1
|
Abdallah MM, de Oliveira BD, DuMontier C, Orkaby AR, Nussbaum L, Gaziano M, Djousse L, Gagnon D, Cho K, Preis SR, Driver JA. Risk of Incident Cancer in Veterans with Diabetes Who Use Metformin Versus Sulfonylureas. J Cancer Prev 2024; 29:140-147. [PMID: 39790228 PMCID: PMC11706726 DOI: 10.15430/jcp.24.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 01/12/2025] Open
Abstract
Prior research suggests metformin has anti-cancer effects, yet data are limited. We examined the association between diabetes treatment (metformin versus sulfonylurea) and risk of incident diabetes-related and non- diabetes-related cancers in US veterans. This retrospective cohort study included US veterans, without cancer, aged ≥ 55 years, who were new users of metformin or sulfonylureas for diabetes between 2001 to 2012. Cox proportional hazards models, with propensity score-matched inverse probability of treatment weighting (IPTW) were constructed. A total of 88,713 veterans (mean age 68.6 ± 7.8 years; 97.7% male; 84.1% White, 12.6% Black, 3.3% other race) were followed for 4.2 ± 3.0 years. Among metformin users (n = 60,476), there were 858 incident diabetes-related cancers (crude incidence rate [IR; per 1,000 person-years] = 3.4) and 3,533 non-diabetes-related cancers (IR = 14.1). Among sulfonylurea users (n = 28,237), there were 675 incident diabetes-related cancers (IR = 5.5) and 2,316 non-diabetes-related cancers (IR = 18.9). After IPTW adjustment, metformin use was associated with a lower risk of incident diabetes-related cancer (hazard ratio [HR] = 0.66, 95% CI 0.58-0.75) compared to sulfonylurea use. There was no association between treatment group (metformin versus sulfonylurea) and non-diabetes-related cancer (HR = 0.96, 95% CI 0.89-1.02). Of diabetes-related cancers, metformin users had lower incidence of liver (HR = 0.39, 95% CI 0.28-0.53), colorectal (HR = 0.75, 95% CI 0.62-0.92), and esophageal cancers (HR = 0.54, 95% CI 0.36-0.81). Among US veterans, metformin users had lower incidence of diabetes-related cancer, particularly liver, colorectal, and esophageal cancers, as compared to sulfonylurea users. Use of metformin was not associated with non-diabetes-related cancer. Further studies are needed to understand how metformin use impacts cancer incidence in different patient populations.
Collapse
Affiliation(s)
- Maya M. Abdallah
- Section of Hematology/Oncology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | | | - Clark DuMontier
- New England Geriatrics Research, Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA
- Division of Aging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Ariela R. Orkaby
- New England Geriatrics Research, Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA
- Division of Aging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Lisa Nussbaum
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Michael Gaziano
- Division of Aging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Luc Djousse
- Division of Aging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - David Gagnon
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Kelly Cho
- Division of Aging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Sarah R. Preis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jane A. Driver
- New England Geriatrics Research, Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA
- Division of Aging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
2
|
Sirtori CR, Castiglione S, Pavanello C. METFORMIN: FROM DIABETES TO CANCER TO PROLONGATION OF LIFE. Pharmacol Res 2024; 208:107367. [PMID: 39191336 DOI: 10.1016/j.phrs.2024.107367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
The metformin molecule dates back to over a century, but its clinical use started in the '50s. Since then, its use in diabetics has grown constantly, with over 150 million users today. The therapeutic profile also expanded, with improved understanding of novel mechanisms. Metformin has a major activity on insulin resistance, by acting on the insulin receptors and mitochondria, most likely by activation of the adenosine monophosphate-activated kinase. These and associated mechanisms lead to significant lipid lowering and body weight loss. An anti-cancer action has come up in recent years, with mechanisms partly dependent on the mitochondrial activity and also on phosphatidylinositol 3-kinase resistance occurring in some malignant tumors. The potential of metformin to raise life-length is the object of large ongoing studies and of several basic and clinical investigations. The present review article will attempt to investigate the basic mechanisms behind these diverse activities and the potential clinical benefits. Metformin may act on transcriptional activity by histone modification, DNA methylation and miRNAs. An activity on age-associated inflammation (inflammaging) may occur via activation of the nuclear factor erythroid 2 related factor and changes in gut microbiota. A senolytic activity, leading to reduction of cells with the senescent associated secretory phenotype, may be crucial in lifespan prolongation as well as in ancillary properties in age-associated diseases, such as Parkinson's disease. Telomere prolongation may be related to the activity on mitochondrial respiratory factor 1 and on peroxisome gamma proliferator coactivator 1-alpha. Very recent observations on the potential to act on the most severe neurological disorders, such as amyotrophic lateral sclerosis and frontotemporal dementia, have raised considerable hope.
Collapse
Affiliation(s)
- Cesare R Sirtori
- Center of Dyslipidemias, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; Centro E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| | - Sofia Castiglione
- Center of Dyslipidemias, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; Centro E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Chiara Pavanello
- Center of Dyslipidemias, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; Centro E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
3
|
Zhang W, Sun HS, Wang X, Dumont AS, Liu Q. Cellular senescence, DNA damage, and neuroinflammation in the aging brain. Trends Neurosci 2024; 47:461-474. [PMID: 38729785 DOI: 10.1016/j.tins.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024]
Abstract
Aging may lead to low-level chronic inflammation that increases the susceptibility to age-related conditions, including memory impairment and progressive loss of brain volume. As brain health is essential to promoting healthspan and lifespan, it is vital to understand age-related changes in the immune system and central nervous system (CNS) that drive normal brain aging. However, the relative importance, mechanistic interrelationships, and hierarchical order of such changes and their impact on normal brain aging remain to be clarified. Here, we synthesize accumulating evidence that age-related DNA damage and cellular senescence in the immune system and CNS contribute to the escalation of neuroinflammation and cognitive decline during normal brain aging. Targeting cellular senescence and immune modulation may provide a logical rationale for developing new treatment options to restore immune homeostasis and counteract age-related brain dysfunction and diseases.
Collapse
Affiliation(s)
- Wenyan Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hong-Shuo Sun
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Xiaoying Wang
- Tulane Center for Clinical Neurosciences, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Aaron S Dumont
- Tulane Center for Clinical Neurosciences, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
4
|
Wang M, Noghabaei G, Raeisi T, Li D, Alizadeh H, Alizadeh M. Metformin and risk of hematological cancers in patients with diabetes: a systematic review and meta-analysis. Ann Saudi Med 2024; 44:126-134. [PMID: 38615182 PMCID: PMC11016148 DOI: 10.5144/0256-4947.2024.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/01/2024] [Indexed: 04/15/2024] Open
Abstract
FUNDING No external funding.
Collapse
Affiliation(s)
- Min Wang
- From the Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Giti Noghabaei
- From the Department of Internal Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tahereh Raeisi
- From the Department of Medicine, Hormozgan University of Medical Sciences, Bandar-Abbas, Iran
| | - Dandan Li
- From the Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Hamzeh Alizadeh
- From the Department of Genetics and Breeding, University of Guilan, Rasht, Gilan, Iran
| | - Mohammad Alizadeh
- From the Department of Medical Surgical Nursing, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
5
|
Gupta J, Jalil AT, Abd Alzahraa ZH, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Najafi M. The Metformin Immunoregulatory Actions in Tumor Suppression and Normal Tissues Protection. Curr Med Chem 2024; 31:5370-5396. [PMID: 37403391 DOI: 10.2174/0929867331666230703143907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023]
Abstract
The immune system is the key player in a wide range of responses in normal tissues and tumors to anticancer therapy. Inflammatory and fibrotic responses in normal tissues are the main limitations of chemotherapy, radiotherapy, and also some newer anticancer drugs such as immune checkpoint inhibitors (ICIs). Immune system responses within solid tumors including anti-tumor and tumor-promoting responses can suppress or help tumor growth. Thus, modulation of immune cells and their secretions such as cytokines, growth factors and epigenetic modulators, pro-apoptosis molecules, and some other molecules can be suggested to alleviate side effects in normal tissues and drug-resistance mechanisms in the tumor. Metformin as an anti-diabetes drug has shown intriguing properties such as anti-inflammation, anti-fibrosis, and anticancer effects. Some investigations have uncovered that metformin can ameliorate radiation/chemotherapy toxicity in normal cells and tissues through the modulation of several targets in cells and tissues. These effects of metformin may ameliorate severe inflammatory responses and fibrosis after exposure to ionizing radiation or following treatment with highly toxic chemotherapy drugs. Metformin can suppress the activity of immunosuppressive cells in the tumor through the phosphorylation of AMP-activated protein kinase (AMPK). In addition, metformin may stimulate antigen presentation and maturation of anticancer immune cells, which lead to the induction of anticancer immunity in the tumor. This review aims to explain the detailed mechanisms of normal tissue sparing and tumor suppression during cancer therapy using adjuvant metformin with an emphasis on immune system responses.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U. P., India
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | | | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellin, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Cuenca, Ecuador
| | | | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
6
|
Kaffe D, Kaplanis SI, Karagogeos D. The Roles of Caloric Restriction Mimetics in Central Nervous System Demyelination and Remyelination. Curr Issues Mol Biol 2023; 45:9526-9548. [PMID: 38132442 PMCID: PMC10742427 DOI: 10.3390/cimb45120596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The dysfunction of myelinating glial cells, the oligodendrocytes, within the central nervous system (CNS) can result in the disruption of myelin, the lipid-rich multi-layered membrane structure that surrounds most vertebrate axons. This leads to axonal degeneration and motor/cognitive impairments. In response to demyelination in the CNS, the formation of new myelin sheaths occurs through the homeostatic process of remyelination, facilitated by the differentiation of newly formed oligodendrocytes. Apart from oligodendrocytes, the two other main glial cell types of the CNS, microglia and astrocytes, play a pivotal role in remyelination. Following a demyelination insult, microglia can phagocytose myelin debris, thus permitting remyelination, while the developing neuroinflammation in the demyelinated region triggers the activation of astrocytes. Modulating the profile of glial cells can enhance the likelihood of successful remyelination. In this context, recent studies have implicated autophagy as a pivotal pathway in glial cells, playing a significant role in both their maturation and the maintenance of myelin. In this Review, we examine the role of substances capable of modulating the autophagic machinery within the myelinating glial cells of the CNS. Such substances, called caloric restriction mimetics, have been shown to decelerate the aging process by mitigating age-related ailments, with their mechanisms of action intricately linked to the induction of autophagic processes.
Collapse
Affiliation(s)
- Despoina Kaffe
- Department of Biology, University of Crete, Vassilika Vouton, 70013 Heraklion, Greece;
| | - Stefanos Ioannis Kaplanis
- Department of Basic Science, School of Medicine, University of Crete, Vassilika Vouton, 70013 Heraklion, Greece;
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Vassilika Vouton, 70013 Heraklion, Greece
| | - Domna Karagogeos
- Department of Basic Science, School of Medicine, University of Crete, Vassilika Vouton, 70013 Heraklion, Greece;
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Vassilika Vouton, 70013 Heraklion, Greece
| |
Collapse
|
7
|
Karmanova EE, Chernikov AV, Popova NR, Sharapov MG, Ivanov VE, Bruskov VI. Metformin mitigates radiation toxicity exerting antioxidant and genoprotective properties. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2449-2460. [PMID: 36961549 PMCID: PMC10036983 DOI: 10.1007/s00210-023-02466-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/14/2023] [Indexed: 03/25/2023]
Abstract
The antidiabetic drug metformin (MF) exhibits redox-modulating effects in various pathologies associated with oxidative stress and mitigates ionizing radiation-induced toxicity, but the underlying mechanisms remain to be elucidated. Thus, we studied some radiomitigatory effects of MF and explored the possible mechanisms behind them. Highly sensitive luminescence methods and non-competitive enzyme-linked immunosorbent assay (ELISA) were used in in vitro studies, and in vivo the damage to bone marrow cells and its repair were assessed by the micronucleus test. In a solution, MF at concentrations exceeding 0.1 µM effectively intercepts •OH upon X-ray-irradiation, but does not react directly with H2O2. MF accelerates the decomposition of H2O2 catalyzed by copper ions. MF does not affect the radiation-induced formation of H2O2 in the solution of bovine gamma-globulin (BGG), but has a modulating effect on the generation of H2O2 in the solution of bovine serum albumin (BSA). MF at 0.05-1 mM decreases the radiation-induced formation of 8-oxoguanine in a DNA solution depending on the concentration of MF with a maximum at 0.25 mM. MF at doses of 3 mg/kg body weight (bw) and 30 mg/kg bw administered to mice after irradiation, but not before irradiation, reduces the frequency of micronucleus formation in polychromatophilic erythrocytes of mouse red bone marrow. Our work has shown that the radiomitigatory properties of MF are mediated by antioxidant mechanisms of action, possibly including its ability to chelate polyvalent metal ions.
