and immune disorders; however, most of the studies are preclinical with a number of drawbacks. In particular, quality clinical data are intensely needed to support pharmacological activities for human use. The presence of numerous micro-, macro, and trace elements imparts an essential nutritional and cosmeceutical value to Reishi, and various marketed products are available already, but the clinical studies regarding safety and efficacy, interactions with foods/drinks, chronic use, teratogenicity, mutagenicity, and genotoxicity are missing for Reishi. Reishi possesses many valuable pharmacological activities, and the number of patents and clinical trials is increasing for Reishi. Yet, a gap in research exists for Reishi, which is discussed in detail in the forthcoming sections.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Department of Natural Products and Alternative Medicines, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Muhammad Riaz
- Department of Pharmacy, Shaheed Benazir, Bhutto University, Sheringal Dir (U), Pakistan
| | - Aslam Khan
- Basic Sciences Department, College of Science and Health Professions, Ministry of National Guard Health Affairs, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Ahmed Aljamea
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammad Algheryafi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Deya Sewaket
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Aljawharah Alqathama
- Department of Pharmacognosy, Pharmacy College, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
7
|
Luo S, Zeng C, Li J, Feng S, Zhou L, Chen T, Yuan M, Huang Y, Yang H, Ding C. Effects of Ultrasonic-Assisted Extraction on the Yield and the Antioxidative Potential of Bergenia emeiensis Triterpenes. Molecules 2020; 25:molecules25184159. [PMID: 32932931 PMCID: PMC7570829 DOI: 10.3390/molecules25184159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/21/2022] Open
Abstract
This study was the first designed to evaluate the extraction and antioxidant ability of triterpenes from Bergenia emeiensis rhizomes. The yield of triterpenes from B. emeiensis was mainly affected by the concentration of ethanol, followed by the extraction time, solvent to sample ratio, and the power of ultrasound. Thus, the response surface method was applied to investigate the interaction between the two factors and to optimize the extraction process. The optimal extraction conditions were 210 W, 75% ethanol, 40 min and 25 mL/g with a maximum yield of 229.37 ± 7.16 mg UAE/g. Moreover, the antioxidant ability of triterpenes from B. emeiensis (TBE) was evaluated by determining the scavenging capacity on free radicals and the protection on CHO cells and Caenorhabditis elegans against oxidative stress. The results showed the triterpenes could clear 2,2-Diphenyl-1-picryl-hydrazyl (DPPH) radicals well and had a strong reducing power. In addition, the survival of CHO cells was higher than that of the control group as a result of reducing the reactive oxygen species (ROS) level and promoting the activities of antioxidant enzymes. In addition, TBE could also enhance the survival of C. elegans under H2O2 conditions. Therefore, triterpenes from B. emeiensis could be developed into a beneficial potential for antioxidants.
Collapse
|
8
|
González A, Atienza V, Montoro A, Soriano JM. Use of Ganoderma lucidum (Ganodermataceae, Basidiomycota) as Radioprotector. Nutrients 2020; 12:E1143. [PMID: 32325828 PMCID: PMC7230513 DOI: 10.3390/nu12041143] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/30/2022] Open
Abstract
For millennia, naturopaths and physicians have used Ganoderma lucidum (reishi mushroom) for its diverse therapeutic properties, as recorded in the oldest Chinese herbal encyclopedia. Indeed, a radioprotective effect has been reported in the isolated components of its extracts. A systematic review and meta-analyses (PRISMA) was conducted in March 2020, searching databases including PubMed, Scopus, Embase, and Google Scholar, along with Clinical Trials. The inclusion criteria were ex vivo, in vitro, and in vivo studies, with full texts in English, conducted to determine the radioprotective benefits of G. lucidum, or reports in which ionizing radiation was used. From a total number of 1109 records identified, 15 full text articles were eligible, none of them were clinical trials. In vivo studies reveal the efficiency of G. lucidum aqueous extracts of polysaccharides and triterpenes in mice exposed to γ-rays. In plasmid, they can reduce radiation damage as an increment of the open circular form, as well as increase the DNA extension, as shown in vitro studies. Ex vivo studies conducted in human blood cells show the radioprotective effect of β-glucan of aqueous extract of G. lucidum, nevertheless, its implementation as radioprotector to humans is in need of further clinical research studies.
