1
|
Grzesiakowska A, Dzióbek M, Kuchta-Gładysz M, Wojciechowska-Puchałka J, Khachatryan K, Khachatryan G, Krystyjan M. The In Vitro Toxicity Profile of ZnS and CdS Quantum Dots in Polysaccharide Carriers (Starch/Chitosan). Int J Mol Sci 2023; 25:361. [PMID: 38203532 PMCID: PMC10778649 DOI: 10.3390/ijms25010361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Nanocomposites are an emerging technology for ensuring food safety and quality. Their unique properties, attributed to nanoparticle presence, facilitate the development of sophisticated sensors and biosensors for detecting harmful substances, microbial growth, and environmental changes in food products. Smart and/or active food packaging development also benefits from the use of nanocomposites. This packaging, or portions of it, provide active protection for its contents and serve as sensors to promptly, simply, and safely identify any detrimental changes in stored food, without elaborate techniques or analyses. Films made from potato starch and chitosan were produced and quantum dots of zinc sulfide (ZnS) and cadmium sulfide (CdS)were synthesized in them for this study. The presence and dimensions of the QDs (quantum dots) were examined with scanning electron microscopy (SEM) and ultraviolet-visible (UV-VIS) spectroscopy. The study aimed to establish the toxicity profile of a starch-chitosan bionanocomposite integrated with ZnS and CdS quantum dots. Cytotoxic and genotoxic features were assessed through cytogenetic instability assessments, consisting of the alkaline comet assay, erythrocyte micronucleus assay, and peripheral blood cell viability analysis of a laboratory mouse model.
Collapse
Affiliation(s)
- Anna Grzesiakowska
- Faculty of Animal Science, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (A.G.); (M.K.-G.); (J.W.-P.)
| | - Magdalena Dzióbek
- Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland;
| | - Marta Kuchta-Gładysz
- Faculty of Animal Science, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (A.G.); (M.K.-G.); (J.W.-P.)
| | - Joanna Wojciechowska-Puchałka
- Faculty of Animal Science, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (A.G.); (M.K.-G.); (J.W.-P.)
| | - Karen Khachatryan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (K.K.); (G.K.)
| | - Gohar Khachatryan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (K.K.); (G.K.)
| | - Magdalena Krystyjan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (K.K.); (G.K.)
| |
Collapse
|
2
|
Cadmium selenide (CdSe) quantum dots cause genotoxicity and oxidative stress in Allium cepa plants. Mutat Res 2021; 865:503338. [PMID: 33865544 DOI: 10.1016/j.mrgentox.2021.503338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 02/04/2021] [Accepted: 02/17/2021] [Indexed: 12/20/2022]
Abstract
Quantum Dots (QDs), are considered as promising tools for biomedical applications. They have potential applications in agricultural industries, novel pesticide formulations, use in bio-labels and devices to aid genetic manipulation and post-harvest management. Since interactions with higher plants are of important environmental and ecological concern we investigated the cytotoxicity and genotoxicity of CdSe QDs in a model plant (Allium cepa) and established relationships between QDs genotoxic activity and oxidative stress. Allium cepa bulbs with intact roots were exposed to three concentrations of CdSe QDs (12.5, 25 and 50 nM). Cell viability and mitotic frequencies was measured for cytotoxicity, and to assess the genotoxicity DNA lesions, chromosome aberrations and micronuclei were evaluated. We report that QDs exerted significant genotoxic effects, associated with oxidative stress. This could be correlated with the retention of Cd in Allium roots as a dose-dependent increase with the highest uptake at 50 nM of CdSe QD. Oxidative stress induced by CdSe QD treatment activated both, antioxidant (SOD, CAT) scavengers and antioxidant (GPOD, GSH) enzymes. Concentrations as low as 25 nM CdSe QDs were cytotoxic and 50 nM CdSe QDs was found to be genotoxic to the plant. These findings enable to determine the concentrations to be used when practical applications using nanodevices of this type on plants are being considered.
Collapse
|
3
|
Abdel-Latif HMR, Dawood MAO, Menanteau-Ledouble S, El-Matbouli M. Environmental transformation of n-TiO 2 in the aquatic systems and their ecotoxicity in bivalve mollusks: A systematic review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110776. [PMID: 32474243 DOI: 10.1016/j.ecoenv.2020.110776] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Over the past decades, titanium dioxide nanoparticles (n-TiO2) have been extensively used in several industrial applications and the manufacture of novel consumer products. Although strict regulations have been put in place to limit their release into the aquatic environment, these nanoparticles can still be found at elevated levels within the environment, which can result in toxic effects on exposed organisms and has possible implications in term of public health. Bivalve mollusks are a unique and ideal group of shellfish for the study and monitoring the aquatic pollution by n-TiO2 because of their filter-feeding behaviour and ability to accumulate toxicants in their tissues. In these animals, exposure to n-TiO2 leads to oxidative stress, immunotoxicity, neurotoxicity, and genotoxicity, as well as behavioral and physiological changes. This review summarizes the uptake, accumulation, and fate of n-TiO2 in aquatic environments and the possible interactions between n-TiO2 and other contaminants such as heavy metals and organic pollutants. Moreover, the toxicological impacts and mechanisms of action are discussed for a wide range of bivalve mollusks. This data underlines the pressing need for additional knowledge and future research plans for the development of control strategies to mitigate the release of n-TiO2 to the aquatic environment to prevent the toxicological impacts on bivalves and protect public health.
Collapse
Affiliation(s)
- Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Behera province, Egypt.
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt; School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53204, USA.
| | | | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
4
|
Gonçalves JM, Rocha T, Mestre NC, Fonseca TG, Bebianno MJ. Assessing cadmium-based quantum dots effect on the gonads of the marine mussel Mytilus galloprovincialis. MARINE ENVIRONMENTAL RESEARCH 2020; 156:104904. [PMID: 32174334 DOI: 10.1016/j.marenvres.2020.104904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
This study assesses the sex-specific effects induced by CdTe QDs, on the marine mussel Mytilus galloprovincialis in comparison to its dissolved counterpart. A 14 days exposure to CdTe QDs and dissolved Cd was conducted (10 μg Cd L-1), analysing Cd accumulation, oxidative stress, biotransformation, metallothionein and oxidative damage in the gonads. Both Cd forms caused significant antioxidant alterations, whereby QDs were more pro-oxidant, leading to oxidative damage, being females more affected. Overall, biochemical impairments on gonads of M. galloprovincialis demonstrate that the reproductive toxicity induced by CdTe QDs in mussels are sex-dependent and mediated by oxidative stress and lipid peroxidation. It is crucial to acknowledge how gametes are affected by metal-based nanoparticles, such as Cd-based QDs. As well as understanding the potential changes they may undergo at the cellular level during gametogenesis, embryogenesis and larval development potentially leading to serious impacts on population sustainability and ecosystem health.