Collapse
Affiliation(s)
- Ekaterina E Karmanova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 3 Institutskaya St., Pushchino, Moscow Region, 142290, Russia
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research, Federal Research Center of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Anatoly V Chernikov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 3 Institutskaya St., Pushchino, Moscow Region, 142290, Russia.
| | - Nelli R Popova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 3 Institutskaya St., Pushchino, Moscow Region, 142290, Russia
| | - Mars G Sharapov
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research, Federal Research Center of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Vladimir E Ivanov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 3 Institutskaya St., Pushchino, Moscow Region, 142290, Russia
| | - Vadim I Bruskov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 3 Institutskaya St., Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
8
|
Malaekeh-Nikouei A, Shokri-Naei S, Karbasforoushan S, Bahari H, Baradaran Rahimi V, Heidari R, Askari VR. Metformin beyond an anti-diabetic agent: A comprehensive and mechanistic review on its effects against natural and chemical toxins. Biomed Pharmacother 2023; 165:115263. [PMID: 37541178 DOI: 10.1016/j.biopha.2023.115263] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
In addition to the anti-diabetic effect of metformin, a growing number of studies have shown that metformin has some exciting properties, such as anti-oxidative capabilities, anticancer, genomic stability, anti-inflammation, and anti-fibrosis, which have potent, that can treat other disorders other than diabetes mellitus. We aimed to describe and review the protective and antidotal efficacy of metformin against biologicals, chemicals, natural, medications, pesticides, and radiation-induced toxicities. A comprehensive search has been performed from Scopus, Web of Science, PubMed, and Google Scholar databases from inception to March 8, 2023. All in vitro, in vivo, and clinical studies were considered. Many studies suggest that metformin affects diseases other than diabetes. It is a radioprotective and chemoprotective drug that also affects viral and bacterial diseases. It can be used against inflammation-related and apoptosis-related abnormalities and against toxins to lower their effects. Besides lowering blood sugar, metformin can attenuate the effects of toxins on body weight, inflammation, apoptosis, necrosis, caspase-3 activation, cell viability and survival rate, reactive oxygen species (ROS), NF-κB, TNF-α, many interleukins, lipid profile, and many enzymes activity such as catalase and superoxide dismutase. It also can reduce the histopathological damages induced by many toxins on the kidneys, liver, and colon. However, clinical trials and human studies are needed before using metformin as a therapeutic agent against other diseases.
Collapse
Affiliation(s)
- Amirhossein Malaekeh-Nikouei
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Shokri-Naei
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sobhan Karbasforoushan
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Bahari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Heidari
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, Iran; Research Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Zhang Y, Zhou F, Guan J, Zhou L, Chen B. Action Mechanism of Metformin and Its Application in Hematological Malignancy Treatments: A Review. Biomolecules 2023; 13:250. [PMID: 36830619 PMCID: PMC9953052 DOI: 10.3390/biom13020250] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
Hematologic malignancies (HMs) mainly include acute and chronic leukemia, lymphoma, myeloma and other heterogeneous tumors that seriously threaten human life and health. The common effective treatments are radiotherapy, chemotherapy and hematopoietic stem cell transplantation (HSCT), which have limited options and are prone to tumor recurrence and (or) drug resistance. Metformin is the first-line drug for the treatment of type 2 diabetes (T2DM). Recently, studies identified the potential anti-cancer ability of metformin in both T2DM patients and patients that are non-diabetic. The latest epidemiological and preclinical studies suggested a potential benefit of metformin in the prevention and treatment of patients with HM. The mechanism may involve the activation of the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway by metformin as well as other AMPK-independent pathways to exert anti-cancer properties. In addition, combining current conventional anti-cancer drugs with metformin may improve the efficacy and reduce adverse drug reactions. Therefore, metformin can also be used as an adjuvant therapeutic agent for HM. This paper highlights the anti-hyperglycemic effects and potential anti-cancer effects of metformin, and also compiles the in vitro and clinical trials of metformin as an anti-cancer and chemosensitizing agent for the treatment of HM. The need for future research on the use of metformin in the treatment of HM is indicated.
Collapse
Affiliation(s)
| | | | | | | | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
10
|
Wu XY, Xu WW, Huan XK, Wu GN, Li G, Zhou YH, Najafi M. Mechanisms of cancer cell killing by metformin: a review on different cell death pathways. Mol Cell Biochem 2023; 478:197-214. [PMID: 35771397 DOI: 10.1007/s11010-022-04502-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/08/2022] [Indexed: 01/17/2023]
Abstract
Cancer resistance to anti-tumour agents has been one of the serious challenges in different types of cancer treatment. Usually, an increase in the cell death markers can predict a higher rate of survival among patients diagnosed with cancer. By increasing the regulation of survival genes, cancer cells can display a higher resistance to therapy through the suppression of anti-tumour immunity and inhibition of cell death signalling pathways. Administration of certain adjuvants may be useful in order to increase the therapeutic efficiency of anti-cancer therapy through the stimulation of different cell death pathways. Several studies have demonstrated that metformin, an antidiabetic drug with anti-cancer properties, amplifies cell death mechanisms, especially apoptosis in a broad-spectrum of cancer cells. Stimulation of the immune system by metformin has been shown to play a key role in the induction of cell death. It seems that the induction or suppression of different cell death mechanisms has a pivotal role in either sensitization or resistance of cancer cells to therapy. This review explains the cellular and molecular mechanisms of cell death following anticancer therapy. Then, we discuss the modulatory roles of metformin on different cancer cell death pathways including apoptosis, mitotic catastrophe, senescence, autophagy, ferroptosis and pyroptosis.
Collapse
Affiliation(s)
- Xiao-Yu Wu
- Department of Surgical Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Wen-Wen Xu
- Department of Gynaecology, The Affiliated Hospital of Nanjing University of Chinese Medi-Cine, Nanjing, 210029, Jiangsu, China
| | - Xiang-Kun Huan
- Department of Surgical Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Guan-Nan Wu
- Department of Surgical Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Gang Li
- Department of General Surgery, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Yu-Hong Zhou
- Digestive Endoscopy Center, The Affiliated Hospital of Nanjing University of Chinese Medi-Cine, Nanjing, 210029, Jiangsu, China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
11
|
Rahman H, Liu T, Askaryar S, Grossman D. Aspirin Protects against UVB-Induced DNA Damage through Activation of AMP Kinase. J Invest Dermatol 2023; 143:154-162.e3. [PMID: 35926656 DOI: 10.1016/j.jid.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/15/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022]
Abstract
The anti-inflammatory and chemopreventive activities of aspirin (ASA) may be mediated through its cyclooxygenase inhibitor function. We have previously shown that ASA can protect against UVR-induced skin inflammation and DNA damage; however, the role of inflammation in UV-induced DNA damage and the mechanism underlying ASA protection are poorly characterized. Using immunodeficient NOD scid gamma mice and immunocompetent C57BL/6 mice treated with immune cell‒depleting antibodies, we found that inflammation was not required for UVB-induced 8-oxoguanine and cyclobutane pyrimidine dimers in vivo. Unlike ASA, neither its immediate metabolite salicylate nor the cyclooxygenase inhibitor indomethacin reduced UVB-induced 8-oxoguanine or cyclobutane pyrimidine dimers in melanocyte Melan-a or keratinocyte HaCat cells in vitro. Moreover, addition of prostaglandin E2 did not reverse the protective effect of ASA on UVB-treated cells. Phosphorylation of the 5' AMP protein kinase, observed in ASA-treated cells, could be blocked by the 5' AMP protein kinase inhibitor compound C. Compound C or 5' AMP protein kinase knockdown partially reduced ASA-mediated protection against UVB-induced DNA damage. Finally, injection of compound C partially reversed the protective effect of ASA on UVB-treated mouse skin in vivo. These studies suggest that ASA confers protection against UVB-induced DNA damage through the activation of 5' AMP protein kinase rather than through cyclooxygenase inhibition.
Collapse
Affiliation(s)
- Hafeez Rahman
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Tong Liu
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Sajjad Askaryar
- University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Douglas Grossman
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA; Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA; Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
12
|
The Impact of the Association between Cancer and Diabetes Mellitus on Mortality. J Pers Med 2022; 12:jpm12071099. [PMID: 35887596 PMCID: PMC9322980 DOI: 10.3390/jpm12071099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
The prevalence of cancer, diabetes mellitus (DM), and hypertension is increasing in ageing populations. We analyzed the association of DM with cancer and its effects on cancer mortality. The data of 2009–2018 from the Korea National Hospital Discharge In-depth Injury Survey were used; 169,959 adults with cancer as the main diagnosis were identified. The association rule for unsupervised machine learning was used. Association rule mining was used to analyze the association between the diseases. Logistic regression was performed to determine the effects of DM on cancer mortality. DM prevalence was 12.9%. Cancers with high DM prevalence were pancreatic (29.9%), bile duct (22.7%), liver (21.4%), gallbladder (15.5%), and lung cancers (15.4%). Cancers with high hypertension prevalence were bile duct (31.4%), ureter (30.5%), kidney (29.5%), pancreatic (28.1%), and bladder cancers (27.5%). The bidirectional association between DM and hypertension in cancer was the strongest (lift = 2.629, interest support [IS] scale = 0.426), followed by that between lung cancer and hypertension (lift = 1.280, IS scale = 0.204), liver cancer and DM (lift = 1.658, IS scale = 0.204), hypertension and liver cancer and DM (lift = 3.363, IS scale = 0.197), colorectal cancer and hypertension (lift = 1.133, IS scale = 0.180), and gastric cancer and hypertension (lift = 1.072, IS scale = 0.175). DM increased liver cancer mortality (p = 0.000), while hypertension significantly increased the mortality rate of stomach, colorectal, liver, and lung cancers. Our study confirmed the association between cancer and DM. Consequently, a patient management strategy with presumptive diagnostic ability for DM and hypertension is required to decrease cancer mortality rates.
Collapse
|
13
|
YENMİŞ G, BEŞLİ N. In vitro ve in silico analizi ile metforminin meme tümörü hücrelerinde protein profili üzerindeki etkinliği. EGE TIP DERGISI 2022. [DOI: 10.19161/etd.1126777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: This study aimed to uncover the varieties in protein profiles of Met in breast tumor (BT) cells by assessment of in vitro and in silico analysis.
Materials and Methods: Here, the cells obtained from mastectomy patients were cultured, the effective Met-dose was determined as 25 mM through cell viability and BrdU tests. Protein identification in the breast tumor cells was implemented by employing LC-MS/MS technology.