Collapse
Affiliation(s)
- Aránzazu González
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Paterna, Valencia, Spain;
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, University of Valencia-Health Research Institute La Fe, 46021 Valencia, Spain
| | - Violeta Atienza
- Department of Botany and Geology, Faculty of Biological Sciences, University of Valencia, 46100 Burjassot, Valencia, Spain;
| | - Alegría Montoro
- Radiation Protection Service, University and Polytechnic Hospital La Fe, 46021 Valencia, Spain;
- Biomedical Imaging Research Group GIBI230, Health Research Institute La Fe, 46021 Valencia, Spain
| | - Jose M. Soriano
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Paterna, Valencia, Spain;
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, University of Valencia-Health Research Institute La Fe, 46021 Valencia, Spain
| |
Collapse
|
9
|
Hsieh YC, Lin WC, Chuang WY, Chen MH, Chang SC, Lee TT. Effects of mushroom waster medium and stalk residues on the growth performance and oxidative status in broilers. Anim Biosci 2020; 34:265-275. [PMID: 32138471 PMCID: PMC7876722 DOI: 10.5713/ajas.19.0889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/21/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The study developed mushroom stalk residues as feed additives in the broiler diet for improving the growth performance and immunity of broilers as well as to increase the value of mushroom stalk residues. METHODS In total, 300 ROSS 308 broilers were randomly allocated into fifteen pens with five dietary treatments: i) control, basal diet; ii) CMWM, supplemented with 1% Cordyceps militaris waster medium (CM); iii) CMPE, supplemented with 0.5% CM+0.5% Pleurotus eryngii stalk residue (PE); iv) CMPS, supplemented with 0.5% CM+0.5% Pleurotus sajorcaju stalk residue (PS); v) CMFV, supplemented with 0.5% CM+0.5% Fammulina velutipes stalk residue (FV). RESULTS The chemical analysis results showed that CM extracts, PE extracts, PS extracts, and FV extracts contain functional components such as polysaccharides and phenols and have both 2, 2-diphenyl-1-picryl-hydrazyl-hydrate scavenging and Ferrous scavenging capacities. The group CMWM saw increased body weight gain and feed conversion rate and the promotion of jejunum villus growth, but there is no significant difference in the intestinal bacteria phase. Antioxidant genes in the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)- antioxidant responsive element pathway among the groups are significantly higher than that of the control group, especially in group CMWM. CONCLUSION The mushroom stalk residues have antioxidant functional components, can improve the intestinal health and body weight gain of chickens, and can activate the antioxidant pathway of Nrf2 to increase the heme oxygenase-1 expression. The treatment with 1% CM was the most promising as a feed additive.
Collapse
Affiliation(s)
- Y C Hsieh
- Department of Animal Science, National Chung Hsing University, Taichung, 402, Taiwan
| | - W C Lin
- Department of Animal Science, National Chung Hsing University, Taichung, 402, Taiwan
| | - W Y Chuang
- Department of Animal Science, National Chung Hsing University, Taichung, 402, Taiwan
| | - M H Chen
- Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan, Taichung City, 41362, Taiwan
| | - S C Chang
- Kaohsiung Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Executive Yuan, Pingtung, 91201, Taiwan
| | - T T Lee
- Department of Animal Science, National Chung Hsing University, Taichung, 402, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan
| |
Collapse
|
10
|
Effects of sporoderm-broken spores of Ganoderma lucidum on growth performance, antioxidant function and immune response of broilers. ACTA ACUST UNITED AC 2019; 6:39-46. [PMID: 32211527 PMCID: PMC7082644 DOI: 10.1016/j.aninu.2019.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/17/2019] [Accepted: 11/07/2019] [Indexed: 01/31/2023]
Abstract
This study was conducted to evaluate the effects of sporoderm-broken spores of Ganoderma lucidum (SSGL), a traditional Chinese medicinal herb, on growth performance, antioxidant ability, and immunity of broilers. Three hundred male broilers with similar body weights (40.0 ± 1.0 g) at 1 d of age were assigned randomly to 4 treatments. Each treatment contained 5 replicates of 15 birds per replicate. The dietary treatments were corn–soybean meal basal diet supplemented with SSGL at the concentrations of 0 (control), 100, 200 and 500 mg/kg diet. The results showed that diets supplemented with SSGL significantly increased (P < 0.05) the average daily gain and decreased (P < 0.05) the feed:gain (F:G) ratio of birds during the finisher period (22 to 44 d of age). Moreover, the total antioxidant capability, glutathione reductase and catalase activities in the liver and spleen were significantly higher (P < 0.05) in broilers fed diets with SSGL than in broilers fed the control diet. Additionally, dietary SSGL also increased (P < 0.05) the serum interleukin (IL)-2, immunoglobulin (Ig) A and IgG levels of broilers compared with the control diet. These results suggest that SSGL have ameliorative effects on growth performance, free radical-scavenging activity, antioxidant capability, and immune function of broilers.
