1
|
Ozdemir N, Tan G, Tevlek A, Arslan G, Zengin G, Sargin I. Dead Cell Discrimination with Red Emissive Carbon Quantum Dots from the Medicinal and Edible Herb Echinophora tenuifolia. J Fluoresc 2025:10.1007/s10895-025-04286-y. [PMID: 40186814 DOI: 10.1007/s10895-025-04286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/21/2025] [Indexed: 04/07/2025]
Abstract
Accurately determining the viability of cells is crucial for in vitro cell research. Fluorescence-based live/dead cell staining is a highly desirable method to assess cell viability and survival in in vitro studies. We describe a green synthesis method to create red-emissive CQDs from the medicinal and edible herb Echinophora tenuifolia using microwave irradiation. We observed that the biocompatibility and photostability of the CQDs are superior. The antioxidant capacity of the CQDs and the plant extract were also investigated using different chemical methods (DPPH, ABTS, CUPRAC, FRAP, PBD, and MCA). The antioxidant capacity of the CQDs was similar to that of the extract of E. tenuifolia. Cytotoxicity studies indicate that while the CQDs are not toxic to L929, they exhibit significant toxicity towards HepG2 cells. The CQDs exhibited a strong negative zeta potential (-44.0 mV), which contributed to their selective interaction with dead cells while being repelled by viable cells with intact membrane potentials. The optimal concentration for effective, non-toxic imaging was determined to be 25 µg/mL, as lower concentrations did not produce detectable fluorescence. Differential staining experiments confirmed that CQDs selectively stained dead cells, with red fluorescence observed under the Texas Red filter. Moreover, CQDs exhibited favorable fluorescence intensity and stability, which may offer advantages for long-term and reliable bioimaging applications. In vitro studies on HepG2 and L929 cell lines revealed that the red-emissive CQDs from E. tenuifolia can be potentially used in bioimaging.
Collapse
Affiliation(s)
- Naciye Ozdemir
- Department of Biochemistry, Faculty of Science, Selçuk University, Konya, 42075, Turkey
| | - Gamze Tan
- Department of Biology, Faculty of Science and Letters, Aksaray University, Aksaray, 68100, Turkey
| | - Atakan Tevlek
- Department of Medical Biology, Faculty of Medicine, Atilim University, Ankara, 06830, Turkey
| | - Gulsin Arslan
- Department of Biochemistry, Faculty of Science, Selçuk University, Konya, 42075, Turkey
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selçuk University, Konya, 42075, Turkey
| | - Idris Sargin
- Department of Biochemistry, Faculty of Science, Selçuk University, Konya, 42075, Turkey.
| |
Collapse
|
2
|
Chen Y, Xue Q, Luo W, Sun Y, Li M, Hang T. ZnO/ZnS core-shell quantum dots with enhanced ultraviolet fluorescence and low cytotoxicity for cell imaging. NANOTECHNOLOGY 2023; 34:505704. [PMID: 37714140 DOI: 10.1088/1361-6528/acfa06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/15/2023] [Indexed: 09/17/2023]
Abstract
Zinc oxide quantum dots (ZnO QDs) have gained wide attention due to their wide excitation spectrum, large Stokes shift, adjustable photoluminescence (PL) spectrum, and excellent biocompatibility. However, low fluorescence intensity and poor stability restrict their further applications. In this work, zinc sulfide (ZnS) as a surface modifier, ZnO/ZnS core-shell QDs with type-I core-shell structure and particle size of 5 nm were prepared via sol-gel method. Transmission electron microscope characterization demonstrates the core-shell structure and spherical morphology of the as-synthesized ZnO/ZnS QDs. The PL spectra show that ultraviolet fluorescence has been greatly enhanced. The maximum fluorescence intensity of ZnO/ZnS core-shell QDs increases by 5288.6% compared with that of bare ZnO QDs. The PL quantum yield increases from 9.53% to 30.95%. After being stored for three weeks, the fluorescence performance can be well retained. Furthermore, the cytotoxicity tests confirm the excellent biocompatibility of ZnO/ZnS core-shell QDs, demonstrating they are good candidates for cell imaging.
Collapse
Affiliation(s)
- Yuhang Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Qi Xue
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Weiguo Luo
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yu Sun
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ming Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Tao Hang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
3
|
Çiçek S. Influences of l-ascorbic acid on cytotoxic, biochemical, and genotoxic damages caused by copper II oxide nanoparticles in the rainbow trout gonad cells-2. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109559. [PMID: 36738901 DOI: 10.1016/j.cbpc.2023.109559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/09/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
In parallel with the raising use of copper oxide nanoparticles (CuO NPs) in various industrial and commercial practices, scientific reports on their release to the environment and toxicity are increasing. The toxicity of CuO NPs is mostly based on their oxidative stress. Therefore, it is necessary to investigate the efficacy of well-known therapeutic agents as antioxidants against CuO NPs damage. This study aimed to investigate the mechanism of this damage and to display whether l-ascorbic acid could preserve against the cell toxicities induced by CuO NPs in the rainbow trout gonad cells-2 (RTG-2). While CuO NPs treatment significantly diminished cell viability, the l-ascorbic acid supplement reversed this. l-ascorbic acid treatment reversed the changes in expressions of sod1, sod2, gpx1a, and gpx4b genes while playing a supportive role in the changes in the expression of the cat gene induced by CuO NPs treatment. Moreover, CuO NPs treatment caused an upregulation in the expressions of growth-related genes (gh1, igf1, and igf2) and l-ascorbic acid treatment further increased these effects. CuO NPs treatment significantly up-regulated the expression of the gapdh gene (glycolytic enzyme gene) compared to the control group, and l-ascorbic acid treatment significantly down-regulated the expression of the gapdh gene compared to CuO NPs treatment. The genotoxicity test demonstrated that l-ascorbic acid treatment increased the genotoxic effect caused by CuO NPs by acting as a co-mutagen. Based on the findings, l-ascorbic acid has the potential to be sometimes inhibitory and sometimes supportive of cellular mechanisms caused by CuO NPs.
