1
|
Jha AN. Eco-genotoxicology: A personal reflection. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2025:108535. [PMID: 40210508 DOI: 10.1016/j.mrrev.2025.108535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/01/2025] [Indexed: 04/12/2025]
Abstract
This reflective commentary provides a personal viewpoint of developments, over the last 3 decades, in the relatively new, multidisciplinary field of 'eco-genotoxicology,' also called 'genetic ecotoxicology'. It aims to outline the scope of the subject area in relation to the historical development of the discipline, critically categorising accomplishments made, taking into account the available information. It also recognises limitations of the existing information and difficulties encountered in this challenging field. Where appropriate, the article makes comparisons to the advances made in human genetic toxicology and radiation biology. The article critically covers the applications of prevailing and emerging tools being used in the field, such as omics, in vitro methodologies, modelling approaches, and artificial intelligence (AI). It also identifies potential areas of development and attempts to credit some of the important personal contributions made in this exciting and challenging subject in relation to human and environmental health.
Collapse
Affiliation(s)
- Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK.
| |
Collapse
|
2
|
Ferreira MF, Turner A, Payet M, Grisolia C, Malard V, Moore MN, Jha AN. Bioaccumulation and biological effects of hydrogenated cement particles in the marine bivalve, Mytilusgalloprovincialis. CHEMOSPHERE 2024; 359:142243. [PMID: 38759810 DOI: 10.1016/j.chemosphere.2024.142243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/15/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
The decommissioning and normal functioning of nuclear facilities can result in the production and release of airborne particles in the environment. Aquatic biota are expected to be exposed to these particles considering that nuclear facilities are often located near water bodies. Aerosols, such as cement dust, can interact with radionuclides as well as with heavy metals, and therefore elicit not only radiological impacts but also chemical toxicity. In the present study, we aimed to determine the effects of hydrogenated cement particles (HCPs) as a first step before evaluating any radiotoxicity of tritiated cement particles in the marine mussels, Mytilus galloprovincialis. Responses at different levels of biological organisation were assessed, including clearance rate (CR), tissue specific accumulation, DNA damage and transcriptional expression of key stress related genes. Acute (5 h) and medium-term, chronic (11 d) exposures to 1000 μg L-1 HCPs showed that bioaccumulation, assessed using Cu as a proxy and determined by inductively coupled plasma mass spectrometry, was time and tissue dependent. The highest levels of Cu were found in the digestive gland (DG) after 11 d. HCP exposure caused changes in the expression of oxidative and other stress-related genes, including mt20 in DG and gst and sod in the gill after 5 h exposure, while an overexpression of hsp70 in the gill was observed after 11 d. Genotoxic effects in haemocytes were observed after 11 d of HCP exposure. Multivariate analysis indicated that oxidative stress is the most probable factor contributing to overall physiological dysfunction. Our results provide a baseline to perform further studies employing tritiated cement particles. Specifically, future work should focus on the DG since only this tissue showed significant bioaccumulation when compared to the negative control.
Collapse
Affiliation(s)
- María Florencia Ferreira
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, United Kingdom
| | - Andrew Turner
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, PL4 8AA, United Kingdom
| | | | | | - Veronique Malard
- Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Michael N Moore
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, United Kingdom; European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Cornwall, TR1 3LJ, United Kingdom; Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, United Kingdom
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, United Kingdom.
| |
Collapse
|
3
|
Crowther C, Turner A, Moore MN, Jha AN. Assessing the effects of single and binary exposures of copper and lead on Mytilus galloprovincialis: Physiological and genotoxic approaches. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106741. [PMID: 37944325 DOI: 10.1016/j.aquatox.2023.106741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/02/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
It is becoming increasingly recognised that contaminants are not isolated in their threats to the aquatic environment, with recent shifts towards studying the effects of chemical mixtures. In this study, adult marine mussels (Mytilus galloprovincialis) were exposed to two aqueous concentrations of the essential trace metal, Cu (5 and 32 μg L-1), and the non-essential metal, Pb (5 and 25 μg L-1), both individually and in binary mixtures. After a 14-day exposure, metal accumulation was determined in the digestive gland, gill and mantle tissues by inductively coupled plasma-mass spectrometry following acid digestion, and a number of biochemical, neurotoxic and physiological markers were assessed. These included measurements of DNA damage using comet assay, total glutathione concentration, acetylcholinesterase (AChE) activity and clearance rate. Metal accumulation was greater in the digestive gland and gill than in the mantle, and based on computed free ion concentrations, was greater for Pb than for Cu. Copper exhibited an inhibitory effect on Pb accumulation but Pb did not appear to affect Cu accumulation. Comet assay results revealed DNA damage (i.e., genotoxic effects) in all treatments but differences between the exposures were not significant (p > 0.05), and there were no significant differences in AChE activities between treatments. The most distinctive impacts were a reduction in clearance rate resulting from the higher concentration of Cu, with and without Pb, and an increase in glutathione in the gill resulting from the higher concentration of Cu without Pb. Multivariate analysis facilitated the development of a conceptual model based on the current findings and previously published data on the toxicity and intracellular behaviour of Cu and Pb that will assist in the advancement of regulations and guidelines regarding multiple metal contaminants in the environment.
Collapse
Affiliation(s)
- Charlotte Crowther
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Andrew Turner
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| | - Michael N Moore
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK; Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, UK; European Centre for Environment and Human Health (ECEHH), Knowledge Spa, Royal Cornwall Hospital, University of Exeter Medical School, Truro, Cornwall TR1 3HD, UK
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| |
Collapse
|
4
|
Morais T, Moleiro P, Leite C, Coppola F, Pinto J, Henriques B, Soares AMVM, Pereira E, Freitas R. Ecotoxicological impacts of metals in single and co-exposure on mussels: Comparison of observable and predicted results. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163165. [PMID: 37003315 DOI: 10.1016/j.scitotenv.2023.163165] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 06/01/2023]
Abstract
Used in high-tech and everyday products, mercury (Hg), cobalt (Co), and nickel (Ni) are known to be persistent and potentially toxic elements that pose a serious threat to the most vulnerable ecosystems. Despite being on the Priority Hazardous Substances List, existing studies have only assessed the individual toxicity of Co, Ni and Hg in aquatic organisms, with a focus on the latter, ignoring potential synergistic effects that may occur in real-world contamination scenarios. The present study evaluated the responses of the mussel Mytilus galloprovincialis, recognized as a good bioindicator of pollution, after exposure to Hg (25 μg/L), Co (200 μg/L) and Ni (200 μg/L) individually, and to the mixture of the three metals at the same concentration. The exposure lasted 28 days at 17 ± 1 °C, after which metal accumulation and a set of biomarkers related to organisms' metabolic capacity and oxidative status were measured. The results showed that the mussels could accumulate metals in both single- and co-exposure conditions (bioconcentration factors between 115 and 808) and that exposure to metals induced the activation of antioxidant enzymes. Although Hg concentration in organisms in the mixture decreased significantly compared to single exposure (9.4 ± 0.8 vs 21 ± 0.7 mg/kg), the negative effects increased in the mixture of the three elements, resulting in depletion of energy reserves, activation of antioxidants and detoxification enzymes, and cellular damage, with a hormesis response pattern. This study underscores the importance of risk assessment studies that include the effects of the combination of pollutants and demonstrates the limitations of applying models to predict metal mixture toxicity, especially when a hormesis response is given by the organisms.
Collapse
Affiliation(s)
- Tiago Morais
- Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro Moleiro
- Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carla Leite
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - João Pinto
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Henriques
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Eduarda Pereira
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
5
|
Shen H, Nzabanita D, Sinclair GM, Vu H, Grist S, Nugegoda D, Long SM. Changes in metabolic profiles of amphipods Allorchestes compressa after acute exposures to copper, pyrene, and their mixtures. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104120. [PMID: 37019324 DOI: 10.1016/j.etap.2023.104120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
Amphipods are ideal indicators for biomonitoring and ecotoxicological studies of environmental contaminants because they are extensively distributed in aquatic environments, are easy to collect and are important in nutrient cycling. Marine amphipods (Allorchestes compressa) were exposed to two concentrations of copper and pyrene, and their mixtures, for 24 and 48 h. Changes in polar metabolites were assessed using Gas Chromatography Mass Spectrometry (GC-MS)-based untargeted metabolomics. Generally, limited metabolite changes were observed for copper and pyrene single exposures (eight and two significant metabolites, respectively), while 28 metabolites had changed following exposures to mixtures. Furthermore, changes were mainly observed after 24 h but had seemingly returned to control levels after 48 h. Multiple types of metabolites were affected including amino acids, Tricarboxylic acid (TCA) cycle intermediates, sugars, fatty acids, and hormones. This study highlights the sensitivity of metabolomics in assessing the impacts of low concentrations of chemicals compared to traditional ecotoxicological endpoints.
Collapse
Affiliation(s)
- Hao Shen
- School of Science, RMIT-University, Bundoora West Campus, VIC 3083, Australia; Aquatic Environmental Stress (AQUEST) Research Group, School of Science, RMIT-University, Bundoora West Campus, VIC 3083, Australia
| | - Damien Nzabanita
- School of Science, RMIT-University, Bundoora West Campus, VIC 3083, Australia
| | - Georgia M Sinclair
- School of Science, RMIT-University, Bundoora West Campus, VIC 3083, Australia
| | - Hung Vu
- Aquatic Environmental Stress (AQUEST) Research Group, School of Science, RMIT-University, Bundoora West Campus, VIC 3083, Australia
| | - Stephen Grist
- School of Science, RMIT-University, Bundoora West Campus, VIC 3083, Australia
| | - Dayanthi Nugegoda
- School of Science, RMIT-University, Bundoora West Campus, VIC 3083, Australia; Aquatic Environmental Stress (AQUEST) Research Group, School of Science, RMIT-University, Bundoora West Campus, VIC 3083, Australia
| | - Sara M Long
- Aquatic Environmental Stress (AQUEST) Research Group, School of Science, RMIT-University, Bundoora West Campus, VIC 3083, Australia.
| |
Collapse
|
6
|
Vernon EL, Jha AN, Ferreira MF, Slomberg DL, Malard V, Grisolia C, Payet M, Turner A. Bioaccumulation, release and genotoxicity of stainless steel particles in marine bivalve molluscs. CHEMOSPHERE 2022; 303:134914. [PMID: 35588874 DOI: 10.1016/j.chemosphere.2022.134914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
During the decommissioning and removal of radioactive material in nuclear facilities, fine, tritiated dusts of stainless steel, cement or tungsten are generated that could be accidently released to the environment. However, the potential radio- and ecotoxicological effects these tritiated particles may have are unknown. In this study, stainless steel particles (SSPs) representative of those likely to be tritiated are manufactured by hydrogenation and their tissue-specific bioaccumulation, release (depuration) and subsequent genotoxic response have been studied in the marine mussel, Mytilus galloprovincialis, as a baseline for future assessments of the potential effects of tritiated SSPs. Exposure to 1000 μg L-1 of SSPs and adopting Cr as a proxy for stainless steel revealed relatively rapid accumulation (∼5 h) in the various mussel tissues but mostly in the digestive gland. Over longer periods up to 18 days, SSPs were readily rejected and egested as faecal material. DNA strand breaks, as a measure of genotoxicity, were determined at each time point in mussel haemocytes using single cell gel electrophoresis, or the comet assay. Lack of chemical genotoxicity was attributed to the rapid processing of SSP particles and limited dissolution of elemental components of steel. Further work employing tritiated SSPs will enable radio-toxicology to be studied without the confounding effects of chemical toxicity.
