1
|
Tyara Simbara A, Faridatul Habibah F, Hertadi R. Rhamnolipid-Modified PHB-Ectoine Nanoparticles for Multifunctional Skin Protection Against UVB, Irritation, and Bacteria. ACS OMEGA 2025; 10:12200-12213. [PMID: 40191376 PMCID: PMC11966311 DOI: 10.1021/acsomega.4c10583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 04/09/2025]
Abstract
Rhamnolipid, poly(R)-3-hydroxybutyrate (PHB), and ectoine are sustainable compounds produced by specific bacteria known for their protective benefits, including promoting skin health in applications, such as facial wash, sunscreens, and moisturizers. These compounds have been extensively studied due to their unique physicochemical properties and biocompatibility. Leveraging these beneficial properties, this study aimed to create a multifunctional protective formulation by synthesizing nanoparticles from PHB and ectoine, which are acknowledged for their anti-ultraviolet B (UVB) and anti-irritation properties. The covalent bonding of PHB and ectoine was achieved using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), and the nanoparticles were produced through centrifugation. The synthesized nanoparticle (PHB-ectoine NPs) was physicochemically characterized and tested for anti-irritation and anti-UVB properties in vitro. The characterization revealed a homogeneous spherical shape with a distinct layered structure, primarily composed of carbon and oxygen. The PHB-ectoine NPs measured 527 ± 228 nm in size, had a zeta potential of -61.47 ± 0.64 mV, and exhibited notably higher anti-irritant and anti-UVB activities compared to PHB alone, by over 10 and 4 times, respectively. Furthermore, the addition of a rhamnolipid solution as a dispersant provided the nanofluid with antibacterial properties againstStaphylococcus aureus. These results indicate that the rhamnolipid-PHB-ectoine nanoformulation shows significant potential as a multifunctional skin protective agent with anti-irritation, anti-UVB, and antibacterial capabilities.
Collapse
Affiliation(s)
- Alma Tyara Simbara
- Biochemistry and Biomolecular
Engineering Research Division, Faculty of Mathematics and Natural
Sciences, Bandung Institute of Technology, Jl. Ganesa No.10, Bandung 40132, Indonesia
| | - Fera Faridatul Habibah
- Biochemistry and Biomolecular
Engineering Research Division, Faculty of Mathematics and Natural
Sciences, Bandung Institute of Technology, Jl. Ganesa No.10, Bandung 40132, Indonesia
| | - Rukman Hertadi
- Biochemistry and Biomolecular
Engineering Research Division, Faculty of Mathematics and Natural
Sciences, Bandung Institute of Technology, Jl. Ganesa No.10, Bandung 40132, Indonesia
| |
Collapse
|
2
|
Martinka Maksymiak M, Andrä-Żmuda S, Sikorska W, Janeczek H, Chaber P, Musioł M, Godzierz M, Kowalczuk M, Adamus G. Structural and Thermal Characterization of Bluepha ® Biopolyesters: Insights into Molecular Architecture and Potential Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5863. [PMID: 39685298 DOI: 10.3390/ma17235863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
This study presents an in-depth molecular and structural characterization of novel biopolyesters developed under the trademark Bluepha®. The primary aim was to elucidate the relationship between chemical structure, chain architecture, and material properties of these biopolyesters to define their potential applications across various sectors. Proton nuclear magnetic resonance (1H NMR) analysis identified the biopolyesters as poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] (PHBH) copolymers, containing 4% and 10% molar content of hydroxyhexanoate (HH) units, respectively. Mass spectrometry analysis of PHBH oligomers, produced via controlled thermal degradation, further confirmed the chemical structure and molecular architecture of the PHBH samples. Additionally, multistage electrospray ionization mass spectrometry (ESI-MS/MS) provided insights into the chemical homogeneity and arrangement of comonomer units within the copolyester chains, revealing a random distribution of hydroxyhexanoate (HH) and hydroxybutyrate (HB) units along the PHBH chains. X-ray diffraction (XRD) patterns demonstrated partial crystallinity in the PHBH samples. The thermal properties, including glass transition temperature (Tg), melting temperature (Tm), and melting enthalpy (ΔHm), were found to be lower in PHBH than in poly(R)-3-hydroxybutyrate (PHB), suggesting a broader application potential for the tested PHBH biopolyesters.
Collapse
Affiliation(s)
- Magdalena Martinka Maksymiak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| | - Silke Andrä-Żmuda
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| | - Wanda Sikorska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| | - Henryk Janeczek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| | - Paweł Chaber
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| | - Marta Musioł
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| | - Marcin Godzierz
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| | - Grazyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| |
Collapse
|
3
|
Chaber P, Andrä-Żmuda S, Śmigiel-Gac N, Zięba M, Dawid K, Martinka Maksymiak M, Adamus G. Enhancing the Potential of PHAs in Tissue Engineering Applications: A Review of Chemical Modification Methods. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5829. [PMID: 39685265 DOI: 10.3390/ma17235829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
Polyhydroxyalkanoates (PHAs) are a family of polyesters produced by many microbial species. These naturally occurring polymers are widely used in tissue engineering because of their in vivo degradability and excellent biocompatibility. The best studied among them is poly(3-hydroxybutyrate) (PHB) and its copolymer with 3-hydroxyvaleric acid (PHBV). Despite their superior properties, PHB and PHBV suffer from high crystallinity, poor mechanical properties, a slow resorption rate, and inherent hydrophobicity. Not only are PHB and PHBV hydrophobic, but almost all members of the PHA family struggle because of this characteristic. One can overcome the limitations of microbial polyesters by modifying their bulk or surface chemical composition. Therefore, researchers have put much effort into developing methods for the chemical modification of PHAs. This paper explores a rarely addressed topic in review articles-chemical methods for modifying the structure of PHB and PHBV to enhance their suitability as biomaterials for tissue engineering applications. Different chemical strategies for improving the wettability and mechanical properties of PHA scaffolds are discussed in this review. The properties of PHAs that are important for their applications in tissue engineering are also discussed.
Collapse
Affiliation(s)
- Paweł Chaber
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Silke Andrä-Żmuda
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Natalia Śmigiel-Gac
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Magdalena Zięba
- Department of Optoelectronics, Silesian University of Technology, ul. B. Krzywoustego 2, 44-100 Gliwice, Poland
| | - Kamil Dawid
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Magdalena Martinka Maksymiak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Grażyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| |
Collapse
|
4
|
Palmieri F, Tagoe JNA, Di Maio L. Development of PBS/Nano Composite PHB-Based Multilayer Blown Films with Enhanced Properties for Food Packaging Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2894. [PMID: 38930263 PMCID: PMC11204785 DOI: 10.3390/ma17122894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
Biobased and biodegradable plastics have emerged as promising alternatives to conventional plastics offering the potential to reduce environmental impacts while promoting sustainability. This study focuses on the production of multilayer blown films with enhanced functional properties suitable for food packaging applications. Films were developed through co-extrusion in a three-layer film configuration, with Polybutylene Succinate (PBS) and Polybutylene Succinate Adipate (PBSA) as the external and internal layers, respectively. The functional layer consisted of Polyhydroxybutyrate (PHB) enhanced with nanoclays Cloisite® 30B at varying weight ratios. Films were also processed by manipulating the extruder screw speed of the functional layer to investigate its impact on the functional properties. Rheology, mechanical strength, and barrier performance were characterised to establish correlations between processing conditions and functional layer blends (Cloisite® 30B/PHB) on the properties of the resultant films. Rheological test results indicated that the system with 5% Cloisite® had the best polymer/nanofiller matrix dispersion. Mechanical and permeability tests showed that by varying the process conditions (the alteration of the thickness of the functionalized layer) resulted in an improvement in mechanical and barrier properties. Furthermore, the addition of the nanofiller resulted in a stiffening of the film with a subsequent decrease in permeability to oxygen and water vapour.
Collapse
Affiliation(s)
- Francesco Palmieri
- Department of Industrial Engineering (DIIN), University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy;
| | - Joseph Nii Ayi Tagoe
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy;
| | - Luciano Di Maio
- Department of Industrial Engineering (DIIN), University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy;
| |
Collapse
|
5
|
Lu M, Chen K, Wu T, Cai H. Electrochemical Decarboxylative Alkoxy-alkoxycarbonylation of Alkenes. Org Lett 2024; 26:188-192. [PMID: 38127651 DOI: 10.1021/acs.orglett.3c03816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
A method is presented for decarboxylative alkoxy-alkoxycarbonylation of various alkenes with alcohols by electrochemical anodic oxidation of monopotassium ethyloxalate salts with good functional group compatibility. The reaction involves anodic oxidation to form an acyl radical, followed by addition to an olefin to yield a new alkyl radical, which is anodically oxidized to a carbon cation and captured by alcohols to afford β-alkoxyalkanoates. Adding catalytic amounts of ammonium iodide enhanced the efficiency of the reactions.
