1
|
Talele P, Jadhav A, Sahu S, Shimpi N. Experimental approaches to evaluate solid lipid nanoparticle-based drug delivery systems. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1451-1466. [PMID: 39851141 DOI: 10.1039/d4ay01659a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Solid lipid nanoparticles (SLNs) are potential drug carriers due to the several advantages they offer. The physicochemical stability of lipid carriers varies significantly due to their diverse compositions and structures. Appropriate analytical methods are required for the complete characterization of SLNs. Physicochemical characterization includes analysis of bulk properties like particle size, size distribution, zeta potential, morphology, stability, polymorphism, crystallinity, and molecular level properties like microenvironments within nanoparticles and their interactions with drugs. Moreover, drug loading, drug entrapment efficiency, and drug release kinetics are essential parameters to evaluate the efficacy of SLNs as drug delivery systems. In addition to testing the physicochemical stability and functionality of SLN formulations, it is essential to investigate their desired actions through in vivo studies, which are beyond the scope of this article. This review briefly discusses the different experimental techniques and their applications in the field of solid lipid nanoparticles. These techniques can also be used to characterize nanostructure lipid carriers, which are second-generation lipid nanoparticles.
Collapse
Affiliation(s)
- Paurnima Talele
- Shri Guru Gobind Singhji Institute of Engineering & Technology, Nanded 431606, India
| | - Anand Jadhav
- Material Science Laboratory, Department of Chemistry, University of Mumbai, Santacruz (East), Mumbai 400098, India.
| | - Saugata Sahu
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan.
| | - Navinchandra Shimpi
- Material Science Laboratory, Department of Chemistry, University of Mumbai, Santacruz (East), Mumbai 400098, India.
| |
Collapse
|
2
|
Sreeharsha N, Prasanthi S, Rao GSNK, Gajula LR, Biradar N, Goudanavar P, Naveen NR, Shiroorkar PN, Meravanige G, Telsang M, Asif AH, Sreenivasalu PKP. Formulation optimization of chitosan surface coated solid lipid nanoparticles of griseofulvin: A Box-Behnken design and in vivo pharmacokinetic study. Eur J Pharm Sci 2025; 204:106951. [PMID: 39486655 DOI: 10.1016/j.ejps.2024.106951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Solid lipid nanoparticles (SLNs) are becoming increasingly favored for their robust biocompatibility and their capacity to enhance drug solubility, particularly for drugs with limited water solubility. This study delves into the effectiveness of the hot melt sonication technique in fabricating SLNs with high drug loading capabilities and sustained release characteristics. Griseofulvin (GF), chosen as a representative drug due to its poor water solubility, was encapsulated into SLNs composed of stearic acid. Optimization of chitosan-coated GF-loaded SLNs (CS-GF-SLN) was conducted using a Box-Behnken design. Utilizing the desirability approach, optimal parameters were determined, including a lipid quantity of 450.593 mg, chitosan content of 268.67 mg, and sonication duration of 2.14 h. These parameters resulted in a zeta potential of -34.8 mV and a particle size (PS) of 56.87 nm. Following optimization, the refined formulation underwent comprehensive assessment across various parameters. Notably, the drug encapsulated within SLNs exhibited sustained release over three days, as illustrated by the in-vitro drug release profile. The optimized formulation demonstrated a bioavailability enhancement by approximately 1.7 to 2.0 times compared to the conventional formulation. Furthermore, administration of drug-loaded SLNs to a macrophage cell line demonstrated no cytotoxicity, affirming their suitability as conventional drug delivery platforms for GF.
Collapse
Affiliation(s)
- Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa, 31982, Kingdom of Saudi Arabia; Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore, 560035, India.
| | - Samathoti Prasanthi
- Department of Pharmaceutics, MB School of Pharmaceutical Sciences, Mohan Babu University (Erstwhile Sree Vidyanikethan College of Pharmacy), Sree sainathnagar, A.Rangampet, Tirupati, Andhra Pradesh, 517102, India
| | - Gudhanti Siva Naga Koteswara Rao
- Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Lakshmi Radhika Gajula
- Department of Pharmaceutics, SJM College of Pharmacy, Chitradurga, Karnataka, 577502, India
| | - Nikita Biradar
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Karnataka, 571448, India
| | - Prakash Goudanavar
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Karnataka, 571448, India
| | - Nimbagal Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Karnataka, 571448, India.