Collapse
Affiliation(s)
- Semra Çiçek
- Animal Biotechnology Department, Faculty of Agriculture, Atatürk University, Erzurum 25400, Turkey.
| |
Collapse
|
4
|
Da Silva GH, Franqui LS, De Farias MA, De Castro VLSS, Byrne HJ, Martinez DST, Monteiro RTR, Casey A. TiO 2-MWCNT nanohybrid: Cytotoxicity, protein corona formation and cellular internalisation in RTG-2 fish cell line. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106434. [PMID: 36870176 DOI: 10.1016/j.aquatox.2023.106434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 01/03/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Titanium dioxide nanoparticles-multiwalled carbon nanotubes (TiO2-MWCNT) nanohydrid has an enhanced photocatalytic activity across the visible light with promising applications in environmental remediation, solar energy devices and antimicrobial technologies. However, it is necessary to evaluate the toxicological effects of TiO2-MWCNT towards safe and sustainable development of nanohybrids. In this work, we studied the cytotoxicity, protein corona formation and cellular internalisation of TiO2-MWCNT on fibroblasts derived from gonadal rainbow trout tissue (RTG-2) for the first time. This nanohydrid did not show any toxicity effect on RTG-2 cells up to 100 mg L-1 after 24 h of exposure as monitored by alamar blue, neutral red and trypan blue assays (in presence or absence of foetal bovine serum, FBS). Futhermore, cryo-transmission electron microscopy analysis demonstrated that TiO2 particles is attached on nanotube surface after FBS-protein corona formation in cell culture medium. Raman spectroscopy imaging showed that TiO2-MWCNT can be internalised by RTG-2 cells. This work is a novel contribution towards better understanding the nanobiointeractions of nanohydrids linked to their in vitro effects on fish cells in aquatic nanoecotoxicology.
Collapse
Affiliation(s)
- Gabriela H Da Silva
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil; Laboratory of Ecotoxicology and Biosafety, EMBRAPA Environment, Jaguariúna, São Paulo, Brazil; FOCAS Research Institute, TU Dublin, City Campus, Camden Row, Dublin 8, Ireland.
| | - Lidiane Silva Franqui
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Marcelo A De Farias
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | | | - Hugh J Byrne
- FOCAS Research Institute, TU Dublin, City Campus, Camden Row, Dublin 8, Ireland
| | - Diego S T Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Regina T R Monteiro
- Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Alan Casey
- FOCAS Research Institute, TU Dublin, City Campus, Camden Row, Dublin 8, Ireland
| |
Collapse
|
5
|
Opršal J, Knotek P, Zickler GA, Sigg L, Schirmer K, Pouzar M, Geppert M. Cytotoxicity, Accumulation and Translocation of Silver and Silver Sulfide Nanoparticles in contact with Rainbow Trout Intestinal Cells. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105869. [PMID: 34082272 DOI: 10.1016/j.aquatox.2021.105869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Silver nanoparticles (Ag NPs) are widely used in consumer products especially because of their antimicrobial properties. However, this wide usage of Ag NPs is accompanied by their release into the environment where they will be rapidly transformed to other silver species - especially silver sulfide (Ag2S). In the present study, we synthesized Ag NPs and sulfidized them to obtain a core-shell system Ag@Ag2S NPs. Both types of particles form stable dispersions with hydrodynamic diameters of less than 100 nm when diluted in water, but tend to form micrometer-sized agglomerates in biological exposure media. Application of Ag and Ag@Ag2S NPs to rainbow trout intestinal cells (RTgutGC) resulted in a concentration-dependent cytotoxicity for both types of particles, as assessed by a three-endpoint assay for metabolic activity, membrane integrity and lysosomal integrity. The Ag NPs were shown to be slightly more toxic than the Ag@Ag2S NPs. Adding Ag or Ag@Ag2S NPs to RTgutGC cells, grown on a permeable membrane to mimic the intestinal barrier, revealed considerable accumulation of silver for both types of particles. Indeed, the cells significantly attenuated the NP translocation, allowing only a fraction of the metal to translocate across the intestinal epithelium. These findings support the notion that the intestine constitutes an important sink for Ag NPs and that, despite the reduced cytotoxicity of a sulfidized NP form, the particles can enter fish where they may constitute a long-term source for silver ion release and cytotoxicity.
Collapse
Affiliation(s)
- Jakub Opršal
- University of Pardubice, Faculty of Chemical Technology, Institute of Environmental and Chemical Engineering, 53210 Pardubice, Czech Republic; Eawag - Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Petr Knotek
- University of Pardubice, Faculty of Chemical Technology, Department of General and Inorganic Chemistry, 53210 Pardubice, Czech Republic
| | - Gregor A Zickler
- University of Salzburg, Department of Chemistry and Physics of Materials, 5020 Salzburg, Austria
| | - Laura Sigg
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich, Switzerland
| | - Kristin Schirmer
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland
| | - Miloslav Pouzar
- University of Pardubice, Faculty of Chemical Technology, Institute of Environmental and Chemical Engineering, 53210 Pardubice, Czech Republic; Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, 53002 Pardubice, Czech Republic
| | - Mark Geppert
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; University of Salzburg, Department of Biosciences, 5020 Salzburg, Austria.
| |
Collapse
|
6
|
Raja IS, Lee JH, Hong SW, Shin DM, Lee JH, Han DW. A critical review on genotoxicity potential of low dimensional nanomaterials. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124915. [PMID: 33422758 DOI: 10.1016/j.jhazmat.2020.124915] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Low dimensional nanomaterials (LDNMs) have earned attention among researchers as they exhibit a larger surface area to volume and quantum confinement effect compared to high dimensional nanomaterials. LDNMs, including 0-D and 1-D, possess several beneficial biomedical properties such as bioimaging, sensor, cosmetic, drug delivery, and cancer tumors ablation. However, they threaten human beings with the adverse effects of cytotoxicity, carcinogenicity, and genotoxicity when exposed for a prolonged time in industry or laboratory. Among different toxicities, genotoxicity must be taken into consideration with utmost importance as they inherit DNA related disorders causing congenital disabilities and malignancy to human beings. Many researchers have performed NMs' genotoxicity using various cell lines and animal models and reported the effect on various physicochemical and biological factors. In the present work, we have compiled a comparative study on the genotoxicity of the same or different kinds of NMs. Notwithstanding, we have included the classification of genotoxicity, mechanism, assessment, and affecting factors. Further, we have highlighted the importance of studying the genotoxicity of LDNMs and signified the perceptions, future challenges, and possible directives in the field.