Collapse
Affiliation(s)
- Meiqun Lu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Kailun Chen
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Tao Wu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Hu Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| |
Collapse
|
6
|
Kacanski M, Stelzer F, Walsh M, Kenny S, O'Connor K, Neureiter M. Pilot-scale production of mcl-PHA by Pseudomonas citronellolis using acetic acid as the sole carbon source. N Biotechnol 2023; 78:68-75. [PMID: 37827242 DOI: 10.1016/j.nbt.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
Medium-chain-length polyhydroxyalkanoates (mcl-PHA) are biobased materials with promising properties for environmentally friendly applications. Due to high production costs, which are related to the cost of the carbon sources combined with conversion insufficiencies, currently only small quantities are produced. This results in a lack of reliable data on properties and application potential for the variety of polymers from different types of production strains. This study investigated the potential for the production of mcl-PHA from volatile fatty acids (VFA) at a larger scale, given their potential as low-cost and sustainable raw material within a carboxylate-platform based biorefinery. Pseudomonas citronellolis (DSMZ 50332) was chosen as the production strain, and acetic acid was selected as the main carbon and energy source. Nitrogen was limited to trigger polymer production, and a fed-batch process using a pH-stat feeding regime with concentrated acid was established. We report successful production, extraction, and characterization of mcl PHA, obtaining a total of 1.76 kg from two 500-litre scale fermentations. The produced polymer was identified as a copolymer of 3-hydroxydecanoate (60.7%), 3-hydroxyoctanoate (37.3%), and 3-hydroxyhexanoate (2.0%) with a weight average molecular weight (Mw) of 536 kDa. NMR analysis indicates the presence of unsaturated side chains, which may offer additional possibilities for modification. The results confirm that there is a potential to produce significant amounts of mcl-PHA with interesting rubber-like properties from waste-derived VFA.
Collapse
Affiliation(s)
- Milos Kacanski
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, Institute of Environmental Biotechnology, Tulln, Austria
| | - Franz Stelzer
- Graz University of Technology, Institute for Chemistry and Technology of Materials, Graz, Austria
| | | | | | | | - Markus Neureiter
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, Institute of Environmental Biotechnology, Tulln, Austria.
| |
Collapse
|
7
|
Caputo M, Shi C, Tang X, Sardon H, Chen EYX, Müller AJ. Tailoring the Nucleation and Crystallization Rate of Polyhydroxybutyrate by Copolymerization. Biomacromolecules 2023; 24:5328-5341. [PMID: 37782027 PMCID: PMC10646943 DOI: 10.1021/acs.biomac.3c00808] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/20/2023] [Indexed: 10/03/2023]
Abstract
In the polyester family, the biopolymer with the greatest industrial potential could be poly(3-hydroxybutyrate) (PHB), which can be produced nowadays biologically or chemically. The scarce commercial use of PHB derives from its poor mechanical properties, which can be improved by incorporating a flexible aliphatic polyester with good mechanical performance, such as poly(ε-caprolactone) (PCL), while retaining its biodegradability. This work studies the structural, thermal, and morphological properties of block and random copolymers of PHB and PCL. The presence of a comonomer influences the thermal parameters following nonisothermal crystallization and the kinetics of isothermal crystallization. Specifically, the copolymers exhibit lower melting and crystallization temperatures and present lower overall crystallization kinetics than neat homopolymers. The nucleation rates of the PHB components are greatly enhanced in the copolymers, reducing spherulitic sizes and promoting transparency with respect to neat PHB. However, their spherulitic growth rates are depressed so much that superstructural growth becomes the dominating factor that reduces the overall crystallization kinetics of the PHB component in the copolymers. The block and random copolymers analyzed here also display important differences in the structure, morphology, and crystallization that were examined in detail. Our results show that copolymerization can tailor the thermal properties, morphology (spherulitic size), and crystallization kinetics of PHB, potentially improving the processing, optical, and mechanical properties of PHB.
Collapse
Affiliation(s)
- Maria
Rosaria Caputo
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Changxia Shi
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United
States
| | - Xiaoyan Tang
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United
States
| | - Haritz Sardon
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Eugene Y.-X. Chen
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United
States
| | - Alejandro J. Müller
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
8
|
Ullah R, Tuzen M, Hazer B. Novel silver-morphine-functionalized polypropylene (AgPP-mrp) nanocomposite for the degradation of dye removal by multivariate optimization approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79904-79915. [PMID: 37286840 DOI: 10.1007/s11356-023-27959-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
As a novel adsorbent, an opioid silver-morphine-functionalized polypropylene was synthesized through a one-pot reaction at room temperature and successfully used for the simple one-pot photocatalytic degradation catalyst of methyl orange removal from wastewater. UV spectral analysis reveals a special reference to the excitation of surface plasmon resonance as the main characteristic of the polymer-Ag nanocomposite in toluene solution peak at 420 nm in AgPP-mrp catalyst. The 1H NMR spectrum showed no sign of Ag NP peaks revealing small size distribution in the channels of morphine-functionalized polypropylene polymer. The morphology of silver nanoparticle-doped polymer through scanning electron microscopy (SEM-EDX) reveals PP-mrp with continuous matrix and Ag NPs (0.87 wt%). Furthermore, photocatalytic degradation of methyl orange was investigated on AgPP-mrp catalyst spectrophotometrically under solar irradiation in waste effluent, demonstrating high degradation efficiency. According to experimental findings, silver nanoparticles (AgPP-mrp) achieved high degradation capacities of 139 mg/g equivalent to 97.4% of photodegradation in a little period of time (35 min), as associated with previously stated materials and follow pseudo-second-order kinetic degradation tail of a high regression coefficient (R2 = 0.992). The suggested techniques offer a linear reaction for MO over the pH range of 1.5 to 5 and a degradation temperature of 25 to 60 °C. Central composite design and response surface methodology statistics recommend pH of the reaction medium and time as important variables for methyl orange degradation on AgPP-mrp photocatalytic. AgPP-mrp on the photocatalytic phenomenon based on heterojunction catalytic design producing electron holes (e-), as well as superoxides for the successful degradation of methyl orange.
Collapse
Affiliation(s)
- Rooh Ullah
- Chemistry Department, Faculty of Science and Arts, Tokat Gaziosmanpasa University, 60250, Tokat, Turkey
- Department of Chemistry, University of Turbat, Balochistan, Pakistan
| | - Mustafa Tuzen
- Chemistry Department, Faculty of Science and Arts, Tokat Gaziosmanpasa University, 60250, Tokat, Turkey.
| | - Baki Hazer
- Department of Aircraft Airframe Engine Maintenance, Kapadokya University, Nevşehir, Turkey
- Department of Nano Technology Engineering, Zonguldak Bülent Ecevit University, 67100, Zonguldak, Turkey
| |
Collapse
|
9
|
Aguilar-Rabiela AE, Homaeigohar S, González-Castillo EI, Sánchez ML, Boccaccini AR. Comparison between the Astaxanthin Release Profile of Mesoporous Bioactive Glass Nanoparticles (MBGNs) and Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) (PHBV)/MBGN Composite Microspheres. Polymers (Basel) 2023; 15:polym15112432. [PMID: 37299231 DOI: 10.3390/polym15112432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
In recent years, composite biomaterials have attracted attention for drug delivery applications due to the possibility of combining desired properties of their components. However, some functional characteristics, such as their drug release efficiency and likely side effects, are still unexplored. In this regard, controlled tuning of the drug release kinetic via the precise design of a composite particle system is still of high importance for many biomedical applications. This objective can be properly fulfilled through the combination of different biomaterials with unequal release rates, such as mesoporous bioactive glass nanoparticles (MBGN) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) microspheres. In this work, MBGNs and PHBV-MBGN microspheres, both loaded with Astaxanthin (ASX), were synthesised and compared in terms of ASX release kinetic, ASX entrapment efficiency, and cell viability. Moreover, the correlation of the release kinetic to phytotherapeutic efficiency and side effects was established. Interestingly, there were significant differences between the ASX release kinetic of the developed systems, and cell viability differed accordingly after 72 h. Both particle carriers effectively delivered ASX, though the composite microspheres exhibited a more prolonged release profile with sustained cytocompatibility. The release behaviour could be fine-tuned by adjusting the MBGN content in the composite particles. Comparatively, the composite particles induced a different release effect, implying their potential for sustained drug delivery applications.
Collapse
Affiliation(s)
- Arturo E Aguilar-Rabiela
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), D02 YN77 Dublin, Ireland
| | - Shahin Homaeigohar
- School of Science & Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Eduin I González-Castillo
- Polymer Institute, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Mirna L Sánchez
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
- Laboratorio de Farmacología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional Quilmes, Bernal B1876, Argentina
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
| |
Collapse
|
10
|
Brelle L, Faÿ F, Ozturk T, Didier N, Renard E, Langlois V. Hydrogel Based on Polyhydroxyalkanoate Sulfonate: Control of the Swelling Rate by the Ionic Group Content. Biomacromolecules 2023; 24:1871-1880. [PMID: 36967640 DOI: 10.1021/acs.biomac.3c00059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Hydrogels based on poly(3-hydroxyalkanoate) (PHA) sulfonate and poly(ethylene glycol) diacrylate, PEGDA, are prepared. First, PHA sulfonate is synthesized from unsaturated PHA by a thiol-ene reaction in the presence of sodium-3-mercapto-1-ethanesulfonate. The hydrophilicity of PHAs is considerably increased by adding sulfonate functions, and three amphiphilic PHAs are synthesized, containing 10, 22, or 29% sulfonate functions. Then, hydrogels are formed in the presence of PEGDA having different molar masses, that is, 575 or 2000 g mol-1. The hydrogels show fibrillar and porous structures observed in cryo-MEB with pore sizes that vary according to the content of sulfonated groups (10 to 29 mol %) ranging from 50 to more than 150 nm. Furthermore, depending on the proportions of the two polymers, a variable rigidity is observed from 2 to 40 Pa. In fact, the evaluation of the dynamic mechanical properties of the hydrogel determined by DMA reveals that the less rigid hydrogels hinder the adhesion of Pseudomonas aeruginosa PaO1 bacteria. Finally, these hydrogels swelling up to 5000% are noncytotoxic, allowing the adhesion and amplification of immortalized C2C12 cells, and they are therefore seen as promising materials both for repelling PaO1 bacteria and for amplifying myogenic cells.