Results: The expression of SSR3, THAP3, FTH1, NEFM, ANP32A, ANP32B, KRT7 proteins was significantly decreased whereas the GARS protein increased in the 25 mM Met group compared to the Non-Met (0 mM) control group. In silico analysis, we analyzed the probable interactions of all these proteins with each other and other proteins, to evaluate the analysis of the larger protein network, and which metabolic pathway proteins are involved in.
Conclusion: The stated proteomics analysis in our study proposes a better understanding of the prognosis of breast cancer and future studies to investigate the effect of metformin in this field on proteomic pathways in other sorts of cancer.
Collapse
Affiliation(s)
- Güven YENMİŞ
- Department of Medical Biology, Faculty of Medicine, Biruni University, Istanbul, Turkiye
| | - Nail BEŞLİ
- Department of Medical Biology, Faculty of Medicine, University of Health Sciences, Istanbul, Turkiye
| |
Collapse
|
14
|
Role of Induced Programmed Cell Death in the Chemopreventive Potential of Apigenin. Int J Mol Sci 2022; 23:ijms23073757. [PMID: 35409117 PMCID: PMC8999072 DOI: 10.3390/ijms23073757] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
The flavonoid apigenin (4′,5,7-trihydroxyflavone), which is one of the most widely distributed phytochemicals in the plant kingdom, is one of the most thoroughly investigated phenolic components. Previous studies have attributed the physiological effects of apigenin to its anti-allergic, antibacterial, antidiabetic, anti-inflammatory, antioxidant, antiviral, and blood-pressure-lowering properties, and its documented anticancer properties have been attributed to the induction of apoptosis and autophagy, the inhibition of inflammation, angiogenesis, and cell proliferation, and the regulation of cellular responses to oxidative stress and DNA damage. The most well-known mechanism for the compound’s anticancer effects in human cancer cell lines is apoptosis, followed by autophagy, and studies have also reported that apigenin induces novel cell death mechanisms, such as necroptosis and ferroptosis. Therefore, the aim of this paper is to review the therapeutic potential of apigenin as a chemopreventive agent, as well as the roles of programmed cell death mechanisms in the compound’s chemopreventive properties.
Collapse
|
15
|
García-Puga M, Saenz-Antoñanzas A, Matheu A, López de Munain A. Targeting Myotonic Dystrophy Type 1 with Metformin. Int J Mol Sci 2022; 23:ijms23052901. [PMID: 35270043 PMCID: PMC8910924 DOI: 10.3390/ijms23052901] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic disorder of genetic origin. Progressive muscular weakness, atrophy and myotonia are its most prominent neuromuscular features, while additional clinical manifestations in multiple organs are also common. Overall, DM1 features resemble accelerated aging. There is currently no cure or specific treatment for myotonic dystrophy patients. However, in recent years a great effort has been made to identify potential new therapeutic strategies for DM1 patients. Metformin is a biguanide antidiabetic drug, with potential to delay aging at cellular and organismal levels. In DM1, different studies revealed that metformin rescues multiple phenotypes of the disease. This review provides an overview of recent findings describing metformin as a novel therapy to combat DM1 and their link with aging.
Collapse
Affiliation(s)
- Mikel García-Puga
- Neuromuscular Diseases Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain;
- Cellular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain;
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED-CIBER), Carlos III Institute, 28031 Madrid, Spain
| | - Ander Saenz-Antoñanzas
- Cellular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain;
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain;
- Basque Foundation for Science (IKERBASQUE), 48009 Bilbao, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERfes), Carlos III Institute, 28029 Madrid, Spain
- Correspondence: (A.M.); (A.L.d.M.); Tel.: +34-943-006-073 (A.M.); +34-943-006-294 (A.L.d.M.)
| | - Adolfo López de Munain
- Neuromuscular Diseases Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain;
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED-CIBER), Carlos III Institute, 28031 Madrid, Spain
- Neurology Department, Donostia University Hospital, OSAKIDETZA, 20014 San Sebastian, Spain
- Department of Neurosciences, Faculty of Medicine and Nursery, University of the Basque Country, 20014 San Sebastian, Spain
- Correspondence: (A.M.); (A.L.d.M.); Tel.: +34-943-006-073 (A.M.); +34-943-006-294 (A.L.d.M.)
| |
Collapse
|
16
|
Teng X, Brown J, Morel L. Redox Homeostasis Involvement in the Pharmacological Effects of Metformin in Systemic Lupus Erythematosus. Antioxid Redox Signal 2022; 36:462-479. [PMID: 34619975 PMCID: PMC8982129 DOI: 10.1089/ars.2021.0070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/13/2021] [Accepted: 10/05/2021] [Indexed: 12/21/2022]
Abstract
Significance: Metformin has been proposed as a treatment for systemic lupus erythematosus (SLE). The primary target of metformin, the electron transport chain complex I in the mitochondria, is associated with redox homeostasis in immune cells, which plays a critical role in the pathogenesis of autoimmune diseases. This review addresses the evidence and knowledge gaps on whether a beneficial effect of metformin in lupus may be due to a restoration of a balanced redox state. Recent Advances: Clinical trials in SLE patients with mild-to-moderate disease activity and preclinical studies in mice have provided encouraging results for metformin. The mechanism by which this therapeutic effect was achieved is largely unknown. Metformin regulates redox homeostasis in a context-specific manner. Multiple cell types contribute to SLE, with evidence of increased mitochondrial oxidative stress in T cells and neutrophils. Critical Issues: The major knowledge gaps are whether the efficacy of metformin is linked to a restored redox homeostasis in the immune system, and if it does, in which cell types it occurs? We also need to know which patients may have a better response to metformin, and whether it corresponds to a specific mechanism? Finally, the identification of biomarkers to predict treatment outcomes would be of great value. Future Directions: Mechanistic studies must address the context-dependent pharmacological effects of metformin. Multiple cell types as well as a complex disease etiology should be considered. These studies must integrate the rapid advances made in understanding how metabolic programs direct the effector functions of immune cells. Antioxid. Redox Signal. 36, 462-479.
Collapse
Affiliation(s)
- Xiangyu Teng
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Josephine Brown
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Laurence Morel
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
17
|
Murdocca M, Spitalieri P, Cappello A, Colasuonno F, Moreno S, Candi E, D'Apice MR, Novelli G, Sangiuolo F. Mitochondrial dysfunction in mandibular hypoplasia, deafness and progeroid features with concomitant lipodystrophy (MDPL) patients. Aging (Albany NY) 2022; 14:1651-1664. [PMID: 35196257 PMCID: PMC8908938 DOI: 10.18632/aging.203910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/14/2022] [Indexed: 11/25/2022]
Abstract
Mandibular hypoplasia, Deafness and Progeroid features with concomitant Lipodystrophy is a rare, genetic, premature aging disease named MDPL Syndrome, due to almost always a de novo variant in POLD1 gene, encoding the DNA polymerase δ. In previous in vitro studies, we have already described several hallmarks of aging, including genetic damage, telomere shortening, cell senescence and proliferation defects. Since a clear connection has been reported between telomere shortening and mitochondria malfunction to initiate the aging process, we explored the role that mitochondrial metabolism and activity play in pathogenesis of MDPL Syndrome, an aspect that has not been addressed yet. We thus evaluated mtDNA copy number, assessing a significant decrease in mutated cells. The expression level of genes related to mitochondrial biogenesis and activity also revealed a significant reduction, highlighting a mitochondrial dysfunction in MDPL cells. Even the expression levels of mitochondrial marker SOD2, as assessed by immunofluorescence, were reduced. The decrease in this antioxidant enzyme correlated with increased production of mitochondrial ROS in MDPL cells, compared to WT. Consistent with these data, Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) analysis revealed in MDPL cells fewer mitochondria, which also displayed morphological abnormalities. Accordingly, we detected autophagic vacuoles containing partially digested mitochondria. Overall, our results demonstrate a dramatic impairment of mitochondrial biogenesis and activity in MDPL Syndrome. Administration of Metformin, though unable to restore mitochondrial impairment, proved efficient in rescuing nuclear abnormalities, suggesting its use to specifically ameliorate the premature aging phenotype.
Collapse
Affiliation(s)
- Michela Murdocca
- Department of Biomedicine and Prevention, Tor Vergata University, Rome 00133, Italy
| | - Paola Spitalieri
- Department of Biomedicine and Prevention, Tor Vergata University, Rome 00133, Italy
| | - Angela Cappello
- Department of Experimental Medicine, Tor Vergata University, Rome 00133, and IDI-IRCCS, Rome 00166, Italy
| | | | - Sandra Moreno
- Department of Science, LIME, University Roma Tre, Rome 00146, Italy.,IRCCS Fondazione Santa Lucia, Rome 00179, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, Tor Vergata University, Rome 00133, and IDI-IRCCS, Rome 00166, Italy
| | | | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Tor Vergata University, Rome 00133, Italy
| | - Federica Sangiuolo
- Department of Biomedicine and Prevention, Tor Vergata University, Rome 00133, Italy
| |
Collapse
|
18
|
Kovács BZ, Puskás LG, Nagy LI, Papp A, Gyöngyi Z, Fórizs I, Czuppon G, Somlyai I, Somlyai G. Blocking the Increase of Intracellular Deuterium Concentration Prevents the Expression of Cancer-Related Genes, Tumor Development, and Tumor Recurrence in Cancer Patients. Cancer Control 2022; 29:10732748211068963. [PMID: 35043700 PMCID: PMC8777325 DOI: 10.1177/10732748211068963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The possible role of the naturally occurring deuterium in the regulation of cell
division was first described in the 1990s. To investigate the mechanism of
influence of deuterium (D) on cell growth, expression of 236 cancer-related and
536 kinase genes were tested in deuterium-depleted (40 and 80 ppm) and
deuterium-enriched (300 ppm) media compared to natural D level (150 ppm). Among
genes with expression changes exceeding 30% and copy numbers over 30 (124 and
135 genes, respectively) 97.3% of them was upregulated at 300 ppm
D-concentration. In mice exposed to chemical carcinogen, one-year survival data
showed that deuterium-depleted water (DDW) with 30 ppm D as drinking water
prevented tumor development. One quarter of the treated male mice survived
344 days, the females 334 days, while one quarter of the control mice survived
only 188 and 156 days, respectively. In our human retrospective study 204
previously treated cancer patients with disease in remission, who consumed DDW,
were followed. Cumulative follow-up time was 1024 years, and average follow-up
time per patient, 5 years (median: 3.6 years). One hundred and fifty-six
patients out of 204 (77.9%) did not relapse during their 803 years cumulative
follow-up time. Median survival time (MST) was not calculable due to the
extremely low death rate (11 cancer-related deaths, 5.4% of the study
population). Importantly, 8 out of 11 deaths occurred several years after
stopping DDW consumption, confirming that regular consumption of DDW can prevent
recurrence of cancer. These findings point to the likely mechanism in which
consumption of DDW keeps D-concentration below natural levels, preventing the
D/H ratio from increasing to the threshold required for cell division. This in
turn can serve as a key to reduce the relapse rate of cancer patients and/or to
reduce cancer incidence in healthy populations.