Collapse
|
11
|
Teng X, Zhang W, Song Y, Wang H, Ge M, Zhang R. Protective effects of Ganoderma lucidum triterpenoids on oxidative stress and apoptosis in the spleen of chickens induced by cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:23967-23980. [PMID: 31222655 DOI: 10.1007/s11356-019-05638-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
Cadmium (Cd) is a heavy metal that poses a huge potential threat to human and animal health. Therefore, it is necessary to study its damage mechanism. In the present study, we have examined the protective effects of Ganoderma lucidum triterpenoids on oxidative stress and apoptosis in the spleen of chickens induced by Cd. One hundred and twenty healthy Hailan white chickens (7-day-old) were randomly divided into the following four groups: control group, Cd group, triterpenoid group, and Cd-triterpenoid group. The chickens were euthanized on the 20th, 40th, and 60th days, and the spleens were removed. Cd and malondialdehyde (MDA) content, antioxidant enzyme (superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px)) activities, and inflammatory factor (tumor necrosis factor alpha (TNF-α) and interleukin (IL-1β and IL-6)) and apoptotic factor (caspase-3, BAX, and Bcl-2) expressions were detected. The results showed that Ganoderma lucidum triterpenoids could reduce the content of Cd and MDA; increase the antioxidant enzyme activities (SOD and GSH-Px); decrease the expression of inflammatory factors (TNF-α) and interleukin (IL-1β and IL-6); increase the expression of apoptotic factor (Bcl-2); and decrease the expression of apoptotic factors (caspase-3 and Bax). It showed that the triterpenoids of Ganoderma lucidum had significant protective effects on oxidative stress and apoptosis of chicken spleen, which provided a theoretical basis for further prevention and treatment of cadmium poisoning.
Collapse
Affiliation(s)
- Xiangqi Teng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Weiqian Zhang
- Quality and Standard Research Center, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Yangyang Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Haibin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Ming Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China.
| | - Ruili Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
12
|
|
13
|
Murthuza S, Manjunatha BK. Radioprotective and immunomodulatory effects of Mesua ferrea (Linn.) from Western Ghats of India., in irradiated Swiss albino mice and splenic lymphocytes. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2017.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Syed Murthuza
- Department of Biotechnology, The Oxford College of Engineering, Bommanahalli, Bengaluru, 560068, India
| | | |
Collapse
|
14
|
Martínez-Montemayor MM, Ling T, Suárez-Arroyo IJ, Ortiz-Soto G, Santiago-Negrón CL, Lacourt-Ventura MY, Valentín-Acevedo A, Lang WH, Rivas F. Identification of Biologically Active Ganoderma lucidum Compounds and Synthesis of Improved Derivatives That Confer Anti-cancer Activities in vitro. Front Pharmacol 2019; 10:115. [PMID: 30837881 PMCID: PMC6389703 DOI: 10.3389/fphar.2019.00115] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/30/2019] [Indexed: 01/01/2023] Open
Abstract
We previously reported that Ganoderma lucidum extract (GLE) demonstrate significant anti-cancer activity against triple negative inflammatory breast cancer models. Herein, we aimed to elucidate the bioactive compounds of GLE responsible for this anti-cancer activity. We performed NMR, X-ray crystallography and analog derivatization as well as anti-cancer activity studies to elucidate and test the compounds. We report the structures of the seven most abundant GLE compounds and their selective efficacy against triple negative (TNBC) and inflammatory breast cancers (IBC) and other human cancer cell types (solid and blood malignancies) to illustrate their potential as anti-cancer agents. Three of the seven compounds (ergosterol, 5,6-dehydroergosterol and ergosterol peroxide) exhibited significant in vitro anti-cancer activities, while we report for the first time the structure elucidation of 5,6-dehydroergosterol from Ganoderma lucidum. We also show for the first time in TNBC/IBC cells that ergosterol peroxide (EP) displays anti-proliferative effects through G1 phase cell cycle arrest, apoptosis induction via caspase 3/7 activation, and PARP cleavage. EP decreased migratory and invasive effects of cancer cells while inhibiting the expression of total AKT1, AKT2, BCL-XL, Cyclin D1 and c-Myc in the tested IBC cells. Our investigation also indicates that these compounds induce reactive oxygen species, compromising cell fate. Furthermore, we generated a superior derivative, ergosterol peroxide sulfonamide, with improved potency in IBC cells and ample therapeutic index (TI > 10) compared to normal cells. The combined studies indicate that EP from Ganoderma lucidum extract is a promising molecular scaffold for further exploration as an anti-cancer agent.