Collapse
|
11
|
Eissenberger K, Ballesteros A, De Bisschop R, Bugnicourt E, Cinelli P, Defoin M, Demeyer E, Fürtauer S, Gioia C, Gómez L, Hornberger R, Ißbrücker C, Mennella M, von Pogrell H, Rodriguez-Turienzo L, Romano A, Rosato A, Saile N, Schulz C, Schwede K, Sisti L, Spinelli D, Sturm M, Uyttendaele W, Verstichel S, Schmid M. Approaches in Sustainable, Biobased Multilayer Packaging Solutions. Polymers (Basel) 2023; 15:1184. [PMID: 36904425 PMCID: PMC10007551 DOI: 10.3390/polym15051184] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
The depletion of fossil resources and the growing demand for plastic waste reduction has put industries and academic researchers under pressure to develop increasingly sustainable packaging solutions that are both functional and circularly designed. In this review, we provide an overview of the fundamentals and recent advances in biobased packaging materials, including new materials and techniques for their modification as well as their end-of-life scenarios. We also discuss the composition and modification of biobased films and multilayer structures, with particular attention to readily available drop-in solutions, as well as coating techniques. Moreover, we discuss end-of-life factors, including sorting systems, detection methods, composting options, and recycling and upcycling possibilities. Finally, regulatory aspects are pointed out for each application scenario and end-of-life option. Moreover, we discuss the human factor in terms of consumer perception and acceptance of upcycling.
Collapse
Affiliation(s)
- Kristina Eissenberger
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Günther-Str. 51, 72488 Sigmaringen, Germany
| | - Arantxa Ballesteros
- Centro Tecnológico ITENE, Parque Tecnológico, Carrer d’Albert Einstein 1, 46980 Paterna, Spain
| | - Robbe De Bisschop
- Centexbel, Textile Competence Centre, Etienne Sabbelaan 49, 8500 Kortrijk, Belgium
| | - Elodie Bugnicourt
- Graphic Packaging International, Fountain Plaza, Belgicastraat 7, 1930 Zaventem, Belgium
| | - Patrizia Cinelli
- Planet Bioplastics S.r.l., Via San Giovanni Bosco 23, 56127 Pisa, Italy
| | - Marc Defoin
- Bostik SA, 420 rue d’Estienne d’Orves, 92700 Colombes, France
| | - Elke Demeyer
- Centexbel, Textile Competence Centre, Etienne Sabbelaan 49, 8500 Kortrijk, Belgium
| | - Siegfried Fürtauer
- Fraunhofer Institute for Process Engineering and Packaging, Materials Development, Giggenhauser Str. 35, 85354 Freising, Germany
| | - Claudio Gioia
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Lola Gómez
- AIMPLAS, Plastics Technology Center, Valencia Parc Tecnologic, Carrer de Gustave Eiffel 4, 46980 Paterna, Spain
| | - Ramona Hornberger
- Fraunhofer Institute for Process Engineering and Packaging, Materials Development, Giggenhauser Str. 35, 85354 Freising, Germany
| | | | - Mara Mennella
- KNEIA S.L., Carrer d’Aribau 168-170, 08036 Barcelona, Spain
| | - Hasso von Pogrell
- AIMPLAS, Plastics Technology Center, Valencia Parc Tecnologic, Carrer de Gustave Eiffel 4, 46980 Paterna, Spain
| | | | - Angela Romano
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Antonella Rosato
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Nadja Saile
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Günther-Str. 51, 72488 Sigmaringen, Germany
| | - Christian Schulz
- European Bioplastics e.V. (EUBP), Marienstr. 19/20, 10117 Berlin, Germany
| | - Katrin Schwede
- European Bioplastics e.V. (EUBP), Marienstr. 19/20, 10117 Berlin, Germany
| | - Laura Sisti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Daniele Spinelli
- Next Technology Tecnotessile, Chemical Division, Via del Gelso 13, 59100 Prato, Italy
| | - Max Sturm
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Günther-Str. 51, 72488 Sigmaringen, Germany
| | - Willem Uyttendaele
- Centexbel, Textile Competence Centre, Etienne Sabbelaan 49, 8500 Kortrijk, Belgium
| | | | - Markus Schmid
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Günther-Str. 51, 72488 Sigmaringen, Germany
| |
Collapse
|
12
|
Afshar A, Gultekinoglu M, Edirisinghe M. Binary polymer systems for biomedical applications. INTERNATIONAL MATERIALS REVIEWS 2023; 68:184-224. [DOI: 10.1080/09506608.2022.2069451] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 04/08/2022] [Indexed: 01/06/2025]
Affiliation(s)
- Ayda Afshar
- Department of Mechanical Engineering, University College London, London, UK
| | - Merve Gultekinoglu
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, London, UK
| |
Collapse
|
13
|
Comparative studies of structural, thermal, mechanical, rheological and dynamic mechanical response of melt mixed PHB/bio-PBS and PHBV/bio-PBS blends. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Pryadko A, Mukhortova YR, Chernozem RV, Shlapakova LE, Wagner DV, Romanyuk K, Gerasimov EY, Kholkin A, Surmenev RA, Surmeneva MA. Comprehensive Study on the Reinforcement of Electrospun PHB Scaffolds with Composite Magnetic Fe 3O 4-rGO Fillers: Structure, Physico-Mechanical Properties, and Piezoelectric Response. ACS OMEGA 2022; 7:41392-41411. [PMID: 36406497 PMCID: PMC9670262 DOI: 10.1021/acsomega.2c05184] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
This is a comprehensive study on the reinforcement of electrospun poly(3-hydroxybutyrate) (PHB) scaffolds with a composite filler of magnetite-reduced graphene oxide (Fe3O4-rGO). The composite filler promoted the increase of average fiber diameters and decrease of the degree of crystallinity of hybrid scaffolds. The decrease in the fiber diameter enhanced the ductility and mechanical strength of scaffolds. The surface electric potential of PHB/Fe3O4-rGO composite scaffolds significantly increased with increasing fiber diameter owing to a greater number of polar functional groups. The changes in the microfiber diameter did not have any influence on effective piezoresponses of composite scaffolds. The Fe3O4-rGO filler imparted high saturation magnetization (6.67 ± 0.17 emu/g) to the scaffolds. Thus, magnetic PHB/Fe3O4-rGO composite scaffolds both preserve magnetic properties and provide a piezoresponse, whereas varying the fiber diameter offers control over ductility and surface electric potential.
Collapse
Affiliation(s)
- Artyom
S. Pryadko
- Physical
Materials Science and Composite Materials Center, Research School
of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk634050, Russia
| | - Yulia R. Mukhortova
- Physical
Materials Science and Composite Materials Center, Research School
of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk634050, Russia
| | - Roman V. Chernozem
- Physical
Materials Science and Composite Materials Center, Research School
of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk634050, Russia
| | - Lada E. Shlapakova
- Physical
Materials Science and Composite Materials Center, Research School
of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk634050, Russia
| | | | - Konstantin Romanyuk
- Department
of Physics & CICECO−Aveiro Institute of Materials, University of Aveiro, Aveiro3810-193, Portugal
- International
Research & Development Center of Piezo- and Magnetoelectric Materials,
Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk634050, Russia
| | | | - Andrei Kholkin
- School
of Natural Sciences and Mathematics, Ural
Federal University, Ekaterinburg620000, Russia
- International
Research & Development Center of Piezo- and Magnetoelectric Materials,
Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk634050, Russia
| | - Roman A. Surmenev
- Physical
Materials Science and Composite Materials Center, Research School
of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk634050, Russia
- International
Research & Development Center of Piezo- and Magnetoelectric Materials,
Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk634050, Russia
| | - Maria A. Surmeneva
- Physical
Materials Science and Composite Materials Center, Research School
of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk634050, Russia
- International
Research & Development Center of Piezo- and Magnetoelectric Materials,
Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk634050, Russia
| |
Collapse
|
15
|
Chaber P, Tylko G, Włodarczyk J, Nitschke P, Hercog A, Jurczyk S, Rech J, Kubacki J, Adamus G. Surface Modification of PHBV Fibrous Scaffold via Lithium Borohydride Reduction. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7494. [PMID: 36363086 PMCID: PMC9653721 DOI: 10.3390/ma15217494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
In this study, lithium borohydride (LiBH4) reduction was used to modify the surface chemistry of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) fibers. Although the most common reaction employed in the surface treatment of polyester materials is hydrolysis, it is not suitable for fiber modification of bacterial polyesters, which are highly resistant to this type of reaction. The use of LiBH4 allowed the formation of surface hydroxyl groups under very mild conditions, which was crucial for maintaining the fibers' integrity. The presence of these groups resulted in a noticeable improvement in the surface hydrophilicity of PHBV, as revealed by contact angle measurements. After the treatment with a LiBH4 solution, the electrospun PHBV fibrous mat had a significantly greater number of viable osteoblast-like cells (SaOS-2 cell line) than the untreated mat. Moreover, the results of the cell proliferation measurements correlated well with the observed cell morphology. The most flattened SaOS-2 cells were found on the surface that supported the best cell attachment. Most importantly, the results of our study indicated that the degree of surface modification could be controlled by changing the degradation time and concentration of the borohydride solution. This was of great importance since it allowed optimization of the surface properties to achieve the highest cell-proliferation capacity.