Collapse
Affiliation(s)
- Beáta Zs. Kovács
- HYD LLC for Cancer Research and Drug Development, Budapest, Hungary
| | | | | | - András Papp
- Department of Public Health, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zoltán Gyöngyi
- Department of Public Health, Medical School, University of Pécs, Pécs, Hungary
| | - István Fórizs
- Institute for Geological and Geochemical Research (IGGR), Research Centre for Astronomy and Earth Sciences, Eötvös Loránt Research Network, Budapest, Hungary
| | - György Czuppon
- Institute for Geological and Geochemical Research (IGGR), Research Centre for Astronomy and Earth Sciences, Eötvös Loránt Research Network, Budapest, Hungary
| | - Ildikó Somlyai
- HYD LLC for Cancer Research and Drug Development, Budapest, Hungary
| | - Gábor Somlyai
- HYD LLC for Cancer Research and Drug Development, Budapest, Hungary
| |
Collapse
|
19
|
Calabrese EJ, Agathokleous E, Kapoor R, Dhawan G, Kozumbo WJ, Calabrese V. Metformin-enhances resilience via hormesis. Ageing Res Rev 2021; 71:101418. [PMID: 34365027 DOI: 10.1016/j.arr.2021.101418] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/23/2021] [Accepted: 08/02/2021] [Indexed: 02/06/2023]
Abstract
The present paper demonstrates that metformin (MF) induced a broad spectrum of hormetic biphasic dose responses in a wide range of experimental studies, affecting multiple organ systems, cell types, and endpoints enhancing resilience to chemical stresses in preconditioning and co-current exposure protocols. Detailed mechanistic evaluations indicate that MF-induced hormetic-adaptive responses are mediated often via the activation of adenosine monophosphate-activated kinase (AMPK) protein and its subsequent upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2). Hormesis-induced protective responses by MF are largely mediated via a vast and highly integrated anti-inflammatory molecular network that enhances longevity and delays the onset and slows the progression of neurodegenerative and other chronic diseases.
Collapse
|
20
|
Wu Z, Zhang C, Najafi M. Targeting of the tumor immune microenvironment by metformin. J Cell Commun Signal 2021; 16:333-348. [PMID: 34611852 DOI: 10.1007/s12079-021-00648-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023] Open
Abstract
Stimulating antitumor immunity is an attractive idea for suppressing tumors. CD4 + and CD8 + T cells as well as natural killer cells (NK) are the primary antitumor immune cells in the tumor microenvironment (TME). In contrast to these cells, regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs), and tumor-associated macrophages (TAMs) release several molecules to suppress antitumor immunity and stimulate cancer cell invasion and proliferation. Adjuvant treatment with certain nontoxic agents is interesting to boost antitumor immunity. Metformin, which is known as an antidiabetes drug, can modulate both antitumor and protumor immune cells within TME. It has the ability to induce the proliferation of CD8 + T lymphocytes and NK cells. On the other hand, metformin attenuates polarization toward TAMs, CAFs, and Tregs. Metformin also may stimulate the antitumor activity of immune system cells, while it interrupts the positive cross-talk and interactions between immunosuppressive cells and cancer cells. The purpose of this review is to explain the basic mechanisms for the interactions and communications between immunosuppressive, anti-tumoral, and cancer cells within TME. Next, we discuss the modulating effects of metformin on various cells and secretions in TME.
Collapse
Affiliation(s)
- Zihong Wu
- Department of Oncology, The NO.3 People's Hospital of Hubei Province, Jianghan University, Wuhan, 430033, Hubei, China
| | - Caidie Zhang
- Emergency Department, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, 430014, Hubei, China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
21
|
Chen S, Zhou X, Yang X, Li W, Li S, Hu Z, Ling C, Shi R, Liu J, Chen G, Song N, Jiang X, Sui X, Gao Y. Dual Blockade of Lactate/GPR81 and PD-1/PD-L1 Pathways Enhances the Anti-Tumor Effects of Metformin. Biomolecules 2021; 11:1373. [PMID: 34572586 PMCID: PMC8466555 DOI: 10.3390/biom11091373] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Metformin is a widely used antidiabetic drug for cancer prevention and treatment. However, the overproduction of lactic acid and its inefficiency in cancer therapy limit its application. Here, we demonstrate the synergistic effects of the lactate/GPR81 blockade (3-hydroxy-butyrate, 3-OBA) and metformin on inhibiting cancer cells growth in vitro. Simultaneously, this combination could inhibit glycolysis and OXPHOS metabolism, as well as inhibiting tumor growth and reducing serum lactate levels in tumor-bearing mice. Interestingly, we observed that this combination could enhance the functions of Jurkat cells in vitro and CD8+ T cells in vivo. In addition, considering that 3-OBA could recover the inhibitory effects of metformin on PD-1 expression, we further determined the dual blockade effects of PD-1/PD-L1 and lactate/GPR81 on the antitumor activity of metformin. Our results suggested that this dual blockade strategy could remarkably enhance the anti-tumor effects of metformin, or even lead to tumor regression. In conclusion, our study has proposed a novel and robust strategy for a future application of metformin in cancer treatment.
Collapse
Affiliation(s)
- Shaomeng Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.C.); (X.Z.); (X.Y.); (W.L.); (S.L.); (Z.H.); (C.L.); (J.L.); (G.C.)
| | - Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.C.); (X.Z.); (X.Y.); (W.L.); (S.L.); (Z.H.); (C.L.); (J.L.); (G.C.)
| | - Xin Yang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.C.); (X.Z.); (X.Y.); (W.L.); (S.L.); (Z.H.); (C.L.); (J.L.); (G.C.)
| | - Wanqiong Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.C.); (X.Z.); (X.Y.); (W.L.); (S.L.); (Z.H.); (C.L.); (J.L.); (G.C.)
| | - Shuzhen Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.C.); (X.Z.); (X.Y.); (W.L.); (S.L.); (Z.H.); (C.L.); (J.L.); (G.C.)
| | - Zheng Hu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.C.); (X.Z.); (X.Y.); (W.L.); (S.L.); (Z.H.); (C.L.); (J.L.); (G.C.)
| | - Chen Ling
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.C.); (X.Z.); (X.Y.); (W.L.); (S.L.); (Z.H.); (C.L.); (J.L.); (G.C.)
| | - Ranran Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Juan Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.C.); (X.Z.); (X.Y.); (W.L.); (S.L.); (Z.H.); (C.L.); (J.L.); (G.C.)
| | - Guanyu Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.C.); (X.Z.); (X.Y.); (W.L.); (S.L.); (Z.H.); (C.L.); (J.L.); (G.C.)
| | - Nazi Song
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 511400, China; (N.S.); (X.J.)
| | - Xianxing Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 511400, China; (N.S.); (X.J.)
| | - Xinghua Sui
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.C.); (X.Z.); (X.Y.); (W.L.); (S.L.); (Z.H.); (C.L.); (J.L.); (G.C.)
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.C.); (X.Z.); (X.Y.); (W.L.); (S.L.); (Z.H.); (C.L.); (J.L.); (G.C.)
| |
Collapse
|
22
|
Salvadori G, Mirisola MG, Longo VD. Intermittent and Periodic Fasting, Hormones, and Cancer Prevention. Cancers (Basel) 2021; 13:cancers13184587. [PMID: 34572814 PMCID: PMC8472354 DOI: 10.3390/cancers13184587] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022] Open
Abstract
The restriction of proteins, amino acids or sugars can have profound effects on the levels of hormones and factors including growth hormone, IGF-1 and insulin. In turn, these can regulate intracellular signaling pathways as well as cellular damage and aging, but also multisystem regeneration. Both intermittent (IF) and periodic fasting (PF) have been shown to have both acute and long-term effects on these hormones. Here, we review the effects of nutrients and fasting on hormones and genes established to affect aging and cancer. We describe the link between dietary interventions and genetic pathways affecting the levels of these hormones and focus on the mechanisms responsible for the cancer preventive effects. We propose that IF and PF can reduce tumor incidence both by delaying aging and preventing DNA damage and immunosenescence and also by killing damaged, pre-cancerous and cancer cells.
Collapse
Affiliation(s)
- Giulia Salvadori
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
- IFOM, FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Mario Giuseppe Mirisola
- Department of Surgical, Oncological, and Oral Sciences, University of Palermo, 90127 Palermo, Italy;
| | - Valter D. Longo
- IFOM, FIRC Institute of Molecular Oncology, 20139 Milan, Italy
- Department of Biological Sciences, Longevity Institute, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Correspondence:
| |
Collapse
|
23
|
Yu C, Yang B, Najafi M. Targeting of cancer cell death mechanisms by curcumin: Implications to cancer therapy. Basic Clin Pharmacol Toxicol 2021; 129:397-415. [PMID: 34473898 DOI: 10.1111/bcpt.13648] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/06/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022]
Abstract
Cancer is known as a second major cause of death globally. Nowadays, several modalities have been developed for the treatment of cancer. Radiotherapy and chemotherapy are the most common modalities in most countries. However, newer modalities such as immunotherapy and targeted therapy drugs can kill cancer cells with minimal side effects. All anticancer agents work based on the killing of cancer cells. Numerous studies are ongoing to kill cancer cells more effectively without increasing side effects to normal tissues. The combination modalities with low toxic agents are interesting for this aim. Curcumin is one of the most common herbal agents that has shown several anticancer properties. It can regulate immune system responses against cancer. Furthermore, curcumin has been shown to potentiate cell death signalling pathways and attenuate survival signalling pathways in cancer cells. The knowledge of how curcumin induces cell death in cancers can improve therapeutic efficiency. In this review, the regulatory effects of curcumin on different cell death mechanisms and their signalling pathways will be discussed. Furthermore, we explain how curcumin may potentiate the anticancer effects of other drugs or radiotherapy through modulation of apoptosis, mitotic catastrophe, senescence, autophagy and ferroptosis.
Collapse
Affiliation(s)
- Chong Yu
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin, China
| | - Bo Yang
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin, China
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
24
|
Kovács Z, Brunner B, Ari C. Beneficial Effects of Exogenous Ketogenic Supplements on Aging Processes and Age-Related Neurodegenerative Diseases. Nutrients 2021; 13:nu13072197. [PMID: 34206738 PMCID: PMC8308443 DOI: 10.3390/nu13072197] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022] Open
Abstract
Life expectancy of humans has increased continuously up to the present days, but their health status (healthspan) was not enhanced by similar extent. To decrease enormous medical, economical and psychological burden that arise from this discrepancy, improvement of healthspan is needed that leads to delaying both aging processes and development of age-related diseases, thereby extending lifespan. Thus, development of new therapeutic tools to alleviate aging processes and related diseases and to increase life expectancy is a topic of increasing interest. It is widely accepted that ketosis (increased blood ketone body levels, e.g., β-hydroxybutyrate) can generate neuroprotective effects. Ketosis-evoked neuroprotective effects may lead to improvement in health status and delay both aging and the development of related diseases through improving mitochondrial function, antioxidant and anti-inflammatory effects, histone and non-histone acetylation, β-hydroxybutyrylation of histones, modulation of neurotransmitter systems and RNA functions. Administration of exogenous ketogenic supplements was proven to be an effective method to induce and maintain a healthy state of nutritional ketosis. Consequently, exogenous ketogenic supplements, such as ketone salts and ketone esters, may mitigate aging processes, delay the onset of age-associated diseases and extend lifespan through ketosis. The aim of this review is to summarize the main hallmarks of aging processes and certain signaling pathways in association with (putative) beneficial influences of exogenous ketogenic supplements-evoked ketosis on lifespan, aging processes, the most common age-related neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis), as well as impaired learning and memory functions.
Collapse
Affiliation(s)
- Zsolt Kovács
- Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary; (Z.K.); (B.B.)
| | - Brigitta Brunner
- Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary; (Z.K.); (B.B.)