Collapse
Affiliation(s)
- Emily L Vernon
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Maria F Ferreira
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Danielle L Slomberg
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Veronique Malard
- Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | | | | | - Andrew Turner
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, United Kingdom.
| |
Collapse
|
7
|
Alnajar N, Jha AN, Turner A. Impacts of microplastic fibres on the marine mussel, Mytilus galloprovinciallis. CHEMOSPHERE 2021; 262:128290. [PMID: 33182139 DOI: 10.1016/j.chemosphere.2020.128290] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/31/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Tumble dryer lint has been employed as a surrogate for synthetic and processed (microplastic) fibres discharged to the environment from laundering activities and exposed to marine mussels (Mytilus galloprovinciallis) in controlled experiments for a period of 7 d. A range of biological responses at different levels of organisation were subsequently determined, with copper employed concurrently as a positive control. Physiological changes were assessed from measurements of clearance rate, histopathological effects were evaluated from abnormalities in (or injuries to) gill and digestive gland tissues, and genetic damage was determined by measuring DNA strand breaks using the comet assay. With increasing lint concentration (over the range 56-180 mg L-1) we observed a reduction in mean clearance rate, increasing extents of abnormality in both gills (e.g. deciliation and hypertrophy) and digestive gland (e.g. atrophy and necrosis), and an increase in damage to DNA. The precise causes of these effects are unclear but likely arise from both the fibrous material itself and from chemicals (e.g. additives and metals) that are mobilised from the polymers into seawater or the digestive tract. The latter assertion is consistent with an observed increase in the release of certain trace elements (e.g. zinc) into the exposure medium with increasing lint concentration. Although microfibre concentrations we employed are significantly greater than those typically encountered in the environment, the results indicate the potential for this type of material to exert a range of adverse effects on exposed marine animals.
Collapse
Affiliation(s)
- Nashami Alnajar
- School of Biological and Marine Sciences and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Awadhesh N Jha
- School of Biological and Marine Sciences and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Andrew Turner
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| |
Collapse
|
8
|
Vernon EL, Moore MN, Bean TP, Jha AN. Evaluation of interactive effects of phosphorus-32 and copper on marine and freshwater bivalve mollusks. Int J Radiat Biol 2020; 98:1106-1119. [PMID: 32970511 DOI: 10.1080/09553002.2020.1823032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Contaminants seldom occur in isolation in the aquatic environment. While pollution of coastal and inland water bodies has received considerable attention to date, there is limited information on potential interactive effects between radionuclides and metals. Whether by accidental or controlled release, such contaminants co-exist in aquatic ecosystems and can pose an enhanced threat to biota. Using a range of biological responses, the study aimed to evaluate relative interactive effects on representative freshwater and marine bivalve species. METHODS An integrated, multi-biomarker approach was adopted to investigate response to copper (Cu, 18 μg L-1), a known environmentally relevant genotoxic metal and differing concentrations of phosphorus-32 (32P; 0.1 and 1 mGy d-1), alone and in combination in marine (Mytilus galloprovincialis) and freshwater (Dreissena polymorpha) mussels. Genetic and molecular biomarkers were determined post-exposure and included DNA damage (as measured by the comet assay), micronuclei (MN) formation, γ-H2AX foci induction and the expression of key stress-related genes (i.e. hsp70/90, sod, cat, gst). RESULTS Overall, using a tissue-specific (i.e. gill and digestive gland) approach, genotoxic response was reflective of exposures where Cu had a slight additive effect on 32P-induced damage across the species (but not all), cell types and dose rates. Multivariate analysis found significant correlations between comet and γ-H2AX assays, across both the tissues. Transcriptional expression of selected genes were generally unaltered in response to contaminant exposures, independent of species or tissues. CONCLUSIONS Our study is the first to explore the interactive effects of ionizing radiation (IR) and Cu on two bivalve species representing two ecological habitats. The complexity of IR-metal interactions demonstrate that extrapolation of findings obtained from single stressor studies into field conditions could be misrepresentative of real-world environments. In turn, environmental protective strategies deemed suitable in protecting biota from a single, isolated stressor may not be wholly adequate.
Collapse
Affiliation(s)
- Emily L Vernon
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Michael N Moore
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK.,European Centre for Environment and Human Health (ECEHH), University of Exeter Medical School, Truro, UK.,Plymouth Marine Laboratory, Plymouth, UK
| | | | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
9
|
Salimi A, Jamali Z, Atashbar S, Khezri S, Ghorbanpour AM, Etefaghi N. Pathogenic Mechanisms and Therapeutic Implication in Nickel-Induced Cell Damage. Endocr Metab Immune Disord Drug Targets 2020; 20:968-984. [DOI: 10.2174/1871530320666200214123118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/24/2019] [Accepted: 03/07/2019] [Indexed: 11/22/2022]
Abstract
Background:
Nickel (Ni) is mostly applied in a number of industrial areas such as printing
inks, welding, alloys, electronics and electrical professions. Occupational or environmental exposure to
nickel may lead to cancer, allergy reaction, nephrotoxicity, hepatotoxicity, neurotoxicity, as well as
cell damage, apoptosis and oxidative stress.
Methods:
In here, we focused on published studies about cell death, carcinogenicity, allergy reactions
and neurotoxicity, and promising agents for the prevention and treatment of the toxicity by Ni.
Results:
Our review showed that in the last few years, more researches have focused on reactive oxygen
species formation, oxidative stress, DNA damages, apoptosis, interaction with involving receptors
in allergy and mitochondrial damages in neuron induced by Ni.
Conclusion:
The collected data in this paper provide useful information about the main toxicities induced
by Ni, also, their fundamental mechanisms, and how to discover new ameliorative agents for
prevention and treatment by reviewing agents with protective and therapeutic consequences on Ni
induced toxicity.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zhaleh Jamali
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Saman Atashbar
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saleh Khezri
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amir M. Ghorbanpour
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nahid Etefaghi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
10
|
Vernon EL, Bean TP, Jha AN. Assessing relative biomarker responses in marine and freshwater bivalve molluscs following exposure to phosphorus 32 ( 32P): Application of genotoxicological and molecular biomarkers. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 213:106120. [PMID: 31783294 DOI: 10.1016/j.jenvrad.2019.106120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Anthropogenic radionuclides can enter water bodies through accidental or controlled discharges. In order to assess their potential impact, understanding the link between exposure, tissue specific bioaccumulation and radiation dose rate, to biological or biomarker responses in aquatic biota is required. Adopting an integrated, multi-biomarker, multi-species approach, we have investigated potential biological responses induced by short-lived radionuclide, phosphorus-32 (32P, radiophosphorus) in two ecologically important mussel species, the freshwater Dreissena polymorpha (DP) and marine Mytilus galloprovincialis (MG). Adult individuals were exposed to 32P for 10 days, to acquire nominal whole-body average dose rates of 0.10, 1 and 10 mGy d-1, which encompass a screening value of 10 μGy h-1 (0.24 mGy d-1), in accordance with the ERICA tool. Following exposure, a suite of genotoxic biomarkers (DNA damage, γ-H2AX induction and micronucleus [MN] formation) were measured in gill and digestive gland tissues, along with transcriptional expression of selected stress-related genes in both the species (i.e. hsp70/90, sod, cat and gst). Our results demonstrate the relationship between tissue specific dosimetry, where 32P induced a dose-dependent increase, and biological responses independent of species. Gene expression analysis revealed little significant variation across species or tissues. Overall, MG appeared to be more sensitive to short-term damage (i.e. high DNA damage and γ-H2AX induction), particularly in digestive gland. This study contributes to limited knowledge on the transfer and biological impact of radionuclides within differing aquatic systems on a tissue specific level, aiding the development of adequate management and protective strategies.
Collapse
Affiliation(s)
- Emily L Vernon
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Tim P Bean
- Cefas Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, UK
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK.
| |
Collapse
|
11
|
Ghaffar A, Hussain R, Abbas G, Khan R, Akram K, Latif H, Ali S, Baig S, Du X, Khan A. Assessment of genotoxic and pathologic potentials of fipronil insecticide inLabeo rohita(Hamilton, 1822). TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1684321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Abdul Ghaffar
- Department of Life Sciences (Zoology), The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Riaz Hussain
- University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ghulam Abbas
- Centre of Excellence in Marine Biology, University of Karachi, Karachi, Pakistan
| | - Rahela Khan
- Department of Life Sciences (Zoology), The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Kashfa Akram
- Department of Life Sciences (Zoology), The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hina Latif
- Department of Life Sciences (Zoology), The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Saman Ali
- Department of Life Sciences (Zoology), The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sidra Baig
- Department of Life Sciences (Zoology), The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Xiaoxia Du
- Shandong Vocational Animal Science and Veterinary College, Weifang, China
| | - Ahrar Khan
- Shandong Vocational Animal Science and Veterinary College, Weifang, China
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
12
|
Montalvão MF, Chagas TQ, da Silva Alvarez TG, Mesak C, da Costa Araújo AP, Gomes AR, de Andrade Vieira JE, Malafaia G. How leachates from wasted cigarette butts influence aquatic life? A case study on freshwater mussel Anodontites trapesiali. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:381-389. [PMID: 31277005 DOI: 10.1016/j.scitotenv.2019.06.385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/17/2019] [Accepted: 06/23/2019] [Indexed: 06/09/2023]
Abstract
There are several reports on the damage smoking causes to human health available in the literature, but little is known about the environmental and biological consequences from inappropriate cigarette butt (CB) disposal in urban and natural environments. The immunotoxic, morphotoxic and mutagenic potential of leachates from cigarette butts (LCB) diluted at environmentally relevant rates (LCB1x: 1.375%; LCB10x: 13.75%) was evaluated in adult representatives of the bivalve species Anodontites trapesialis, which was adopted as model organism. Type II hyalinocytes and granulocytes (phagocytic cells) frequency increased in the hemolymph of subjects exposed to the pollutant for 14 days. Based on this outcome, LCB chemical constituents did not induce immunotoxic effects. The treatments also did not seem to have any impact on the subjects' hemocitary morphometry parameters: diameter, area, perimeter, circularity and nucleus - cytoplasm ratio. However, subjects in groups LCB1x and LCB10x recorded a larger number of hyalinocytes with some nuclear abnormality such as micronucleus, blebbed nucleus, asymmetric constriction nucleus, and nuclear multilobulation and binucleation. The association between these abnormalities and the treatments was confirmed by the Cr, Ni, Pb, Zn, Mn and Na bioaccumulation in tissue samples of the bivalve models exposed to LCB. To the best of our knowledge, this is the first report on LCB mutagenicity in representatives of a freshwater bivalve group. Given the chemical complexity of the addressed pollutants, it is imperative to develop further investigations about the topic.