Collapse
Affiliation(s)
- Paweł Chaber
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Grzegorz Tylko
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Jakub Włodarczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Paweł Nitschke
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Anna Hercog
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Sebastian Jurczyk
- Institute for Engineering of Polymer Materials and Dyes, Łukasiewicz Research Network, Marii Skłodowskiej-Curie 55, 87-100 Toruń, Poland
| | - Jakub Rech
- Department of Biotechnology and Genetic Engineering, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland
| | - Jerzy Kubacki
- Faculty of Science and Technology, Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Grażyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| |
Collapse
|
16
|
Allı A, Allı S, Hazer B, Zinn M. Synthesis and characterization of star-shaped block copolymers composed of poly(3-hydroxy octanoate) and styrene via RAFT polymerization. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2092408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | - Sema Allı
- Department of Chemistry, Düzce University, Düzce, Turkey
| | - Baki Hazer
- Department of Aircraft Airframe Engine Maintenance, Kapadokya University, Ürgüp, Nevşehir, Turkey
- Department of Chemistry, Faculty of Arts and Sciences, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Manfred Zinn
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland Valais (HES-SO Valais-Wallis), Sion, Switzerland
| |
Collapse
|
17
|
Jin Z, Lu B, Xu Y. Constructing an electrical microenvironment based on electroactive polymers in the field of bone tissue engineering. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2067537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zhengyang Jin
- School of Mechanical Engineering, XinJiang University, Urumchi, China
| | - Bingheng Lu
- School of Mechanical Engineering, XinJiang University, Urumchi, China
- Mirco- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, China
- National Innovation Institute of Additive Manufacturing, Xi’an, China
| | - Yan Xu
- School of Mechanical Engineering, XinJiang University, Urumchi, China
| |
Collapse
|
18
|
Popa MS, Frone AN, Panaitescu DM. Polyhydroxybutyrate blends: A solution for biodegradable packaging? Int J Biol Macromol 2022; 207:263-277. [PMID: 35257732 DOI: 10.1016/j.ijbiomac.2022.02.185] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 11/05/2022]
Abstract
Poly (3-hydroxybutyrate) (PHB) is a valuable bio-based and biodegradable polymer that may substitute common polymers in packaging and biomedical applications provided that the production cost is reduced and some properties improved. Blending PHB with other biodegradable polymers is the most simple and accessible route to reduce costs and to improve properties. This review provides a comprehensive overview on the preparation, properties and application of the PHB blends with other biodegradable polyesters such as medium-chain-length polyhydroxyalkanoates, poly(ε-caprolactone), poly(lactic acid), poly(butylene succinate), poly(propylene carbonate) and poly (butylene adipate-co-terephthalate) or polysaccharides and their derivatives. A special attention has been paid to the miscibility of PHB with these polymers and the compatibilizing methods used to improve the dispersion and interface. The changes in the PHB morphology, thermal, mechanical and barrier properties induced by the second polymer have been critically analyzed in view of industrial application. The biodegradability and recyclability strategies of the PHB blends were summarized along with the processing techniques adapted to the intended application. This review provides the tools for a better understanding of the relation between the micro/nanostructure of PHB blends and their properties for the further development of PHB blends as solutions for biodegradable packaging.
Collapse
Affiliation(s)
- Marius Stelian Popa
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, Bucharest 060021, Romania
| | - Adriana Nicoleta Frone
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, Bucharest 060021, Romania
| | - Denis Mihaela Panaitescu
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, Bucharest 060021, Romania.
| |
Collapse
|
19
|
Miu DM, Eremia MC, Moscovici M. Polyhydroxyalkanoates (PHAs) as Biomaterials in Tissue Engineering: Production, Isolation, Characterization. MATERIALS 2022; 15:ma15041410. [PMID: 35207952 PMCID: PMC8875380 DOI: 10.3390/ma15041410] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 12/21/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible biopolymers. These biomaterials have grown in importance in the fields of tissue engineering and tissue reconstruction for structural applications where tissue morphology is critical, such as bone, cartilage, blood vessels, and skin, among others. Furthermore, they can be used to accelerate the regeneration in combination with drugs, as drug delivery systems, thus reducing microbial infections. When cells are cultured under stress conditions, a wide variety of microorganisms produce them as a store of intracellular energy in the form of homo- and copolymers of [R]—hydroxyalkanoic acids, depending on the carbon source used for microorganism growth. This paper gives an overview of PHAs, their biosynthetic pathways, producing microorganisms, cultivation bioprocess, isolation, purification and characterization to obtain biomaterials with medical applications such as tissue engineering.
Collapse
Affiliation(s)
- Dana-Maria Miu
- The National Institute for Chemical Pharmaceutical Research & Development, 031299 Bucharest, Romania; (D.-M.M.); (M.M.)
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Mihaela Carmen Eremia
- The National Institute for Chemical Pharmaceutical Research & Development, 031299 Bucharest, Romania; (D.-M.M.); (M.M.)
- Correspondence:
| | - Misu Moscovici
- The National Institute for Chemical Pharmaceutical Research & Development, 031299 Bucharest, Romania; (D.-M.M.); (M.M.)
| |
Collapse
|
20
|
Influence of Chitin Nanocrystals on the Crystallinity and Mechanical Properties of Poly(hydroxybutyrate) Biopolymer. Polymers (Basel) 2022; 14:polym14030562. [PMID: 35160551 PMCID: PMC8840629 DOI: 10.3390/polym14030562] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
This study focuses on the use of pilot-scale produced polyhydroxy butyrate (PHB) biopolymer and chitin nanocrystals (ChNCs) in two different concentrated (1 and 5 wt.%) nanocomposites. The nanocomposites were compounded using a twin-screw extruder and calendered into sheets. The crystallization was studied using polarized optical microscopy and differential scanning calorimetry, the thermal properties were studied using thermogravimetric analysis, the viscosity was studied using a shear rheometer, the mechanical properties were studied using conventional tensile testing, and the morphology of the prepared material was studied using optical microscopy and scanning electron microscopy. The results showed that the addition of ChNCs significantly affected the crystallization of PHB, resulting in slower crystallization, lower overall crystallinity, and smaller crystal size. Furthermore, the addition of ChNCs resulted in increased viscosity in the final formulations. The calendering process resulted in slightly aligned sheets and the nanocomposites with 5 wt.% ChNCs evaluated along the machine direction showed the highest mechanical properties, the strength increased from 24 to 33 MPa, while the transversal direction with lower initial strength at 14 MPa was improved to 21 MPa.
Collapse
|
21
|
Asano S, Choi J, Tran TH, Chanthaset N, Ajiro H. The influence of chain‐end functionalization and stereocomplexation on the degradation stability under alkaline condition. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shin Asano
- Division of Materials Science, Graduate School of Science and Technology Nara Institute of Science and Technology Ikoma Nara Japan
| | - Jaeyeong Choi
- Division of Materials Science, Graduate School of Science and Technology Nara Institute of Science and Technology Ikoma Nara Japan
| | - Thi Hang Tran
- Faculty of Chemical Technology Viet Tri University of Industry, Ministry of Industry and Trade Lam Thao Phu Tho Vietnam
| | - Nalinthip Chanthaset
- Division of Materials Science, Graduate School of Science and Technology Nara Institute of Science and Technology Ikoma Nara Japan
| | - Hiroharu Ajiro
- Division of Materials Science, Graduate School of Science and Technology Nara Institute of Science and Technology Ikoma Nara Japan
- Data Science Center Nara Institute of Science and Technology Ikoma Nara Japan
| |
Collapse
|
22
|
Carvalho LT, Moraes RM, Teixeira AJRM, Tada DB, Alves GM, Lacerda TM, Santos JC, Santos AM, Medeiros SF. Development of pullulan‐based carriers for controlled release of hydrophobic ingredients. J Appl Polym Sci 2021. [DOI: 10.1002/app.51344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Layde T. Carvalho
- Department of Biotechnology Engineering School of Lorena, University of São Paulo Lorena São Paulo Brazil
| | - Rodolfo M. Moraes
- Department of Chemical Engineering Engineering School of Lorena, University of São Paulo Lorena São Paulo Brazil
| | - Ana Julia R. M. Teixeira
- Department of Chemical Engineering Engineering School of Lorena, University of São Paulo Lorena São Paulo Brazil
| | - Dayane B. Tada
- Laboratory of Nanomaterials and Nanotoxicology Federal University of São Paulo São José dos Campos São Paulo Brazil
| | - Gizelda M. Alves
- Department of Chemical Engineering Engineering School of Lorena, University of São Paulo Lorena São Paulo Brazil
| | - Talita M. Lacerda
- Department of Biotechnology Engineering School of Lorena, University of São Paulo Lorena São Paulo Brazil
| | - Julio C. Santos
- Department of Biotechnology Engineering School of Lorena, University of São Paulo Lorena São Paulo Brazil
| | - Amilton M. Santos
- Department of Chemical Engineering Engineering School of Lorena, University of São Paulo Lorena São Paulo Brazil
| | - Simone F. Medeiros
- Department of Biotechnology Engineering School of Lorena, University of São Paulo Lorena São Paulo Brazil
- Department of Chemical Engineering Engineering School of Lorena, University of São Paulo Lorena São Paulo Brazil
| |
Collapse
|
23
|
Synthesis of Biobased Block Copolymers Using A Novel Methacrylated Methyl Salicylate and Poly(3‐Hydroxybutyrate). ChemistrySelect 2021. [DOI: 10.1002/slct.202102977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
D’Alessandro D, Ricci C, Milazzo M, Strangis G, Forli F, Buda G, Petrini M, Berrettini S, Uddin MJ, Danti S, Parchi P. Piezoelectric Signals in Vascularized Bone Regeneration. Biomolecules 2021; 11:1731. [PMID: 34827729 PMCID: PMC8615512 DOI: 10.3390/biom11111731] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023] Open
Abstract
The demand for bone substitutes is increasing in Western countries. Bone graft substitutes aim to provide reconstructive surgeons with off-the-shelf alternatives to the natural bone taken from humans or animal species. Under the tissue engineering paradigm, biomaterial scaffolds can be designed by incorporating bone stem cells to decrease the disadvantages of traditional tissue grafts. However, the effective clinical application of tissue-engineered bone is limited by insufficient neovascularization. As bone is a highly vascularized tissue, new strategies to promote both osteogenesis and vasculogenesis within the scaffolds need to be considered for a successful regeneration. It has been demonstrated that bone and blood vases are piezoelectric, namely, electric signals are locally produced upon mechanical stimulation of these tissues. The specific effects of electric charge generation on different cells are not fully understood, but a substantial amount of evidence has suggested their functional and physiological roles. This review summarizes the special contribution of piezoelectricity as a stimulatory signal for bone and vascular tissue regeneration, including osteogenesis, angiogenesis, vascular repair, and tissue engineering, by considering different stem cell sources entailed with osteogenic and angiogenic potential, aimed at collecting the key findings that may enable the development of successful vascularized bone replacements useful in orthopedic and otologic surgery.