- Faculty of Sciences, Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary
| | - Csilla Ari
- Behavioral Neuroscience Research Laboratory, Department of Psychology, University of South Florida, 4202 E. Fowler Ave, PCD 3127, Tampa, FL 33620, USA
- Ketone Technologies LLC, 2780 E. Fowler Ave. #226, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-(813)-2409925
| |
Collapse
|
25
|
In vitro study of the antioxidant, photoprotective, anti-tyrosinase, and anti-urease effects of methanolic extracts from leaves of six Moroccan Lamiaceae. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00759-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Halamkova J, Kazda T, Pehalova L, Gonec R, Kozakova S, Bohovicova L, Slaby O, Demlova R, Svoboda M, Kiss I. The Impact of Diabetes Mellitus on the Second Primary Malignancies in Colorectal Cancer Patients. Front Oncol 2021; 10:573394. [PMID: 33585194 PMCID: PMC7878972 DOI: 10.3389/fonc.2020.573394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/09/2020] [Indexed: 12/23/2022] Open
Abstract
Introduction All colorectal cancer (CRC) survivors have an increased risk of developing second primary malignancies (SPMs). The association between diabetes mellitus (DM) and the risk of cancer is well known. However, the role of DM and its therapy in the development of SPMs in CRC patients is not well described. Methods In this single-institutional retrospective analysis we identified 1,174 colorectal carcinoma patients, median follow-up 10.1 years, (median age 63 years, 724 men). All patients over 18 years with histologically confirmed CRC who were admitted in the period 1.1. 2003- 31.12.2013 and followed-up till 31.12. 2018 at the Masaryk Memorial Cancer Institute (MMCI) were screened for eligibility. The exclusion criteria were CRC diagnosed at autopsy, lost to follow-up and high risk of development of SPMs due to hereditary cancer syndrome. Tumours are considered multiple primary malignancies if arising in different sites and/or are of a different histology or morphology group. Comparisons of the basic characteristics between the patients with SPM and the patients without SPM were performed as well as comparison of the occurrence of SPMs by the site of diagnosis between the DM and non-DM cohorts and survival analyses. Results A SPM was diagnosed in 234 (20%) patients, DM in 183 (15%) patients. DM was diagnosed in 22.6% of those with SPM vs. in 13.8% of those without SPM (p=0.001). The most common types of SPMs in DM patients were other CRC, kidney, lung, bladder and nonmelanoma skin cancer, but only carcinoma of the liver and bile duct tracts was significantly more common than in the group without DM. Although breast cancer was the second most common in the group with DM, its incidence was lower than in the group without DM, as well as prostate cancer. A significantly higher incidence of SPMs was found in older CRC patients (≥ 65 years) and in those with lower stage colon cancer and DM. No significant difference in DM treatment between those with and without a SPM was observed including analysis of type of insulin. Conclusion CRC patients with diabetes mellitus, especially those with older age, and early stages of colon cancer, should be screened for second primary malignancies more often than the standard population. Patients without DM have longer survival. According to the occurrence of the most common second malignancies, a clinical examination, blood count, and ultrasound of the abdomen is appropriate, together with standard breast and colorectal cancer screening, and lung cancer screening under certain conditions, and should be recommended in CRC survivors especially in patients with intercurrent DM, however the necessary frequency of screening remains unclear.
Collapse
Affiliation(s)
- Jana Halamkova
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czechia.,Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Brno, Czechia.,Department of Medical Ethics, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Tomas Kazda
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia.,Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Lucie Pehalova
- Institute of Health Information and Statistics of the Czech Republic, Prague, Czechia.,Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Roman Gonec
- Department of Pharmacy, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Sarka Kozakova
- Department of Pharmacy, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Lucia Bohovicova
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Ondrej Slaby
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czechia.,Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Brno, Czechia.,Central European Institute of Technology, Molecular Oncology II-Solid Cancer, Masaryk University, Brno, Czechia
| | - Regina Demlova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czechia.,Clinical Trial Unit, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Marek Svoboda
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czechia.,Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Igor Kiss
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czechia.,Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
27
|
Damiano S, Sozio C, La Rosa G, Santillo M. NOX-Dependent Signaling Dysregulation in Severe COVID-19: Clues to Effective Treatments. Front Cell Infect Microbiol 2020; 10:608435. [PMID: 33384971 PMCID: PMC7769936 DOI: 10.3389/fcimb.2020.608435] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
| | | | | | - Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Napoli, Italy
| |
Collapse
|
28
|
Venom peptides in cancer therapy: An updated review on cellular and molecular aspects. Pharmacol Res 2020; 164:105327. [PMID: 33276098 DOI: 10.1016/j.phrs.2020.105327] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023]
Abstract
Based on the high incidence and mortality rates of cancer, its therapy remains one of the most vital challenges in the field of medicine. Consequently, enhancing the efficacy of currently applied treatments and finding novel strategies are of great importance for cancer treatment. Venoms are important sources of a variety of bioactive compounds including salts, small molecules, macromolecules, proteins, and peptides that are defined as toxins. They can exhibit different pharmacological effects, and in recent years, their anti-tumor activities have gained significant attention. Several different compounds are responsible for the anti-tumor activity of venoms, and peptides are one of them. In the present review, we discuss the possible anti-tumor activities of venom peptides by highlighting molecular pathways and mechanisms through which these molecules can act effectively. Venom peptides can induce cell death in cancer cells and can substantially enhance the efficacy of chemotherapy and radiotherapy. Also, the venom peptides can mitigate the migration of cancer cells via suppression of angiogenesis and epithelial-to-mesenchymal transition. Notably, nanoparticles have been applied in enhancing the bioavailability of venom peptides and providing targeted delivery, thereby leading to their elevated anti-tumor activity and potential application for cancer therapy.
Collapse
|
29
|
Agbele AT, Fasoro OJ, Fabamise OM, Oluyide OO, Idolor OR, Bamise EA. Protection Against Ionizing Radiation-Induced Normal Tissue Damage by Resveratrol: A Systematic Review. Eurasian J Med 2020; 52:298-303. [PMID: 33209085 DOI: 10.5152/eurasianjmed.2020.20143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The use of some agents as radioprotectors has been evaluated for protection against normal tissue toxicity following exposure to ionizing radiation. Resveratrol, a natural flavonoid, with antioxidant and anti-inflammatory properties has attracted research interests for its radioprotective potential. This study systematically evaluates existing studies to examine the radioprotective effectiveness of resveratrol. A literature search of the electronic databases, including PubMed, Scopus, and Embase was conducted to retrieve articles investigating the protective effect of resveratrol against ionizing radiation-induced damage to normal tissues. The search timeframe ranged from the inception of each database to January 2020. From an initial search of 231 articles, and after the removal of duplicates as well as applying the predetermined inclusion and exclusion criteria, 33 articles were finally included for this systematic review. Results showed promising protective effect of resveratrol against ionizing radiation-induced damage to normal tissues. Furthermore, no adverse effect was observed after administering resveratrol. Resveratrol showed the potential to protect against ionizing radiation-induced damage to normal tissue cells via notable mechanisms, including anti-apoptotic and anti-inflammatory effects. However, further studies on the efficacy of clinical translation of resveratrol would open up more insights, while other gray areas such as the optimal radioprotective dosage of resveratrol requires further investigation. Overall, resveratrol is a potential double-edged sword in cancer therapy while protecting healthy tissues.
Collapse
Affiliation(s)
- Alaba Tolulope Agbele
- Department of Medical Physics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Basic Medical Sciences, College of Health Sciences and Technology, Ijero-Ekiti, Ekiti State, Nigeria
| | - Olatunji Jimoh Fasoro
- Department of Pharmacy, College of Health Sciences and Technology, Ijero-Ekiti, Ekiti State, Nigeria
| | - Olufemi Moses Fabamise
- Department of Basic Medical Sciences, College of Health Sciences and Technology, Ijero-Ekiti, Ekiti State, Nigeria
| | - Oluwabusayo Odunola Oluyide
- Department of Basic Medical Sciences, College of Health Sciences and Technology, Ijero-Ekiti, Ekiti State, Nigeria
| | | | - Esther Abosede Bamise
- Department of Basic Medical Sciences, College of Health Sciences and Technology, Ijero-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
30
|
Yuzbasioglu D, Mahmoud JH, Mamur S, Unal F. Cytogenetic effects of antidiabetic drug metformin. Drug Chem Toxicol 2020; 45:955-962. [PMID: 33161761 DOI: 10.1080/01480545.2020.1844226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metformin (MET) is the first-choice antidiabetic drug for type 2 diabetes mellitus treatment. In this study, the genotoxic potential of MET was evaluated by using chromosome aberrations (CAs), sister chromatid exchanges (SCEs), and micronucleus (MN) assays in human peripheral lymphocytes as well as comet assay in isolated lymphocytes. Human lymphocytes were treated with different concentrations of MET (12.5, 25, 50, 75, 100, and 125 µg/mL) for 24 h and 48 h. A negative and a positive control (Mitomycin-C-MMC, 0.20 μg/mL, for CA, SCE, and MN tests; hydrogen peroxide-H2O2, 100 µM, for comet assay) were also maintained. MET significantly increased the frequency of CAs at 48 h exposure (except 12.5 µg/mL) compared to the negative control. MET increased SCEs/cells in both treatment periods (except 12.5 µg/mL at 24 h). MET only increased the frequency of MN at 125 µg/mL. While MET significantly increased the comet tail length (CTL) at four concentrations (25, 75, 100, and 125 µg/mL), it did not affect comet tail intensity (CTI) (except 125 µg/mL) and comet tail moment (CTM) at all the treatments. All these data showed that MET had a mild genotoxic effect, especially at a long treatment period and higher concentrations in human lymphocytes in vitro. However, further in vitro and especially in vivo studies should be conducted to understand the detailed genotoxic potential of MET.HighlightsMetformin increased the frequency of CAs and SCEs, especially at 48-h exposure time in human lymphocytes.This antidiabetic drug increased the frequency of MN only at the highest concentration tested (125 µg/mL).Metformin significantly increased the comet tail length in all treatments (except 50 µg/mL).The drug did not significantly affect the comet tail intensity (except 125 µg/mL) and comet tail moment in all treatments.
Collapse
Affiliation(s)
- Deniz Yuzbasioglu
- Department of Biology, Science Faculty, Gazi University, Ankara, 06500, Turkey
| | - Jalank H Mahmoud
- Department of Biology, Science Faculty, Gazi University, Ankara, 06500, Turkey
| | - Sevcan Mamur
- Life Sciences Application and Research Center, Gazi University, Ankara, 06830, Turkey
| | - Fatma Unal
- Department of Biology, Science Faculty, Gazi University, Ankara, 06500, Turkey
| |
Collapse
|
31
|
Ashrafizadeh M, Bakhoda MR, Bahmanpour Z, Ilkhani K, Zarrabi A, Makvandi P, Khan H, Mazaheri S, Darvish M, Mirzaei H. Apigenin as Tumor Suppressor in Cancers: Biotherapeutic Activity, Nanodelivery, and Mechanisms With Emphasis on Pancreatic Cancer. Front Chem 2020; 8:829. [PMID: 33195038 PMCID: PMC7593821 DOI: 10.3389/fchem.2020.00829] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is the most lethal malignancy of the gastrointestinal tract. Due to its propensity for early local and distant spread, affected patients possess extremely poor prognosis. Currently applied treatments are not effective enough to eradicate all cancer cells, and minimize their migration. Besides, these treatments are associated with adverse effects on normal cells and organs. These therapies are not able to increase the overall survival rate of patients; hence, finding novel adjuvants or alternatives is so essential. Up to now, medicinal herbs were utilized for therapeutic goals. Herbal-based medicine, as traditional biotherapeutics, were employed for cancer treatment. Of them, apigenin, as a bioactive flavonoid that possesses numerous biological properties (e.g., anti-inflammatory and anti-oxidant effects), has shown substantial anticancer activity. It seems that apigenin is capable of suppressing the proliferation of cancer cells via the induction of cell cycle arrest and apoptosis. Besides, apigenin inhibits metastasis via down-regulation of matrix metalloproteinases and the Akt signaling pathway. In pancreatic cancer cells, apigenin sensitizes cells in chemotherapy, and affects molecular pathways such as the hypoxia inducible factor (HIF), vascular endothelial growth factor (VEGF), and glucose transporter-1 (GLUT-1). Herein, the biotherapeutic activity of apigenin and its mechanisms toward cancer cells are presented in the current review to shed some light on anti-tumor activity of apigenin in different cancers, with an emphasis on pancreatic cancer.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Mohammad Reza Bakhoda
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Bahmanpour
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khandan Ilkhani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Pooyan Makvandi
- Centre for Micro-BioRobotics, Istituto Italiano di Tecnologia, Pisa, Italy.,Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Samaneh Mazaheri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Maryam Darvish
- Department of Medical Biotechnology, Faculty of Medicine, Arak University of Medical Science, Arak, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
32
|
Musa AE, Shabeeb D, Okoro NOE, Agbele AT. Radiation protection by Ex-RAD: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:33592-33600. [PMID: 32583118 DOI: 10.1007/s11356-020-09618-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Protection of normal tissues against ionizing radiation-induced damages is a critical issue in clinical and environmental radiobiology. One of the ways of accomplishing radiation protection is through the use of radioprotectors. In the search for the most effective radioprotective agent, factors such as toxicity, effect on tumors, number of tissues protected, ease of administration, long-term stability, and compatibility with other drugs need to be assessed. Thus, in the present study, we systematically review existing studies on a chemical radioprotector, Ex-RAD, with the aim of examining its efficacy of radiation protection as well as underlying mechanisms. To this end, a systematic search of the electronic databases including Pubmed, Scopus, Embase, and Google Scholar was conducted to retrieve articles investigating the radioprotective effect of Ex-RAD. From an initial search of 268 articles, and after removal of duplicates as well as applying the predetermined inclusion and exclusion criteria, 10 articles were finally included for this systematic review. Findings from the reviewed studies indicated that Ex-RAD showed potentials for effective radioprotection of the studied organs with no side effect. Furthermore, the inhibition of apoptosis through p53 signaling pathway was the main mechanism of radioprotection by Ex-RAD. However, its radioprotective effect would need to be investigated for more organs in future studies.