Collapse
Affiliation(s)
- Mateus Flores Montalvão
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Goiano Federal Institution - Urutaí Campus, GO, Brazil
| | - Thales Quintão Chagas
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Goiano Federal Institution - Urutaí Campus, GO, Brazil
| | - Tenilce Gabriela da Silva Alvarez
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Goiano Federal Institution - Urutaí Campus, GO, Brazil
| | - Carlos Mesak
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Goiano Federal Institution - Urutaí Campus, GO, Brazil
| | - Amanda Pereira da Costa Araújo
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Goiano Federal Institution - Urutaí Campus, GO, Brazil
| | - Alex Rodrigues Gomes
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Goiano Federal Institution - Urutaí Campus, GO, Brazil
| | | | - Guilherme Malafaia
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Goiano Federal Institution - Urutaí Campus, GO, Brazil; Biological Research Laboratory, Goiano Federal Institution - Urutaí Campus, GO, Brazil.
| |
Collapse
|
13
|
Barranger A, Rance GA, Aminot Y, Dallas LJ, Sforzini S, Weston NJ, Lodge RW, Banni M, Arlt VM, Moore MN, Readman JW, Viarengo A, Khlobystov AN, Jha AN. An integrated approach to determine interactive genotoxic and global gene expression effects of multiwalled carbon nanotubes (MWCNTs) and benzo[a]pyrene (BaP) on marine mussels: evidence of reverse ‘Trojan Horse’ effects. Nanotoxicology 2019; 13:1324-1343. [DOI: 10.1080/17435390.2019.1654003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Audrey Barranger
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Graham A. Rance
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK
- Nanoscale and Microscale Research Centre, University of Nottingham, Nottingham, UK
| | - Yann Aminot
- Centre for Chemical Sciences, University of Plymouth, Plymouth, UK
| | - Lorna J. Dallas
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Susanna Sforzini
- Ecotoxicology and Environmental Safety Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Nicola J. Weston
- Nanoscale and Microscale Research Centre, University of Nottingham, Nottingham, UK
| | - Rhys W. Lodge
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK
- Nanoscale and Microscale Research Centre, University of Nottingham, Nottingham, UK
| | - Mohamed Banni
- Ecotoxicology and Environmental Safety Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
- Laboratory of Biochemistry and Environmental Toxicology, ISA chottMariem, Sousse University, Sousse, Tunisia
| | - Volker M. Arlt
- Department of Analytical, Environmental and Forensic Sciences, King’s College London, MRC-PHE Centre for Environmental & Health, London, UK
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, King’s College London in Partnership with Public Health England and Imperial College London, London, UK
| | - Michael N. Moore
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
- Plymouth Marine Laboratory, Plymouth, UK
- European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Royal Cornwall Hospital, Truro, UK
| | - James W. Readman
- Centre for Chemical Sciences, University of Plymouth, Plymouth, UK
- Plymouth Marine Laboratory, Plymouth, UK
| | - Aldo Viarengo
- Ecotoxicology and Environmental Safety Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Andrei N. Khlobystov
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK
- Nanoscale and Microscale Research Centre, University of Nottingham, Nottingham, UK
| | - Awadhesh N. Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
14
|
Barranger A, Langan LM, Sharma V, Rance GA, Aminot Y, Weston NJ, Akcha F, Moore MN, Arlt VM, Khlobystov AN, Readman JW, Jha AN. Antagonistic Interactions between Benzo[a]pyrene and Fullerene (C 60) in Toxicological Response of Marine Mussels. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E987. [PMID: 31288459 PMCID: PMC6669530 DOI: 10.3390/nano9070987] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
Abstract
This study aimed to assess the ecotoxicological effects of the interaction of fullerene (C60) and benzo[a]pyrene (B[a]P) on the marine mussel, Mytilus galloprovincialis. The uptake of nC60, B[a]P and mixtures of nC60 and B[a]P into tissues was confirmed by Gas Chromatography-Mass Spectrometry (GC-MS), Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS) and Inductively Coupled Plasma Mass Spectrometer (ICP-MS). Biomarkers of DNA damage as well as proteomics analysis were applied to unravel the interactive effect of B[a]P and C60. Antagonistic responses were observed at the genotoxic and proteomic level. Differentially expressed proteins (DEPs) were only identified in the B[a]P single exposure and the B[a]P mixture exposure groups containing 1 mg/L of C60, the majority of which were downregulated (~52%). No DEPs were identified at any of the concentrations of nC60 (p < 0.05, 1% FDR). Using DEPs identified at a threshold of (p < 0.05; B[a]P and B[a]P mixture with nC60), gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis indicated that these proteins were enriched with a broad spectrum of biological processes and pathways, including those broadly associated with protein processing, cellular processes and environmental information processing. Among those significantly enriched pathways, the ribosome was consistently the top enriched term irrespective of treatment or concentration and plays an important role as the site of biological protein synthesis and translation. Our results demonstrate the complex multi-modal response to environmental stressors in M. galloprovincialis.
Collapse
Affiliation(s)
- Audrey Barranger
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Laura M Langan
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Vikram Sharma
- School of Biomedical Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Graham A Rance
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
- Nanoscale and Microscale Research Centre, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Yann Aminot
- Centre for Chemical Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Nicola J Weston
- Nanoscale and Microscale Research Centre, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Farida Akcha
- Ifremer, Laboratory of Ecotoxicology, F-44311, CEDEX 03 Nantes, France
| | - Michael N Moore
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3HD, UK
- European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Cornwall TR1 3LJ, UK
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, King's College London, MRC-PHE Centre for Environmental & Health, London SE1 9NH, UK
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards at King's College London in partnership with Public Health England and Imperial College London, London SE1 9NH, UK
| | - Andrei N Khlobystov
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
- Nanoscale and Microscale Research Centre, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - James W Readman
- Centre for Chemical Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK.
| |
Collapse
|
15
|
Vernon EL, Jha AN. Assessing relative sensitivity of marine and freshwater bivalves following exposure to copper: Application of classical and novel genotoxicological biomarkers. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 842:60-71. [DOI: 10.1016/j.mrgentox.2019.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/20/2022]
|
16
|
Bolognesi C, Cirillo S, Chipman JK. Comet assay in ecogenotoxicology: Applications in Mytilus sp. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 842:50-59. [PMID: 31255226 DOI: 10.1016/j.mrgentox.2019.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 10/26/2022]
Abstract
The comet assay is a sensitive technique to detect DNA damage caused by exposure to genotoxic chemical and physical agents and is widely used in ecotoxicology. The assay has been applied in aquatic species, mainly fish and bivalves, in field biomonitoring programs and in experimental studies. The aim of the present study was to retrieve and review the published evidence to define the role of the comet assay in the assessment of genotoxic pollutants. The study focused on the application of the test in Mytilus sp, used as a sentinel organism. Twenty-one biomonitoring studies, carried out in wild and in transplanted mussels, were evaluated. An increase of the comet parameters in animals from polluted areas with respect to the controls was observed in the majority of the studies with a large variability (frequency ratio:1.2-14.5) associated with types and extent of exposure to pollutants. Three studies out of 21 reported a lack of response. Heavy metals, polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and pesticides were the main types of chemicals detected in sediments and/or mussel tissues from polluted areas. Twenty-nine laboratory studies were retrieved showing the sensitivity of the comet assay in detecting DNA damage in mussels exposed to the most relevant pollutants and mixtures of relevant contaminants, such as pharmaceuticals, anti-fouling agents or crude oil. The comet test also appeared to be a suitable approach to detect the genotoxic effects of nanoparticles. In some studies problems in the interpretation of data or discrepancies between the results from different laboratories were noted. Critical steps in experimental protocol and characterization of pollution, environmental variables such as temperature, salinity, food availability, physiological and pathological status of the animals are important factors which should be controlled and considered in the analysis of the results.
Collapse
Affiliation(s)
- Claudia Bolognesi
- Environmental Carcinogenesis Unit, Ospedale Policlinico San Martino, Genoa, Italy.
| | - Silvia Cirillo
- School of Cellular and Molecular Medicine, University of Bristol, UK
| | | |
Collapse
|
17
|
Vernon EL, Smith JT, Jha AN. Relative comparison of tissue specific bioaccumulation and radiation dose estimation in marine and freshwater bivalve molluscs following exposure to phosphorus-32. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2018; 192:312-320. [PMID: 30015316 DOI: 10.1016/j.jenvrad.2018.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
With respect to environmental protection, understanding radionuclide bioconcentration is necessary to relate exposure to radiation dose and hence to biological responses. Few studies are available on tissue specific accumulation of short-lived radionuclides in aquatic invertebrates. Short-lived radionuclides such as 32Phosphorus (32P), although occurring in small quantities in the environment, are capable of concentrating in the biota, especially if they are chronically exposed. In this study, we firstly compared tissue specific bioaccumulation and release (depuration) of 32P in adult marine (Mytilus galloprovincialis, MG) and freshwater bivalve molluscs (Dreissena polymorpha, DP). Secondly, using the Environmental Risk from Ionising Contaminants Assessment and Management (ERICA) tool, we calculated tissue specific doses following determination of radionuclide concentration. Marine and freshwater bivalves were exposed for 10 days to varying 32P concentrations to acquire desired whole body average dose rates of 0.10, 1.0 and 10 mGy d-1. Dose rates encompass a screening dose rate value of 10 μGy h-1 (0.24 mGy d-1), in accordance with the ERICA tool. This study is the first to relate tissue specific uptake and release (via excretion) of 32P from two anatomically similar bivalve species. Results showed highly tissue specific accumulation of this radionuclide and similarity of accumulation pattern between the two species. Our data, which highlights preferential 32P accumulation in specific tissues such as digestive gland, demonstrates that in some cases, tissue-specific dose rates may be required to fully evaluate the potential effects of radiation exposure on non-human biota. Differential sensitivity between biological tissues could result in detrimental biological responses at levels presumed to be acceptable when adopting a 'whole-body' approach.