Collapse
Affiliation(s)
- Delfo D’Alessandro
- Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, 56126 Pisa, Italy; (D.D.); (F.F.); (S.B.)
| | - Claudio Ricci
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (C.R.); (P.P.)
| | - Mario Milazzo
- The BioRobotics Intitute, Scuola Superiore Sant’Anna, 56024 Pontedera, Italy;
| | - Giovanna Strangis
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy;
| | - Francesca Forli
- Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, 56126 Pisa, Italy; (D.D.); (F.F.); (S.B.)
| | - Gabriele Buda
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.B.); (M.P.)
| | - Mario Petrini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.B.); (M.P.)
| | - Stefano Berrettini
- Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, 56126 Pisa, Italy; (D.D.); (F.F.); (S.B.)
| | - Mohammed Jasim Uddin
- Department of Chemistry, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Serena Danti
- The BioRobotics Intitute, Scuola Superiore Sant’Anna, 56024 Pontedera, Italy;
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy;
| | - Paolo Parchi
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (C.R.); (P.P.)
| |
Collapse
|
25
|
Hazer Rosberg DB, Hazer B, Stenberg L, Dahlin LB. Gold and Cobalt Oxide Nanoparticles Modified Poly-Propylene Poly-Ethylene Glycol Membranes in Poly (ε-Caprolactone) Conduits Enhance Nerve Regeneration in the Sciatic Nerve of Healthy Rats. Int J Mol Sci 2021; 22:7146. [PMID: 34281198 PMCID: PMC8268459 DOI: 10.3390/ijms22137146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022] Open
Abstract
Reconstruction of nerve defects is a clinical challenge. Autologous nerve grafts as the gold standard treatment may result in an incomplete restoration of extremity function. Biosynthetic nerve conduits are studied widely, but still have limitations. Here, we reconstructed a 10 mm sciatic nerve defect in healthy rats and analyzed nerve regeneration in poly (ε-caprolactone) (PCL) conduits longitudinally divided by gold (Au) and gold-cobalt oxide (AuCoO) nanoparticles embedded in poly-propylene poly-ethylene glycol (PPEG) membranes (AuPPEG or AuCoOPPEG) and compared it with unmodified PPEG-membrane and hollow PCL conduits. After 21 days, we detected significantly better axonal outgrowth, together with higher numbers of activated Schwann cells (ATF3-labelled) and higher HSP27 expression, in reconstructed sciatic nerve and in corresponding dorsal root ganglia (DRG) in the AuPPEG and AuCoOPPEG groups; whereas the number of apoptotic Schwann cells (cleaved caspase 3-labelled) was significantly lower. Furthermore, numbers of activated and apoptotic Schwann cells in the regenerative matrix correlated with axonal outgrowth, whereas HSP27 expression in the regenerative matrix and in DRGs did not show any correlation with axonal outgrowth. We conclude that gold and cobalt-oxide nanoparticle modified membranes in conduits improve axonal outgrowth and increase the regenerative performance of conduits after nerve reconstruction.
Collapse
Affiliation(s)
- Derya Burcu Hazer Rosberg
- Department of Hand Surgery, Skåne University Hospital, 205 02 Malmö, Sweden; (L.S.); (L.B.D.)
- Department of Translational Medicine—Hand Surgery, Lund University, 205 02 Malmö, Sweden
- Department of Neurosurgery, Mugla Sitki Kocman University, Mugla 48100, Turkey
| | - Baki Hazer
- Department of Aircraft Airflame Engine Maintenance, Kapadokya University, Ürgüp 50420, Turkey;
- Department of Chemistry, Zonguldak Bülent Ecevit University, Zonguldak 67100, Turkey
| | - Lena Stenberg
- Department of Hand Surgery, Skåne University Hospital, 205 02 Malmö, Sweden; (L.S.); (L.B.D.)
- Department of Translational Medicine—Hand Surgery, Lund University, 205 02 Malmö, Sweden
| | - Lars B. Dahlin
- Department of Hand Surgery, Skåne University Hospital, 205 02 Malmö, Sweden; (L.S.); (L.B.D.)
- Department of Translational Medicine—Hand Surgery, Lund University, 205 02 Malmö, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
26
|
Abstract
Abstract
Polyhydroxyalkanoates (PHAs) are linear semicrystalline polyesters produced naturally by a wide range of microorganisms for carbon and energy storage. PHAs can be used as replacements for petroleum-based polyethylene (PE) and polypropylene (PP) in many industrial applications due to their biodegradability, excellent barrier, mechanical, and thermal properties. The overall industrial applications of PHAs are still very limited due to the high production cost and high stiffness and brittleness. Therefore, new novel cost-effective production method must be considered for the new generation of PHAs. One approach is based on using different type feedstocks and biowastes including food byproducts and industrial and manufacturing wastes, can lead to more competitive and cost-effective PHAs products. Modification of PHAs with different function groups such as carboxylic, hydroxyl, amine, epoxy, etc. is also a relatively new approach to create new functional materials with different industrial applications. In addition, blending PHA with biodegradable materials such as polylactide (PLA), poly(ε-caprolactone) (PCL), starch, and distiller’s dried grains with solubles (DDGS) is another approach to address the drawbacks of PHAs and will be summarized in this chapter. A series of compatibilizers with different architectures were successfully synthesized and used to improve the compatibility and interfacial adhesion between PHAs and PCL. Finer morphology and significantly improvement in the mechanical properties of PHA/PCL blends were observed with a certain type of block compatibilizer. In addition, the improvement in the blend morphology and mechanical properties were found to be strongly influenced by the compatibilizer architecture.
Collapse
Affiliation(s)
- Samy A. Madbouly
- School of Engineering , Behrend College, Pennsylvania State University , Erie , PA 16563 , USA
| |
Collapse
|
27
|
Pryadko A, Surmeneva MA, Surmenev RA. Review of Hybrid Materials Based on Polyhydroxyalkanoates for Tissue Engineering Applications. Polymers (Basel) 2021; 13:1738. [PMID: 34073335 PMCID: PMC8199458 DOI: 10.3390/polym13111738] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/26/2022] Open
Abstract
This review is focused on hybrid polyhydroxyalkanoate-based (PHA) biomaterials with improved physico-mechanical, chemical, and piezoelectric properties and controlled biodegradation rate for applications in bone, cartilage, nerve and skin tissue engineering. PHAs are polyesters produced by a wide range of bacteria under unbalanced growth conditions. They are biodegradable, biocompatible, and piezoelectric polymers, which make them very attractive biomaterials for various biomedical applications. As naturally derived materials, PHAs have been used for multiple cell and tissue engineering applications; however, their widespread biomedical applications are limited due to their lack of toughness, elasticity, hydrophilicity and bioactivity. The chemical structure of PHAs allows them to combine with other polymers or inorganic materials to form hybrid composites with improved structural and functional properties. Their type (films, fibers, and 3D printed scaffolds) and properties can be tailored with fabrication methods and materials used as fillers. Here, we are aiming to fill in a gap in literature, revealing an up-to-date overview of ongoing research strategies that make use of PHAs as versatile and prospective biomaterials. In this work, a systematic and detailed review of works investigating PHA-based hybrid materials with tailored properties and performance for use in tissue engineering applications is carried out. A literature survey revealed that PHA-based composites have better performance for use in tissue regeneration applications than pure PHA.
Collapse
Affiliation(s)
| | | | - Roman A. Surmenev
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 30 Lenina Avenue, Tomsk 634050, Russia; (A.P.); (M.A.S.)
| |
Collapse
|
28
|
Altunay N, Hazer B, Tuzen M, Elik A. A new analytical approach for preconcentration, separation and determination of Pb(II) and Cd(II) in real samples using a new adsorbent: Synthesis, characterization and application. Food Chem 2021; 359:129923. [PMID: 33964654 DOI: 10.1016/j.foodchem.2021.129923] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
A green and efficient analytical approach was reported for simultaneous preconcentration, and separation of Pb(II) and Cd(II) in water, vegetables, and barbecue samples by dispersive solid-phase microextraction prior to their determination using flame atomic absorption spectrometry. A new poly-3-hydroxy butyrate-polyvinyl triethyl ammonium chloride comb-type amphiphilic cationic block copolymer (PHBvbNCl) was synthesized and characterized. Main variables such as pH, sorbent amount, adsorption time, eluent type, desorption time, and sample volume were optimized. Detection limits and working ranges for Pb(II) and Cd(II) were 0.03 μg L-1, 0.15 μg L-1, 0.1-250 μg L-1 and 0.5-375 μg L-1, respectively. Enhancement factor for Pb (II) and Cd (II) were 114 and 98. The adsorption capacity of PHBvbNCl for Pb(II) and Cd(II) was 175.2 mg g-1 and 152.9 mg g-1. After the accuracy of the method was confirmed by the analysis of certified reference materials, it was successfully applied to real samples. Finally, the analytical performance of the present method was compared with other methods.