Collapse
Affiliation(s)
- J M Gonçalves
- CIMA, Centre of Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal
| | - T Rocha
- CIMA, Centre of Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal; Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - N C Mestre
- CIMA, Centre of Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal
| | - T G Fonseca
- CIMA, Centre of Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal
| | - M J Bebianno
- CIMA, Centre of Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal.
| |
Collapse
|
5
|
Toxicological profile of lipid-based nanostructures: are they considered as completely safe nanocarriers? Crit Rev Toxicol 2020; 50:148-176. [PMID: 32053030 DOI: 10.1080/10408444.2020.1719974] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanoparticles are ubiquitous in the environment and are widely used in medical science (e.g. bioimaging, diagnosis, and drug therapy delivery). Due to unique physicochemical properties, they are able to cross many barriers, which is not possible for traditional drugs. Nevertheless, exposure to NPs and their following interactions with organelles and macromolecules can result in negative effects on cells, especially, they can induce cytotoxicity, epigenicity, genotoxicity, and cell death. Lipid-based nanomaterials (LNPs) are one of the most important achievements in drug delivery mainly due to their superior physicochemical and biological characteristics, particularly its safety. Although they are considered as the completely safe nanocarriers in biomedicine, the lipid composition, the surfactant, emulsifier, and stabilizer used in the LNP preparation, and surface electrical charge are important factors that might influence the toxicity of LNPs. According to the author's opinion, their toxicity profile should be evaluated case-by-case regarding the intended applications. Since there is a lack of all-inclusive review on the various aspects of LNPs with an emphasis on toxicological profiles including cyto-genotoxiciy, this comprehensive and critical review is outlined.
Collapse
|
6
|
Matos B, Martins M, Samamed AC, Sousa D, Ferreira I, Diniz MS. Toxicity Evaluation of Quantum Dots (ZnS and CdS) Singly and Combined in Zebrafish ( Danio rerio). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 17:E232. [PMID: 31905638 PMCID: PMC6981874 DOI: 10.3390/ijerph17010232] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 02/01/2023]
Abstract
The exponential growth of nanotechnology has led to the production of large quantities of nanomaterials for numerous industrial, technological, agricultural, environmental, food and many other applications. However, this huge production has raised growing concerns about the adverse effects that the release of these nanomaterials may have on the environment and on living organisms. Regarding the effects of QDs on aquatic organisms, existing data is scarce and often contradictory. Thus, more information is needed to understand the mechanisms associated with the potential toxicity of these nanomaterials in the aquatic environment. The toxicity of QDs (ZnS and CdS) was evaluated in the freshwater fish Danio rerio. The fishes were exposed for seven days to different concentrations of QDs (10, 100 and 1000 µg/L) individually and combined. Oxidative stress enzymes (catalase, superoxide dismutase and glutathione S-transferase), lipid peroxidation, HSP70 and total ubiquitin were assessed. In general, results suggest low to moderate toxicity as shown by the increase in catalase activity and lipid peroxidation levels. The QDs (ZnS and CdS) appear to cause more adverse effects singly than when tested combined. However, LPO results suggest that exposure to CdS singly caused more oxidative stress in zebrafish than ZnS or when the two QDs were tested combined. Levels of Zn and Cd measured in fish tissues indicate that both elements were bioaccumulated by fish and the concentrations increased in tissues according to the concentrations tested. The increase in HSP70 measured in fish exposed to 100 µg ZnS-QDs/L may be associated with high levels of Zn determined in fish tissues. No significant changes were detected for total ubiquitin. More experiments should be performed to fully understand the effects of QDs exposure to aquatic biota.
Collapse
Affiliation(s)
- Beatriz Matos
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (B.M.); ; (M.M.); (A.C.S.)
- MARE—Marine and Environmental Sciences Centre, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Marta Martins
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (B.M.); ; (M.M.); (A.C.S.)
- MARE—Marine and Environmental Sciences Centre, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Antonio Cid Samamed
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (B.M.); ; (M.M.); (A.C.S.)
- LAQV/REQUIMTE—Laboratório Associado para a Química Verde, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - David Sousa
- CENIMAT/I3N—Centro de Investigação de Materiais /Institute for Nanostructures, Nanomodelling and Nanofabrication, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (D.S.); (I.F.)
| | - Isabel Ferreira
- CENIMAT/I3N—Centro de Investigação de Materiais /Institute for Nanostructures, Nanomodelling and Nanofabrication, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (D.S.); (I.F.)
| | - Mário S. Diniz
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (B.M.); ; (M.M.); (A.C.S.)