Collapse
Affiliation(s)
- Emily L Vernon
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, Devon, PL4 8AA, UK
| | - Jim T Smith
- School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth, PO1 3QL, UK
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, Devon, PL4 8AA, UK.
| |
Collapse
|
18
|
Sforzini S, Oliveri C, Orrù A, Chessa G, Pacchioni B, Millino C, Jha AN, Viarengo A, Banni M. Application of a new targeted low density microarray and conventional biomarkers to evaluate the health status of marine mussels: A field study in Sardinian coast, Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:319-328. [PMID: 29444484 DOI: 10.1016/j.scitotenv.2018.01.293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/24/2018] [Accepted: 01/28/2018] [Indexed: 06/08/2023]
Abstract
In the present study, we investigated the health status of marine mussels (Mytilus galloprovincialis) caged and deployed at three different sites on the Sardinian coastline characterized by different levels of contamination: Fornelli (F, the reference site), Cala Real (CR), and Porto Torres (PT). A new low density oligonucleotide microarray was used to investigate global gene expression in the digestive gland of mussels. Target genes were selected to cover most of the biological processes involved in the stress response in bivalve mollusks (e.g. DNA metabolism, translation, immune response, cytoskeleton organization). A battery of classical biomarkers was also employed to complement the gene expression analyses. Chemical analysis revealed higher loads of heavy metals (Pb and Cu) and total polycyclic aromatic hydrocarbons (PAHs) at PT compared to the other sites. In mussels deployed at CR, functional genomics analysis of the microarray data rendered 78 differentially expressed genes (DEGs) involved in 11 biological processes. Animals exposed at PT had 105 DEGs that were characterized by the regulation of 14 biological processes, including mitochondrial activity, adhesion to substrate, DNA metabolism, translation, metal resistance, and cytoskeleton organization. Biomarker data (lysosomal membrane stability, lysosomal/cytoplasm volume ratio, lipofuscin accumulation, metallothionein content, micronucleus frequency, and cytoskeleton alteration) were in trend with transcriptomic output. Biomarker data were integrated using the Mussel Expert System (MES), allowing defining the area in which the presence of chemicals is toxic for mussels. Our study provides the opportunity to adopt a new approach of integrating transcriptomic (microarray) results with classical biomarkers to assess the impact of pollutants on marine mussels in biomonitoring programs.
Collapse
Affiliation(s)
- Susanna Sforzini
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy; Laboratory of EnvironmentalChemistry and Toxicology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan, Italy.
| | - Caterina Oliveri
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy
| | - Andrea Orrù
- Istituto Zooprofilattico Sperimentale della Sardegna, Via F.lli Kennedy 2, 08100 Nuoro, Italy
| | - Giannina Chessa
- Istituto Zooprofilattico Sperimentale della Sardegna, Via F.lli Kennedy 2, 08100 Nuoro, Italy
| | | | | | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Aldo Viarengo
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy; Laboratory of EnvironmentalChemistry and Toxicology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan, Italy
| | - Mohamed Banni
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy; Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, Sousse, Tunisia.
| |
Collapse
|
19
|
Pearson HBC, Dallas LJ, Comber SDW, Braungardt CB, Worsfold PJ, Jha AN. Mixtures of tritiated water, zinc and dissolved organic carbon: Assessing interactive bioaccumulation and genotoxic effects in marine mussels, Mytilus galloprovincialis. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2018; 187:133-143. [PMID: 29482966 DOI: 10.1016/j.jenvrad.2017.12.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/06/2017] [Accepted: 12/27/2017] [Indexed: 06/08/2023]
Abstract
Release of tritium (3H) in the marine environment is of concern with respect to its potential bioaccumulation and detrimental impact on the biota. Previous studies have investigated the uptake and toxicity of this radionuclide in marine mussels, and the interaction of 3H with dissolved organic ligands and elevated temperature. However, despite the well-established view that toxicity is partly governed by chemical speciation, and that toxic effects of mixture of contaminants are not always additive, there have been no studies linking the prevailing chemistry of exposure waters with observed biological effects and tissue specific accumulation of 3H in combination with other constituents commonly found in natural waters. This study exposed the marine mussel Mytilus galloprovincialis for 14 days to mixtures of 3H (as tritiated water, HTO) and zinc (Zn) at 5 Mbq L-1, and 383, 1913 and 3825 nM Zn, respectively, to investigate (a) 3H and Zn partitioning in soft tissues of mussels, and (b) DNA damage in haemocytes, determined using the single cell gel electrophoresis or the comet assay. Additionally, the extent of association of 3H with dissolved organic carbon (DOC, added as humic acid) over the exposure period was investigated in order to aid the interpretation of biological uptake and effects. Results concluded a clear antagonistic effect of Zn on 3H-induced DNA damage at all Zn concentrations used, likely explained by the importance of Zn in DNA repair enzymes. The interaction of DOC with 3H was variable, with strong 3H-DOC associations observed in the first 3 d of the experiment. The secretion of 3H-binding ligands by the mussels is suggested as a possible mechanism for early biological control of 3H toxicity. The results suggest risk assessments for radionuclides in the environment require consideration of potential mixture effects.
Collapse
Affiliation(s)
- Holly B C Pearson
- School of Geography, Earth & Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Lorna J Dallas
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Sean D W Comber
- School of Geography, Earth & Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Charlotte B Braungardt
- School of Geography, Earth & Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Paul J Worsfold
- School of Geography, Earth & Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| |
Collapse
|
20
|
Dallas LJ, Turner A, Bean TP, Lyons BP, Jha AN. An integrated approach to assess the impacts of zinc pyrithione at different levels of biological organization in marine mussels. CHEMOSPHERE 2018; 196:531-539. [PMID: 29329085 DOI: 10.1016/j.chemosphere.2017.12.144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
The mechanisms of sublethal toxicity of the antifouling biocide, zinc pyrithione (ZnPT), have not been well-studied. This investigation demonstrates that 14-d sublethal exposure to ZnPT (0.2 or 2 μM, alongside inorganic Zn and sea water controls) is genotoxic to mussel haemocytes but suggests that this is not caused by oxidative DNA damage as no significant induction of oxidised purines was detected by Fpg-modified comet assay. More ecologically relevant endpoints, including decreased clearance rate (CR), cessation of attachment and decreased tolerance of stress on stress (SoS), also showed significant response to ZnPT exposure. Our integrated approach was underpinned by molecular analyses (qRT-PCR of stress-related genes, 2D gel electrophoresis of proteins) that indicated ZnPT causes a decrease in phosphoenolpyruvate carboxykinase (PEPCK) expression in mussel digestive glands, and that metallothionein genes are upregulated; PEPCK downregulation suggests that altered energy metabolism may also be related to the effects of ZnPT. Significant relationships were found between % tail DNA (comet assay) and all higher level responses (CR, attachment, SoS) in addition to PEPCK expression. Principal component analyses suggested that expression of selected genes described more variability within groups whereas % tail DNA reflected different ZnPT concentrations.
Collapse
Affiliation(s)
- Lorna J Dallas
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Andrew Turner
- School of Geography, Earth & Environmental Sciences, University of Plymouth, Plymouth, UK.
| | - Tim P Bean
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - Brett P Lyons
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
21
|
Ilyashuk BP, Ilyashuk EA, Psenner R, Tessadri R, Koinig KA. Rock glaciers in crystalline catchments: Hidden permafrost-related threats to alpine headwater lakes. GLOBAL CHANGE BIOLOGY 2018; 24:1548-1562. [PMID: 29143490 PMCID: PMC5873409 DOI: 10.1111/gcb.13985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/24/2017] [Accepted: 11/06/2017] [Indexed: 05/14/2023]
Abstract
A global warming-induced transition from glacial to periglacial processes has been identified in mountainous regions around the world. Degrading permafrost in pristine periglacial environments can produce acid rock drainage (ARD) and cause severe ecological damage in areas underlain by sulfide-bearing bedrock. Limnological and paleolimnological approaches were used to assess and compare ARDs generated by rock glaciers, a typical landform of the mountain permafrost domain, and their effects on alpine headwater lakes with similar morphometric features and underlying bedrock geology, but characterized by different intensities of frost action in their catchments during the year. We argue that ARD and its effects on lakes are more severe in the alpine periglacial belt with mean annual air temperatures (MAAT) between -2°C and +3°C, where groundwater persists in the liquid phase for most of the year, in contrast to ARD in the periglacial belt where frost action dominates (MAAT < -2°C). The findings clearly suggest that the ambient air temperature is an important factor affecting the ARD production in alpine periglacial environments. Applying the paleoecological analysis of morphological abnormalities in chironomids through the past millennium, we tested and rejected the hypothesis that unfavorable conditions for aquatic life in the ARD-stressed lakes are largely related to the temperature increase over recent decades, responsible for the enhanced release of ARD contaminants. Our results indicate that the ARDs generated in the catchments are of a long-lasting nature and the frequency of chironomid morphological deformities was significantly higher during the Little Ice Age (LIA) than during pre- or post-LIA periods, suggesting that lower water temperatures may increase the adverse impacts of ARD on aquatic invertebrates. This highlights that temperature-mediated modulations of the metabolism and life cycle of aquatic organisms should be considered when reconstructing long-term trends in the ecotoxicological state of lakes.
Collapse
Affiliation(s)
- Boris P. Ilyashuk
- Institute of EcologyUniversity of InnsbruckInnsbruckAustria
- Institute for Alpine EnvironmentEurac ResearchBozen/BolzanoItaly
| | | | - Roland Psenner
- Institute of EcologyUniversity of InnsbruckInnsbruckAustria
- Institute for Alpine EnvironmentEurac ResearchBozen/BolzanoItaly
| | - Richard Tessadri
- Institute of Mineralogy and PetrographyUniversity of InnsbruckInnsbruckAustria
| | - Karin A. Koinig
- Institute of EcologyUniversity of InnsbruckInnsbruckAustria
- Institute for Alpine EnvironmentEurac ResearchBozen/BolzanoItaly
| |
Collapse
|
22
|
Langan LM, Arossa S, Owen SF, Jha AN. Assessing the impact of benzo[a]pyrene with the in vitro fish gut model: An integrated approach for eco-genotoxicological studies. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 826:53-64. [PMID: 29412870 DOI: 10.1016/j.mrgentox.2017.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/06/2017] [Accepted: 12/18/2017] [Indexed: 12/31/2022]
Abstract
In vitro models are emerging tools for reducing reliance on traditional toxicity tests, especially in areas where information is sparse. For studies of fish, this is especially important for extrahepatic organs, such as the intestine, which, until recently, have been largely overlooked in favour of the liver or gill. Considering the importance of dietary uptake of contaminants, the rainbow trout (Oncorhynchus mykiss) intestine-derived cell line RTgutGC was cultured, to test its suitability as a high-throughput in vitro model. Benzo[a]pyrene (B[a]P) is an important contaminant and a model polycyclic aromatic hydrocarbon (PAH). Over 48 h exposure, a range of endpoints and xenobiotic metabolism rates were examined at three different pH levels indicative of the in vitro (pH 7.5) and in vivo mid-gut (pH 7.7) and hind-gut (pH 7.4) regions as a function of time. These endpoints included (i) cell viability: acid phosphatase (APH) and lactate dehydrogenase (LDH) assays; (ii) glucose uptake; (iii) cytochrome P450 enzyme activity: 7-ethoxyresoorufin-O-deethylase (EROD) assay; (iv) glutathione transferase (GST) activity; (v) genotoxic damage determined using the comet assay. Absence of cell viability loss, in parallel with decrease in the parent compound (B[a]P) in the medium and its subsequent increase in the cells suggested active sequestration, biotransformation, and removal of this representative PAH. With respect to genotoxic response, significant differences were observed at both the sampling times and the two highest concentrations of B[a]P. No significant differences were observed for the different pH conditions. Overall, this in vitro xenobiotic metabolism system appears to be a robust model, providing a basis for further development to evaluate metabolic and toxicological potential of contaminants without use of animals.