Collapse
Affiliation(s)
- Nail Altunay
- Department of Biochemistry, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Baki Hazer
- Department of Aircraft Airframe Engine Maintenance, Kapadokya University, Nevşehir, Turkey; Zonguldak Bülent Ecevit University, Department of Chemistry, 67100 Zonguldak, Turkey
| | - Mustafa Tuzen
- Department of Chemistry, Tokat Gaziosmanpasa University, Tokat, Turkey; King Fahd University of Petroleum and Minerals, Research Institute, Center for Environment and Water (CEW), Dhahran, 31261 Saudi Arabia
| | - Adil Elik
- Department of Chemistry, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
29
|
Kang H, Miao X, Li J, Li D, Fang Q. Synthesis and characterization of biobased thermoplastic polyester elastomers containing Poly(butylene 2,5-furandicarboxylate). RSC Adv 2021; 11:14932-14940. [PMID: 35424025 PMCID: PMC8697829 DOI: 10.1039/d1ra00066g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/15/2021] [Indexed: 01/02/2023] Open
Abstract
A series of sustainable and reprocessible thermoplastic polyester elastomers P(BF-PBSS)s were synthesized using dimethyl-2,5-furandicarboxylate, 1,4-butanediol, and synthetic low-molecular-weight biobased polyester (PBSS). The P(BF-PBSS)s contain poly(butylene 2,5-furandicarboxylate) (PBF) as their hard segment and PBSS as their soft segment. The microstructures of the P(BF-PBSS)s were confirmed by nuclear magnetic resonance, demonstrating that a higher content of the soft segment was incorporated into P(BF-PBSS)s with higher PBSS content. Interestingly, dynamic mechanical analysis indicated that P(BF-PBSS)s comprised two domains: crystalline PBF and a mixture of amorphous PBF and PBSS. Consequently, the microphase separations of P(BF-PBSS)s were mainly induced by the crystallization of their PBF segments. More importantly, the thermal, crystallization, and mechanical properties could be tailored by tuning the PBSS content. Our results indicate that the as-prepared P(BF-PBSS)s are renewable, thermally stable, and nontoxic, and have good tensile properties, indicating that they could be potentially applied in biomedical materials. A series of sustainable and reprocessible thermoplastic polyester elastomers P(BF-PBSS)s were synthesized using dimethyl-2,5-furandicarboxylate, 1,4-butanediol, and synthetic low-molecular-weight biobased polyester (PBSS).![]()
Collapse
Affiliation(s)
- Hailan Kang
- College of Materials Science and Engineering, Shenyang University of Chemical Technology Shenyang 110142 China .,Key Laboratory for Rubber Elastomer of Liaoning Province, Shenyang University of Chemical Technology Shenyang 110142 China
| | - Xiaoli Miao
- College of Materials Science and Engineering, Shenyang University of Chemical Technology Shenyang 110142 China .,Key Laboratory for Rubber Elastomer of Liaoning Province, Shenyang University of Chemical Technology Shenyang 110142 China
| | - Jiahuan Li
- College of Materials Science and Engineering, Shenyang University of Chemical Technology Shenyang 110142 China .,Key Laboratory for Rubber Elastomer of Liaoning Province, Shenyang University of Chemical Technology Shenyang 110142 China
| | - Donghan Li
- College of Materials Science and Engineering, Shenyang University of Chemical Technology Shenyang 110142 China .,Key Laboratory for Rubber Elastomer of Liaoning Province, Shenyang University of Chemical Technology Shenyang 110142 China
| | - Qinghong Fang
- College of Materials Science and Engineering, Shenyang University of Chemical Technology Shenyang 110142 China .,Key Laboratory for Rubber Elastomer of Liaoning Province, Shenyang University of Chemical Technology Shenyang 110142 China
| |
Collapse
|
30
|
Tiwary P, Najafi N, Kontopoulou M. Advances in peroxide‐initiated graft modification of thermoplastic biopolyesters by reactive extrusion. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Praphulla Tiwary
- Department of Chemical Engineering Queen's University Kingston Ontario Canada
| | - Naqi Najafi
- Department of Chemical Engineering Queen's University Kingston Ontario Canada
| | | |
Collapse
|
31
|
Micheletti C, Suriano R, Grandfield K, Turri S. Drug release from polymer-coated TiO2 nanotubes on additively manufactured Ti-6Al-4V bone implants: a feasibility study. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abe278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Insufficient osseointegration, inflammatory response and bacterial infection are responsible for the majority of bone implant failures. Drug-releasing implants subjected to adequate surface modification can concurrently address these challenges to improve the success of implant surgeries. This work investigates the use of Ti-6Al-4V (Ti64) with a dual-scale surface topography as a platform for local drug delivery. Dual-scale topography was obtained combining the inherent microscale roughness of the Ti64 samples manufactured by selective laser melting (SLM) with the nanoscale roughness of TiO2 nanotubes (TNTs) obtained by subsequent electrochemical anodization at 60 V for 30 min. TNTs were loaded with a solution of penicillin-streptomycin, a common antibiotic, and drug release was tested in vitro. Three biocompatible and biodegradable polymers, i.e. chitosan, poly(ε-caprolactone) and poly(3-hydroxybutyrate), were deposited by spin coating, while preserving the microscale topography of the substrate underneath. The presence of polymer coatings overall modified the drug release pattern, as revealed by fitting of the experimental data with a power-law model. A slight extension in the overall duration of drug release (about 17% for a single layer and 33% for two layers of PCL and PHB) and reduced burst release was observed for all polymer-coated samples compared to uncoated, especially when two layers of coatings were applied.
Collapse
|
32
|
Mendibil X, González-Pérez F, Bazan X, Díez-Ahedo R, Quintana I, Rodríguez FJ, Basnett P, Nigmatullin R, Lukasiewicz B, Roy I, Taylor CS, Glen A, Claeyssens F, Haycock JW, Schaafsma W, González E, Castro B, Duffy P, Merino S. Bioresorbable and Mechanically Optimized Nerve Guidance Conduit Based on a Naturally Derived Medium Chain Length Polyhydroxyalkanoate and Poly(ε-Caprolactone) Blend. ACS Biomater Sci Eng 2021; 7:672-689. [DOI: 10.1021/acsbiomaterials.0c01476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xabier Mendibil
- Tekniker, Basque Research and Technology Alliance (BRTA), C/ Iñaki Goenaga 5, 20600 Eibar, Spain
| | - Francisco González-Pérez
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, Finca La Peraleda S/n, 45071 Toledo, Spain
| | - Xabier Bazan
- Tekniker, Basque Research and Technology Alliance (BRTA), C/ Iñaki Goenaga 5, 20600 Eibar, Spain
| | - Ruth Díez-Ahedo
- Tekniker, Basque Research and Technology Alliance (BRTA), C/ Iñaki Goenaga 5, 20600 Eibar, Spain
| | - Iban Quintana
- Tekniker, Basque Research and Technology Alliance (BRTA), C/ Iñaki Goenaga 5, 20600 Eibar, Spain
| | - Francisco Javier Rodríguez
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, Finca La Peraleda S/n, 45071 Toledo, Spain
| | - Pooja Basnett
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, U.K
| | - Rinat Nigmatullin
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, U.K
| | - Barbara Lukasiewicz
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, U.K
| | - Ipsita Roy
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, U.K
| | - Caroline S. Taylor
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, U.K
| | - Adam Glen
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, U.K
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, U.K
| | - John W. Haycock
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, U.K
| | - Wandert Schaafsma
- Histocell S.L., Parque Tecnológico de Bizkaia, 801 A, 2, 48160 Derio, Spain
| | - Eva González
- Histocell S.L., Parque Tecnológico de Bizkaia, 801 A, 2, 48160 Derio, Spain
| | - Begoña Castro
- Histocell S.L., Parque Tecnológico de Bizkaia, 801 A, 2, 48160 Derio, Spain
| | - Patrick Duffy
- Ashland Specialties Ireland, Synergy Centre, Dublin Road, Petitswood Mullingar, Co. Westmeath N91 F6PD, Ireland
| | - Santos Merino
- Tekniker, Basque Research and Technology Alliance (BRTA), C/ Iñaki Goenaga 5, 20600 Eibar, Spain
- Departamento de Electricidad y Electrónica, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain
| |
Collapse
|
33
|
Novák M, Jambor R, Růžičková Z, Podzimek Š. Unique reactivity of an α-ketiminopyridine ligand with metal–alkyls: Synthesis and ROP of ε-caprolactone. NEW J CHEM 2021. [DOI: 10.1039/d0nj05498d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of an α-ketimininopyridine ligand 2-((Me)CN(C6H3-2,6-iPr2))-6-(OMe)C5H3N (L1) with metal–alkyls, such as MeLi, Et2Zn, Me3Al and Me2AlCl, was studied.