| | | | - Girish Meravanige
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Mallikarjun Telsang
- Department of Medicine, College of Medicine, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Afzal Haq Asif
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | | |
Collapse
|
3
|
Panday A, Dixena B, Jain N, Jain AK. Lipid-based Non-viral Vector: Promising Approach for Gene Delivery. Curr Pharm Des 2025; 31:521-539. [PMID: 39318208 DOI: 10.2174/0113816128324084240828084904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/22/2024] [Accepted: 07/10/2024] [Indexed: 09/26/2024]
Abstract
OBJECTIVES The present review aims to discuss various strategies to overcome intracellular and extracellular barriers involved in gene delivery as well as the advantages, challenges, and mechanisms of gene delivery using non-viral vectors. Additionally, patents, clinical studies, and various formulation approaches related to lipid-based carrier systems are discussed. METHODS Data were searched and collected from Google Scholar, ScienceDirect, PubMed, and Springer. RESULTS In this review, we have investigated the advantages of non-viral vectors over viral vectors. The advantage of using non-viral vectors are that they seek more attention in different fields. They play an important role in delivering the genetic materials. However, few non-viral vector-based carrier systems have been found in clinical settings. Challenges are developing more stable, site-specific gene delivery and conducting thorough safety assessments to minimize the undesired effects. CONCLUSION In comparison to viral vectors, non-viral vector-based lipid nanocarriers have more advantages for gene delivery. Gene therapy research shows promise in addressing health concerns. Lipid-based nanocarriers can overcome intracellular and extracellular barriers, allowing efficient delivery of genetic materials. Nonviral vectors are more attractive due to their biocompatibility, ease of synthesis, and cost-effectiveness. They can deliver various nucleic acids and have improved gene delivery efficacy by avoiding degradation steps. Despite limited clinical use, many patents have been filed for mRNA vaccine delivery using non-viral vectors.
Collapse
Affiliation(s)
- Anupama Panday
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Bhupendra Dixena
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Nishant Jain
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Akhlesh Kumar Jain
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| |
Collapse
|
4
|
Cordeiro AP, Feuser PE, Araújo PHH, Dos Santos DC, Ourique F, Hübner LJ, Pedrosa RC, Sayer C. Doxorubicin and 4-nitrochalcone loaded in beeswax-based nanostructured lipid carriers: In vitro antitumoral screening and evaluation of synergistic effect on HepG-2 cells. Int J Pharm 2024; 666:124788. [PMID: 39368675 DOI: 10.1016/j.ijpharm.2024.124788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Cancer is the second most deadly disease worldwide, and the most traditional approaches such as chemotherapy still face limitations associated to drug dosage and off-target side effects. To address these issues, we propose the simultaneous administration of 4-Nitrochalcone (4NC) and Doxorubicin (DOX) using beeswax based nanostructured lipid carriers (NLCs). The co-encapsulation of 4NC and DOX in the beeswax based NLCs was performed using the water/oil/water double emulsion technique in association with the melt dispersion approach. The system composed by semi-spherical NLCs with an average diameter around 200 nm and narrow size distribution, displayed colloidal stability before and after redispersion, keeping the zeta potential below -30 mV. The antitumor activity of the nanoparticles was screened on different tumor cell lines, and the induced cellular death and internal ROS levels were analyzed on hepatocarcinoma cells, which were found to be more affected by the combination of 4NC and DOX. The results indicated that 4NC + DOX-NCLs could promote cytotoxicity and oxidative damage-mediated apoptosis in a HepG-2 cell line.
Collapse
Affiliation(s)
- Arthur Poester Cordeiro
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, SC, Brazil
| | - Paulo Emílio Feuser
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, SC, Brazil
| | - Pedro H H Araújo
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, SC, Brazil
| | - Daniela Coelho Dos Santos
- Department of Biochemistry, Center for Biological Sciences, Federal University of Santa Catarina, SC, Brazil
| | - Fabiana Ourique
- Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora
| | - Luiza Johanna Hübner
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Center for Biological Sciences, Federal University of Santa Catarina, SC, Brazil
| | - Rozangela Curi Pedrosa
- Department of Biochemistry, Center for Biological Sciences, Federal University of Santa Catarina, SC, Brazil
| | - Claudia Sayer
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, SC, Brazil.
| |
Collapse
|
5
|
Pula W, Ganugula R, Esposito E, Ravi Kumar MNV, Arora M. Engineered urolithin A-laden functional polymer-lipid hybrid nanoparticles prevent cisplatin-induced proximal tubular injury in vitro. Eur J Pharm Biopharm 2024; 200:114334. [PMID: 38768764 PMCID: PMC11262884 DOI: 10.1016/j.ejpb.2024.114334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Functional polymer-lipid hybrid nanoparticles (H-NPs) are a promising class of nanocarriers that combine the benefits of polymer and lipid nanoparticles, offering biocompatibility, structural stability, high loading capacity, and, most importantly, superior surface functionalization. Here, we report the synthesis and design of highly functional H-NPs with specificity toward the transferrin receptor (TfR), using a small molecule ligand, gambogic acid (GA). A fluorescence study revealed the molecular orientation of H-NPs, where the lipid-dense core is surrounded by a polymer exterior, functionalized with GA. Urolithin A, an immunomodulator and anti-inflammatory agent, served as a model drug-like compound to prepare H-NPs via traditional emulsion-based techniques, where H-NPs led to smaller particles (132 nm) and superior entrapment efficiencies (70 % at 10 % drug loading) compared to GA-conjugated polymeric nanoparticles (P-NPs) (157 nm and 52 % entrapment efficiency) and solid lipid nanoparticles (L-NPs) (186 nm and 29 % entrapment efficiency). H-NPs showed superior intracellular accumulation compared to individual NPs using human small intestinal epithelial (FHs 74) cells. The in vitro efficacy was demonstrated by flow cytometry analysis, in which UA-laden H-NPs showed excellent anti-inflammatory properties in cisplatin-induced injury in healthy human proximal tubular cell (HK2) model by decreasing the TLR4, NF-κβ, and IL-β expression. This preliminary work highlights the potential of H-NPs as a novel functional polymer-lipid drug delivery system, establishing the foundation for future research on its therapeutic potential in addressing chemotherapy-induced acute kidney injury in cancer patients.