| |
Collapse
|
7
|
Elespuru R, Pfuhler S, Aardema MJ, Chen T, Doak SH, Doherty A, Farabaugh CS, Kenny J, Manjanatha M, Mahadevan B, Moore MM, Ouédraogo G, Stankowski LF, Tanir JY. Genotoxicity Assessment of Nanomaterials: Recommendations on Best Practices, Assays, and Methods. Toxicol Sci 2019; 164:391-416. [PMID: 29701824 DOI: 10.1093/toxsci/kfy100] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nanomaterials (NMs) present unique challenges in safety evaluation. An international working group, the Genetic Toxicology Technical Committee of the International Life Sciences Institute's Health and Environmental Sciences Institute, has addressed issues related to the genotoxicity assessment of NMs. A critical review of published data has been followed by recommendations on methods alterations and best practices for the standard genotoxicity assays: bacterial reverse mutation (Ames); in vitro mammalian assays for mutations, chromosomal aberrations, micronucleus induction, or DNA strand breaks (comet); and in vivo assays for genetic damage (micronucleus, comet and transgenic mutation assays). The analysis found a great diversity of tests and systems used for in vitro assays; many did not meet criteria for a valid test, and/or did not use validated cells and methods in the Organization for Economic Co-operation and Development Test Guidelines, and so these results could not be interpreted. In vivo assays were less common but better performed. It was not possible to develop conclusions on test system agreement, NM activity, or mechanism of action. However, the limited responses observed for most NMs were consistent with indirect genotoxic effects, rather than direct interaction of NMs with DNA. We propose a revised genotoxicity test battery for NMs that includes in vitro mammalian cell mutagenicity and clastogenicity assessments; in vivo assessments would be added only if warranted by information on specific organ exposure or sequestration of NMs. The bacterial assays are generally uninformative for NMs due to limited particle uptake and possible lack of mechanistic relevance, and are thus omitted in our recommended test battery for NM assessment. Recommendations include NM characterization in the test medium, verification of uptake into target cells, and limited assay-specific methods alterations to avoid interference with uptake or endpoint analysis. These recommendations are summarized in a Roadmap guideline for testing.
Collapse
Affiliation(s)
- Rosalie Elespuru
- Division of Biology, Chemistry and Materials Science, US Food and Drug Administration, CDRH/OSEL, Silver Spring, Maryland 20993
| | - Stefan Pfuhler
- The Procter & Gamble Company, Mason Business Centre, Mason, Ohio 45040
| | | | - Tao Chen
- Division of Genetic and Molecular Toxicology, US Food and Drug Administration, NCTR, Jefferson, Arkansas 72079
| | - Shareen H Doak
- Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, UK
| | - Ann Doherty
- Discovery Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca Genetic Toxicology, AstraZeneca, Cambridge CB4 0WG, UK
| | | | - Julia Kenny
- Genetic Toxicology & Photosafety, David Jack Centre for Research & Development, GlaxoSmithKline, Ware, Hertfordshire SG12 0DP, UK
| | - Mugimane Manjanatha
- Division of Genetic and Molecular Toxicology, US Food and Drug Administration, NCTR, Jefferson, Arkansas 72079
| | - Brinda Mahadevan
- Global Pre-clinical Development Innovation & Development, Established Pharmaceuticals, Abbott, Mumbai 400072, India
| | | | | | | | - Jennifer Y Tanir
- ILSI Health and Environmental Sciences Institute (HESI), Washington, District of Columbia 20005
| |
Collapse
|
8
|
Rotomskis R, Jurgelėnė Ž, Stankevičius M, Stankevičiūtė M, Kazlauskienė N, Jokšas K, Montvydienė D, Kulvietis V, Karabanovas V. Interaction of carboxylated CdSe/ZnS quantum dots with fish embryos: Towards understanding of nanoparticles toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:1280-1291. [PMID: 29710581 DOI: 10.1016/j.scitotenv.2018.04.206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/15/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Due to colloidal instability even with protective coatings, nanoparticles tend to aggregate in complex environments and possibly interact with biota. In this study, visualization of quantum dots (QDs) interaction with rainbow trout (Oncorhynchus mykiss) embryos was performed. Studies on zebrafish (Danio rerio) and pearl gourami (Trichogaster leerii) embryos have shown that QDs interact with embryos in a general manner and their affects are independent on the type of the embryo. It was demonstrated that carboxylated CdSe/ZnS QDs (4 nM) were aggregating in accumulation media and formed agglomerates on the surface of fish embryos under 1-12 days incubation in deep-well water. Detailed analysis of QDs distribution on fish embryos surface and investigation of the penetration of QDs through embryo's membrane showed that the chorion protects embryos from the penetration through the chorion and the accumulation of nanoparticles inside the embryos. Confocal microscopy and spectroscopy studies on rainbow trout embryos demonstrated that QDs cause chorion damage, due to QDs aggregation on the surface of chorion, even the formation of the agglomerates at the outer part of the embryos and/or with the mucus were detected. Aggregation of QDs and formation of agglomerates on the outer part of the embryo's membrane caused the intervention of the aggregates to the chorion and even partially destroyed the embryo's chorion. The incorporation of QDs in chorion was confirmed by two methods: in living embryos from a 3D reconstruction view, and in slices of embryos from a histology view. The damage of chorion integrity might have adverse effects on embryonic development. Moreover, for the first time the toxic effect of QDs was separated from the heavy metal toxicity, which is most commonly discussed in the literature to the toxicity of the QDs.
Collapse
Affiliation(s)
- Ričardas Rotomskis
- Laboratory of Biomedical Physics, National Cancer Institute, Baublio st. 3b, LT-08660 Vilnius, Lithuania; Biophotonics Group of Laser Research Center, Vilnius University, Sauletekio ave. 9, LT-10222 Vilnius, Lithuania.
| | - Živilė Jurgelėnė
- Laboratory of Ecology and Physiology of Hydrobionts, Nature Research Centre, Akademijos st. 2, LT-08412 Vilnius, Lithuania.