Collapse
Affiliation(s)
| | - Jong Ho Lee
- Daan Korea Corporation, Seoul 06252, South Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, South Korea
| | - Dong-Myeong Shin
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong
| | - Jong Hun Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, South Korea.
| | - Dong-Wook Han
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, South Korea; Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
7
|
Wang Z, Tang M. The cytotoxicity of core-shell or non-shell structure quantum dots and reflection on environmental friendly: A review. ENVIRONMENTAL RESEARCH 2021; 194:110593. [PMID: 33352186 DOI: 10.1016/j.envres.2020.110593] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/19/2020] [Accepted: 12/02/2020] [Indexed: 05/23/2023]
Abstract
Quantum dots are widely applicated into bioindustry and research owing to its superior properties such as broad excitation spectra, narrow bandwidth emission spectra and high resistance to photo-bleaching. However, the toxicity of quantum dots should not be underestimated and aroused widespread concern. The surface properties and size of quantum dots are critical relevant properties on toxicity. Then, the core/shell structure becomes one common way to affect the activity of quantum dots such as enhance biocompatibility and stability. Except those toxicity it induced, the problem it brought into the environment such as the degradation of quantum dot similarly becomes a hot issue. This review initially took a brief scan of current research on the cytotoxicity of QDs and the mechanism behind that over the past five years. Mainly discussion concentrated on the diversity of structure on quantum dots whether played a key role on the cytotoxicty of quantum dots. It also discussed the role of different shells with metal or nonmetal cores and the influence on the environment.
Collapse
Affiliation(s)
- Zhihui Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China.
| |
Collapse
|
8
|
Xu Q, Gao J, Wang S, Wang Y, Liu D, Wang J. Quantum dots in cell imaging and their safety issues. J Mater Chem B 2021; 9:5765-5779. [PMID: 34212167 DOI: 10.1039/d1tb00729g] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
When quantum dots are used as fluorescent probes or drug tracers for in vivo imaging, the quantum dots in the blood will come into direct contact with vascular endothelial cells. Thus, it is necessary to study whether quantum dots can affect endothelial function after being injected into blood vessels as imaging agents. In recent years, there have been numerous studies on the toxicity of quantum dots. Herein, we focused on five types of quantum dots (Cd-containing quantum dots, CuInS2 quantum dots, black phosphorus quantum dots, MXene quantum dots, and carbon-based quantum dots) for cell imaging and their toxicity in vivo and in vitro. Although current research on the toxicity of quantum dots has not reached a consistent conclusion, it can guide the next step in evaluating their cytotoxicity.
Collapse
Affiliation(s)
- Quan Xu
- State Key Laboraty of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jiajia Gao
- State Key Laboraty of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Siyang Wang
- State Key Laboraty of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yi Wang
- State Key Laboraty of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Dong Liu
- Strategic Support Force Medical Center Clinical Laboratory, Beijing, 100101, China.
| | - Juncheng Wang
- Department of Stomatology, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
9
|
Varmazyari A, Taghizadehghalehjoughi A, Sevim C, Baris O, Eser G, Yildirim S, Hacimuftuoglu A, Buha A, Wallace DR, Tsatsakis A, Aschner M, Mezhuev Y. Cadmium sulfide-induced toxicity in the cortex and cerebellum: In vitro and in vivo studies. Toxicol Rep 2020; 7:637-648. [PMID: 32489905 PMCID: PMC7260592 DOI: 10.1016/j.toxrep.2020.04.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 11/23/2022] Open
Abstract
Living organisms have an innate ability to regulate the synthesis of inorganic materials, such as bones and teeth in humans. Cadmium sulfide (CdS) can be utilized as a quantum dot that functions as a unique light-emitting semiconductor nanocrystal. The increased use in CdS has led to an increased inhalation and ingestion rate of CdS by humans which requires a broader appreciation for the acute and chronic toxicity of CdS. We investigated the toxic effects of CdS on cerebellar cell cultures and rat brain. We employed a 'green synthesis' biosynthesis process to obtain biocompatible material that can be used in living organisms, such as Viridibacillus arenosi K64. Nanocrystal formation was initiated by adding CdCl2 (1 mM) to the cell cultures. Our in vitro results established that increased concentrations of CdS (0.1 μg/mL) lead to decreased cell viability as assessed using 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT), total antioxidant capacity (TAC), and total oxidant status (TOS). The in vivo studies showed that exposure to CdS (1 mg/kg) glial fibrillary acidic protein (GFAP) and 8-hydroxy-2' -deoxyguanosine (8-OHdG) were increased. Collectively, we describe a model system that addresses the process from the synthesis to the neurotoxicity assessment for CdS both in vitro and in vivo. These data will be beneficial in establishing a more comprehensive pathway for the understanding of quantum dot-induced neurotoxicity.
Collapse
Affiliation(s)
- Atefeh Varmazyari
- Department of Nanoscience and Nanoengineering, Institute of Naturel and Applied Sciences, Ataturk University, Postal Code 25240, Erzurum, Turkey
| | - Ali Taghizadehghalehjoughi
- Department of Nanoscience and Nanoengineering, Institute of Naturel and Applied Sciences, Ataturk University, Postal Code 25240, Erzurum, Turkey
- Department of Pharmacology and Toxicology, Faculty of Veterinary Science, Ataturk University, Postal code 25240, Erzurum, Turkey
| | - Cigdem Sevim
- Department of Pharmacology and Toxicology, Faculty of Veterinary Science, Ataturk University, Postal code 25240, Erzurum, Turkey
| | - Ozlem Baris
- Department of Nanoscience and Nanoengineering, Institute of Naturel and Applied Sciences, Ataturk University, Postal Code 25240, Erzurum, Turkey
| | - Gizem Eser
- Vocational School of Veterinary Laboratory Assistant Program, Igdir University, Postal Code 76103, İgdir, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Medicine Science, Ataturk University, Postal Code 25240, Erzurum, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Pharmacology, Faculty of Medicine Science, Atatürk University, Postal Code 25240, Erzurum, Turkey
| | - Aleksandra Buha
- Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, Postal Code 11000, Belgrade, Serbia
| | - David R Wallace
- Department of Pharmacology, School of Biomedical Sciences, Oklahoma State University Center for Health Sciences, Postal Code 74107, Tulsa, OK, USA
| | - Aristidis Tsatsakis
- Department of Toxicology & Forensic Sciences, Faculty Medicine, University of Crete, Postal Code 74100, Heraklion, Greece
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10463, USA
| | - Yaroslav Mezhuev
- Center of Biomaterials, D. Mendeleev University of Chemical Technology of Russia, Postal Code 125047, Moscow, Russia
| |
Collapse
|
10
|
Kaloyianni M, Dimitriadi A, Ovezik M, Stamkopoulou D, Feidantsis K, Kastrinaki G, Gallios G, Tsiaoussis I, Koumoundouros G, Bobori D. Magnetite nanoparticles effects on adverse responses of aquatic and terrestrial animal models. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121204. [PMID: 31541956 DOI: 10.1016/j.jhazmat.2019.121204] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/25/2019] [Accepted: 09/10/2019] [Indexed: 05/25/2023]
Abstract
Among pollutants, nanoparticles (NPs) consist a potential environmental hazard, as they could possibly harm the aquatic and terrestrial ecosystems while having unpredictable repercussions on human health. Since monitoring the impact of NPs on aquatic and terrestrial life is challenging, due to the differential sensitivities of organisms to a given nanomaterial, the present study examines magnetite nanoparticles' mediated toxicity in different animal models, representing distinctive environments (terrestrial and aquatic). Oxidative, proteolytic and genotoxic effects were evaluated on the hemocytes of the snail Cornu aspersum; in addition to those, apoptotic effects were measured in gills and liver of the zebrafish Danio rerio, and the prussian carp Carassius gibelio. All biochemical parameters studied increased significantly in animals after 8 days exposure to NPs. Inter-species and inter-tissues differences in responses were evident. Our results suggest a common toxicity response mechanism functioning in the tissues of the three animals studied that is triggered by magnetite NPs. The simultaneous use of these parameters could be established after further investigation as a reliable multi-parameter approach for biomonitoring of terrestrial and aquatic ecosystems against magnetite nanoparticles. Additionally, the results of our study could contribute to the design of studies for the production and rational utilization of nanoparticles.