Collapse
Affiliation(s)
| | - Taotao Ling
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Ivette J. Suárez-Arroyo
- Cancer Research Unit, Department of Biochemistry, School of Medicine, Universidad Central del Caribe, Bayamón, Puerto Rico
| | - Gabriela Ortiz-Soto
- Cancer Research Unit, Department of Biochemistry, School of Medicine, Universidad Central del Caribe, Bayamón, Puerto Rico
| | | | - Mercedes Y. Lacourt-Ventura
- Cancer Research Unit, Department of Biochemistry, School of Medicine, Universidad Central del Caribe, Bayamón, Puerto Rico
| | - Anibal Valentín-Acevedo
- Department of Microbiology and Immunology, School of Medicine, Universidad Central del Caribe, Bayamón, Puerto Rico
| | - Walter H. Lang
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Fatima Rivas
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
15
|
Protective Effect of Ganoderma (Lingzhi) on Radiation and Chemotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1182:119-142. [DOI: 10.1007/978-981-32-9421-9_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Yavaş MC, Akpolat V, Deveci E, Bilgin HM, Kaplan I, Seker U, Yildiz İ, Alkis E, Celik MS, Akdağ MZ. Determining the effect of an electromagnetic field generated by a high voltage power line on rat spermatogonia cells. DICLE MEDICAL JOURNAL 2018. [DOI: 10.5798/dicletip.497923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Ahmad MF. Ganoderma lucidum: Persuasive biologically active constituents and their health endorsement. Biomed Pharmacother 2018; 107:507-519. [DOI: 10.1016/j.biopha.2018.08.036] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/06/2018] [Accepted: 08/10/2018] [Indexed: 11/27/2022] Open
|
18
|
Liang Z, Yuan Z, Li G, Fu F, Shan Y. Hypolipidemic, Antioxidant, and Antiapoptotic Effects of Polysaccharides Extracted from Reishi Mushroom, Ganoderma lucidum (Leysser: Fr) Karst, in Mice Fed a High-Fat Diet. J Med Food 2018; 21:1218-1227. [PMID: 30183494 DOI: 10.1089/jmf.2018.4182] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The mechanisms underlying the effect of Ganoderma lucidum (Reishi mushroom) polysaccharides (GLP) on obesity are not clear. In this study, GLP were found to attenuate the oleic acid-induced cell viability loss and apoptosis dose dependently in splenic lymphocytes in vitro. The effects of GLP on lipid metabolism, oxidative stress, and apoptosis in mice fed a high-fat diet (HD) were determined. GLP administration (200 and 400 mg/kg bw) significantly lowered the body-weight increases; liver, heart, and white adipose tissues indexes; serum lipid accumulation; and serum and small intestine oxidative stress in mice fed a HD. Moreover, GLP inhibited HD-induced apoptosis by decreasing the Bax/Bcl-2 ratio and suppressing caspase-3 activation in splenic lymphocytes. These findings indicate that GLP can exert hypolipidemic, antioxidant, and antiapoptotic effects in HD-induced obese mice.
Collapse
Affiliation(s)
- Zengenni Liang
- 1 Hunan Agricultural Product Processing Institute , Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Zhihang Yuan
- 2 College of Veterinary Medicine, Hunan Agricultural University , Changsha, Hunan, China
| | - Gaoyang Li
- 1 Hunan Agricultural Product Processing Institute , Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Fuhua Fu
- 1 Hunan Agricultural Product Processing Institute , Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Yang Shan
- 1 Hunan Agricultural Product Processing Institute , Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| |
Collapse
|
19
|
Antitumour, Antimicrobial, Antioxidant and Antiacetylcholinesterase Effect of Ganoderma Lucidum Terpenoids and Polysaccharides: A Review. Molecules 2018. [PMID: 29534044 PMCID: PMC6017764 DOI: 10.3390/molecules23030649] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ganoderma lucidum (Reishi) is a popular medicinal mushroom and has been used in oriental medicine because of its promoting effects on health and life expectancy. G. lucidum contains various compounds with a high grade of biological activty, which increase the immunity and show antitumour, antimicrobial, anti-inflammatory, antioxidant and acetylcholinesterase inhibitory activity. Several of these substances belong to the triterpenoids and polysaccharides classes. Proteins, lipids, phenols, sterols, etc. are also present. In the present review, an extensive overview of the presence of antitumour, antimicrobial, antioxidant and antiacetylcholinesterase compounds in G. lucidum extracts will be given, along with an evaluation of their therapeutic effects.