| | - Mantas Stankevičius
- Laboratory of Biomedical Physics, National Cancer Institute, Baublio st. 3b, LT-08660 Vilnius, Lithuania; Biophotonics Group of Laser Research Center, Vilnius University, Sauletekio ave. 9, LT-10222 Vilnius, Lithuania
| | - Milda Stankevičiūtė
- Laboratory of Genotoxicology, Nature Research Centre, Akademijos st. 2, LT-08412 Vilnius, Lithuania
| | - Nijolė Kazlauskienė
- Laboratory of Ecology and Physiology of Hydrobionts, Nature Research Centre, Akademijos st. 2, LT-08412 Vilnius, Lithuania
| | - Kęstutis Jokšas
- Geology and Geography Institute of Nature Research Centre, Akademijos st. 2, LT-08412 Vilnius, Lithuania; Vilnius University, Faculty of Chemistry and Geosciences, Naugarduko st. 24, LT-03225 Vilnius, Lithuania
| | - Danguolė Montvydienė
- Laboratory of Ecology and Physiology of Hydrobionts, Nature Research Centre, Akademijos st. 2, LT-08412 Vilnius, Lithuania
| | - Vytautas Kulvietis
- Laboratory of Biomedical Physics, National Cancer Institute, Baublio st. 3b, LT-08660 Vilnius, Lithuania
| | - Vitalijus Karabanovas
- Laboratory of Biomedical Physics, National Cancer Institute, Baublio st. 3b, LT-08660 Vilnius, Lithuania; Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio ave. 11, LT-10223 Vilnius, Lithuania
| |
Collapse
|
9
|
Pandey RK, Prajapati VK. Molecular and immunological toxic effects of nanoparticles. Int J Biol Macromol 2017; 107:1278-1293. [PMID: 29017884 DOI: 10.1016/j.ijbiomac.2017.09.110] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/21/2017] [Accepted: 09/27/2017] [Indexed: 02/07/2023]
Abstract
Nanoparticles have emerged as a boon for the public health applications such as drug delivery, diagnostic, and imaging. Biodegradable and non-bio degradable nanoparticles have been used at a large scale level to increase the efficiency of the biomedical process at the cellular, animal and human level. Exponential use of nanoparticles reinforces the adverse immunological changes at the human health level. Physical and chemical properties of nanoparticles often lead to a variety of immunotoxic effects such as activation of stress-related genes, membrane disruption, and release of pro-inflammatory cytokines. Delivered nanoparticles in animal or human interact with various components of the immune system such as lymphocytes, macrophages, neutrophils etc. Nanoparticles delivered above the threshold level damages the cellular physiology by the generation of reactive oxygen and nitrogen species. This review article represents the potential of nanoparticles in the field of nanomedicine and provides the critical evidence which leads to develop immunotoxicity in living cells and organisms by altering immunological responses.
Collapse
Affiliation(s)
- Rajan Kumar Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Kishangarh, 305817, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Kishangarh, 305817, Ajmer, Rajasthan, India.
| |
Collapse
|
10
|
Châtel A, Mouneyrac C. Signaling pathways involved in metal-based nanomaterial toxicity towards aquatic organisms. Comp Biochem Physiol C Toxicol Pharmacol 2017; 196:61-70. [PMID: 28344012 DOI: 10.1016/j.cbpc.2017.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/10/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
Abstract
Environmental risk assessment of engineered nanomaterials (ENMs) is an emergent field since nanotechnology industry is rapidly growing due to the interesting physicochemical properties of nanomaterials. Metal-based nanomaterials are among the most rapidly commercialized materials and their toxicity towards aquatic animals has been investigated at different levels of the biological organization. The objective of this synthesis review is to give an overview of the signaling molecules that have a key role in metal-based NM mediated cytotoxicity in both marine and freshwater organisms. Since toxicity of metal-based NMs could be (partly) due to metal dissolution, this review only highlights studies that showed a specific nano-effect. From this bibliographic study, three mechanisms (detoxification, immunomodulation and genotoxicity) have been selected as they represent the major cell defense mechanisms and the most studied ones following ENM exposure. This better understanding of NM-mediated cytotoxicity may provide a sound basis for designing environmentally safer nanomaterials.
Collapse
Affiliation(s)
- Amélie Châtel
- Université Catholique de l'Ouest, UBL, MMS EA 2160, 3 Place André Leroy, 49000 Angers, France.
| | - Catherine Mouneyrac
- Université Catholique de l'Ouest, UBL, MMS EA 2160, 3 Place André Leroy, 49000 Angers, France
| |
Collapse
|
11
|
Rocha TL, Mestre NC, Sabóia-Morais SMT, Bebianno MJ. Environmental behaviour and ecotoxicity of quantum dots at various trophic levels: A review. ENVIRONMENT INTERNATIONAL 2017; 98:1-17. [PMID: 27745949 DOI: 10.1016/j.envint.2016.09.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/26/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Despite the wide application of quantum dots (QDs) in electronics, pharmacy and nanomedicine, limited data is available on their environmental health risk. To advance our current understanding of the environmental impact of these engineered nanomaterials, the aim of this review is to give a detailed insight on the existing information concerning the behaviour, transformation and fate of QDs in the aquatic environment, as well as on its mode of action (MoA), ecotoxicity, trophic transfer and biomagnification at various trophic levels (micro-organisms, aquatic invertebrates and vertebrates). Data show that several types of Cd-based QDs, even at low concentrations (<mgCdL-1), induce different toxic effects compared to their dissolved counterpart, indicating nano-specific ecotoxicity. QD ecotoxicity at different trophic levels is highly dependent on its physico-chemical properties, environmental conditions, concentration and exposure time, as well as, species, while UV irradiation increases its toxicity. The state of the art regarding the MoA of QDs according to taxonomic groups is summarised and illustrated. Accumulation and trophic transfer of QDs was observed in freshwater and seawater species, while limited biomagnification and detoxification processes were detected. Finally, current knowledge gaps are discussed and recommendations for future research identified. Overall, the knowledge available indicates that in order to develop sustainable nanotechnologies there is an urgent need to develop Cd-free QDs and new "core-shell-conjugate" QD structures.
Collapse
Affiliation(s)
- Thiago Lopes Rocha
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Laboratory of Cellular Behavior, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Nélia C Mestre
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | | | - Maria João Bebianno
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
12
|
Galdiero E, Siciliano A, Maselli V, Gesuele R, Guida M, Fulgione D, Galdiero S, Lombardi L, Falanga A. An integrated study on antimicrobial activity and ecotoxicity of quantum dots and quantum dots coated with the antimicrobial peptide indolicidin. Int J Nanomedicine 2016; 11:4199-211. [PMID: 27616887 PMCID: PMC5008656 DOI: 10.2147/ijn.s107752] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This study attempts to evaluate the antimicrobial activity and the ecotoxicity of quantum dots (QDs) alone and coated with indolicidin. To meet this objective, we tested the level of antimicrobial activity on Gram-positive and Gram-negative bacteria, and we designed an ecotoxicological battery of test systems and indicators able to detect different effects using a variety of end points. The antibacterial activity was analyzed against Staphylococcus aureus (ATCC 6538), Pseudomonas aeruginosa (ATCC 1025), Escherichia coli (ATCC 11229), and Klebsiella pneumoniae (ATCC 10031), and the results showed an improved germicidal action of QDs-Ind. Toxicity studies on Daphnia magna indicated a decrease in toxicity for QDs-Ind compared to QDs alone, lack of bioluminescence inhibition on Vibrio fisheri, and no mutations in Salmonella typhimurium TA 100. The comet assay and oxidative stress experiments performed on D. magna showed a genotoxic and an oxidative damage with a dose-response trend. Indolicidin retained its activity when bound to QDs. We observed an enhanced activity for QDs-Ind. The presence of indolicidin on the surface of QDs was able to decrease its QDs toxicity.