Collapse
Affiliation(s)
- Martha Kaloyianni
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Maria Ovezik
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Stamkopoulou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece; Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia Kastrinaki
- Aerosol & Particle Technology Laboratory, CERTH/CPERI, Thessaloniki, Greece
| | - Georgios Gallios
- Laboratory of General & Inorganic Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Tsiaoussis
- Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Dimitra Bobori
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
11
|
Cazenave J, Ale A, Bacchetta C, Rossi AS. Nanoparticles Toxicity in Fish Models. Curr Pharm Des 2019; 25:3927-3942. [DOI: 10.2174/1381612825666190912165413] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/29/2019] [Indexed: 12/27/2022]
Abstract
The increasing production and use of nanoparticles (NP) have raised concerns regarding the potential
toxicity to human and environmental health. In this review, we address the up to date information on nanotoxicity
using fish as models. Firstly, we carried out a systematic literature search (articles published up to February 2019
in the Scopus database) in order to quantitatively assess the scientific research on nanoparticles, nanotoxicity and
fish. Next, we carried out a narrative synthesis on the main factors and mechanisms involved in NP toxicity in
fish. According to the bibliometric analysis, there is a low contribution of scientific research on nanotoxicity
compared with the general nanoparticles scientific production. The literature search also showed that silver and
titanium NP are the most studied nanomaterials and Danio rerio is the fish species most used. In comparison with
freshwater fish, the effects of nanomaterials on marine fish have been little studied. After a non-systematic literature
analysis, we identified several factors involved in nanotoxicity, as well as the effects and main toxicity
mechanisms of NP on fish. Finally, we highlighted the knowledge gaps and the need for future research.
Collapse
Affiliation(s)
- Jimena Cazenave
- Instituto Nacional de Limnologia, CONICET, UNL, Santa Fe, Argentina, Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
| | - Analía Ale
- Instituto Nacional de Limnologia, CONICET, UNL, Santa Fe, Argentina, Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
| | - Carla Bacchetta
- Instituto Nacional de Limnologia, CONICET, UNL, Santa Fe, Argentina, Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
| | - Andrea Silvana Rossi
- Instituto Nacional de Limnologia, CONICET, UNL, Santa Fe, Argentina, Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
| |
Collapse
|
12
|
de Lima GG, Mendes C, de Marchi G, Vicari T, Cestari MM, Gomes MF, Ramsdorf WA, Magalhães WLE, Hansel FA, Leme DM. The evaluation of the potential ecotoxicity of pyroligneous acid obtained from fast pyrolysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:616-623. [PMID: 31132557 DOI: 10.1016/j.ecoenv.2019.05.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Pyroligneous acid (PA) is a by-product of bio-oil, which is obtained by pyrolysis of the wood. This product has been tested for use in several areas, such as agriculture, as a promising green herbicide; however, there are few scientific data regarding its environmental impacts. For this study, an ecotoxicity testing battery, composed of Daphnia magna acute toxicity test, Allium cepa test and in vitro Comet assay with the rainbow trout gonad-2 cell fish line (RTG-2) were used to evaluate the acute toxicity and genotoxicity of PA obtained from fast pyrolysis of eucalyptus wood fines. The PA presented acute toxicity to D. magna (microcrustacea) with EC50 of 26.12 mg/L, and inhibited the seed germination (EC50 5.556 g/L) and root development (EC50 3.436 g/L) of A. cepa (higher plant). No signs of genotoxicity (chromosomal aberrations and micronuclei in A. cepa and primary DNA lesions in RTG-2 cells) were detected to this product. The acute toxicity and absence of genotoxicity may relate to the molecules found in the PA, being the phenolic fraction the key chemical candidate responsible for the toxicity observed. In addition, daphnids seem to be more sensitivity to the toxicity of PA than higher plants based on their EC50 values. This first ecotoxicological evaluation of PA from fast pyrolysis pointed out the need of determining environmental exposure limits to promote the safer agriculture use of this product, avoiding impacts to living organisms.
Collapse
Affiliation(s)
- Gabriel Goetten de Lima
- Graduate Program in Engineering and Science of Materials - PIPE, Federal University of Paraná - UFPR, 81.531-990 Curitiba PR, Brazil; Materials Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - Camila Mendes
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Gustavo de Marchi
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Taynah Vicari
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Monike F Gomes
- Laboratory of Ecotoxicology, Federal University of Technology - Paraná, Curitiba, PR, Brazil
| | | | | | | | | |
Collapse
|
13
|
Felzenszwalb I, Fernandes ADS, Brito LB, Oliveira GAR, Silva PAS, Arcanjo ME, Marques MRDC, Vicari T, Leme DM, Cestari MM, Ferraz ERA. Toxicological evaluation of nail polish waste discarded in the environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:27590-27603. [PMID: 29619636 DOI: 10.1007/s11356-018-1880-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Nail polish has been widely used around the world. However, the hazards of nail polishes discarded in the environment are still poorly investigated. Thus, the toxicogenetic effects of solubilized (SE) and leached (LE) extracts from nail polishes were investigated, simulating their disposal on water and landfill, respectively, and identifying their physicochemical properties and chemical constituents. Organic compounds and metals were detected in both extracts. SE and LE only induced mutagenic effects in TA98 Salmonella strain in the presence and absence of exogenous metabolic activation. Although both extracts did not significantly increase the frequency of micronucleated HepG2 cells, the cell viability was affected by 24-h exposure. No DNA damage was observed in gonad fish cells (RTG-2) exposed to both extracts; however, the highest SE and LE concentrations induced significant lethal and sublethal effects on zebrafish early-life stages during 96-h exposure. Based on our findings, it can be concluded that if nail polishes enter aquatic systems, it may cause negative impacts to the environment.