Collapse
|
20
|
Yun K, Bai JH, Wang Z. In Vitro Bioassay-guided Isolation of Radioprotective Fractions from Extracts of Pinus koraiensis Bark. Pharmacogn Mag 2017; 13:712-718. [PMID: 29200738 PMCID: PMC5701416 DOI: 10.4103/pm.pm_409_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/08/2016] [Indexed: 11/04/2022] Open
Abstract
Objective The aim of this study was to evaluate radioprotective effect of extracts of Pinus koraiensis bark and its fractions on rat splenocytes by using bioassay-guided isolation in order to obtain the best active fraction. Materials and Methods P. koraiensis bark was ground and extracted with water, 40% acetone, 95% ethanol. Bio-guided assay was selected as an evaluation method to further fractionate radioprotective component from P. koraiensis bark extract. Total phenolic and flavonoid contents in fractions were also measured. Rat splenocytes were prepared by using mechanical trituration method. DNA damage was assessed as comet parameters (tail DNA%, tail length, tail moment, olive tail moment). The levels of malondialdehyde (MDA), and activity of superoxide dismutase (SOD), catalase (CAT) in cultured rat splenocytes were also measured. Results The radioprotective effects decreased from rutin >95% ethanol extracts of Pinus koraiensis bark (95EEP) >40AEP > WEP. The stimulating effects decreased from rutin > n-butanol extract (NBE) > EAE. The results demonstrate that there exists toxic ingredients (PEE and dichloromethane extract), proliferative-promoting, radioprotective component (EAE and NBE) in 95EEP. fraction eluted from n-butanol fractions of 95EEP with 50% methanol solution (NBEPKB-50ME), a fraction of NBE result from bio-guided isolation, demonstrates good radioprotective efficacy on rat splenocytes. NBEPKB-50ME pretreated rat splenocytes demonstrated progressively reduced levels of MDA when compared with γ-ray exposed cells. Different dose of NBEPKB-50ME pretreatment with 8 Gy-irration showed an increase in enzymatic antioxidant. Conclusions Proliferative-promoting efficacy, radioprotective effect of different solvents extracts of the bark of P. koraiensis were investigated in this work. NBEPKB-50ME was the best elution in NBE, especially in restoring SOD, CAT activities, content of GSH, decreasing DNA damage. SUMMARY The radioprotective effects decreased from rutin > 95EEP > 40AEP > WEP. The extract of Petroleum ether, dichloromethane extract (DME) of 95% ethanol extract of P. koraiensis (PEE, DME) show toxic effect on rat splenocytes. The extract of Ethyl acetate, n-butanol extract of 95% ethanol extract of P. koraiensis (EAE, NBE) show proliferative-promoting, radioprotective effect on rat splenocytesSingle-cell gel electrophoresis was used to evaluate the spleen cell DNA damage parameters affected by gamma-radiation and addition of best component NBEPKB-50Me from extract of P. koraiensis barkNBEPKB-50ME pretreatment with 8 Gy-irradiation showed an increase in enzymatic antioxidant capacity. NBEPKB-50ME pretreated (80, 160, 320, 480 mg/ml) rat splenocytes demonstrated progressively reduced levels of MDA when compared with g-ray exposed cells. Abbreviations used: MDA: Malondialdehyde; SOD: Superoxide dismutase; CAT: Catalase; PEE: Petroleum ether Extract; DME: Dichloromethane extract; EAE: Ethyl acetate extract; NBE: n-butanol extract; WAP: Water extracts of Pinus koraiensis bark; 40AEP: 40% acetone extracts of Pinus koraiensis bark; 95EEP: 95% ethanol extracts of Pinus koraiensis bark; TPC: Total phenolic content; TFC: Total flavonoid content; NBEPKB-50ME: Fraction eluted from n-Butanol fractions of 95EEP with 50% methanol solution.
Collapse
Affiliation(s)
- Keli Yun
- Department of Food science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P.R. China
| | - Jian-Hai Bai
- Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 064300, P.R. China
| | - ZhenYu Wang
- Department of Food science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P.R. China
| |
Collapse
|
21
|
Wang ZJ, Xie JH, Nie SP, Xie MY. Review on cell models to evaluate the potential antioxidant activity of polysaccharides. Food Funct 2017; 8:915-926. [DOI: 10.1039/c6fo01315e] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Owing to various health functions, natural polysaccharides are becoming a kind of popular dietary nutritional supplement.
Collapse
Affiliation(s)
- Zhi-Jun Wang
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Jian-Hua Xie
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| |
Collapse
|
22
|
Smina TP, Nitha B, Devasagayam TPA, Janardhanan KK. Ganoderma lucidum total triterpenes induce apoptosis in MCF-7 cells and attenuate DMBA induced mammary and skin carcinomas in experimental animals. Mutat Res 2016; 813:45-51. [PMID: 28010928 DOI: 10.1016/j.mrgentox.2016.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 11/21/2016] [Accepted: 11/29/2016] [Indexed: 01/08/2023]
Abstract
Ganoderma lucidum total triterpenes were evaluated for its apoptosis-inducing and anti-cancer activities. Cytotoxicity and pro-apoptotic effect of total triterpenes were evaluated in human breast adenocarcinoma (MCF-7) cell line using MTT assay and DNA fragmentation analysis. Total triterpenes induced apoptosis in MCF-7 cells by down-regulating the levels of cyclin D1, Bcl-2, Bcl-xL and also by up-regulating the levels of Bax and caspase-9. Anti-carcinogenicity of total triterpenes was analysed using dimethyl benz [a] anthracene (DMBA) induced skin papilloma and mammary adenocarcinoma in Swiss albino mice and Wistar rats respectively. Topical application of 5mg, 10mg and 20mg total triterpenes reduced the incidence of skin papilloma by 62.5, 37.5 and 12.5% respectively. Incidence of the mammary tumour was also reduced significantly by 33.33, 66.67 and 16.67% in 10, 50 and 100mg/kg b.wt. total triterpenes treated animals respectively. Total triterpenes were also found to reduce the average number of tumours per animal and extended the tumour latency period in both the models. The results indicate the potential cytotoxicity and anti-cancerous activity of total triterpenes, there by opens up a path to the development of a safe and successive chemo preventive agent of natural origin.