Collapse
Affiliation(s)
- Miroslav Novák
- Institute of Chemistry and Technology of Macromolecular Materials
- Faculty of Chemical Technology
- University of Pardubice
- 53210 Pardubice
- Czech Republic
| | - Roman Jambor
- Department of General and Inorganic Chemistry
- Faculty of Chemical Technology
- University of Pardubice
- 53210 Pardubice
- Czech Republic
| | - Zdeňka Růžičková
- Department of General and Inorganic Chemistry
- Faculty of Chemical Technology
- University of Pardubice
- 53210 Pardubice
- Czech Republic
| | - Štěpán Podzimek
- Institute of Chemistry and Technology of Macromolecular Materials
- Faculty of Chemical Technology
- University of Pardubice
- 53210 Pardubice
- Czech Republic
| |
Collapse
|
34
|
Mezzina MP, Manoli MT, Prieto MA, Nikel PI. Engineering Native and Synthetic Pathways in Pseudomonas putida for the Production of Tailored Polyhydroxyalkanoates. Biotechnol J 2020; 16:e2000165. [PMID: 33085217 DOI: 10.1002/biot.202000165] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/16/2020] [Indexed: 12/16/2022]
Abstract
Growing environmental concern sparks renewed interest in the sustainable production of (bio)materials that can replace oil-derived goods. Polyhydroxyalkanoates (PHAs) are isotactic polymers that play a critical role in the central metabolism of producer bacteria, as they act as dynamic reservoirs of carbon and reducing equivalents. PHAs continue to attract industrial attention as a starting point toward renewable, biodegradable, biocompatible, and versatile thermoplastic and elastomeric materials. Pseudomonas species have been known for long as efficient biopolymer producers, especially for medium-chain-length PHAs. The surge of synthetic biology and metabolic engineering approaches in recent years offers the possibility of exploiting the untapped potential of Pseudomonas cell factories for the production of tailored PHAs. In this article, an overview of the metabolic and regulatory circuits that rule PHA accumulation in Pseudomonas putida is provided, and approaches leading to the biosynthesis of novel polymers (e.g., PHAs including nonbiological chemical elements in their structures) are discussed. The potential of novel PHAs to disrupt existing and future market segments is closer to realization than ever before. The review is concluded by pinpointing challenges that currently hinder the wide adoption of bio-based PHAs, and strategies toward programmable polymer biosynthesis from alternative substrates in engineered P. putida strains are proposed.
Collapse
Affiliation(s)
- Mariela P Mezzina
- Systems Environmental Microbiology Group, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, 2800, Denmark
| | - María Tsampika Manoli
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas «Margarita Salas» (CIB-CSIC), Polymer Biotechnology Group, Madrid, 28040, Spain.,Spanish National Research Council (SusPlast-CSIC), Interdisciplinary Platform for Sustainable Plastics Toward a Circular Economy, Madrid, 28040, Spain
| | - M Auxiliadora Prieto
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas «Margarita Salas» (CIB-CSIC), Polymer Biotechnology Group, Madrid, 28040, Spain.,Spanish National Research Council (SusPlast-CSIC), Interdisciplinary Platform for Sustainable Plastics Toward a Circular Economy, Madrid, 28040, Spain
| | - Pablo I Nikel
- Systems Environmental Microbiology Group, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, 2800, Denmark
| |
Collapse
|
35
|
|
36
|
Ochoa-Segundo EI, González-Torres M, Cabrera-Wrooman A, Sánchez-Sánchez R, Huerta-Martínez BM, Melgarejo-Ramírez Y, Leyva-Gómez G, Rivera-Muñoz EM, Cortés H, Velasquillo C, Vargas-Muñoz S, Rodríguez-Talavera R. Gamma radiation-induced grafting of n-hydroxyethyl acrylamide onto poly(3-hydroxybutyrate): A companion study on its polyurethane scaffolds meant for potential skin tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111176. [PMID: 32806310 DOI: 10.1016/j.msec.2020.111176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/20/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022]
Abstract
This study aimed at investigating the synthesis, characterization, and search for a biotechnological application proposal for poly [(R)-3-hydroxybutyric acid] (PHB) grafted with the n-hydroxyethyl acrylamide (HEAA) monomer. The novel copolymer was prepared by 60Co gamma radiation-induced-graft polymerization. The effect of different solvents in the graft polymerization; the degree of grafting, crystallinity, and hydrophilicity; the morphology and the thermal properties were evaluated. The polyurethane fabricated from the grafted PHB was suggested as a scaffold. The enzymatic degradation behavior and the spectroscopic, morphological, mechanical, and biological properties of the composites were assessed. According to the results, the successful grafting of HEAA onto PHB was verified. The grafting was significantly affected by the type of solvent employed. A decreased crystallinity and increased hydrophilicity of the graft copolymer, concerning the PHB, was found. An increased roughness was observed in the morphology of the polymer after grafting. The thermodynamic parameters, except for the glass transition temperature, also decreased for the synthetic biopolymer. The intended use of these scaffolds for skin tissue engineering was supported by a proper degradability and degree of porosity, improved mechanical properties, the optimal culture of human fibroblasts, and its transfection with a plasmid vector containing an enhanced green fluorescent protein.
Collapse
Affiliation(s)
- Eric Ivan Ochoa-Segundo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| | - Maykel González-Torres
- Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico.
| | - Alejandro Cabrera-Wrooman
- Laboratorio de Tejido Conjuntivo, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico.
| | - Roberto Sánchez-Sánchez
- Unidad de Ingeniería de Tejidos, Terapia celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico
| | | | - Yaaziel Melgarejo-Ramírez
- Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| | - Eric M Rivera-Muñoz
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, 76230, Mexico
| | - Hernán Cortés
- Departamento de Genética, Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico
| | - Cristina Velasquillo
- Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico
| | - Susana Vargas-Muñoz
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, 76230, Mexico
| | | |
Collapse
|
37
|
Altunay N, Tuzen M, Hazer B, Elik A. Usage of the newly synthesized poly(3-hydroxy butyrate)-b-poly(vinyl benzyl xanthate) block copolymer for vortex-assisted solid-phase microextraction of cobalt (II) and nickel (II) in canned foodstuffs. Food Chem 2020; 321:126690. [DOI: 10.1016/j.foodchem.2020.126690] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/29/2020] [Accepted: 03/23/2020] [Indexed: 01/27/2023]
|
38
|
Qazi RA, Khan MS, Shah LA, Ullah R, Kausar A, Khattak R. Eco-friendly electronics, based on nanocomposites of biopolyester reinforced with carbon nanotubes: a review. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1719137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Raina Aman Qazi
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan
- National Centre for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| | - Mohammad Saleem Khan
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan
| | - Luqman Ali Shah
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan
| | - Rizwan Ullah
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan
| | - Ayesha Kausar
- National Centre for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
- National Centre for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| | - Rozina Khattak
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| |
Collapse
|
39
|
Microbiologically extracted poly(hydroxyalkanoates) and its amalgams as therapeutic nano-carriers in anti-tumor therapies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110799. [DOI: 10.1016/j.msec.2020.110799] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/09/2019] [Accepted: 02/29/2020] [Indexed: 12/13/2022]
|
40
|
Novel poly(3-hydroxy butyrate) macro RAFT agent. Synthesis and characterization of thermoresponsive block copolymers. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02133-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Preparation and Characterization of Films Based on a Natural P(3HB)/mcl-PHA Blend Obtained through the Co-culture of Cupriavidus Necator and Pseudomonas Citronellolis in Apple Pulp Waste. Bioengineering (Basel) 2020; 7:bioengineering7020034. [PMID: 32260526 PMCID: PMC7356164 DOI: 10.3390/bioengineering7020034] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 11/17/2022] Open
Abstract
The co-culture of Cupriavidus necator DSM 428 and Pseudomonas citronellolis NRRL B-2504 was performed using apple pulp waste from the fruit processing industry as the sole carbon source to produce poly(3-hydroxybutyrate), P(3HB) and medium-chain length PHA, mcl-PHA, respectively. The polymers accumulated by both strains were extracted from the co-culture's biomass, resulting in a natural blend that was composed of around 48 wt% P(3HB) and 52 wt% mcl-PHA, with an average molecular weight of 4.3 × 105 Da and a polydispersity index of 2.2. Two melting temperatures (Tm) were observed for the blend, 52 and 174 °C, which correspond to the Tm of the mcl-PHA and P(3HB), respectively. P(3HB)/mcl-PHA blend films prepared by the solvent evaporation method had permeabilities to oxygen and carbon dioxide of 2.6 and 32 Barrer, respectively. The films were flexible and easily deformed, as demonstrated by their tensile strength at break of 1.47 ± 0.07 MPa, with a deformation of 338 ± 19% until breaking, associated with a Young modulus of 5.42 ± 1.02 MPa. This study demonstrates for the first time the feasibility of using the co-culture of C. necator and P. citronellolis strains to obtain a natural blend of P(3HB)/mcl-PHA that can be processed into films suitable for applications ranging from commodity packaging products to high-value biomaterials.