Collapse
Affiliation(s)
- Laura M Langan
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Silvia Arossa
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Stewart F Owen
- AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TF, UK
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK.
| |
Collapse
|
23
|
Utilization of isolated marine mussel cells as an in vitro model to assess xenobiotics induced genotoxicity. Toxicol In Vitro 2017; 44:219-229. [DOI: 10.1016/j.tiv.2017.05.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/21/2017] [Accepted: 05/24/2017] [Indexed: 02/08/2023]
|
24
|
Langan LM, Harper GM, Owen SF, Purcell WM, Jackson SK, Jha AN. Application of the rainbow trout derived intestinal cell line (RTgutGC) for ecotoxicological studies: molecular and cellular responses following exposure to copper. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:1117-1133. [PMID: 28785844 PMCID: PMC5617881 DOI: 10.1007/s10646-017-1838-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
There is an acknowledged need for in vitro fish intestinal model to help understand dietary exposure to chemicals in the aquatic environment. The presence and use of such models is however largely restrictive due to technical difficulties in the culturing of enterocytes in general and the availability of appropriate established cell lines in particular. In this study, the rainbow trout (Oncorhynchus mykiss) intestinal derived cell line (RTgutGC) was used as a surrogate for the "gut sac" method. To facilitate comparison, RTgutGC cells were grown as monolayers (double-seeded) on permeable Transwell supports leading to a two-compartment intestinal model consisting of polarised epithelium. This two-compartment model divides the system into an upper apical (lumen) and a lower basolateral (portal blood) compartment. In our studies, these cells stained weakly for mucosubstances, expressed the tight junction protein ZO-1 in addition to E-cadherin and revealed the presence of polarised epithelium in addition to microvilli protrusions. The cells also revealed a comparable transepithelial electrical resistance (TEER) to the in vivo situation. Importantly, the cell line tolerated apical saline (1:1 ratio) thus mimicking the intact organ to allow assessment of uptake of compounds across the intestine. Following an exposure over 72 h, our study demonstrated that the RTgutGC cell line under sub-lethal concentrations of copper sulphate (Cu) and modified saline solutions demonstrated uptake of the metal with saturation levels comparable to short term ex situ gut sac preparations. Gene expression analysis revealed no significant influence of pH or time on mRNA expression levels of key stress related genes (i.e. CYP3A, GST, mtA, Pgp and SOD) in the Transwell model. However, significant positive correlations were found between all genes investigated suggesting a co-operative relationship amongst the genes studied. When the outlined characteristics of the cell line are combined with the division of compartments, the RTgutGC double seeded model represents a potential animal replacement model for ecotoxicological studies. Overall, this model could be used to study the effects and predict aquatic gastrointestinal permeability of metals and other environmentally relevant contaminants in a cost effective and high throughput manner.
Collapse
Affiliation(s)
- Laura M Langan
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Glenn M Harper
- Electron Microscopy Unit, Faculty of Science and Engineering, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Stewart F Owen
- AstraZeneca, Alderly Park, Macclesfield, Cheshire, SK10 4TF, UK
| | - Wendy M Purcell
- School of Biomedical and Health Care Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Simon K Jackson
- School of Biomedical and Health Care Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK.
| |
Collapse
|
25
|
Banni M, Sforzini S, Arlt VM, Barranger A, Dallas LJ, Oliveri C, Aminot Y, Pacchioni B, Millino C, Lanfranchi G, Readman JW, Moore MN, Viarengo A, Jha AN. Assessing the impact of Benzo[a]pyrene on Marine Mussels: Application of a novel targeted low density microarray complementing classical biomarker responses. PLoS One 2017. [PMID: 28651000 PMCID: PMC5484464 DOI: 10.1371/journal.pone.0178460] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Despite the increasing use of mussels in environmental monitoring and ecotoxicological studies, their genomes and gene functions have not been thoroughly explored. Several cDNA microarrays were recently proposed for Mytilus spp., but putatively identified partial transcripts have rendered the generation of robust transcriptional responses difficult in terms of pathway identification. We developed a new low density oligonucleotide microarray with 465 probes covering the same number of genes. Target genes were selected to cover most of the well-known biological processes in the stress response documented over the last decade in bivalve species at the cellular and tissue levels. Our new ‘STressREsponse Microarray’ (STREM) platform consists of eight sub-arrays with three replicates for each target in each sub-array. To assess the potential use of the new array, we tested the effect of the ubiquitous environmental pollutant benzo[a]pyrene (B[a]P) at 5, 50, and 100 μg/L on two target tissues, the gills and digestive gland, of Mytilus galloprovincialis exposed invivo for three days. Bioaccumulation of B[a]P was also determined demonstrating exposure in both tissues. In addition to the well-known effects of B[a]P on DNA metabolism and oxidative stress, the new array data provided clues about the implication of other biological processes, such as cytoskeleton, immune response, adhesion to substrate, and mitochondrial activities. Transcriptional data were confirmed using qRT-PCR. We further investigated cellular functions and possible alterations related to biological processes highlighted by the microarray data using oxidative stress biomarkers (Lipofuscin content) and the assessment of genotoxicity. DNA damage, as measured by the alkaline comet assay, increased as a function of dose.DNA adducts measurements using 32P-postlabeling method also showed the presence of bulky DNA adducts (i.e. dG-N2-BPDE). Lipofiscin content increased significantly in B[a]P exposed mussels. Immunohistochemical analysis of tubulin and actin showed changes in cytoskeleton organisation. Our results adopting an integrated approach confirmed that the combination of newly developed transcriptomic approcah, classical biomarkers along with chemical analysis of water and tissue samples should be considered for environmental bioimonitoring and ecotoxicological studies to obtain holistic information to assess the impact of contaminants on the biota.
Collapse
Affiliation(s)
- Mohamed Banni
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", Alessandria, Italy
- Laboratory of Biochemistry and Environmental Toxicology, ISA chott-Mariem, Sousse University, Sousse, Tunisia
- * E-mail: (MB); (ANJ)
| | - Susanna Sforzini
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", Alessandria, Italy
| | - Volker M. Arlt
- Analytical and Environmental Sciences Division, King's College London, MRC-PHE Centre for Environmental & Health, London, United Kingdom
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards at King’s College London in partnership with Public Health England, London, United Kingdom
| | - Audrey Barranger
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Lorna J. Dallas
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Caterina Oliveri
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", Alessandria, Italy
| | - Yann Aminot
- Centre for Chemical Sciences, University of Plymouth, Plymouth, United Kingdom
| | | | | | | | - James W. Readman
- Centre for Chemical Sciences, University of Plymouth, Plymouth, United Kingdom
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, United Kingdom
| | - Michael N. Moore
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, United Kingdom
- European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall, United Kingdom
| | - Aldo Viarengo
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", Alessandria, Italy
| | - Awadhesh N. Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
- * E-mail: (MB); (ANJ)
| |
Collapse
|
26
|
Blewett TA, Leonard EM. Mechanisms of nickel toxicity to fish and invertebrates in marine and estuarine waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 223:311-322. [PMID: 28122673 DOI: 10.1016/j.envpol.2017.01.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/13/2017] [Accepted: 01/14/2017] [Indexed: 05/07/2023]
Abstract
In freshwater settings the toxicity of the trace metal nickel (Ni) is relatively well understood. However, until recently, there was little knowledge regarding Ni toxicity in waters of higher salinity, where factors such as water chemistry and the physiology of estuarine and marine biota would be expected to alter toxicological impact. This review summarizes recent literature investigating Ni toxicity in marine and estuarine invertebrates and fish. As in freshwater, three main mechanisms of Ni toxicity exist: ionoregulatory impairment, inhibition of respiration, and promotion of oxidative stress. However, unlike in freshwater biota, where mechanisms of toxicity are largely Class-specific, the delineation of toxic mechanisms between different species is less defined. In general, despite changes in Ni speciation in marine waters, organism physiology appears to be the main driver of toxic impact, a fact that will need to be accounted for when adapting regulatory tools (such as bioavailability normalization) from freshwater to estuarine and marine environments.
Collapse
Affiliation(s)
- Tamzin A Blewett
- Department of Biological Sciences, University of Alberta, AB, Canada.
| | - Erin M Leonard
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
27
|
Dallas LJ, Bean TP, Turner A, Lyons BP, Jha AN. Exposure to tritiated water at an elevated temperature: Genotoxic and transcriptomic effects in marine mussels (M. galloprovincialis). JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2016; 164:325-336. [PMID: 27552656 DOI: 10.1016/j.jenvrad.2016.07.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/27/2016] [Indexed: 06/06/2023]
Abstract
Temperature is an abiotic factor of particular concern for assessing the potential impacts of radionuclides on marine species. This is particularly true for tritium, which is discharged as tritiated water (HTO) in the process of cooling nuclear institutions. Additionally, with sea surface temperatures forecast to rise 0.5-3.5 °C in the next 30-100 years, determining the interaction of elevated temperature with radiological exposure has never been more relevant. We assessed the tissue-specific accumulation, transcriptional expression of key genes, and genotoxicity of tritiated water to marine mussels at either 15 or 25 °C, over a 7 day time course with sampling after 1 h, 12 h, 3 d and 7d. The activity concentration used (15 MBq L-1) resulted in tritium accumulation that varied with both time and temperature, but consistently produced dose rates (calculated using the ERICA tool) of <20 Gy h-1, i.e. considerably below the recommended guidelines of the IAEA and EURATOM. Despite this, there was significant induction of DNA strand breaks (as measured by the comet assay), which also showed a temperature-dependent time shift. At 15 °C, DNA damage was only significantly elevated after 7 d, in contrast to 25 °C where a similar response was observed after only 3 d. The transcription profiles of two isoforms of hsp70, hsp90, mt20, p53 and rad51 indicated potential mechanisms behind this temperature-induced acceleration of genotoxicity, which may be the result of compromised defence. Specifically, genes involved in protein folding, DNA double strand break repair and cell cycle checkpoint control were upregulated after 3 d HTO exposure at 15 °C, but significantly downregulated when the same exposure occurred at 25 °C. This study is the first to investigate temperature effects on radiation-induced genotoxicity in an ecologically relevant marine invertebrate, Mytilus galloprovincialis. From an ecological perspective, our study suggests that mussels (or similar marine species) exposed to increased temperature and HTO may have a compromised ability to defend against genotoxic stress.