Collapse
Affiliation(s)
- T P Smina
- Amala Cancer Research Centre, Thrissur, Kerala 680 555, India; CeNTAB, SASTRA University, Thanjavur, Tamilnadu 613 401, India
| | - B Nitha
- Sree Ayyappa DB College, Eramallikkra, Alappuzha 689 109, Kerala, India
| | | | - K K Janardhanan
- Amala Cancer Research Centre, Thrissur, Kerala 680 555, India.
| |
Collapse
|
23
|
Kang JA, Yoon SH, Rho JK, Jang BS, Choi DS, Lee DE, Byun EB, Jeon J, Park SH. Radioprotective effect of hesperetin against γ-irradiation-induced DNA damage and immune dysfunction in murine splenocytes. Food Sci Biotechnol 2016; 25:163-168. [PMID: 30263502 DOI: 10.1007/s10068-016-0114-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/26/2016] [Accepted: 03/22/2016] [Indexed: 11/29/2022] Open
Abstract
This study was conducted to evaluate the preventive effect of hesperetin against radiation-induced DNA damage and immune dysfunction in murine splenocytes. Isolated splenocytes from BALB/c mice were treated with hesperetin (20, 100, and 500 µM), and then irradiated at a dose of 2 and 4 Gy of γ-irradiation. Exposure to ?-radiation resulted in DNA damage and a reduction of cell viability as well as an elevation of the levels of proinflammatory cytokines, intracellular ROS (reactive oxygen species), and NO (nitric oxide). Hesperetin significantly enhanced the cell viability of the splenocytes compared with the irradiated group. In addition, hesperetin was found to be highly effective in preventing DNA damage as identified by comet and DNA ladder assays. Hesperetin also effectively inhibited proinflammatory cytokines, intracellular ROS, and NO in irradiated splenocytes. In conclusion, hesperetin was shown to be radioprotective against irradiation-induced DNA damage and immune dysfunction in murine splenocytes.
Collapse
Affiliation(s)
- Jung Ae Kang
- 1Division of Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk, 56212 Korea
| | - Seon Hye Yoon
- 2Nutrition and Functional Food Research Team, National Institute of Food and Drug Safety Evaluation, Osong, Chungbuk, 28159 Korea
| | - Jong Kook Rho
- 3Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792 Korea
| | - Beom-Su Jang
- 1Division of Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk, 56212 Korea.,4Department of Radiation Biotechnology and Applied Radioisotope Science, Korea University of Science and Technology, Daejeon, 34113 Korea
| | - Dae Seong Choi
- 1Division of Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk, 56212 Korea
| | - Dong-Eun Lee
- 1Division of Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk, 56212 Korea
| | - Eui-Baek Byun
- 1Division of Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk, 56212 Korea
| | - Jongho Jeon
- 1Division of Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk, 56212 Korea
| | - Sang Hyun Park
- 1Division of Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk, 56212 Korea.,4Department of Radiation Biotechnology and Applied Radioisotope Science, Korea University of Science and Technology, Daejeon, 34113 Korea
| |
Collapse
|
24
|
Kao CH, Bishop KS, Xu Y, Han DY, Murray PM, Marlow GJ, Ferguson LR. Identification of Potential Anticancer Activities of Novel Ganoderma lucidum Extracts Using Gene Expression and Pathway Network Analysis. GENOMICS INSIGHTS 2016; 9:1-16. [PMID: 27006591 PMCID: PMC4778854 DOI: 10.4137/gei.s32477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/22/2015] [Accepted: 10/24/2015] [Indexed: 01/07/2023]
Abstract
Ganoderma lucidum (lingzhi) has been used for the general promotion of health in Asia for many centuries. The common method of consumption is to boil lingzhi in water and then drink the liquid. In this study, we examined the potential anticancer activities of G. lucidum submerged in two commonly consumed forms of alcohol in East Asia: malt whiskey and rice wine. The anticancer effect of G. lucidum, using whiskey and rice wine-based extraction methods, has not been previously reported. The growth inhibition of G. lucidum whiskey and rice wine extracts on the prostate cancer cell lines, PC3 and DU145, was determined. Using Affymetrix gene expression assays, several biologically active pathways associated with the anticancer activities of G. lucidum extracts were identified. Using gene expression analysis (real-time polymerase chain reaction [RT-PCR]) and protein analysis (Western blotting), we confirmed the expression of key genes and their associated proteins that were initially identified with Affymetrix gene expression analysis.