Collapse
Affiliation(s)
- Israel Felzenszwalb
- Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | | | - Lara Barroso Brito
- Faculty of Pharmacy, Federal University of Goiás (UFG), Goiânia, GO, Brazil
| | | | - Paula Aquino Soeiro Silva
- Department of Pharmacy and Pharmaceutical Administration, Pharmacy College, Fluminense Federal University, Rua Mário Viana, 523, Santa Rosa, CEP 24, Niterói, RJ, 241-000, Brazil
| | - Maria Elena Arcanjo
- Department of Organic Chemistry, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | | | - Taynah Vicari
- Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Daniela Morais Leme
- Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | | | - Elisa Raquel Anastacio Ferraz
- Department of Pharmacy and Pharmaceutical Administration, Pharmacy College, Fluminense Federal University, Rua Mário Viana, 523, Santa Rosa, CEP 24, Niterói, RJ, 241-000, Brazil.
| |
Collapse
|
14
|
Geißler D, Wegmann M, Jochum T, Somma V, Sowa M, Scholz J, Fröhlich E, Hoffmann K, Niehaus J, Roggenbuck D, Resch-Genger U. An automatable platform for genotoxicity testing of nanomaterials based on the fluorometric γ-H2AX assay reveals no genotoxicity of properly surface-shielded cadmium-based quantum dots. NANOSCALE 2019; 11:13458-13468. [PMID: 31287475 DOI: 10.1039/c9nr01021a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The large number of nanomaterial-based applications emerging in the materials and life sciences and the foreseeable increasing use of these materials require methods that evaluate and characterize the toxic potential of these nanomaterials to keep safety risks to people and environment as low as possible. As nanomaterial toxicity is influenced by a variety of parameters like size, shape, chemical composition, and surface chemistry, high throughput screening (HTS) platforms are recommended for assessing cytotoxicity. Such platforms are not yet available for genotoxicity testing. Here, we present first results obtained for application-relevant nanomaterials using an automatable genotoxicity platform that relies on the quantification of the phosphorylated histone H2AX (γ-H2AX) for detecting DNA double strand breaks (DSBs) and the automated microscope system AKLIDES® for measuring integral fluorescence intensities at different excitation wavelengths. This platform is used to test the genotoxic potential of 30 nm-sized citrate-stabilized gold nanoparticles (Au-NPs) as well as micellar encapsulated iron oxide nanoparticles (FeOx-NPs) and different cadmium (Cd)-based semiconductor quantum dots (QDs), thereby also searching for positive and negative controls as reference materials. In addition, the influence of the QD shell composition on the genotoxic potential of these Cd-based QDs was studied, using CdSe cores as well as CdSe/CdS core/shell and CdSe/CdS/ZnS core/shell/shell QDs. Our results clearly revealed the genotoxicity of the Au-NPs and its absence in the FeOx-NPs. The genotoxicity of the Cd-QDs correlates with the shielding of their Cd-containing core, with the core/shell/shell architecture preventing genotoxicity risks. The fact that none of these nanomaterials showed cytotoxicity at the chosen particle concentrations in a conventional cell viability assay underlines the importance of genotoxicity studies to assess the hazardous potential of nanomaterials.
Collapse
Affiliation(s)
- D Geißler
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| | - M Wegmann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489 Berlin, Germany. and MEDIPAN GmbH, Ludwig-Erhard-Ring 3, 15827 Dahlewitz, Germany
| | - T Jochum
- Fraunhofer-Zentrum für Angewandte Nanotechnologie CAN, Grindelallee 117, 20146 Hamburg, Germany
| | - V Somma
- MEDIPAN GmbH, Ludwig-Erhard-Ring 3, 15827 Dahlewitz, Germany
| | - M Sowa
- MEDIPAN GmbH, Ludwig-Erhard-Ring 3, 15827 Dahlewitz, Germany
| | - J Scholz
- MEDIPAN GmbH, Ludwig-Erhard-Ring 3, 15827 Dahlewitz, Germany
| | - E Fröhlich
- Medizinische Universität Graz, Zentrum für Medizinische Forschung (ZMF), Stiftingtalstrasse 24, 8010 Graz, Austria
| | - K Hoffmann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| | - J Niehaus
- Medizinische Universität Graz, Zentrum für Medizinische Forschung (ZMF), Stiftingtalstrasse 24, 8010 Graz, Austria
| | - D Roggenbuck
- MEDIPAN GmbH, Ludwig-Erhard-Ring 3, 15827 Dahlewitz, Germany and Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology, Germany
| | - U Resch-Genger
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| |
Collapse
|
15
|
Özkan Vardar D, Aydin S, Hocaoğlu İ, Yağci Acar H, Başaran N. An In Vitro Study on the Cytotoxicity and Genotoxicity of Silver Sulfide Quantum Dots Coated with Meso-2,3-dimercaptosuccinic Acid. Turk J Pharm Sci 2019; 16:282-291. [PMID: 32454726 DOI: 10.4274/tjps.galenos.2018.85619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/31/2018] [Indexed: 12/14/2022]
Abstract
Objectives Silver sulfide (Ag2S) quantum dots (QDs) are highly promising nanomaterials in bioimaging systems due to their high activities for both imaging and drug/gene delivery. There is insufficient research on the toxicity of Ag2S QDs coated with meso-2,3-dimercaptosuccinic acid (DMSA). In this study, we aimed to determine the cytotoxicity of Ag2S QDs coated with DMSA in Chinese hamster lung fibroblast (V79) cells over a wide range of concentrations (5-2000 μg/mL). Materials and Methods Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and neutral red uptake (NRU) assays. The genotoxic and apoptotic effects of DMSA/Ag2S QDs were also assessed by comet assay and real-time polymerase chain reaction technique, respectively. Results Cell viability was 54.0±4.8% and 65.7±4.1% at the highest dose (2000 μg/mL) of Ag2S QDs using the MTT and NRU assays, respectively. Although cell viability decreased above 400 μg/mL (MTT assay) and 800 μg/mL (NRU assay), DNA damage was not induced by DMSA/Ag2S QDs at the studied concentrations. The mRNA expression levels of p53, caspase-3, caspase-9, Bax, Bcl-2, and survivin genes were altered in the cells exposed to 500 and 1000 μg/mL DMSA/Ag2S QDs. Conclusion The cytotoxic effects of DMSA/Ag2S QDs may occur at high doses through the apoptotic pathways. However, DMSA/Ag2S QDs appear to be biocompatible at low doses, making them well suited for cell labeling applications.