Collapse
Affiliation(s)
- Lorna J Dallas
- School of Biological Sciences, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK
| | - Tim P Bean
- Centre for Environment, Fisheries and Aquaculture Science, The Nothe, Barrack Road, Weymouth, DT4 8UB, UK
| | - Andrew Turner
- School of Geography, Earth & Environmental Sciences, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK
| | - Brett P Lyons
- Centre for Environment, Fisheries and Aquaculture Science, The Nothe, Barrack Road, Weymouth, DT4 8UB, UK
| | - Awadhesh N Jha
- School of Biological Sciences, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK.
| |
Collapse
|
28
|
Di Y, Aminot Y, Schroeder DC, Readman JW, Jha AN. Integrated biological responses and tissue-specific expression of p53 and ras genes in marine mussels following exposure to benzo(α)pyrene and C60 fullerenes, either alone or in combination. Mutagenesis 2016; 32:77-90. [PMID: 28011749 DOI: 10.1093/mutage/gew049] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We used the marine bivalve (Mytilus galloprovincialis) to assess a range of biological or biomarker responses following exposure to a model-engineered nanoparticle, C60 fullerene, either alone or in combination with a model polycyclic aromatic hydrocarbon, benzo(α)pyrene [B(α)P]. An integrated biomarker approach was used that included: (i) determination of 'clearance rates' (a physiological indicator at individual level), (ii) histopathological alterations (at tissue level), (iii) DNA strand breaks using the comet assay (at cellular level) and (iv) transcriptional alterations of p53 (anti-oncogene) and ras (oncogene) determined by real-time quantitative polymerase chain reaction (at the molecular/genetic level). In addition, total glutathione in the digestive gland was measured as a proxy for oxidative stress. Here, we report that mussels showed no significant changes in 'clearance rates' after 1 day exposure, however significant increases in 'clearance rates' were found following exposure for 3 days. Histopathology on selected organs (i.e. gills, digestive glands, adductor muscles and mantles) showed increased occurrence of abnormalities in all tissues types, although not all the exposed organisms showed these abnormalities. Significantly, increased levels of DNA strand breaks were found after exposure for 3-days in most individuals tested. In addition, a significant induction for p53 and ras expression was observed in a tissue and chemical-specific pattern, although large amounts of inter-individual variability, compared with other biomarkers, were clearly apparent. Overall, biological responses at different levels showed variable sensitivity, with DNA strand breaks and gene expression alterations exhibiting higher sensitivities. Furthermore, the observed genotoxic responses were reversible after a recovery period, suggesting the ability of mussels to cope with the toxicants C60 and/or B(α)P under our experimental conditions. Overall, in this comprehensive study, we have demonstrated mussels as a suitable model marine invertebrate species to study the potential detrimental effects induced by possible genotoxicants and toxicants, either alone or in combinations at different levels of biological organisation (i.e. molecular to individual levels).
Collapse
Affiliation(s)
- Yanan Di
- School of Biological Sciences and.,Present address: Institute of Marine Biology, Ocean College, Zhejiang University, People's Republic of China
| | - Yann Aminot
- School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth, PL4 8AA, UK
| | - Declan C Schroeder
- Marine Biological Association of the United Kingdom (MBA), Citadel Hill, Plymouth, PL1 2PB, UK and
| | - James W Readman
- School of Biological Sciences and.,School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth, PL4 8AA, UK.,Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK
| | | |
Collapse
|
29
|
Early Genotoxic and Cytotoxic Effects of the Toxic Dinoflagellate Prorocentrum lima in the Mussel Mytilus galloprovincialis. Toxins (Basel) 2016; 8:toxins8060159. [PMID: 27231936 PMCID: PMC4926126 DOI: 10.3390/toxins8060159] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/22/2016] [Accepted: 05/13/2016] [Indexed: 11/30/2022] Open
Abstract
Okadaic acid (OA) and dinophysistoxins (DTXs) are the main toxins responsible for diarrhetic shellfish poisoning (DSP) intoxications during harmful algal blooms (HABs). Although the genotoxic and cytotoxic responses to OA have been evaluated in vitro, the in vivo effects of these toxins have not yet been fully explored. The present work fills this gap by evaluating the in vivo effects of the exposure to the DSP-toxin-producing dinoflagellate Prorocentrum lima during the simulation of an early HAB episode in the mussel Mytilus galloprovincialis. The obtained results revealed that in vivo exposure to this toxic microalgae induced early genotoxicity in hemocytes, as a consequence of oxidative DNA damage. In addition, the DNA damage observed in gill cells seems to be mainly influenced by exposure time and P. lima concentration, similarly to the case of the oxidative damage found in hemocytes exposed in vitro to OA. In both cell types, the absence of DNA damage at low toxin concentrations is consistent with the notion suggesting that this level of toxicity does not disturb the antioxidant balance. Lastly, in vivo exposure to growing P. lima cell densities increased apoptosis but not necrosis, probably due to the presence of a high number of protein apoptosis inhibitors in molluscs. Overall, this work sheds light into the in vivo genotoxic and cytotoxic effects of P. lima. In doing so, it also demonstrates for the first time the potential of the modified (OGG1) comet assay for assessing oxidative DNA damage caused by marine toxins in marine invertebrates.
Collapse
|
30
|
Dallas LJ, Devos A, Fievet B, Turner A, Lyons BP, Jha AN. Radiation dose estimation for marine mussels following exposure to tritium: Best practice for use of the ERICA tool in ecotoxicological studies. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2016; 155-156:1-6. [PMID: 26874225 DOI: 10.1016/j.jenvrad.2016.01.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 06/05/2023]
Abstract
Accurate dosimetry is critically important for ecotoxicological and radioecological studies on the potential effects of environmentally relevant radionuclides, such as tritium ((3)H). Previous studies have used basic dosimetric equations to estimate dose from (3)H exposure in ecologically important organisms, such as marine mussels. This study compares four different methods of estimating dose to adult mussels exposed to 1 or 15 MBq L(-1) tritiated water (HTO) under laboratory conditions. These methods were (1) an equation converting seawater activity concentrations to dose rate with fixed parameters; (2) input into the ERICA tool of seawater activity concentrations only; (3) input into the ERICA tool of estimated whole organism concentrations (woTACs), comprising dry activity plus estimated tissue free water tritium (TFWT) activity (TFWT volume × seawater activity concentration); and (4) input into the ERICA tool of measured whole organism activity concentrations, comprising dry activity plus measured TFWT activity (TFWT volume × TFWT activity concentration). Methods 3 and 4 are recommended for future ecotoxicological experiments as they produce values for individual animals and are not reliant on transfer predictions (estimation of concentration ratio). Method 1 may be suitable if measured whole organism concentrations are not available, as it produced results between 3 and 4. As there are technical complications to accurately measuring TFWT, we recommend that future radiotoxicological studies on mussels or other aquatic invertebrates measure whole organism activity in non-dried tissues (i.e. incorporating TFWT and dry activity as one, rather than as separate fractions) and input this data into the ERICA tool.
Collapse
Affiliation(s)
- Lorna J Dallas
- School of Biological Sciences, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK
| | - Alexandre Devos
- Institut de Radioprotection et de Surete Nucleaire, PRP-ENV/SERIS/Laboratoire de Radioecologie de Cherbourg-Octeville, Rue Max Pol Fouchet, BP 10, 50130 Cherbourg Octeville, France
| | - Bruno Fievet
- Institut de Radioprotection et de Surete Nucleaire, PRP-ENV/SERIS/Laboratoire de Radioecologie de Cherbourg-Octeville, Rue Max Pol Fouchet, BP 10, 50130 Cherbourg Octeville, France
| | - Andrew Turner
- School of Geography, Earth & Environmental Sciences, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK
| | - Brett P Lyons
- Centre for Environment, Fisheries and Aquaculture Science, The Nothe, Barrack Road, Weymouth, DT4 8UB, UK
| | - Awadhesh N Jha
- School of Biological Sciences, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK.
| |
Collapse
|
31
|
Dissanayake A, Scarlett AG, Jha AN. Diamondoid naphthenic acids cause in vivo genetic damage in gills and haemocytes of marine mussels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:7060-7066. [PMID: 26884235 DOI: 10.1007/s11356-016-6268-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/08/2016] [Indexed: 06/05/2023]
Abstract
Diamondoids are polycyclic saturated hydrocarbons that possess a cage-like carbon skeleton approaching that of diamond. These 'nano-diamonds' are used in a range of industries including nanotechnologies and biomedicine. Diamondoids were thought to be highly resistant to degradation, but their presumed degradation acid products have now been found in oil sands process-affected waters (OSPW) and numerous crude oils. Recently, a diamondoid-related structure, 3-noradamantane carboxylic acid, was reported to cause genetic damage in trout hepatocytes under in vitro conditions. This particular compound has never been reported in the environment but led us to hypothesise that other more environmentally relevant diamondoid acids could also be genotoxic. We carried out in vivo exposures (3 days, semi-static) of marine mussels to two environmentally relevant diamondoid acids, 1-adamantane carboxylic acid and 3,5-dimethyladamantane carboxylic acid plus 3-noradamantane carboxylic acid with genotoxic damage assessed using the Comet assay. An initial screening test confirmed that these acids displayed varying degrees of genotoxicity to haemocytes (increased DNA damage above that of controls) when exposed in vivo to a concentration of 30 μmol L(-1). In a further test focused on 1-adamantane carboxylic acid with varying concentrations (0.6, 6 and 30 μmol L(-1)), significant (P < 0.05%) DNA damage was observed in different target cells (viz. gills and haemocytes) at 0.6 μmol L(-1). Such a level of induced genetic damage was similar to that observed following exposure to a known genotoxin, benzo(a)pyrene (exposure concentration, 0.8 μmol L(-1)). These findings may have implications for a range of worldwide industries including oil extraction, nanotechnology and biomedicine.
Collapse
Affiliation(s)
- Awantha Dissanayake
- School of Biological Sciences, Plymouth University, Plymouth, PL4 8AA, Devon, UK
| | - Alan G Scarlett
- Petroleum and Environmental Geochemistry Group, Biogeochemistry Research Centre, Plymouth University, Drake Circus, Plymouth, Devon, PL4 8AA, UK.