Collapse
Affiliation(s)
- Emilia Galdiero
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | | | - Valeria Maselli
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Renato Gesuele
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Domenico Fulgione
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Stefania Galdiero
- Department of Pharmacy and Cirpeb, University of Naples "Federico II", Naples, Italy
| | - Lucia Lombardi
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - Annarita Falanga
- Department of Pharmacy and Cirpeb, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
13
|
Rocha TL, Gomes T, Durigon EG, Bebianno MJ. Subcellular partitioning kinetics, metallothionein response and oxidative damage in the marine mussel Mytilus galloprovincialis exposed to cadmium-based quantum dots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 554-555:130-141. [PMID: 26950627 DOI: 10.1016/j.scitotenv.2016.02.168] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 06/05/2023]
Abstract
The environmental health impact of metal-based nanomaterials is of emerging concern, but their metabolism and detoxification pathways in marine bioindicator species remain unclear. This study investigated the role of subcellular partitioning kinetics, metallothioneins (MTs) response and oxidative damage (lipid peroxidation - LPO) in the marine mussel Mytilus galloprovincialis exposed to CdTe quantum dots (QDs) in comparison with its dissolved counterpart. Mussels were exposed to QDs and dissolved Cd for 21 days at 10 μg Cd L(-1) followed by a 50 days depuration. Higher Cd concentrations were detected in fractions containing mitochondria, nucleus and lysosomes, suggesting potential subcellular targets of QDs toxicity in mussel tissues. Tissue specific metabolism patterns were observed in mussels exposed to both Cd forms. Although MT levels were directly associated with Cd in both forms, QDs subcellular partitioning is linked to biologically active metal (BAM), but no increase in LPO occurred, while in the case of dissolved Cd levels are in the biologically detoxified metal (BDM) form, indicating nano-specific effects. Mussel gills showed lower detoxification capability of QDs, while the digestive gland is the major tissue for storage and detoxification of both Cd forms. Both mussel tissues were unable to completely eliminate the Cd accumulated in the QDs form (estimated half-life time>50 days), highlighting the potential source of Cd and QDs toxicity for human and environmental health. Results indicate tissue specific metabolism patterns and nano-specific effects in marine mussel exposed to QDs.
Collapse
Affiliation(s)
- Thiago Lopes Rocha
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Tânia Gomes
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Emerson Giuliani Durigon
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Maria João Bebianno
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
14
|
Alaraby M, Demir E, Hernández A, Marcos R. Assessing potential harmful effects of CdSe quantum dots by using Drosophila melanogaster as in vivo model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 530-531:66-75. [PMID: 26026410 DOI: 10.1016/j.scitotenv.2015.05.069] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/12/2015] [Accepted: 05/17/2015] [Indexed: 06/04/2023]
Abstract
Since CdSe QDs are increasingly used in medical and pharmaceutical sciences careful and systematic studies to determine their biosafety are needed. Since in vivo studies produce relevant information complementing in vitro data, we promote the use of Drosophila melanogaster as a suitable in vivo model to detect toxic and genotoxic effects associated with CdSe QD exposure. Taking into account the potential release of cadmium ions, QD effects were compared with those obtained with CdCl2. Results showed that CdSe QDs penetrate the intestinal barrier of the larvae reaching the hemolymph, interacting with hemocytes, and inducing dose/time dependent significant genotoxic effects, as determined by the comet assay. Elevated ROS production, QD biodegradation, and significant disturbance in the conserved Hsps, antioxidant and p53 genes were also observed. Overall, QD effects were milder than those induced by CdCl2 suggesting the role of Cd released ions in the observed harmful effects of Cd based QDs. To reduce the observed side-effects of Cd based QDs biocompatible coats would be required to avoid cadmium's undesirable effects.
Collapse
Affiliation(s)
- Mohamed Alaraby
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Spain; Sohag University, Faculty of Sciences, Zoology Department, 82524-Campus, Sohag, Egypt
| | - Esref Demir
- Akdeniz University, Faculty of Sciences, Department of Biology, 07058-Campus, Antalya, Turkey
| | - Alba Hernández
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Spain; CIBER Epidemiología y Salud Pública, ISCIII, Madrid, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Spain; CIBER Epidemiología y Salud Pública, ISCIII, Madrid, Spain.
| |
Collapse
|
15
|
Rocha TL, Gomes T, Sousa VS, Mestre NC, Bebianno MJ. Ecotoxicological impact of engineered nanomaterials in bivalve molluscs: An overview. MARINE ENVIRONMENTAL RESEARCH 2015; 111:74-88. [PMID: 26152602 DOI: 10.1016/j.marenvres.2015.06.013] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 06/16/2015] [Accepted: 06/22/2015] [Indexed: 06/04/2023]
Abstract
The increasing production and application of engineered nanomaterials (ENMs) in consumer products over the past decade will inevitably lead to their release into aquatic systems and thereby cause the exposure to aquatic organisms, resulting in growing environmental and human health concern. Since bivalves are widely used in the monitoring of aquatic pollution, the aim of this review was to compile and analyse data concerning the ecotoxicity of ENMs using bivalve molluscs. The state of the art regarding the experimental approach, characterization, behaviour, fate, bioaccumulation, tissue and subcellular distribution and mechanisms of toxicity of ENMs in marine and freshwater bivalve molluscs is summarized to achieve a new insight into the mode of action of these nanoparticles in invertebrate organisms. This review shows that the studies about the toxic effects of ENMs in bivalves were conducted mainly with seawater species compared to freshwater ones and that the genus Mytilus is the main taxa used as a model system. There is no standardization of experimental approaches for toxicity testing and reviewed data indicate the need to develop standard protocols for ENMs ecotoxicological testing. In general, the main organ for ENM accumulation is the digestive gland and their cellular fate differs according to nano-specific properties, experimental conditions and bivalve species. Endosomal-lysosomal system and mitochondria are the major cellular targets of ENMs. Metal based ENMs mode of action is related mainly to the dissolution and/or release of the chemical component of the particle inducing immunotoxicity, oxidative stress and cellular injury to proteins, membrane and DNA damage. This review indicates that the aquatic environment is the potential ultimate fate for ENMs and confirms that bivalve molluscs are key model species for monitoring aquatic pollution by ENMs.