Collapse
Affiliation(s)
- Deniz Özkan Vardar
- Hitit University, Sungurlu Vocational High School, Health Programs, Çorum, Turkey
| | - Sevtap Aydin
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ankara, Turkey
| | - İbrahim Hocaoğlu
- Koç University, Graduate School of Materials Science and Engineering, İstanbul, Turkey
| | - Havva Yağci Acar
- Koç University, College of Sciences, Department of Chemistry, İstanbul, Turkey
| | - Nursen Başaran
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ankara, Turkey
| |
Collapse
|
16
|
de Brito Rodrigues L, Gonçalves Costa G, Lundgren Thá E, da Silva LR, de Oliveira R, Morais Leme D, Cestari MM, Koppe Grisolia C, Campos Valadares M, de Oliveira GAR. Impact of the glyphosate-based commercial herbicide, its components and its metabolite AMPA on non-target aquatic organisms. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 842:94-101. [PMID: 31255230 DOI: 10.1016/j.mrgentox.2019.05.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 11/16/2022]
Abstract
Glyphosate (GLY) is the active ingredient of several herbicide formulations widely used to control weeds in agricultural and non-agricultural areas. Due to the intensive use of GLY-based herbicides and their direct application on soils, some of their components, including the active ingredient, may reach the aquatic environment through direct run-off and leaching. The present study assessed the acute toxicity and genotoxicity of the GLY-based formulation Atanor 48 (ATN) and its major constituents GLY, surfactant polyethoxylated tallow amine (POEA), as well as the main metabolite of GLY aminomethylphosphonic acid (AMPA) on non-target aquatic organisms. The toxic effects of these chemicals were evaluated in the fish embryo acute toxicity test with zebrafish (Danio rerio), while genotoxic effects were investigated in the comet assays with cells from zebrafish larvae and rainbow trout gonad-2 (RTG-2). GLY and AMPA caused no acute toxic effect, while ATN and POEA induced significant lethal effects in zebrafish (LC50-96 h 76.50 mg/L and 5.49 mg/L, respectively). All compounds were genotoxic in comet experiments with zebrafish larvae (LOEC 1.7 mg/L for GLY, ATN, AMPA and 0.4 mg/L for POEA). Unlike in vivo, only POEA induced DNA damage in RTG-2 cells (LOEC 1.6 mg/L), suggesting that it is a direct acting genotoxic agent. In summary, these data indicate that the lethal effects on zebrafish early-life stages can be ranked in the following order from most to least toxic: surfactant POEA > formulation ATN > active ingredient GLY ≈ metabolite AMPA. Genotoxic effects were observed in both RTG-2 cells (only POEA) and zebrafish (all test compounds) with the lowest tested concentrations. Therefore, it is important to evaluate different toxicological endpoints as well as use different non-target organisms to predict the hazards of GLY-based formulations and their components and breakdown product to aquatic biota.
Collapse
Affiliation(s)
| | | | | | | | - Rhaul de Oliveira
- Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil; School of Technology, State University of Campinas, UNICAMP, Limeira, SP, Brazil
| | - Daniela Morais Leme
- Department of Genetics - Federal University of Paraná (UFPR), Curitiba, PR, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), UNESP, Institute of Chemistry, P.O. Box 355, 14800-900 Araraquara, SP, Brazil
| | | | - Cesar Koppe Grisolia
- Biological Sciences Institute - University of Brasília (UnB), Brasília, Distrito Federal, Brazil
| | | | - Gisele Augusto Rodrigues de Oliveira
- Faculty of Pharmacy, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), UNESP, Institute of Chemistry, P.O. Box 355, 14800-900 Araraquara, SP, Brazil.
| |
Collapse
|
17
|
Žegura B, Filipič M. The application of the Comet assay in fish cell lines. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 842:72-84. [DOI: 10.1016/j.mrgentox.2019.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/28/2022]
|
18
|
Garmanchuk LV, Borovaya MN, Nehelia AO, Inomistova M, Khranovska NM, Tolstanova GM, Blume YB, Yemets AI. CdS Quantum Dots Obtained by “Green” Synthesis: Comparative Analysis of Toxicity and Effects on the Proliferative and Adhesive Activity of Human Cells. CYTOL GENET+ 2019. [DOI: 10.3103/s0095452719020026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Vicari T, Dagostim AC, Klingelfus T, Galvan GL, Monteiro PS, da Silva Pereira L, Silva de Assis HC, Cestari MM. Co-exposure to titanium dioxide nanoparticles (NpTiO 2) and lead at environmentally relevant concentrations in the Neotropical fish species Hoplias intermedius. Toxicol Rep 2018; 5:1032-1043. [PMID: 30386731 PMCID: PMC6205112 DOI: 10.1016/j.toxrep.2018.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 07/13/2018] [Accepted: 09/01/2018] [Indexed: 12/03/2022] Open
Abstract
Growing production and utilization of titanium dioxide nanoparticles (NpTiO2) invariably lead to their accumulation in oceans, rivers and other water bodies, thus increasing the risk to the welfare of this ecosystem. The progressive launch of these nanoparticles in the environment has been accompanied by concern in understanding the dynamics and the toxic effect of these xenobiotic in different ecosystems, either on their own or in tandem with different contaminants (such as organic compounds and heavy metals), possibly altering their toxicity. Nevertheless, it remains unknown if these combined effects may induce damage in freshwater organisms. Therefore, this study aimed to analyze the consequences caused by NpTiO2, after a waterborne exposure of 96 h to a Neotropical fish species Hoplias intermedius, as well as after a co-exposure with lead, whose effects for fish have already been well described in the literature. The characterization of NpTiO2 stock suspension was carried out in order to provide additional information and revealed a stable colloidal suspension. As a result, NpTiO2 showed some genotoxic effects which were observed by comet assay in gill, kidney and brain cells. Also, the activity of brain acetylcholinesterase (AChE) has not changed, but the activity of muscle AChE decreased in the group exposed only to PbII. Regarding the hepatic antioxidant system, catalase (CAT) did not show any change in its activity, whereas that of superoxide dismutase (SOD) intensified in the groups submitted only to PbII and NpTiO2 alone. As for lipid peroxidation, there was a decrease in the group exposed to the NpTiO2 alone and to the co-exposed group (NpTiO2+PbII). As far as metallothionein is concerned, its concentration rose for the co-exposed group (NpTiO2+PbII) and for the group exposed to PbII alone. Overall, we may conclude that NpTiO2 alone caused DNA damage to vital tissues. Also, some impairment related to the antioxidant mechanism was described but it is probably not related to the DNA damage observed, suggesting that the genotoxic effect observed may be due to a different mechanism instead of ROS production.