Collapse
Affiliation(s)
- Chi H.J. Kao
- Discipline of Nutrition and Dietetics, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Karen S. Bishop
- Discipline of Nutrition and Dietetics, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Yuanye Xu
- Discipline of Nutrition and Dietetics, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Dug Yeo Han
- Discipline of Nutrition and Dietetics, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Pamela M. Murray
- Discipline of Nutrition and Dietetics, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Gareth J. Marlow
- Discipline of Nutrition and Dietetics, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Lynnette R. Ferguson
- Discipline of Nutrition and Dietetics, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
25
|
Smina TP, Joseph J, Janardhanan KK. Ganoderma lucidum total triterpenes prevent γ-radiation induced oxidative stress in Swiss albino mice in vivo. Redox Rep 2016; 21:254-61. [PMID: 26817677 DOI: 10.1080/13510002.2015.1126098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVES The in vivo radio-protective effect of total triterpenes isolated from Ganoderma lucidum (Fr.) P. Karst was evaluated using Swiss albino mice, by pre-treatment with total triterpenes for 14 days, followed by a whole body exposure to γ-radiation. METHODS The activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), and the level of reduced glutathione (GSH) were analysed in liver and brain homogenates. The extent of lipid and protein peroxidation was also estimated in liver and brain homogenates after irradiation. Protection of radiation-induced DNA strand breaks in peripheral blood lymphocytes and bone marrow cells was assessed using the comet assay. RESULTS Total triterpenes were highly effective in reducing the levels of lipid peroxidation and protein oxidation to near normal values in both liver and brain tissues. Total triterpenes, when administered in vivo, were also found to be successful in restoring the antioxidant enzyme activities and GSH level in liver and brain of irradiated mice. Administration of total triterpenes, prior to radiation exposure, significantly decreased the DNA strand breaks. DISCUSSION The results of the present study thus revealed the potential therapeutic use of Ganoderma total triterpenes as an adjuvant in radiation therapy.
Collapse
Affiliation(s)
- T P Smina
- a Amala Cancer Research Centre , Thrissur , Kerala , India.,b CeNTAB, SASTRA University , Thanjavur , Tamilnadu , India
| | - Jini Joseph
- a Amala Cancer Research Centre , Thrissur , Kerala , India.,c St. Peter's College , Ernakulam , Kerala , India
| | | |
Collapse
|
26
|
Bishop KS, Kao CHJ, Xu Y, Glucina MP, Paterson RRM, Ferguson LR. From 2000years of Ganoderma lucidum to recent developments in nutraceuticals. PHYTOCHEMISTRY 2015; 114:56-65. [PMID: 25794896 DOI: 10.1016/j.phytochem.2015.02.015] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 02/11/2015] [Accepted: 02/17/2015] [Indexed: 05/21/2023]
Abstract
Medicinal mushrooms have been used for centuries as nutraceuticals to improve health and to treat numerous chronic and infectious diseases. One such mushroom is Ganoderma lucidum, commonly known as Lingzhi, a species revered as a medicinal mushroom for treating assorted diseases and prolonging life. The fungus is found in diverse locations, and this may have contributed to confusion regarding the correct taxonomic classification of the genus Ganoderma. G. lucidum was first used to name a specimen found in England and thereafter was naively applied to a different Ganoderma species found in Asia, commonly known as Chinese Lingzhi. Despite the taxonomic confusion, which has largely been uncorrected, the popularity of Lingzhi has escalated across the globe. The current taxonomic situation is now discussed accurately in this Special Issue on Ganoderma. Today it is a multi-billion dollar industry wherein Lingzhi is cultivated or collected from the wild and consumed as a tea, in alcoholic beverages, and as a nutraceutical to confer numerous health benefits. Consumption of nutraceuticals has grown in popularity, and it is becoming increasingly important that active ingredients be identified and that suppliers make substantiated health claims about their products. The objective of this article is to present a review of G. lucidum over the past 2000 years from prized ancient "herbal" remedy to its use in nutraceuticals and to the establishment of a 2.5 billion $ (US) industry.