- WA-Organic and Isotope Geochemistry Centre, The Institute for Geoscience Research, Department of Chemistry, Curtin University, Building 500, Kent Street, G.P.O. Box U1987, Perth, WA, 6845, Australia.
| | - Awadhesh N Jha
- School of Biological Sciences, Plymouth University, Plymouth, PL4 8AA, Devon, UK
| |
Collapse
|
32
|
Aborgiba M, Kostić J, Kolarević S, Kračun-Kolarević M, Elbahi S, Knežević-Vukčević J, Lenhardt M, Paunović M, Gačić Z, Vuković-Gačić B. Flooding modifies the genotoxic effects of pollution on a worm, a mussel and two fish species from the Sava River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 540:358-367. [PMID: 25861862 DOI: 10.1016/j.scitotenv.2015.03.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/21/2015] [Accepted: 03/27/2015] [Indexed: 06/04/2023]
Abstract
Extreme hydrological events, such as water scarcity and flooding, can modify the effect of other stressors present in aquatic environment, which could result in the significant changes in the ecosystem functioning. Presence and interaction of various stressors (genotoxic pollutants) in the environment can influence the integrity of DNA molecules in aquatic organisms which can be negatively reflected on the individual, population and community levels. Therefore, in this study we have investigated the impact of flooding, in terms of genotoxicity, on organisms belonging to different trophic levels. The study was carried out on the site situated in the lower stretch of the Sava River which faced devastating effects of severe flooding in May 2014. The flooding occurred during our field experiment and this event provided a unique opportunity to assess its influence to the environment. The in situ effects of this specific situation were monitored by measuring physical, chemical and microbiological parameters of water, and by comparing the level of DNA damage in coelomocytes and haemocytes of freshwater worms Branchiura sowerbyi, haemocytes of freshwater mussels Unio tumidus and blood cells of freshwater fish Abramis bjoerkna/Abramis sapa, by means of the comet assay. Our study indicated that the flooding had a significant impact on water quality by decreasing the amount and discharge rate of urban wastewaters but simultaneously introducing contaminants from the nearby fly ash disposal field into river by runoff, which had diverse effects on the level of DNA damage in the studied organisms. This indicates that the assessment of genotoxic pollution in situ is strongly affected by the choice of the bioindicator organism.
Collapse
Affiliation(s)
- Mustafa Aborgiba
- University of Belgrade, Faculty of Biology, Chair of Microbiology, Center for Genotoxicology and Ecogenotoxicology, Studentski trg 16, 11000 Belgrade, Serbia
| | - Jovana Kostić
- University of Belgrade, Faculty of Biology, Chair of Microbiology, Center for Genotoxicology and Ecogenotoxicology, Studentski trg 16, 11000 Belgrade, Serbia; University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Stoimir Kolarević
- University of Belgrade, Faculty of Biology, Chair of Microbiology, Center for Genotoxicology and Ecogenotoxicology, Studentski trg 16, 11000 Belgrade, Serbia.
| | - Margareta Kračun-Kolarević
- University of Belgrade, Institute for Biological Research ¨Siniša Stanković¨, Despota Stefana 142, 11000 Belgrade, Serbia
| | - Samia Elbahi
- University of Belgrade, Faculty of Biology, Chair of Microbiology, Center for Genotoxicology and Ecogenotoxicology, Studentski trg 16, 11000 Belgrade, Serbia
| | - Jelena Knežević-Vukčević
- University of Belgrade, Faculty of Biology, Chair of Microbiology, Center for Genotoxicology and Ecogenotoxicology, Studentski trg 16, 11000 Belgrade, Serbia
| | - Mirjana Lenhardt
- University of Belgrade, Institute for Biological Research ¨Siniša Stanković¨, Despota Stefana 142, 11000 Belgrade, Serbia
| | - Momir Paunović
- University of Belgrade, Institute for Biological Research ¨Siniša Stanković¨, Despota Stefana 142, 11000 Belgrade, Serbia.
| | - Zoran Gačić
- University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11000 Belgrade, Serbia.
| | - Branka Vuković-Gačić
- University of Belgrade, Faculty of Biology, Chair of Microbiology, Center for Genotoxicology and Ecogenotoxicology, Studentski trg 16, 11000 Belgrade, Serbia.
| |
Collapse
|
33
|
Guo H, Chen L, Cui H, Peng X, Fang J, Zuo Z, Deng J, Wang X, Wu B. Research Advances on Pathways of Nickel-Induced Apoptosis. Int J Mol Sci 2015; 17:E10. [PMID: 26703593 PMCID: PMC4730257 DOI: 10.3390/ijms17010010] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 12/12/2022] Open
Abstract
High concentrations of nickel (Ni) are harmful to humans and animals. Ni targets a number of organs and produces multiple toxic effects. Apoptosis is important in Ni-induced toxicity of the kidneys, liver, nerves, and immune system. Apoptotic pathways mediated by reactive oxygen species (ROS), mitochondria, endoplasmic reticulum (ER), Fas, and c-Myc participate in Ni-induced cell apoptosis. However, the exact mechanism of apoptosis caused by Ni is still unclear. Understanding the mechanism of Ni-induced apoptosis may help in designing measures to prevent Ni toxicity.
Collapse
Affiliation(s)
- Hongrui Guo
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
| | - Lian Chen
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
| | - Hengmin Cui
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Xi Peng
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Jing Fang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Zhicai Zuo
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Junliang Deng
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Xun Wang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Bangyuan Wu
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
34
|
Sowmithra K, Shetty NJ, Jha SK, Chaubey RC. Evaluation of genotoxicity of the acute gamma radiation on earthworm Eisenia fetida using single cell gel electrophoresis technique (Comet assay). MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 794:52-6. [PMID: 26653984 DOI: 10.1016/j.mrgentox.2015.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 11/25/2022]
Abstract
Earthworms (Eisenia fetida) most suitable biological indicators of radioactive pollution. Radiation-induced lesions in DNA can be considered to be molecular markers for early effects of ionizing radiation. Gamma radiation produces a wide spectrum of DNA. Some of these lesions, i.e., DNA strand breaks and alkali labile sites can be detected by the single-cell gel electrophoresis (SCGE) or comet assay by measuring the migration of DNA from immobilized nuclear DNA. E. fetida were exposed to different doses of gamma radiation, i.e., 1, 5, 10, 20, 30, 40 and 50Gy, and comet assay was performed for all the doses along with control at 1, 3 and 5h post irradiation to evaluate the genotoxicity of gamma radiation in this organism. The DNA damage was measured as percentage of comet tail DNA. A significant increase in DNA damage was observed in samples exposed to 5Gy and above, and the increase in DNA damage was dose dependent i.e., DNA damage was increased with increased doses of radiation. The highest DNA damage was noticed at 1h post irradiation and gradually decreased with time, i.e., at 3 and 5h post irradiation. The present study reveals that gamma radiation induces DNA damage in E. fetida and the comet assay is a sensitive and rapid method for its detection to detect genotoxicity of gamma radiation.
Collapse
Affiliation(s)
- K Sowmithra
- Centre for Applied Genetics, Bangalore University, JB campus, Bengaluru 560056, India
| | - N J Shetty
- Centre for Applied Genetics, Bangalore University, JB campus, Bengaluru 560056, India.
| | - S K Jha
- BRNS-DAE, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - R C Chaubey
- BRNS-DAE, Bhabha Atomic Research Centre, Mumbai 400 085, India
| |
Collapse
|
35
|
Dallas LJ, Jha AN. Applications of biological tools or biomarkers in aquatic biota: A case study of the Tamar estuary, South West England. MARINE POLLUTION BULLETIN 2015; 95:618-633. [PMID: 25817310 DOI: 10.1016/j.marpolbul.2015.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 02/15/2015] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
Biological systems are the ultimate recipients of pollutant-induced damage. Consequently, our traditional reliance on analytical tools is not enough to assess ecosystem health. Biological responses or biomarkers are therefore also considered to be important tools for environmental hazard and risk assessments. Due to historical mining, other anthropogenic activities, and its conservational importance (e.g. NATURA sites, SACs), the Tamar estuary in South West England is an ideal environment in which to examine applications of such biological tools. This review presents a thorough and critical evaluation of the different biological tools used in the Tamar estuary thus far, while also discussing future perspectives for biomarker studies from a global perspective. In particular, we focus on the challenges which hinder applications of biological tools from being more readily incorporated into regulatory frameworks, with the aim of enabling both policymakers and primary stakeholders to maximise the environmental relevance and regulatory usefulness of such tools.
Collapse
Affiliation(s)
- Lorna J Dallas
- School of Biological Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK
| | - Awadhesh N Jha
- School of Biological Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK.
| |
Collapse
|
36
|
de Lapuente J, Lourenço J, Mendo SA, Borràs M, Martins MG, Costa PM, Pacheco M. The Comet Assay and its applications in the field of ecotoxicology: a mature tool that continues to expand its perspectives. Front Genet 2015; 6:180. [PMID: 26089833 PMCID: PMC4454841 DOI: 10.3389/fgene.2015.00180] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 04/28/2015] [Indexed: 01/20/2023] Open
Abstract
Since Singh and colleagues, in 1988, launched to the scientific community the alkaline Single Cell Gel Electrophoresis (SCGE) protocol, or Comet Assay, its uses and applications has been increasing. The thematic areas of its current employment in the evaluation of genetic toxicity are vast, either in vitro or in vivo, both in the laboratory and in the environment, terrestrial or aquatic. It has been applied to a wide range of experimental models: bacteria, fungi, cells culture, arthropods, fishes, amphibians, reptiles, mammals, and humans. This document is intended to be a comprehensive review of what has been published to date on the field of ecotoxicology, aiming at the following main aspects: (i) to show the most relevant experimental models used as bioindicators both in the laboratory and in the field. Fishes are clearly the most adopted group, reflecting their popularity as bioindicator models, as well as a primary concern over the aquatic environment health. Amphibians are among the most sensitive organisms to environmental changes, mainly due to an early aquatic-dependent development stage and a highly permeable skin. Moreover, in the terrestrial approach, earthworms, plants or mammalians are excellent organisms to be used as experimental models for genotoxic evaluation of pollutants, complex mix of pollutants and chemicals, in both laboratory and natural environment. (ii) To review the development and modifications of the protocols used and the cell types (or tissues) used. The most recent developments concern the adoption of the enzyme linked assay (digestion with lesion-specific repair endonucleases) and prediction of the ability to repair of oxidative DNA damage, which is becoming a widespread approach, albeit challenging. For practical/technical reasons, blood is the most common choice but tissues/cells like gills, sperm cells, early larval stages, coelomocytes, liver or kidney have been also used. (iii) To highlight correlations with other biomarkers. (iv) To build a constructive criticism and summarize the needs for protocol improvements for future test applications within the field of ecotoxicology. The Comet Assay is still developing and its potential is yet underexploited in experimental models, mesocosmos or natural ecosystems.