Collapse
Affiliation(s)
- Taynah Vicari
- Department of Genetics, Laboratory of Animal Cytogenetics and Environmental Mutagenesis, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Ana Carolina Dagostim
- Department of Genetics, Laboratory of Animal Cytogenetics and Environmental Mutagenesis, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Tatiane Klingelfus
- Department of Genetics, Laboratory of Animal Cytogenetics and Environmental Mutagenesis, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Gabrieli Limberger Galvan
- Department of Genetics, Laboratory of Animal Cytogenetics and Environmental Mutagenesis, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Patrícia Sampaio Monteiro
- Department of Pharmacology, Laboratory of Aquatic Toxicology, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Letícia da Silva Pereira
- Department of Pharmacology, Laboratory of Aquatic Toxicology, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Helena Cristina Silva de Assis
- Department of Pharmacology, Laboratory of Aquatic Toxicology, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Marta Margarete Cestari
- Department of Genetics, Laboratory of Animal Cytogenetics and Environmental Mutagenesis, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| |
Collapse
|
20
|
Rotomskis R, Jurgelėnė Ž, Stankevičius M, Stankevičiūtė M, Kazlauskienė N, Jokšas K, Montvydienė D, Kulvietis V, Karabanovas V. Interaction of carboxylated CdSe/ZnS quantum dots with fish embryos: Towards understanding of nanoparticles toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:1280-1291. [PMID: 29710581 DOI: 10.1016/j.scitotenv.2018.04.206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/15/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Due to colloidal instability even with protective coatings, nanoparticles tend to aggregate in complex environments and possibly interact with biota. In this study, visualization of quantum dots (QDs) interaction with rainbow trout (Oncorhynchus mykiss) embryos was performed. Studies on zebrafish (Danio rerio) and pearl gourami (Trichogaster leerii) embryos have shown that QDs interact with embryos in a general manner and their affects are independent on the type of the embryo. It was demonstrated that carboxylated CdSe/ZnS QDs (4 nM) were aggregating in accumulation media and formed agglomerates on the surface of fish embryos under 1-12 days incubation in deep-well water. Detailed analysis of QDs distribution on fish embryos surface and investigation of the penetration of QDs through embryo's membrane showed that the chorion protects embryos from the penetration through the chorion and the accumulation of nanoparticles inside the embryos. Confocal microscopy and spectroscopy studies on rainbow trout embryos demonstrated that QDs cause chorion damage, due to QDs aggregation on the surface of chorion, even the formation of the agglomerates at the outer part of the embryos and/or with the mucus were detected. Aggregation of QDs and formation of agglomerates on the outer part of the embryo's membrane caused the intervention of the aggregates to the chorion and even partially destroyed the embryo's chorion. The incorporation of QDs in chorion was confirmed by two methods: in living embryos from a 3D reconstruction view, and in slices of embryos from a histology view. The damage of chorion integrity might have adverse effects on embryonic development. Moreover, for the first time the toxic effect of QDs was separated from the heavy metal toxicity, which is most commonly discussed in the literature to the toxicity of the QDs.
Collapse
Affiliation(s)
- Ričardas Rotomskis
- Laboratory of Biomedical Physics, National Cancer Institute, Baublio st. 3b, LT-08660 Vilnius, Lithuania; Biophotonics Group of Laser Research Center, Vilnius University, Sauletekio ave. 9, LT-10222 Vilnius, Lithuania.
| | - Živilė Jurgelėnė
- Laboratory of Ecology and Physiology of Hydrobionts, Nature Research Centre, Akademijos st. 2, LT-08412 Vilnius, Lithuania.
| | - Mantas Stankevičius
- Laboratory of Biomedical Physics, National Cancer Institute, Baublio st. 3b, LT-08660 Vilnius, Lithuania; Biophotonics Group of Laser Research Center, Vilnius University, Sauletekio ave. 9, LT-10222 Vilnius, Lithuania
| | - Milda Stankevičiūtė
- Laboratory of Genotoxicology, Nature Research Centre, Akademijos st. 2, LT-08412 Vilnius, Lithuania
| | - Nijolė Kazlauskienė
- Laboratory of Ecology and Physiology of Hydrobionts, Nature Research Centre, Akademijos st. 2, LT-08412 Vilnius, Lithuania
| | - Kęstutis Jokšas
- Geology and Geography Institute of Nature Research Centre, Akademijos st. 2, LT-08412 Vilnius, Lithuania; Vilnius University, Faculty of Chemistry and Geosciences, Naugarduko st. 24, LT-03225 Vilnius, Lithuania
| | - Danguolė Montvydienė
- Laboratory of Ecology and Physiology of Hydrobionts, Nature Research Centre, Akademijos st. 2, LT-08412 Vilnius, Lithuania
| | - Vytautas Kulvietis
- Laboratory of Biomedical Physics, National Cancer Institute, Baublio st. 3b, LT-08660 Vilnius, Lithuania
| | - Vitalijus Karabanovas
- Laboratory of Biomedical Physics, National Cancer Institute, Baublio st. 3b, LT-08660 Vilnius, Lithuania; Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio ave. 11, LT-10223 Vilnius, Lithuania
| |
Collapse
|
21
|
Ozkan Vardar D, Aydin S, Hocaoglu I, Yagci Acar FH, Basaran N. Effects of silver sulfide quantum dots coated with 2-mercaptopropionic acid on genotoxic and apoptotic pathways in vitro. Chem Biol Interact 2018; 291:212-219. [DOI: 10.1016/j.cbi.2018.06.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 01/17/2023]
|
22
|
Oliveira GARD, Leme DM, de Lapuente J, Brito LB, Porredón C, Rodrigues LDB, Brull N, Serret JT, Borràs M, Disner GR, Cestari MM, Oliveira DPD. A test battery for assessing the ecotoxic effects of textile dyes. Chem Biol Interact 2018; 291:171-179. [PMID: 29935967 DOI: 10.1016/j.cbi.2018.06.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/08/2018] [Accepted: 06/21/2018] [Indexed: 11/19/2022]
Abstract
The textile dyeing industry is one of the main sectors contributing to environmental pollution, due to the generation of large amounts of wastewater loaded with dyes (ca. 2-50% of the initial amount of dyes used in the dye baths is lost), causing severe impacts on human health and the environment. In this context, an ecotoxicity testing battery was used to assess the acute toxicity and genotoxicity of the textile dyes Direct Black 38 (DB38; azo dye) and Reactive Blue 15 (RB15; copper phthalocyanine dye) on different trophic levels. Thus these dyes were tested using the following assays: Filter paper contact test with earthworms (Eisenia foetida); seed germination and root elongation toxicity test (Cucumis sativus, Lactuca sativa and Lycopersicon esculentum); acute immobilization test (Daphnia magna and Artemia salina); and the Comet assay with the rainbow trout gonad-2 cell fish line (RTG-2) and D. magna. Neither phytotoxicity nor significant effects on the survival of E. foetida were observed after exposure to DB38 and RB15. Both dyes were classified as relatively non-toxic to D. magna (LC50 > 100 mg/L), but DB38 was moderately toxic to A. salina with a LC50 of 20.7 mg/L. DB38 and RB15 induced significant effects on the DNA of D. magna but only DB38 caused direct (alkaline comet assay) and oxidative (hOGG1-modified alkaline comet assay) damage to RTG-2 cells in hormetic responses. Therefore, the present results emphasize that a test battery approach of bioassays representing multiple trophic levels is fundamental in predicting the toxicity of textile dyes, aside from providing the information required to define their safe levels for living organisms in the environment.