Collapse
Affiliation(s)
- Thiago Lopes Rocha
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Tânia Gomes
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Vânia Serrão Sousa
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Nélia C Mestre
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Maria João Bebianno
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
16
|
Manshian BB, Soenen SJ, Brown A, Hondow N, Wills J, Jenkins GJS, Doak SH. Genotoxic capacity of Cd/Se semiconductor quantum dots with differing surface chemistries. Mutagenesis 2015; 31:97-106. [PMID: 26275419 PMCID: PMC4696518 DOI: 10.1093/mutage/gev061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Quantum dots (QD) have unique electronic and optical properties promoting biotechnological advances. However, our understanding of the toxicological structure–activity relationships remains limited. This study aimed to determine the biological impact of varying nanomaterial surface chemistry by assessing the interaction of QD with either a negative (carboxyl), neutral (hexadecylamine; HDA) or positive (amine) polymer coating with human lymphoblastoid TK6 cells. Following QD physico-chemical characterisation, cellular uptake was quantified by optical and electron microscopy. Cytotoxicity was evaluated and genotoxicity was characterised using the micronucleus assay (gross chromosomal damage) and the HPRT forward mutation assay (point mutagenicity). Cellular damage mechanisms were also explored, focusing on oxidative stress and mitochondrial damage. Cell uptake, cytotoxicity and genotoxicity were found to be dependent on QD surface chemistry. Carboxyl-QD demonstrated the smallest agglomerate size and greatest cellular uptake, which correlated with a dose dependent increase in cytotoxicity and genotoxicity. Amine-QD induced minimal cellular damage, while HDA-QD promoted substantial induction of cell death and genotoxicity. However, HDA-QD were not internalised by the cells and the damage they caused was most likely due to free cadmium release caused by QD dissolution. Oxidative stress and induced mitochondrial reactive oxygen species were only partially associated with cytotoxicity and genotoxicity induced by the QD, hence were not the only mechanisms of importance. Colloidal stability, nanoparticle (NP) surface chemistry, cellular uptake levels and the intrinsic characteristics of the NPs are therefore critical parameters impacting genotoxicity induced by QD.
Collapse
Affiliation(s)
- Bella B Manshian
- Institute of Life Science, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK, Biomedical NMR Unit-MoSAIC, Department of Medicine, KU Leuven, B-3000 Leuven, Belgium and
| | - Stefaan J Soenen
- Biomedical NMR Unit-MoSAIC, Department of Medicine, KU Leuven, B-3000 Leuven, Belgium and
| | - Andy Brown
- Institute for Materials Research, SCaPE, University of Leeds, Leeds LS2 9JT, UK
| | - Nicole Hondow
- Institute for Materials Research, SCaPE, University of Leeds, Leeds LS2 9JT, UK
| | - John Wills
- Institute of Life Science, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Gareth J S Jenkins
- Institute of Life Science, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Shareen H Doak
- Institute of Life Science, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK,
| |
Collapse
|
17
|
Optical imaging, biodistribution and toxicity of orally administered quantum dots loaded heparin-deoxycholic acid. Macromol Res 2015. [DOI: 10.1007/s13233-015-3092-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Saez G, Aye M, De Meo M, Aimé A, Bestel I, Barthélémy P, Di Giorgio C. Genotoxic and oxidative responses in coelomocytes of Eisenia fetida and Hediste diversicolor exposed to lipid-coated CdSe/ZnS quantum dots and CdCl2. ENVIRONMENTAL TOXICOLOGY 2015; 30:918-926. [PMID: 24500942 DOI: 10.1002/tox.21966] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 12/09/2013] [Accepted: 01/24/2014] [Indexed: 06/03/2023]
Abstract
The emerging of Quantum Dots utilization in industrial or medicinal fields involved a potentially increase of these nanoparticles in environment. In this work, the genotoxic (comet assay) and oxidative effects (SOD activity, TBARS) of functionalized-QDs and cadmium chloride were investigated on Hediste diversicolor and Eisenia fetida coelomocytes. Results demonstrated that functionalized-QDs (QDNs) and cadmium chloride induced DNA damages through different mechanisms that depended on the nano- or ionic nature of Cd. The minimal genotoxic concentrations for H. diversicolor (<0.001ng/g for QDNs and CdCl2 ) were lower than for E. fetida (between 0.01 and 0.1 ng/g for QDNs, and between 0.001 and 0.01 ng/g for CdCl2 ). These results showed that H. diversicolor was more sensitive than E. fetida. The two contaminants had a low impact on the oxidative stress markers.