Collapse
Affiliation(s)
- Joaquín de Lapuente
- Unit of Experimental Toxicology and Ecotoxicology (UTOX-CERETOX), Barcelona Science ParkBarcelona, Spain
| | - Joana Lourenço
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago. Aveiro, Portugal
| | - Sónia A. Mendo
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago. Aveiro, Portugal
| | - Miquel Borràs
- Unit of Experimental Toxicology and Ecotoxicology (UTOX-CERETOX), Barcelona Science ParkBarcelona, Spain
| | - Marta G. Martins
- Departamento de Ciências e Engenharia do Ambiente, MARE – Marine and Environmental Sciences Centre, Faculdade de Ciências e Tecnologia da Universidade Nova de LisboaCaparica, Portugal
| | - Pedro M. Costa
- Departamento de Ciências e Engenharia do Ambiente, MARE – Marine and Environmental Sciences Centre, Faculdade de Ciências e Tecnologia da Universidade Nova de LisboaCaparica, Portugal
| | - Mário Pacheco
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago. Aveiro, Portugal
| |
Collapse
|
37
|
Barranger A, Benabdelmouna A, Dégremont L, Burgeot T, Akcha F. Parental exposure to environmental concentrations of diuron leads to aneuploidy in embryos of the Pacific oyster, as evidenced by fluorescent in situ hybridization. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 159:36-43. [PMID: 25498420 DOI: 10.1016/j.aquatox.2014.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/29/2014] [Accepted: 11/13/2014] [Indexed: 06/04/2023]
Abstract
Changes in normal chromosome numbers (i.e. aneuploidy) due to abnormal chromosome segregation may arise either spontaneously or as a result of chemical/radiation exposure, particularly during cell division. Coastal ecosystems are continuously subjected to various contaminants originating from urban, industrial and agricultural activities. Genotoxicity is common to several families of major environmental pollutants, including pesticides, which therefore represent a potential important environmental hazard for marine organisms. A previous study demonstrated the vertical transmission of DNA damage by subjecting oyster genitors to short-term exposure to the herbicide diuron at environmental concentrations during gametogenesis. In this paper, Fluorescent in situ hybridization (FISH) was used to further characterize diuron-induced DNA damage at the chromosomal level. rDNA genes (5S and 18-5.8-28S), previously mapped onto Crassostrea gigas chromosomes 4, 5 and 10, were used as probes on the interphase nuclei of embryo preparations. Our results conclusively show higher aneuploidy (hypo- or hyperdiploidy) level in embryos from diuron-exposed genitors, with damage to the three studied chromosomal regions. This study suggests that sexually developing oysters are vulnerable to diuron exposure, incurring a negative impact on reproductive success and oyster recruitment.
Collapse
Affiliation(s)
- Audrey Barranger
- Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, 17390 La Tremblade, France; Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France.
| | - Abdellah Benabdelmouna
- Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, 17390 La Tremblade, France.
| | - Lionel Dégremont
- Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, 17390 La Tremblade, France
| | - Thierry Burgeot
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France
| | - Farida Akcha
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France
| |
Collapse
|
38
|
Martins M, Costa PM. The comet assay in Environmental Risk Assessment of marine pollutants: applications, assets and handicaps of surveying genotoxicity in non-model organisms. Mutagenesis 2014; 30:89-106. [DOI: 10.1093/mutage/geu037] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
39
|
El-Bibany AH, Bodnar AG, Reinardy HC. Comparative DNA damage and repair in echinoderm coelomocytes exposed to genotoxicants. PLoS One 2014; 9:e107815. [PMID: 25229547 PMCID: PMC4168213 DOI: 10.1371/journal.pone.0107815] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 08/15/2014] [Indexed: 11/19/2022] Open
Abstract
The capacity to withstand and repair DNA damage differs among species and plays a role in determining an organism's resistance to genotoxicity, life history, and susceptibility to disease. Environmental stressors that affect organisms at the genetic level are of particular concern in ecotoxicology due to the potential for chronic effects and trans-generational impacts on populations. Echinoderms are valuable organisms to study the relationship between DNA repair and resistance to genotoxic stress due to their history and use as ecotoxicological models, little evidence of senescence, and few reported cases of neoplasia. Coelomocytes (immune cells) have been proposed to serve as sensitive bioindicators of environmental stress and are often used to assess genotoxicity; however, little is known about how coelomocytes from different echinoderm species respond to genotoxic stress. In this study, DNA damage was assessed (by Fast Micromethod) in coelomocytes of four echinoderm species (sea urchins Lytechinus variegatus, Echinometra lucunter lucunter, and Tripneustes ventricosus, and a sea cucumber Isostichopus badionotus) after acute exposure to H2O2 (0-100 mM) and UV-C (0-9999 J/m2), and DNA repair was analyzed over a 24-hour period of recovery. Results show that coelomocytes from all four echinoderm species have the capacity to repair both UV-C and H2O2-induced DNA damage; however, there were differences in repair capacity between species. At 24 hours following exposure to the highest concentration of H2O2 (100 mM) and highest dose of UV-C (9999 J/m2) cell viability remained high (>94.6 ± 1.2%) but DNA repair ranged from 18.2 ± 9.2% to 70.8 ± 16.0% for H2O2 and 8.4 ± 3.2% to 79.8 ± 9.0% for UV-C exposure. Species-specific differences in genotoxic susceptibility and capacity for DNA repair are important to consider when evaluating ecogenotoxicological model organisms and assessing overall impacts of genotoxicants in the environment.
Collapse
Affiliation(s)
- Ameena H. El-Bibany
- Molecular Discovery Laboratory, Bermuda Institute of Ocean Sciences, St. George's, Bermuda
| | - Andrea G. Bodnar
- Molecular Discovery Laboratory, Bermuda Institute of Ocean Sciences, St. George's, Bermuda
| | - Helena C. Reinardy
- Molecular Discovery Laboratory, Bermuda Institute of Ocean Sciences, St. George's, Bermuda
| |
Collapse
|
40
|
Won EJ, Ra K, Kim KT, Lee JS, Lee YM. Three novel superoxide dismutase genes identified in the marine polychaete Perinereis nuntia and their differential responses to single and combined metal exposures. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 107:36-45. [PMID: 24905695 DOI: 10.1016/j.ecoenv.2014.03.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/19/2014] [Accepted: 03/21/2014] [Indexed: 06/03/2023]
Abstract
To identify superoxide dismutase (SOD) genes and evaluate their usefulness as potential markers for monitoring metal toxicity in aquatic environment, we cloned, sequenced, and characterized 3 SOD genes (Cu/Zn-SOD1, Cu/Zn-SOD2, and Mn-SOD) from the marine polychaete Perinereis nuntia. The accumulated metal contents and expressions of 3 SOD genes were compared after exposure to single and combinations of heavy metals, As, Ni, and Pb. The deduced amino acid sequences of the 3 SODs had evolutionary conserved domains, such as metal binding sites, and signature sequences. The phylogenetic analysis revealed that Cu/Zn-SOD1, Cu/Zn-SOD2, and Mn-SOD were clustered with extracellular Cu/Zn-SOD, intracellular Cu/Zn-SOD and mitochondrial Mn-SOD, respectively, of other species. The accumulated contents of Ni and Pb increased significantly in a time - dependent manner after exposure to both single and combination of the metals. However, the concentration of As did not change significantly in the exposure test. The quantitative real-time polymerase chain reaction (PCR) array showed that the 3 SOD genes had differential expression patterns depending on the exposure condition. The expression of all SODs mRNAs was significantly elevated in response to Pb alone and in combination with As. The mRNA level of Cu/Zn-SOD1 was the highest after exposure to Pb alone, while that of Mn-SOD was remarkably enhanced after exposure to a combination of As and Pb. Exposure to Ni alone rapidly elevated the expression of Cu/Zn-SOD1 and Mn-SOD mRNA, which then gradually decreased. Exposure to As had no significant effect on the modulation of any of the SOD genes of P. nuntia. These results suggest that all SOD genes might play important roles in cellular protection as antioxidant enzymes against heavy metal toxicity via different modes of action in P. nuntia and might have the potential to act as indicators in an environment containing a mixture of metals.
Collapse
Affiliation(s)
- Eun-Ji Won
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Kongtae Ra
- Marine Environment and Conservation Department, Korea Institute of Ocean Science and Technology (KIOST), Ansan 426-744, South Korea
| | - Kyung-Tae Kim
- Marine Environment and Conservation Department, Korea Institute of Ocean Science and Technology (KIOST), Ansan 426-744, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Young-Mi Lee
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 110-743, South Korea.
| |
Collapse
|
41
|
Metallothionein mRNA induction is correlated with the decrease of DNA strand breaks in cadmium exposed zebra mussels. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 766:10-5. [DOI: 10.1016/j.mrgentox.2014.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 11/17/2022]
|
42
|
Barranger A, Akcha F, Rouxel J, Brizard R, Maurouard E, Pallud M, Menard D, Tapie N, Budzinski H, Burgeot T, Benabdelmouna A. Study of genetic damage in the Japanese oyster induced by an environmentally-relevant exposure to diuron: evidence of vertical transmission of DNA damage. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 146:93-104. [PMID: 24291084 DOI: 10.1016/j.aquatox.2013.10.032] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 10/17/2013] [Accepted: 10/29/2013] [Indexed: 06/02/2023]
Abstract
Pesticides represent a major proportion of the chemical pollutants detected in French coastal waters and hence a significant environmental risk with regards to marine organisms. Commercially-raised bivalves are particularly exposed to pollutants, among them pesticides, as shellfish farming zones are subject to considerable pressure from agricultural activities on the mainland. The aims of this study were to determine (1) the genotoxic effects of diuron exposure on oyster genitors and (2) the possible transmission of damaged DNA to offspring and its repercussions on oyster fitness. To investigate these points, oysters were exposed to concentrations of diuron close to those detected in the Marennes-Oleron Basin (two 7-day exposure pulses at 0.4 and 0.6 μg L(-1)) during the gametogenesis period. Genomic abnormalities were characterized using two complementary approaches. The Comet assay was applied for the measurement of early and reversible primary DNA damage, whereas flow cytometry was used to assess the clastogenic and aneugenic effect of diuron exposure. Polar Organic Chemical Integrative Samplers (POCIS) were used in exposed and assay tanks to confirm the waterborne concentration of diuron reached during the experiment. The results obtained by the Comet assay clearly showed a higher level of DNA strand breaks in both the hemocytes and spermatozoa of diuron-exposed genitors. The transmission of damaged genetic material to gamete cells could be responsible for the genetic damage measured in offspring. Indeed, flow cytometry analyses showed the presence of DNA breakage and a significant decrease in DNA content in spat from diuron-exposed genitors. The transmission of DNA damage to the offspring could be involved in the negative effects observed on offspring development (decrease in hatching rate, higher level of larval abnormalities, delay in metamorphosis) and growth. In this study, the vertical transmission of DNA damage was so highlighted by subjecting oyster genitors to short exposures to diuron at medium environmental concentrations. The analysis of POCIS showed that oysters were exposed to integrated concentrations as low as 0.2 and 0.3 μg L(-1), emphasizing the relevance of the results obtained and the risk associated to chemical contamination for oyster recruitment and fitness.
Collapse
Affiliation(s)
- A Barranger
- Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, F-17390 La Tremblade, France; Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes Cedex 03, France
| | - F Akcha
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes Cedex 03, France.
| | - J Rouxel
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes Cedex 03, France
| | - R Brizard
- Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, F-17390 La Tremblade, France
| | - E Maurouard
- Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, F-17390 La Tremblade, France
| | - M Pallud
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes Cedex 03, France
| | - D Menard
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes Cedex 03, France
| | - N Tapie
- University of Bordeaux, EPOC UMR CNRS 5805, F-33400 Talence, France
| | - H Budzinski
- University of Bordeaux, EPOC UMR CNRS 5805, F-33400 Talence, France
| | - T Burgeot
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes Cedex 03, France
| | - A Benabdelmouna
- Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, F-17390 La Tremblade, France
| |
Collapse
|