Collapse
Affiliation(s)
- Gisele Augusto Rodrigues de Oliveira
- Faculty of Pharmacy (FF), Federal University of Goiás (UFG), Goiânia, GO, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), UNESP, Institute of Chemistry, P.O. Box 355, 14800-900, Araraquara, SP, Brazil.
| | - Daniela Morais Leme
- Departament of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), UNESP, Institute of Chemistry, P.O. Box 355, 14800-900, Araraquara, SP, Brazil.
| | - Joaquín de Lapuente
- Unit of Experimental Toxicology and Ecotoxicology (UTOX), Barcelona Science Park (PCB), Barcelona, Spain
| | - Lara Barroso Brito
- Faculty of Pharmacy (FF), Federal University of Goiás (UFG), Goiânia, GO, Brazil
| | - Constança Porredón
- Unit of Experimental Toxicology and Ecotoxicology (UTOX), Barcelona Science Park (PCB), Barcelona, Spain
| | | | - Natália Brull
- Unit of Experimental Toxicology and Ecotoxicology (UTOX), Barcelona Science Park (PCB), Barcelona, Spain
| | - Joan Txu Serret
- Unit of Experimental Toxicology and Ecotoxicology (UTOX), Barcelona Science Park (PCB), Barcelona, Spain
| | - Miquel Borràs
- Association of Biologists of Catalonia (CBC), Barcelona, Spain
| | | | | | - Danielle Palma de Oliveira
- Faculty of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), UNESP, Institute of Chemistry, P.O. Box 355, 14800-900, Araraquara, SP, Brazil
| |
Collapse
|
23
|
Nanomaterials made of non-toxic metallic sulfides: A systematic review of their potential biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:1305-1315. [PMID: 28482499 DOI: 10.1016/j.msec.2017.02.120] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/24/2016] [Accepted: 02/23/2017] [Indexed: 11/20/2022]
Abstract
Metallic sulfides involve the chemical bonding of one or more sulfur atoms to a metal. Metallic sulfides are cheap, abundant semiconductor materials that can be used for several applications. However, an important and emerging use for non-toxic metallic sulfides in biomedical applications has arisen quickly in the medical field. In this systematic review, the available data from electronic databases were collected according to PRISMA alignments for systematic reviews. This review shows that these metallic sulfides could be promising for biomedical uses and applications. This systematic review is focused primarily on the following compounds: silver sulfide, copper sulfide, and iron sulfide. The aim of this review was to provide a quick reference on synthesis methods, biocompatibility, recent advances and perspectives, with remarks on future improvements. The toxicity of metallic sulfides depends directly on the cytotoxicity of their interactions with cells and tissues. Metallic sulfides have potential biomedical applications due to their antibacterial properties, uses in imaging and diagnostics, therapies such as photothermal therapy and chemotherapy in tumors and cancer cells, drug delivery and the fabrication of biosensors for the sensitive and selective detection of moieties, among others. Although current evidence about metallic sulfide NPs is promising, there are still several issues to be addressed before these NPs can be used in biomedicine. The current review is a brief but significant guide to metallic sulfides and their potential uses in the biomedical field.
Collapse
|
24
|
Zhang T, Wang Y, Kong L, Xue Y, Tang M. Threshold Dose of Three Types of Quantum Dots (QDs) Induces Oxidative Stress Triggers DNA Damage and Apoptosis in Mouse Fibroblast L929 Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:13435-54. [PMID: 26516873 PMCID: PMC4627041 DOI: 10.3390/ijerph121013435] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/14/2022]
Abstract
Although it has been reported that fluorescent quantum dots (QDs) have obvious acute toxic effects in vitro, their toxic effects at low doses or threshold doses are still unknown. Therefore, we evaluated the biological histocompatibility and in vitro toxicity of three types of QDs at threshold doses. Also, we compared the toxic effects of QDs with different raw chemical compositions and sizes. The results showed that low concentrations of QDs (≤7 μg/mL) had no obvious effect on cell viability and cell membrane damage, oxidative damage, cell apoptosis or DNA damage. However, QD exposure led to a significant cytotoxicity at higher doses (≥14 μg/mL) and induced abnormal cellular morphology. In addition, when comparing the three types of QDs, 2.2 nm CdTe QDs exposure showed a significantly increased proportion of apoptotic cells and significant DNA damage, suggesting that size and composition contribute to the toxic effects of QDs. Based on these discussions, it was concluded that the concentration (7 μg/mL) may serve as a threshold level for these three types of QDs only in L929 fibroblasts, whereas high concentrations (above 14 μg/mL) may be toxic, resulting in inhibition of proliferation, induction of apoptosis and DNA damage in L929 fibroblasts.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, China.
| | - Yiqing Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
- Wuxi Center for Disease Control and Prevention, Wuxi 214023, China.
| | - Lu Kong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Yuying Xue
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, China.
| |
Collapse
|
25
|
Effective Potentiality of Synthesised CdS Nanoparticles in Inducing Genetic Variation on Macrotyloma uniflorum (Lam.) Verdc. BIONANOSCIENCE 2015. [DOI: 10.1007/s12668-015-0176-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|