Collapse
Affiliation(s)
- Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences, Tehran, Iran.
| | - Dheyauldeen Shabeeb
- Department of Physiology, University of Misan, Misan, Iraq
- Misan Radiotherapy Center, Misan Health Directorate, Ministry of Health/Environment, Misan, Iraq
| | - Nnamdi O E Okoro
- Department of Radiology, Obijackson Women & Children's Hospital, Okija, Anambra State, Nigeria
| | - Alaba Tolulope Agbele
- Department of Medical Physics, Tehran University of Medical Sciences, Tehran, Iran
- Department of Basic Medical Sciences, College of Health Sciences and Technology, Ijero-Ekiti, Nigeria
| |
Collapse
|
33
|
Kulkarni AS, Gubbi S, Barzilai N. Benefits of Metformin in Attenuating the Hallmarks of Aging. Cell Metab 2020; 32:15-30. [PMID: 32333835 PMCID: PMC7347426 DOI: 10.1016/j.cmet.2020.04.001] [Citation(s) in RCA: 443] [Impact Index Per Article: 88.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/04/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
Biological aging involves an interplay of conserved and targetable molecular mechanisms, summarized as the hallmarks of aging. Metformin, a biguanide that combats age-related disorders and improves health span, is the first drug to be tested for its age-targeting effects in the large clinical trial-TAME (targeting aging by metformin). This review focuses on metformin's mechanisms in attenuating hallmarks of aging and their interconnectivity, by improving nutrient sensing, enhancing autophagy and intercellular communication, protecting against macromolecular damage, delaying stem cell aging, modulating mitochondrial function, regulating transcription, and lowering telomere attrition and senescence. These characteristics make metformin an attractive gerotherapeutic to translate to human trials.
Collapse
Affiliation(s)
- Ameya S Kulkarni
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY, USA; Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York, NY, USA.
| | - Sriram Gubbi
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nir Barzilai
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY, USA; Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York, NY, USA.
| |
Collapse
|
34
|
Tang BL. Could metformin be therapeutically useful in Huntington's disease? Rev Neurosci 2020; 31:297-317. [PMID: 31751298 DOI: 10.1515/revneuro-2019-0072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
Emerging evidence suggest that dimethylbiguanide (metformin), a first-line drug for type 2 diabetes mellitus, could be neuroprotective in a range of brain pathologies, which include neurodegenerative diseases and brain injury. However, there are also contraindications that associate metformin treatment with cognitive impairment as well as adverse outcomes in Alzheimer's disease and Parkinson's disease animal models. Recently, a beneficial effect of metformin in animal models of Huntington's disease (HD) has been strengthened by multiple reports. In this brief review, the findings associated with the effects of metformin in attenuating neurodegenerative diseases are discussed, focusing on HD-associated pathology and the potential underlying mechanisms highlighted by these studies. The mechanism of action of metformin is complex, and its therapeutic efficacy is therefore expected to be dependent on the disease context. The key metabolic pathways that are effectively affected by metformin, such as AMP-activated protein kinase activation, may be altered in the later decades of the human lifespan. In this regard, metformin may nonetheless be therapeutically useful for neurological diseases with early pathological onsets, such as HD.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore 117596, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Medical Drive, Singapore 119077, Singapore
| |
Collapse
|
35
|
Motallebzadeh E, Tameh AA, Zavareh SAT, Farhood B, Aliasgharzedeh A, Mohseni M. Neuroprotective effect of melatonin on radiation-induced oxidative stress and apoptosis in the brainstem of rats. J Cell Physiol 2020; 235:8791-8798. [PMID: 32324264 DOI: 10.1002/jcp.29722] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023]
Abstract
This study aimed to determine the effects of melatonin on irradiation-induced apoptosis and oxidative stress in the brainstem region of Wistar rats. Therefore, the animals underwent whole-brain X-radiation with a single dose of 25 Gy in the presence or absence of melatonin pretreatment at a concentration of 100 mg/kg BW. The rats were allocated into four groups (10 rats in each group): namely, vehicle control (VC), 100 mg/kg of melatonin alone (MLT), irradiation-only (RAD), and irradiation plus 100 mg/kg of melatonin (RAM). An hour before irradiation, the animals received intraperitoneal (IP) melatonin and then were killed after 6 hr, followed by measurement of nitric oxide (NO), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), and total antioxidant capacity (TAC) in the brainstem region. Furthermore, the western blot analysis technique was performed to assess the caspase-3 expression level. Results showed significantly higher MDA and NO levels in the brainstem tissues for the RAD group when compared with the VC group (p < .001). Moreover, the irradiated rats exhibited a significant decrease in the levels of CAT, SOD, GPx, and TAC (p < .01, p < .001, p < .001, and p < .001, respectively) in comparison to the VC group. The results of apoptosis assessment revealed that the expression level of caspase-3 significantly rose in the RAD group in comparison with the VC group (p < .001). Pretreatment with melatonin ameliorated the radiation-induced adverse effects by decreasing the MDA and NO levels (p < .001) and increasing the antioxidant enzyme activities (p < .001). Consequently, the caspase-3 protein expression level in the RAM group showed a significant reduction in comparison with the RAD group (p < .001). In conclusion, melatonin approximately showed a capacity for neuroprotective activity in managing irradiation-induced oxidative stress and apoptosis in the brainstem of rats; however, the use of melatonin as a neuroprotective agent in humans requires further study, particularly clinical trials.
Collapse
Affiliation(s)
- Elham Motallebzadeh
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.,Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Akbar Aliasgharzedeh
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehran Mohseni
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
36
|
The role of DNA damage as a therapeutic target in autosomal dominant polycystic kidney disease. Expert Rev Mol Med 2019; 21:e6. [PMID: 31767049 DOI: 10.1017/erm.2019.6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic kidney disease and is caused by heterozygous germ-line mutations in either PKD1 (85%) or PKD2 (15%). It is characterised by the formation of numerous fluid-filled renal cysts and leads to adult-onset kidney failure in ~50% of patients by 60 years. Kidney cysts in ADPKD are focal and sporadic, arising from the clonal proliferation of collecting-duct principal cells, but in only 1-2% of nephrons for reasons that are not clear. Previous studies have demonstrated that further postnatal reductions in PKD1 (or PKD2) dose are required for kidney cyst formation, but the exact triggering factors are not clear. A growing body of evidence suggests that DNA damage, and activation of the DNA damage response pathway, are altered in ciliopathies. The aims of this review are to: (i) analyse the evidence linking DNA damage and renal cyst formation in ADPKD; (ii) evaluate the advantages and disadvantages of biomarkers to assess DNA damage in ADPKD and finally, (iii) evaluate the potential effects of current clinical treatments on modifying DNA damage in ADPKD. These studies will address the significance of DNA damage and may lead to a new therapeutic approach in ADPKD.
Collapse
|
37
|
Metformin Protects the Rat Small Intestine Against Radiation Enteritis. Jundishapur J Nat Pharm Prod 2019. [DOI: 10.5812/jjnpp.67352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
38
|
Demb J, Yaseyyedi A, Liu L, Bustamante R, Earles A, Ghosh P, Gutkind JS, Gawron AJ, Kaltenbach TR, Martinez ME, Gupta S. Metformin Is Associated With Reduced Odds for Colorectal Cancer Among Persons With Diabetes. Clin Transl Gastroenterol 2019; 10:e00092. [PMID: 31770138 PMCID: PMC6890275 DOI: 10.14309/ctg.0000000000000092] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Metformin may be associated with reduced colorectal cancer (CRC) risk, but findings from previous studies have been inconsistent and had insufficient sample sizes to examine whether the association differs by anatomic site. This study examined whether metformin was associated with reduced CRC risk, both overall and stratified by anatomic site, in a large sample of persons with diabetes who underwent colonoscopy. METHODS We performed a case-control study of US Veterans with prevalent diabetes who underwent colonoscopy between 1999 and 2014 using Department of Veterans Affairs electronic health record data. Cases were defined by presence of CRC at colonoscopy, while controls had normal colonoscopy. The primary exposure was metformin use at time of colonoscopy (yes/no). Association of metformin exposure with CRC (further stratified by proximal, distal, or rectal subsite) was examined using multivariable and multinomial logistic regression and summarized by odds ratios (ORs) with 95% confidence intervals (CIs). RESULTS We included 6,650 CRC patients and 454,507 normal colonoscopy patients. CRC cases were older and had lower metformin exposure. Metformin was associated with 8% relative reduction in CRC odds (OR: 0.92, 95% CI: 0.87-0.96). By subsite, metformin was associated with a 14% statistically significant reduced rectal cancer odds (OR: 0.86, 95% CI: 0.78-0.94) but no reduced distal or proximal cancer odds. DISCUSSION Metformin was associated with reduced CRC odds-particularly rectal cancer-in a large sample of persons with diabetes undergoing colonoscopy.