Collapse
|
42
|
Yañez L, Conejeros R, Vergara-Fernández A, Scott F. Beyond Intracellular Accumulation of Polyhydroxyalkanoates: Chiral Hydroxyalkanoic Acids and Polymer Secretion. Front Bioeng Biotechnol 2020; 8:248. [PMID: 32318553 PMCID: PMC7147478 DOI: 10.3389/fbioe.2020.00248] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/10/2020] [Indexed: 01/05/2023] Open
Abstract
Polyhydroxyalkanoates (PHAs) are ubiquitous prokaryotic storage compounds of carbon and energy, acting as sinks for reducing power during periods of surplus of carbon source relative to other nutrients. With close to 150 different hydroxyalkanoate monomers identified, the structure and properties of these polyesters can be adjusted to serve applications ranging from food packaging to biomedical uses. Despite its versatility and the intensive research in the area over the last three decades, the market share of PHAs is still low. While considerable rich literature has accumulated concerning biochemical, physiological, and genetic aspects of PHAs intracellular accumulation, the costs of substrates and processing costs, including the extraction of the polymer accumulated in intracellular granules, still hampers a more widespread use of this family of polymers. This review presents a comprehensive survey and critical analysis of the process engineering and metabolic engineering strategies reported in literature aimed at the production of chiral (R)-hydroxycarboxylic acids (RHAs), either from the accumulated polymer or by bypassing the accumulation of PHAs using metabolically engineered bacteria, and the strategies developed to recover the accumulated polymer without using conventional downstream separations processes. Each of these topics, that have received less attention compared to PHAs accumulation, could potentially improve the economy of PHAs production and use. (R)-hydroxycarboxylic acids can be used as chiral precursors, thanks to its easily modifiable functional groups, and can be either produced de-novo or be obtained from recycled PHA products. On the other hand, efficient mechanisms of PHAs release from bacterial cells, including controlled cell lysis and PHA excretion, could reduce downstream costs and simplify the polymer recovery process.
Collapse
Affiliation(s)
- Luz Yañez
- Green Technology Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Santiago, Chile
| | - Raúl Conejeros
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Alberto Vergara-Fernández
- Green Technology Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Santiago, Chile
| | - Felipe Scott
- Green Technology Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
43
|
Poly(3-hydroxybutyrate): Promising biomaterial for bone tissue engineering. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2020; 70:1-15. [PMID: 31677369 DOI: 10.2478/acph-2020-0007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/26/2019] [Indexed: 01/19/2023]
Abstract
Poly(3-hydroxybutyrate) is a natural polymer, produced by different bacteria, with good biocompatibility and biodegradability. Cardiovascular patches, scaffolds in tissue engineering and drug carriers are some of the possible biomedical applications of poly(3-hydroxybutyrate). In the past decade, many researchers examined the different physico-chemical modifications of poly(3-hydroxybutyrate) in order to improve its properties for use in the field of bone tissue engineering. Poly(3-hydroxybutyrate) composites with hydroxyapatite and bioglass are intensively tested with animal and human osteoblasts in vitro to provide information about their biocompatibility, biodegradability and osteoinductivity. Good bone regeneration was proven when poly(3-hydroxy-butyrate) patches were implanted in vivo in bone tissue of cats, minipigs and rats. This review summarizes the recent reports of in vitro and in vivo studies of pure poly(3-hydroxy-butyrate) and poly(3-hydroxybutyrate) composites with the emphasis on their bioactivity and biocompatibility with bone cells.
Collapse
|
44
|
de Meneses L, Pereira JR, Sevrin C, Grandfils C, Paiva A, Reis MA, Freitas F. Pseudomonas chlororaphis as a multiproduct platform: Conversion of glycerol into high-value biopolymers and phenazines. N Biotechnol 2020; 55:84-90. [DOI: 10.1016/j.nbt.2019.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 11/25/2022]
|
45
|
García-Valle FM, Cuenca T, Mosquera ME, Milione S, Cano J. Ring-Opening Polymerization (ROP) of cyclic esters by a versatile aluminum Diphenoxyimine Complex: From polylactide to random copolymers. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
46
|
Papadopoulou EL, Basnett P, Paul UC, Marras S, Ceseracciu L, Roy I, Athanassiou A. Green Composites of Poly(3-hydroxybutyrate) Containing Graphene Nanoplatelets with Desirable Electrical Conductivity and Oxygen Barrier Properties. ACS OMEGA 2019; 4:19746-19755. [PMID: 31788606 PMCID: PMC6881833 DOI: 10.1021/acsomega.9b02528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Poly(3-hydroxybutyrate), a green polymer originating from prokaryotic microbes, has been used to prepare composites with graphene nanoplatelets (GnP) at different concentrations. The films were fabricated by drop-casting and were hot-pressed at a temperature lower than their melting point to provide the molecular chains enough energy to reorientate while avoiding melting and degradation. It was found that hot-pressing increases crystallinity and improves mechanical properties. The Young's modulus increased from 1.2 to 1.6 GPa for the poly(3-hydroxybutyrate) (P(3HB)) films and from 0.5 to 2.2 GPa for the 15 wt % P(3HB)/GnP composites. Electrical resistivity decreases enormously with GnP concentration and hot-pressing, reaching 6 Ω sq-1 for the hot-pressed 30 wt % P(3HB)/GnP composite. Finally, the hot-pressed P(3HB) samples exhibit remarkable oxygen barrier properties, with oxygen permeability reaching 2800 mL μm m-2 day-1, which becomes 895 mL μm m-2 day-1 when 15% GnP is added to the biopolymer matrix, one of the lowest values known for biopolymers and biocomposites. We propose that these biocomposites are used for elastic packaging and electronics.
Collapse
Affiliation(s)
- Evie L. Papadopoulou
- Smart
Materials and Materials Characterization Facility, Istituto
Italiano di Tecnologia, via Morego 30, Genoa 16163, Italy
| | - Pooja Basnett
- Applied
Biotechnology Research Group, School of Life Sciences, College of
Liberal Arts and Sciences, University of
Westminster, London W1W 6UW, U.K.
| | - Uttam C. Paul
- Smart
Materials and Materials Characterization Facility, Istituto
Italiano di Tecnologia, via Morego 30, Genoa 16163, Italy
| | - Sergio Marras
- Smart
Materials and Materials Characterization Facility, Istituto
Italiano di Tecnologia, via Morego 30, Genoa 16163, Italy
| | - Luca Ceseracciu
- Smart
Materials and Materials Characterization Facility, Istituto
Italiano di Tecnologia, via Morego 30, Genoa 16163, Italy
| | - Ipsita Roy
- Applied
Biotechnology Research Group, School of Life Sciences, College of
Liberal Arts and Sciences, University of
Westminster, London W1W 6UW, U.K.
- Department
of Material Science and Engineering, Faculty of Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K.
| | - Athanassia Athanassiou
- Smart
Materials and Materials Characterization Facility, Istituto
Italiano di Tecnologia, via Morego 30, Genoa 16163, Italy
| |
Collapse
|
47
|
Arza CR, Wang P, Linares‐Pastén J, Zhang B. Synthesis, thermal, rheological characteristics, and enzymatic degradation of aliphatic polyesters with lignin‐based aromatic pendant groups. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/pola.29534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Carlos R. Arza
- Centre of Analysis and Synthesis, Department of ChemistryLund University P.O. Box 124, SE‐22100 Lund Sweden
| | - Ping Wang
- Centre of Analysis and Synthesis, Department of ChemistryLund University P.O. Box 124, SE‐22100 Lund Sweden
| | - Javier Linares‐Pastén
- Division of Biotechnology, Department of ChemistryLund University P.O.Box 124, 22100 Lund Sweden
| | - Baozhong Zhang
- Centre of Analysis and Synthesis, Department of ChemistryLund University P.O. Box 124, SE‐22100 Lund Sweden
| |
Collapse
|
48
|
Marlina D, Hoshina H, Ozaki Y, Sato H. Crystallization and crystalline dynamics of poly(3-hydroxybutyrate) / poly(4-vinylphenol) polymer blends studied by low-frequency vibrational spectroscopy. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Banu JR, Kumar MD, Gunasekaran M, Kumar G. Biopolymer production in bio electrochemical system: Literature survey. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
50
|
Jain-Beuguel C, LI X, Houel-Renault L, Modjinou T, Simon-Colin C, Gref R, Renard E, Langlois V. Water-Soluble Poly(3-hydroxyalkanoate) Sulfonate: Versatile Biomaterials Used as Coatings for Highly Porous Nano-Metal Organic Framework. Biomacromolecules 2019; 20:3324-3332. [DOI: 10.1021/acs.biomac.9b00870] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Caroline Jain-Beuguel
- Institut de Chimie et des Matériaux Paris-Est, UPEC-CNRS, 2 rue Henry Dunant, 94320 Thiais, France
- Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Technopôle Pointe du Diable, 29280 Plouzané, France
| | - Xue LI
- Institut des Sciences Moléculaires d’Orsay, UMR 8214, CNRS-UPS, Rue André Rivière, 91405 Orsay, France
| | - Ludivine Houel-Renault
- Centre Laser de l’Université Paris-Sud (CLUPS/LUMAT), CNRS-UPS-IOGS, Université Paris-Saclay, 91405 Orsay, France
| | - Tina Modjinou
- Institut de Chimie et des Matériaux Paris-Est, UPEC-CNRS, 2 rue Henry Dunant, 94320 Thiais, France
| | - Christelle Simon-Colin
- Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Technopôle Pointe du Diable, 29280 Plouzané, France
| | - Ruxandra Gref
- Institut des Sciences Moléculaires d’Orsay, UMR 8214, CNRS-UPS, Rue André Rivière, 91405 Orsay, France
| | - Estelle Renard
- Institut de Chimie et des Matériaux Paris-Est, UPEC-CNRS, 2 rue Henry Dunant, 94320 Thiais, France
| | - Valérie Langlois
- Institut de Chimie et des Matériaux Paris-Est, UPEC-CNRS, 2 rue Henry Dunant, 94320 Thiais, France
| |
Collapse
|