Collapse
Affiliation(s)
- Gladys Saez
- Laboratoire de Mutagenèse Environnementale, Institut Méditerranéen de Biodiversité et d'Ecologie, Faculté de Pharmacie, Aix-Marseille Université, 27 Bd Jean Moulin, 13385, Marseille, Cedex 05, France
| | - Mélanie Aye
- Laboratoire de Mutagenèse Environnementale, Institut Méditerranéen de Biodiversité et d'Ecologie, Faculté de Pharmacie, Aix-Marseille Université, 27 Bd Jean Moulin, 13385, Marseille, Cedex 05, France
| | - Michel De Meo
- Laboratoire de Mutagenèse Environnementale, Institut Méditerranéen de Biodiversité et d'Ecologie, Faculté de Pharmacie, Aix-Marseille Université, 27 Bd Jean Moulin, 13385, Marseille, Cedex 05, France
| | - Ahissan Aimé
- INSERM, U869, ARNA Laboratory, F-33000, Bordeaux, France
- University of Bordeaux, ARNA Laboratory, F-33000, Bordeaux, France
| | - Isabelle Bestel
- INSERM, U869, ARNA Laboratory, F-33000, Bordeaux, France
- University of Bordeaux, ARNA Laboratory, F-33000, Bordeaux, France
| | - Philippe Barthélémy
- INSERM, U869, ARNA Laboratory, F-33000, Bordeaux, France
- University of Bordeaux, ARNA Laboratory, F-33000, Bordeaux, France
| | - Carole Di Giorgio
- Laboratoire de Mutagenèse Environnementale, Institut Méditerranéen de Biodiversité et d'Ecologie, Faculté de Pharmacie, Aix-Marseille Université, 27 Bd Jean Moulin, 13385, Marseille, Cedex 05, France
| |
Collapse
|
19
|
Karlsson HL, Di Bucchianico S, Collins AR, Dusinska M. Can the comet assay be used reliably to detect nanoparticle-induced genotoxicity? ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:82-96. [PMID: 25488706 DOI: 10.1002/em.21933] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/17/2014] [Indexed: 06/04/2023]
Abstract
The comet assay is a sensitive method to detect DNA strand breaks as well as oxidatively damaged DNA at the level of single cells. Today the assay is commonly used in nano-genotoxicology. In this review we critically discuss possible interactions between nanoparticles (NPs) and the comet assay. Concerns for such interactions have arisen from the occasional observation of NPs in the "comet head", which implies that NPs may be present while the assay is being performed. This could give rise to false positive or false negative results, depending on the type of comet assay endpoint and NP. For most NPs, an interaction that substantially impacts the comet assay results is unlikely. For photocatalytically active NPs such as TiO2 , on the other hand, exposure to light containing UV can lead to increased DNA damage. Samples should therefore not be exposed to such light. By comparing studies in which both the comet assay and the micronucleus assay have been used, a good consistency between the assays was found in general (69%); consistency was even higher when excluding studies on TiO2 NPs (81%). The strong consistency between the comet and micronucleus assays for a range of different NPs-even though the two tests measure different endpoints-implies that both can be trusted in assessing the genotoxicity of NPs, and that both could be useful in a standard battery of test methods.
Collapse
Affiliation(s)
- Hanna L Karlsson
- Nanosafety and Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
20
|
Manshian BB, Soenen SJ, Al-Ali A, Brown A, Hondow N, Wills J, Jenkins GJS, Doak SH. Cell type-dependent changes in CdSe/ZnS quantum dot uptake and toxic endpoints. Toxicol Sci 2015; 144:246-58. [PMID: 25601991 PMCID: PMC4372665 DOI: 10.1093/toxsci/kfv002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Toxicity of nanoparticles (NPs) is often correlated with the physicochemical characteristics of the materials. However, some discrepancies are noted in in-vitro studies on quantum dots (QDs) with similar physicochemical properties. This is partly related to variations in cell type. In this study, we show that epithelial (BEAS-2B), fibroblast (HFF-1), and lymphoblastoid (TK6) cells show different biological responses following exposure to QDs. These cells represented the 3 main portals of NP exposure: bronchial, skin, and circulatory. The uptake and toxicity of negatively and positively charged CdSe:ZnS QDs of the same core size but with different surface chemistries (carboxyl or amine polymer coatings) were investigated in full and reduced serum containing media following 1 and 3 cell cycles. Following thorough physicochemical characterization, cellular uptake, cytotoxicity, and gross chromosomal damage were measured. Cellular damage mechanisms in the form of reactive oxygen species and the expression of inflammatory cytokines IL-8 and TNF-α were assessed. QDs uptake and toxicity significantly varied in the different cell lines. BEAS-2B cells demonstrated the highest level of QDs uptake yet displayed a strong resilience with minimal genotoxicity following exposure to these NPs. In contrast, HFF-1 and TK6 cells were more susceptible to toxicity and genotoxicity, respectively, as a result of exposure to QDs. Thus, this study demonstrates that in addition to nanomaterial physicochemical characterization, a clear understanding of cell type-dependent variation in uptake coupled to the inherently different capacities of the cell types to cope with exposure to these exogenous materials are all required to predict genotoxicity.
Collapse
Affiliation(s)
- Bella B Manshian
- *Institute of Life Science, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK, Department of Medicine, Biomedical NMR Unit-MoSAIC, KU Leuven, B-3000 Leuven, Belgium and Institute for Materials Research, SCaPE, University of Leeds, Leeds LS2 9JT, UK *Institute of Life Science, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK, Department of Medicine, Biomedical NMR Unit-MoSAIC, KU Leuven, B-3000 Leuven, Belgium and Institute for Materials Research, SCaPE, University of Leeds, Leeds LS2 9JT, UK
| | - Stefaan J Soenen
- *Institute of Life Science, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK, Department of Medicine, Biomedical NMR Unit-MoSAIC, KU Leuven, B-3000 Leuven, Belgium and Institute for Materials Research, SCaPE, University of Leeds, Leeds LS2 9JT, UK
| | - Abdullah Al-Ali
- *Institute of Life Science, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK, Department of Medicine, Biomedical NMR Unit-MoSAIC, KU Leuven, B-3000 Leuven, Belgium and Institute for Materials Research, SCaPE, University of Leeds, Leeds LS2 9JT, UK
| | - Andy Brown
- *Institute of Life Science, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK, Department of Medicine, Biomedical NMR Unit-MoSAIC, KU Leuven, B-3000 Leuven, Belgium and Institute for Materials Research, SCaPE, University of Leeds, Leeds LS2 9JT, UK
| | - Nicole Hondow
- *Institute of Life Science, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK, Department of Medicine, Biomedical NMR Unit-MoSAIC, KU Leuven, B-3000 Leuven, Belgium and Institute for Materials Research, SCaPE, University of Leeds, Leeds LS2 9JT, UK
| | - John Wills
- *Institute of Life Science, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK, Department of Medicine, Biomedical NMR Unit-MoSAIC, KU Leuven, B-3000 Leuven, Belgium and Institute for Materials Research, SCaPE, University of Leeds, Leeds LS2 9JT, UK
| | - Gareth J S Jenkins
- *Institute of Life Science, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK, Department of Medicine, Biomedical NMR Unit-MoSAIC, KU Leuven, B-3000 Leuven, Belgium and Institute for Materials Research, SCaPE, University of Leeds, Leeds LS2 9JT, UK
| | - Shareen H Doak
- *Institute of Life Science, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK, Department of Medicine, Biomedical NMR Unit-MoSAIC, KU Leuven, B-3000 Leuven, Belgium and Institute for Materials Research, SCaPE, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
21
|
Mei J, Yang LY, Lai L, Xu ZQ, Wang C, Zhao J, Jin JC, Jiang FL, Liu Y. The interactions between CdSe quantum dots and yeast Saccharomyces cerevisiae: adhesion of quantum dots to the cell surface and the protection effect of ZnS shell. CHEMOSPHERE 2014; 112:92-99. [PMID: 25048893 DOI: 10.1016/j.chemosphere.2014.03.071] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/13/2014] [Accepted: 03/16/2014] [Indexed: 06/03/2023]
Abstract
The interactions between quantum dots (QDs) and biological systems have attracted increasing attention due to concerns on possible toxicity of the nanoscale materials. The biological effects of CdSe QDs and CdSe/ZnS QDs with nearly identical hydrodynamic size on Saccharomyces cerevisiae were investigated via microcalorimetric, spectroscopic and microscopic methods, demonstrating a toxic order CdSe>CdSe/ZnS QDs. CdSe QDs damaged yeast cell wall and reduced the mitochondrial membrane potential. Noteworthy, adhesion of QDs to the yeast cell surface renders this work a good example of interaction site at cell surface, and the epitaxial coating of ZnS could greatly reduce the toxicity of Cd-containing QDs. These results will contribute to the safety evaluation of quantum dots, and provide valuable information for design of nanomaterials.