Collapse
Affiliation(s)
- Joshua Demb
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Moores Cancer Center, La Jolla, California, USA
| | - Armaan Yaseyyedi
- University of Colorado School of Medicine, Denver, Colorado, USA
| | - Lin Liu
- Moores Cancer Center, La Jolla, California, USA
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, California, USA
- Department of Research, VA San Diego Healthcare System, San Diego, California, USA
| | - Ranier Bustamante
- Department of Research, VA San Diego Healthcare System, San Diego, California, USA
| | - Ashley Earles
- Department of Research, VA San Diego Healthcare System, San Diego, California, USA
| | - Pradipta Ghosh
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Moores Cancer Center, La Jolla, California, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| | - J. Silvio Gutkind
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Moores Cancer Center, La Jolla, California, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Andrew J. Gawron
- VA Salt Lake City Health Care System, Salt Lake City, Utah, USA
- University of Utah, Salt Lake City, Utah, USA
| | - Tonya R. Kaltenbach
- VA San Francisco Healthcare System, San Francisco, California, USA
- University of California, San Francisco, San Francisco, California, USA
| | - Maria Elena Martinez
- Moores Cancer Center, La Jolla, California, USA
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, California, USA
| | - Samir Gupta
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Moores Cancer Center, La Jolla, California, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
39
|
Karam HM, Radwan RR. Metformin modulates cardiac endothelial dysfunction, oxidative stress and inflammation in irradiated rats: A new perspective of an antidiabetic drug. Clin Exp Pharmacol Physiol 2019; 46:1124-1132. [DOI: 10.1111/1440-1681.13148] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/16/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Heba M. Karam
- Drug Radiation Research Department National Center for Radiation Research and Technology (NCRRT) Egyptian Atomic Energy Authority (EAEA) Nasr City Cairo Egypt
| | - Rasha R. Radwan
- Drug Radiation Research Department National Center for Radiation Research and Technology (NCRRT) Egyptian Atomic Energy Authority (EAEA) Nasr City Cairo Egypt
| |
Collapse
|
40
|
Bottoni P, Scatena R. The Tangled Mitochondrial Metabolism in Cancer: An Innovative Pharmacological Approach. Curr Med Chem 2019; 27:2106-2117. [PMID: 31441723 DOI: 10.2174/0929867326666190823163009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 01/10/2019] [Accepted: 02/22/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mitochondria are remarkably gaining significant and different pathogenic roles in cancer (i.e., to sustain specific metabolism, to activate signaling pathways, to promote apoptosis resistance, to favor cancer cell dissemination, and finally to facilitate genome instability). Interestingly, all these roles seem to be linked to the fundamental activity of mitochondria, i.e. oxidative metabolism. Intriguingly, a typical modification of mitochondrial oxidative metabolism and reactive oxygen species production/ neutralization seems to have a central role in all these tangled pathogenic roles in cancer. On these bases, a careful understanding of the molecular relationships between cancer and mitochondria may represent a fundamental step to realize therapeutic approaches blocking the typical cancer progression. The main aim of this review is to stress some neglected aspects of oxidative mitochondrial metabolism of cancer cells to promote more translational research with diagnostic and therapeutic potential. METHODS We reviewed the available literature regarding clinical and experimental studies on various roles of mitochondria in cancer, with attention to the cancer cell mitochondrial metabolism. RESULTS Mitochondria are an important source of reactive oxygen species. Their toxic effects seem to increase in cancer cells. However, it is not clear if damage depends on ROS overproduction and/or defect in detoxification. Failure of both these processes is likely a critical component of the cancer process and is strictly related to the actual microenvironment of cancer cells. CONCLUSIONS Mitochondria, also by ROS production, have a fundamental pathogenetic role in promoting and maintaining cancer and its spreading. To carefully understand the tangled redox state of cancer cells mitochondria represents a fundamental step to realize therapeutic approaches blocking the typical cancer progression.
Collapse
Affiliation(s)
- Patrizia Bottoni
- Institute of Biochemistry and Clinical Biochemistry, School of Medicine, Catholic University, Rome, Italy
| | - Roberto Scatena
- Department of Laboratory Medicine, Madre Giuseppina Vannini Hospital, Rome, Italy
| |
Collapse
|
41
|
Protection from ionizing radiation-induced genotoxicity and apoptosis in rat bone marrow cells by HESA-A: a new herbal-marine compound. J Bioenerg Biomembr 2019; 51:371-379. [PMID: 31388813 DOI: 10.1007/s10863-019-09808-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
HESA-A is an herbal-marine compound which improves the quality of life of end-stage cancer patients. The aim of the present study was to evaluate the possible protective effect of HESA-A against IR-induced genotoxicity and apoptosis in rat bone marrow. Rats were given HESA-A orally at doses of 150 and 300 mg/kg body weight for seven consecutive days. On the seventh day, the rats were irradiated with 4 Gy X-rays at 1 h after the last oral administration. The micronucleus assay, reactive oxygen species (ROS) level analysis, hematological analysis and flow cytometry were used to assess radiation antagonistic potential of HESA-A. Administration of 150 and 300 mg/kg of HESA-A to irradiated rats significantly reduced the frequencies of micronucleated polychromatic erythrocytes (MnPCEs) and micronucleated normochromatic erythrocytes (MnNCEs), and also increased PCE/(PCE + NCE) ratio in bone marrow cells. Moreover, pretreatment of irradiated rats with HESA-A (150 and 300 mg/kg) significantly decreased ROS level and apoptosis in bone marrow cells, and also increased white blood cells count in peripheral blood. For the first time in this study, it was observed that HESA-A can have protective effects against radiation-induced genotoxicity and apoptosis in bone marrow cells. Therefore, HESA-A can be considered as a candidate for future studies to reduce the side effects induced by radiotherapy in cancer patients.
Collapse
|
42
|
Haghi Aminjan H, Abtahi SR, Hazrati E, Chamanara M, Jalili M, Paknejad B. Targeting of oxidative stress and inflammation through ROS/NF-kappaB pathway in phosphine-induced hepatotoxicity mitigation. Life Sci 2019; 232:116607. [PMID: 31254582 DOI: 10.1016/j.lfs.2019.116607] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/13/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
AIMS Poisoning with aluminium phosphide (AlP) commonly has a high rate of mortality and morbidities. Phosphine gas is the main cause of AlP poisoning that has deleterious effect on multi-organs especially heart, kidney, and liver. Furthermore, several studies reported that resveratrol has cytoprotective effects through its pleiotropic property. The purpose of this study was to estimate the dose-dependent role of resveratrol on phosphine induced acute hepatic toxicity in rat model. MAIN METHODS The rats have been exposed to LD50 of AlP (12 mg/kg) by gavage, and resveratrol doses (20, 40, and 80 mg/kg) were injected 30 min after intoxication. After 24 h, the serum and liver tissue were collected for present study. KEY FINDINGS The results indicated that phosphine causes an alteration in oxidative stress markers including elevation of ROS, and GSH level, MPO activity, reduction in SOD, catalase and G6PD activity as well as reduction in SOD1 and catalase expression. Furthermore, phosphine significantly induced phosphorylation of IkappaB, NF-kappaB and up-regulation of TNF-α, IL-1β, IL-6, and ICAM-1 expression. Also, phosphine induces markedly reduced hepatocytes lives cell and elevated apoptosis and necrosis. Co-treatment of resveratrol in a dose-dependent manner reversed aforementioned alterations. All in all, histological analysis indicated a deleterious effect of phosphine on the liver, which is mitigated by resveratrol administration. SIGNIFICANCE The results of the present study suggest targeting ROS/NF-kappaB signalling pathway by resveratrol may have a significant effect on the improvement of hepatic injury induced by phosphine. It also may be a possible candidate for the treatment of phosphine-poisoning.
Collapse
Affiliation(s)
- Hamed Haghi Aminjan
- Department of Pharmacology and Toxicology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Abtahi
- Department of Pharmacology and Toxicology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ebrahim Hazrati
- Department of Anesthesia and Intensive Care, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Department of Pharmacology and Toxicology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Maryam Jalili
- Department of Clinical Sciences, School of Veterinary, Shiraz University, Shiraz, Iran
| | - Babak Paknejad
- Department of Pharmacology and Toxicology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Faria J, Negalha G, Azevedo A, Martel F. Metformin and Breast Cancer: Molecular Targets. J Mammary Gland Biol Neoplasia 2019; 24:111-123. [PMID: 30903363 DOI: 10.1007/s10911-019-09429-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/13/2019] [Indexed: 02/06/2023] Open
Abstract
Metformin has been the first-line drug for the treatment of type II diabetes mellitus for decades, being presently the most widely prescribed antihyperglycemic drug. Retrospective studies associate the use of metformin with a reduction in cancer incidence and cancer-related death. However, despite extensive research about the molecular effects of metformin in cancer cells, its mode of action remains controversial. The major molecular targets of metformin include complex I of the mitochondrial electron transport chain, adenosine monophosphate (AMP)-activated protein kinase (AMPK), and mechanistic target of rapamycin complex 1 (mTORC1), but AMPK-independent effects of metformin have also been described. Breast cancer is one of the leading causes of cancer-related morbidity and mortality among women worldwide. Several studies have reinforced a link between breast cancer risk and diabetes. Moreover, metformin significantly reduces breast cancer risk, compared to patients who are not using metformin and is independent of diabetes status. In this review, we summarize the current molecular evidence to elucidate metformin's mode of action against breast cancer cells.
Collapse
Affiliation(s)
- J Faria
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - G Negalha
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - A Azevedo
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - F Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.
- I3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.
| |
Collapse
|
44
|
Cheki M, Ghasemi MS, Rezaei Rashnoudi A, Erfani Majd N. Metformin attenuates cisplatin-induced genotoxicity and apoptosis in rat bone marrow cells. Drug Chem Toxicol 2019; 44:386-393. [PMID: 31072151 DOI: 10.1080/01480545.2019.1609024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Metformin is widely used as an oral hypoglycemic drug in the management of type 2 diabetes mellitus. This study evaluated the possible protective effects of metformin against cisplatin-induced genotoxicity and apoptosis in rat bone marrow cells. Two different doses of metformin (50 and 100 mg/kg b.w.) were administered orally to experimental animals for seven consecutive days. On the seventh day, the rats were exposed to cisplatin (5 mg/kg, i.p.) 1 h after the last oral metformin administration. Rats in the control group were treated orally with 10 ml/kg PBS for 7 consecutive days and a single intraperitoneal injection of saline (0.9%) on the 7th day. The antagonistic effects of metformin against cisplatin were evaluated using micronucleus assay, reactive oxygen species (ROS) level analysis, hematological analysis, and flow cytometry. Treatment with 50 and 100 mg/kg metformin before cisplatin injection produced a significant reduction in the frequencies of micronucleated polychromatic erythrocytes (MnPCEs) and micronucleated normochromatic erythrocytes (MnNCEs) 24 h after cisplatin treatment with a corresponding increase in the PCE/(PCE + NCE) ratio. Moreover, metformin markedly elevated the levels of both red and white blood cells in peripheral blood and decreased the percentage of apoptotic cells and the ROS level in bone marrow cells of rats treated with cisplatin. The data suggest that metformin has potential chemoprotective properties in rat bone marrow after cisplatin treatment, which support its candidature as a potential chemoprotective agent for cancer patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Mohsen Cheki
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Sadegh Ghasemi
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Naeem Erfani Majd
- Department of Basic Sciences, Histology Section, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
45
|
Farhood B, Goradel NH, Mortezaee K, Khanlarkhani N, Salehi E, Nashtaei MS, Shabeeb D, Musa AE, Fallah H, Najafi M. Intercellular communications-redox interactions in radiation toxicity; potential targets for radiation mitigation. J Cell Commun Signal 2019; 13:3-16. [PMID: 29911259 PMCID: PMC6381372 DOI: 10.1007/s12079-018-0473-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
Nowadays, using ionizing radiation (IR) is necessary for clinical, agricultural, nuclear energy or industrial applications. Accidental exposure to IR after a radiation terror or disaster poses a threat to human. In contrast to the old dogma of radiation toxicity, several experiments during the last two recent decades have revealed that intercellular signaling and communications play a key role in this procedure. Elevated level of cytokines and other intercellular signals increase oxidative damage and inflammatory responses via reduction/oxidation interactions (redox system). Intercellular signals induce production of free radicals and inflammatory mediators by some intermediate enzymes such as cyclooxygenase-2 (COX-2), nitric oxide synthase (NOS), NADPH oxidase, and also via triggering mitochondrial ROS. Furthermore, these signals facilitate cell to cell contact and increasing cell toxicity via cohort effect. Nitric oxide is a free radical with ability to act as an intercellular signal that induce DNA damage and changes in some signaling pathways in irradiated as well as non-irradiated adjacent cells. Targeting of these mediators by some anti-inflammatory agents or via antioxidants such as mitochondrial ROS scavengers opens a window to mitigate radiation toxicity after an accidental exposure. Experiments which have been done so far suggests that some cytokines such as IL-1β, TNF-α, TGF-β, IL-4 and IL-13 are some interesting targets that depend on irradiated organs and may help mitigate radiation toxicity. Moreover, animal experiments in recent years indicated that targeting of toll like receptors (TLRs) may be more useful for radioprotection and mitigation. In this review, we aimed to describe the role of intercellular interactions in oxidative injury, inflammation, cell death and killing effects of IR. Moreover, we described evidence on potential mitigation of radiation injury via targeting of these mediators.