Collapse
Affiliation(s)
- Karen S Bishop
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Chi H J Kao
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Yuanye Xu
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | - R Russell M Paterson
- IBB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Lynnette R Ferguson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
27
|
Effect of Cordyceps Militaris Waster Medium on Production Performance, Egg Traits and Egg Yolk Cholesterol of Laying Hens. J Poult Sci 2015. [DOI: 10.2141/jpsa.0140191] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
28
|
Zhao J, Wu Y, Alfred A, Wei P, Yang S. Anticancer effects of pyocyanin on HepG2 human hepatoma cells. Lett Appl Microbiol 2014; 58:541-8. [DOI: 10.1111/lam.12224] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/20/2014] [Accepted: 01/20/2014] [Indexed: 11/29/2022]
Affiliation(s)
- J. Zhao
- School of Environment & Biological Engineering; Nanjing University of Science & Technology; Nanjing China
| | - Y. Wu
- School of Environment & Biological Engineering; Nanjing University of Science & Technology; Nanjing China
| | - A.T. Alfred
- School of Environment & Biological Engineering; Nanjing University of Science & Technology; Nanjing China
| | - P. Wei
- School of Environment & Biological Engineering; Nanjing University of Science & Technology; Nanjing China
| | - S. Yang
- School of Environment & Biological Engineering; Nanjing University of Science & Technology; Nanjing China
| |
Collapse
|
29
|
Cheng C, Zhao H, Wang Z, Lu W, Wang L, Wang R, Yao L. The effect of 5'-adenylic acid on hepatic proteome of mice radiated by 60Co γ-ray. Int J Mol Sci 2013; 15:186-202. [PMID: 24368518 PMCID: PMC3907805 DOI: 10.3390/ijms15010186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/15/2013] [Accepted: 12/18/2013] [Indexed: 01/30/2023] Open
Abstract
Understanding the protection mechanism of 5′-AMP requires comprehensive knowledge of the proteins expressed during the period that the body is exposed to irradiation. Proteomics provides the tools for such analyses. Here, the experimental ICR mice were divided into three groups (normal group, model group and 5′-AMP + irradiation group). After different treatment, the hepatic total protein of each animal in three groups was separated by two-dimensional gel electrophoresis (2-DE). 2-DE analysis revealed fifty-eight protein spots were differentially expressed in comparison to three groups. From 58 protein spots, we selected nine spots to identify by MALDI-TOF-MS and received credible results. They were determined to be type I arginase, annexin A5, regucalcin, catalase, Tpm3 protein, Pdia4 protein, 14-3-3 protein epsilon, NAD-Malate dehydrogenase and heat shock protein 90. Considering the characteristic of these proteins, we proposed a possible protection pathway.
Collapse
Affiliation(s)
- Cuilin Cheng
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China; E-Mails: (C.C.); (H.Z.); (W.L.); (L.W.); (R.W.); (L.Y.)
- Institute of Extreme Environmental Nutrition and Protection, Harbin Institute of Technology, Harbin 150090, China
| | - Haitian Zhao
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China; E-Mails: (C.C.); (H.Z.); (W.L.); (L.W.); (R.W.); (L.Y.)
- Institute of Extreme Environmental Nutrition and Protection, Harbin Institute of Technology, Harbin 150090, China
| | - Zhenyu Wang
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China; E-Mails: (C.C.); (H.Z.); (W.L.); (L.W.); (R.W.); (L.Y.)
- Institute of Extreme Environmental Nutrition and Protection, Harbin Institute of Technology, Harbin 150090, China
- School of Forestry, Northeast Forestry University, Harbin 150026, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-451-8628-3022; Fax: +86-451-8628-2906
| | - Weihong Lu
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China; E-Mails: (C.C.); (H.Z.); (W.L.); (L.W.); (R.W.); (L.Y.)
- Institute of Extreme Environmental Nutrition and Protection, Harbin Institute of Technology, Harbin 150090, China
| | - Lu Wang
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China; E-Mails: (C.C.); (H.Z.); (W.L.); (L.W.); (R.W.); (L.Y.)
- Institute of Extreme Environmental Nutrition and Protection, Harbin Institute of Technology, Harbin 150090, China
| | - Rongchun Wang
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China; E-Mails: (C.C.); (H.Z.); (W.L.); (L.W.); (R.W.); (L.Y.)
| | - Lei Yao
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China; E-Mails: (C.C.); (H.Z.); (W.L.); (L.W.); (R.W.); (L.Y.)
- School of Food Science and Engineering, Northeast Agriculture University, Harbin 150030, China
| |
Collapse
|
30
|
Wu GS, Guo JJ, Bao JL, Li XW, Chen XP, Lu JJ, Wang YT. Anti-cancer properties of triterpenoids isolated from Ganoderma lucidum – a review. Expert Opin Investig Drugs 2013; 22:981-92. [DOI: 10.1517/13543784.2013.805202] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Guo-Sheng Wu
- University of Macau, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences,
Macao, China
| | - Jia-Jie Guo
- University of Macau, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences,
Macao, China
| | - Jiao-Lin Bao
- University of Macau, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences,
Macao, China
| | - Xi-Wen Li
- University of Macau, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences,
Macao, China
| | - Xiu-Ping Chen
- University of Macau, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences,
Macao, China
| | - Jin-Jian Lu
- University of Macau, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences,
Macao, China
| | - Yi-Tao Wang
- University of Macau, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences,
Macao, China
| |
Collapse
|
31
|
Protective effects of Ganoderma lucidum spore on cadmium hepatotoxicity in mice. Food Chem Toxicol 2013; 52:171-5. [DOI: 10.1016/j.fct.2012.05.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 05/20/2012] [Accepted: 05/22/2012] [Indexed: 11/23/2022]
|