Collapse
Affiliation(s)
- Jie Mei
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Li-Yun Yang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Lu Lai
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Zi-Qiang Xu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Can Wang
- College of Life Science and Chemistry, Wuhan Donghu University, Wuhan 430212, PR China
| | - Jie Zhao
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Jian-Cheng Jin
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Feng-Lei Jiang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
| | - Yi Liu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
22
|
Rocha TL, Gomes T, Cardoso C, Letendre J, Pinheiro JP, Sousa VS, Teixeira MR, Bebianno MJ. Immunocytotoxicity, cytogenotoxicity and genotoxicity of cadmium-based quantum dots in the marine mussel Mytilus galloprovincialis. MARINE ENVIRONMENTAL RESEARCH 2014; 101:29-37. [PMID: 25164019 DOI: 10.1016/j.marenvres.2014.07.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/14/2014] [Accepted: 07/21/2014] [Indexed: 06/03/2023]
Abstract
There is an increased use of Quantum Dot (QDs) in biological and biomedical applications, but little is known about their marine ecotoxicology. So, the aim of this study was to investigate the possible immunocytotoxic, cytogenotoxic and genotoxic effects of cadmium telluride QDs (CdTe QDs) on the marine mussel Mytilus galloprovincialis. Mussels were exposed to 10 μg L(-1) of CdTe QDs or to soluble Cd [Cd(NO3)2] for 14 days and Cd accumulation, immunocytotoxicity [hemocyte density, cell viability, lysosomal membrane stability (LMS), differential cell counts (DCC)], cytogenotoxicity (micronucleus test and nuclear abnormalities assay) and genotoxicity (comet assay) were analyzed. Results show that in vivo exposure to QDs, Cd is accumulated in mussel soft tissues and hemolymph and induce immunotoxic effects mediated by a decrease in LMS, changes in DCC, as well as genotoxicity (DNA damage). However, QDs do not induce significant changes in hemocytes density, cell viability and cytogenetic parameters in opposition to Cd(2+). Soluble Cd is the most cytotoxic and cytogenotoxic form on Mytilus hemocytes due to a higher accumulation of Cd in tissues. Results indicate that immunotoxicity and genotoxicity of CdTe QDs and Cd(2+) are mediated by different modes of action and show that Mytilus hemocytes are important targets for in vivo QDs toxicity.
Collapse
Affiliation(s)
- Thiago Lopes Rocha
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Tânia Gomes
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Cátia Cardoso
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Julie Letendre
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - José Paulo Pinheiro
- IBB/CBME, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Vânia Serrão Sousa
- CENSE, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Margarida Ribau Teixeira
- CENSE, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Maria João Bebianno
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
23
|
McMahan RS, Lee V, Parks WC, Kavanagh TJ, Eaton DL. In vitro approaches to assessing the toxicity of quantum dots. Methods Mol Biol 2014; 1199:155-163. [PMID: 25103807 DOI: 10.1007/978-1-4939-1280-3_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Advances in nanotechnology have produced a new class of fluorescent nanoparticles known as quantum dots (Qdots). Compared with organic dyes and fluorescent proteins, Qdots offer several unique advantages in terms of spectral range, brightness, and photostability. Relative to other imaging modalities, optical imaging with Qdots is highly sensitive, quantitative, and capable of multiplexing. Thus, Qdots are being developed for a wide range of applications, including biomedical imaging. Qdot production has also emerged in a number of industrial applications, such as optoelectronic devices and photovoltaic cells. This widespread development and use of Qdots has outpaced research progress on their potential cytotoxicity, engendering major concerns surrounding occupational, environmental, and diagnostic exposures. Given the extensive physicochemical heterogeneity of Qdots (size, charge, chemical composition, solubility, etc.), high-throughput in vitro cytotoxicity assays represent a feasible means of determining effects of multiple variables and can inform design of lower-throughput in vivo cytotoxicity studies. Here, we describe the application of two commonly used assays, lactate dehydrogenase (LDH) and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS), for detection of Qdot-induced cytotoxicity.
Collapse
Affiliation(s)
- Ryan S McMahan
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | | | | | | | | |
Collapse
|
24
|
Aye M, Di Giorgio C, Mekaouche M, Steinberg JG, Brerro-Saby C, Barthélémy P, De Méo M, Jammes Y. Genotoxicity of intraperitoneal injection of lipoamphiphile CdSe/ZnS quantum dots in rats. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 758:48-55. [DOI: 10.1016/j.mrgentox.2013.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/07/2013] [Accepted: 09/12/2013] [Indexed: 11/15/2022]
|