Collapse
Affiliation(s)
- Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Neda Khanlarkhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Salehi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani Nashtaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Infertility Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran
- Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed Eleojo Musa
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Hengameh Fallah
- Department of Chemistry, Faculty of Science, Islamic Azad University, Arak, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
46
|
Mortezaee K, Salehi E, Mirtavoos-Mahyari H, Motevaseli E, Najafi M, Farhood B, Rosengren RJ, Sahebkar A. Mechanisms of apoptosis modulation by curcumin: Implications for cancer therapy. J Cell Physiol 2019; 234:12537-12550. [PMID: 30623450 DOI: 10.1002/jcp.28122] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022]
Abstract
Cancer incidences are growing and cause millions of deaths worldwide. Cancer therapy is one of the most important challenges in medicine. Improving therapeutic outcomes from cancer therapy is necessary for increasing patients' survival and quality of life. Adjuvant therapy using various types of antibodies or immunomodulatory agents has suggested modulating tumor response. Resistance to apoptosis is the main reason for radioresistance and chemoresistance of most of the cancers, and also one of the pivotal targets for improving cancer therapy is the modulation of apoptosis signaling pathways. Apoptosis can be induced by intrinsic or extrinsic pathways via stimulation of several targets, such as membrane receptors of tumor necrosis factor-α and transforming growth factor-β, and also mitochondria. Curcumin is a naturally derived agent that induces apoptosis in a variety of different tumor cell lines. Curcumin also activates redox reactions within cells inducing reactive oxygen species (ROS) production that leads to the upregulation of apoptosis receptors on the tumor cell membrane. Curcumin can also upregulate the expression and activity of p53 that inhibits tumor cell proliferation and increases apoptosis. Furthermore, curcumin has a potent inhibitory effect on the activity of NF-κB and COX-2, which are involved in the overexpression of antiapoptosis genes such as Bcl-2. It can also attenuate the regulation of antiapoptosis PI3K signaling and increase the expression of MAPKs to induce endogenous production of ROS. In this paper, we aimed to review the molecular mechanisms of curcumin-induced apoptosis in cancer cells. This action of curcumin could be applicable for use as an adjuvant in combination with other modalities of cancer therapy including radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ensieh Salehi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanifeh Mirtavoos-Mahyari
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Rhonda J Rosengren
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
47
|
Mortezaee K, Shabeeb D, Musa AE, Najafi M, Farhood B. Metformin as a Radiation Modifier; Implications to Normal Tissue Protection and Tumor Sensitization. CURRENT CLINICAL PHARMACOLOGY 2019; 14:41-53. [PMID: 30360725 DOI: 10.2174/1574884713666181025141559] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Nowadays, ionizing radiation is used for several applications in medicine, industry, agriculture, and nuclear power generation. Besides the beneficial roles of ionizing radiation, there are some concerns about accidental exposure to radioactive sources. The threat posed by its use in terrorism is of global concern. Furthermore, there are several side effects to normal organs for patients who had undergone radiation treatment for cancer. Hence, the modulation of radiation response in normal tissues was one of the most important aims of radiobiology. Although, so far, several agents have been investigated for protection and mitigation of radiation injury. Agents such as amifostine may lead to severe toxicity, while others may interfere with radiation therapy outcomes as a result of tumor protection. Metformin is a natural agent that is well known as an antidiabetic drug. It has shown some antioxidant effects and enhances DNA repair capacity, thereby ameliorating cell death following exposure to radiation. Moreover, through targeting endogenous ROS production within cells, it can mitigate radiation injury. This could potentially make it an effective radiation countermeasure. In contrast to other radioprotectors, metformin has shown modulatory effects through induction of several genes such as AMPK, which suppresses reduction/ oxidation (redox) reactions, protects cells from accumulation of unrepaired DNA, and attenuates initiation of inflammation as well as fibrotic pathways. Interestingly, these properties of metformin can sensitize cancer cells to radiotherapy. CONCLUSION In this article, we aimed to review the interesting properties of metformin such as radioprotection, radiomitigation and radiosensitization, which could make it an interesting adjuvant for clinical radiotherapy, as well as an interesting candidate for mitigation of radiation injury after a radiation disaster.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Dheyauldeen Shabeeb
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (International Campus), Tehran, Iran
- Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed E Musa
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (International Campus), Tehran, Iran
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
48
|
Yahyapour R, Salajegheh A, Safari A, Amini P, Rezaeyan A, Amraee A, Najafi M. Radiation-induced Non-targeted Effect and Carcinogenesis; Implications in Clinical Radiotherapy. J Biomed Phys Eng 2018; 8:435-446. [PMID: 30568933 PMCID: PMC6280111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/17/2017] [Indexed: 11/25/2022]
Abstract
Bystander or non-targeted effect is known to be an interesting phenomenon in radiobiology. The genetic consequences of bystander effect on non-irradiated cells have shown that this phenomenon can be considered as one of the most important factors involved in secondary cancer after exposure to ionizing radiation. Every year, millions of people around the world undergo radiotherapy in order to cure different types of cancers. The most crucial aim of radiotherapy is to improve treatment efficiency by reducing early and late effects of exposure to clinical doses of radiation. Secondary cancer induction resulted from exposure to high doses of radiation during treatment can reduce the effectiveness of this modality for cancer treatment. The perception of carcinogenesis risk of bystander effects and factors involved in this phenomenon might help reduce secondary cancer incidence years after radiotherapy. Different modalities such as radiation LET, dose and dose rate, fractionation, types of tissue, gender of patients, etc. may be involved in carcinogenesis risk of bystander effects. Therefore, selecting an appropriate treatment modality may improve cost-effectiveness of radiation therapy as well as the quality of life in survived patients. In this review, we first focus on the carcinogenesis evidence of non-targeted effects in radiotherapy and then review physical and biological factors that may influence the risk of secondary cancer induced by this phenomenon.
Collapse
Affiliation(s)
- R. Yahyapour
- School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - A. Salajegheh
- Department of Radiology, School of Paramedical, Shiraz University of Medical Sciences, Shiraz, Iran
| | - A. Safari
- Department of Medical Physics, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - P. Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - A. Rezaeyan
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - A. Amraee
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - M. Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| |
Collapse
|
49
|
Azmoonfar R, Amini P, Saffar H, Rezapoor S, Motevaseli E, Cheki M, Yahyapour R, Farhood B, Nouruzi F, Khodamoradi E, Shabeeb D, Eleojo Musa A, Najafi M. Metformin Protects Against Radiation-Induced Pneumonitis and Fibrosis and Attenuates Upregulation of Dual Oxidase Genes Expression. Adv Pharm Bull 2018; 8:697-704. [PMID: 30607342 PMCID: PMC6311649 DOI: 10.15171/apb.2018.078] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/26/2018] [Accepted: 09/29/2018] [Indexed: 12/30/2022] Open
Abstract
Purpose: Lung tissue is one of the most sensitive organs to ionizing radiation (IR). Early and late side effects of exposure to IR can limit the radiation doses delivered to tumors that are within or adjacent to this organ. Pneumonitis and fibrosis are the main side effects of radiotherapy for this organ. IL-4 and IL-13 have a key role in the development of pneumonitis and fibrosis. Metformin is a potent anti-fibrosis and redox modulatory agent that has shown radioprotective effects. In this study, we aimed to evaluate possible upregulation of these cytokines and subsequent cascades such as IL4-R1, IL-13R1, Dual oxidase 1 (DUOX1) and DUOX2. In addition, we examined the potential protective effect of metformin in these cytokines and genes, as well as histopathological changes in rat’s lung tissues. Methods: 20 rats were divided into 4 groups: control; metformin treated; radiation + metformin; and radiation. Irradiation was performed with a 60Co source delivering 15 Gray (Gy) to the chest area. After 10 weeks, rats were sacrificed and their lung tissues were removed for histopathological, real-time PCR and ELISA assays. Results: Irradiation of lung was associated with an increase in IL-4 cytokine level, as well as the expression of IL-4 receptor-a1 (IL4ra1) and DUOX2 genes. However, there was no change in the level of IL-13 and its downstream gene including IL-13 receptor-a2 (IL13ra2). Moreover, histopathological evaluations showed significant infiltration of lymphocytes and macrophages, fibrosis, as well as vascular and alveolar damages. Treatment with metformin caused suppression of upregulated genes and IL-4 cytokine level, associated with amelioration of pathological changes. Conclusion: Results of this study showed remarkable pathological damages, an increase in the levels of IL-4, IL4Ra1 and Duox2, while that of IL-13 decreased. Treatment with metformin showed ability to attenuate upregulation of IL-4–DUOX2 pathway and other pathological damages to the lung after exposure to a high dose of IR.
Collapse
Affiliation(s)
- Rasoul Azmoonfar
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Hana Saffar
- Clinical and Anatomical Pathologist at Tehran University of Medical Science, Imam Khomeini Hospital Complex, Tehran, Iran
| | - Saeed Rezapoor
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Cheki
- Department of Radiologic Technology, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Rasoul Yahyapour
- School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzad Nouruzi
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Dheyauldeen Shabeeb
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences (International Campus), Tehran, Iran.,Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed Eleojo Musa
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| |
Collapse
|
50
|
Farhood B, Mortezaee K, Goradel NH, Khanlarkhani N, Salehi E, Nashtaei MS, Najafi M, Sahebkar A. Curcumin as an anti-inflammatory agent: Implications to radiotherapy and chemotherapy. J Cell Physiol 2018; 234:5728-5740. [PMID: 30317564 DOI: 10.1002/jcp.27442] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 08/27/2018] [Indexed: 12/21/2022]
Abstract
Cancer is the second cause of death worldwide. Chemotherapy and radiotherapy are the most common modalities for the treatment of cancer. Experimental studies have shown that inflammation plays a central role in tumor resistance and the incidence of several side effects following both chemotherapy and radiotherapy. Inflammation resulting from radiotherapy and chemotherapy is responsible for adverse events such as dermatitis, mucositis, pneumonitis, fibrosis, and bone marrow toxicity. Chronic inflammation may also lead to the development of second cancer during years after treatment. A number of anti-inflammatory drugs such as nonsteroidal anti-inflammatory agents have been proposed to alleviate chronic inflammatory reactions after radiotherapy or chemotherapy. Curcumin is a well-documented herbal anti-inflammatory agents. Studies have proposed that curcumin can help management of inflammation during and after radiotherapy and chemotherapy. Curcumin targets various inflammatory mediators such as cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor κB (NF-κB), thereby attenuating the release of proinflammatory and profibrotic cytokines, and suppressing chronic production of free radicals, which culminates in the amelioration of tissue toxicity. Through modulation of NF-κB and its downstream signaling cascade, curcumin can also reduce angiogenesis, tumor growth, and metastasis. Low toxicity of curcumin is linked to its cytoprotective effects in normal tissues. This protective action along with the capacity of this phytochemical to sensitize tumor cells to radiotherapy and chemotherapy makes it a potential candidate for use as an adjuvant in cancer therapy. There is also evidence from clinical trials suggesting the potential utility of curcumin for acute inflammatory reactions during radiotherapy such as dermatitis and mucositis.
Collapse
Affiliation(s)
- Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Khanlarkhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Salehi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani Nashtaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Department of Radiology and Nuclear Medicine, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|