Collapse
Affiliation(s)
- W Pula
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara, 19-44121 Ferrara, Italy; The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL 35401, United States
| | - R Ganugula
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL 35401, United States; Division of Translational Science and Medicine, College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL 35401, United States; Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35401, United States; Department of Biological Sciences, The University of Alabama, SEC 1325, Tuscaloosa, AL 35487, United States
| | - E Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara, 19-44121 Ferrara, Italy
| | - M N V Ravi Kumar
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL 35401, United States; Division of Translational Science and Medicine, College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL 35401, United States; Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35401, United States; Department of Biological Sciences, The University of Alabama, SEC 1325, Tuscaloosa, AL 35487, United States; Chemical and Biological Engineering, University of Alabama, SEC 3448, Tuscaloosa, AL 35487, United States; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - M Arora
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL 35401, United States; Division of Translational Science and Medicine, College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL 35401, United States; Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35401, United States; Department of Biological Sciences, The University of Alabama, SEC 1325, Tuscaloosa, AL 35487, United States.
| |
Collapse
|
6
|
Munir M, Zaman M, Waqar MA, Khan MA, Alvi MN. Solid lipid nanoparticles: a versatile approach for controlled release and targeted drug delivery. J Liposome Res 2024; 34:335-348. [PMID: 37840238 DOI: 10.1080/08982104.2023.2268711] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
Solid Lipid Nanoparticles (SLN), the first type of lipid-based solid carrier systems in the nanometer range, were introduced as a replacement for liposomes. SLN are aqueous colloidal dispersions with solid biodegradable lipids as their matrix. SLN is produced using processes like solvent diffusion method and high-pressure homogenization, among others. Major benefits include regulated release, increased bioavailability, preservation of peptides and chemically labile compounds like retinol against degradation, cost-effective excipients, better drug integration, and a broad range of applications. Solid lipid nanoparticles can be administered via different routes, such as oral, parenteral, pulmonary, etc. SLN can be prepared by using high shear mixing as well as low shear mixing. The next generation of solid lipids, nanostructured lipid carriers (NLC), can reduce some of the drawbacks of SLN, such as its restricted capacity for drug loading and drug expulsion during storage. NLC are controlled nanostructured lipid particles that enhance drug loading. This review covers a brief introduction of solid lipid nanoparticles, manufacturing techniques, benefits, limitations, and their characterization tests.
Collapse
Affiliation(s)
- Minahal Munir
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Zaman
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Ahsan Waqar
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Nadeem Alvi
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
7
|
Shakeri M, Ghobadi R, Sohrabvandi S, Khanniri E, Mollakhalili-Meybodi N. Co-encapsulation of omega-3 and vitamin D 3 in beeswax solid lipid nanoparticles to evaluate physicochemical and in vitro release properties. Front Nutr 2024; 11:1323067. [PMID: 38633604 PMCID: PMC11021770 DOI: 10.3389/fnut.2024.1323067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
In recent years, lipophilic bioactive compounds have gained much attention due to their wide range of health-benefiting effects. However, their low solubility and susceptibility to harsh conditions such as high temperatures and oxidation stress have limited their potential application for the development of functional foods and nutraceutical products in the food industry. Nanoencapsulation can help to improve the stability of hydrophobic bioactive compounds and protect these sensitive compounds during food processing conditions, thus overcoming the limitation of their pure use in food products. The objective of this work was to co-entrap vitamin D3 (VD3) and omega 3 (ω3) as hydrophobic bioactive compounds providing significant health benefits in beeswax solid lipid nanoparticles (BW. SLNs) for the first time and to investigate the effect of different concentrations of VD3 (5 and 10 mg/mL) and ω3 (8 and 10 mg) on encapsulation efficiency (EE). Our findings revealed that the highest EE was obtained for VD3 and ω3 at concentrations of 5 mg/mL and 10 mg, respectively. VD3/ω3 loaded BW. SLNs (VD3/ω3-BW. SLNs) were prepared with zeta potential and size of-32 mV and 63.5 nm, respectively. Results obtained by in-vitro release study indicated that VD3 release was lower compared to ω3 in the buffer solution. VD3 and ω3 incorporated in BW. SLNs demonstrated excellent stability under alkaline and acidic conditions. At highly oxidizing conditions, 96.2 and 90.4% of entrapped VD3 and ω3 remained stable in nanoparticles. Moreover, nanoparticles were stable during 1 month of storage, and no aggregation was observed. In conclusion, co-loaded VD3 and ω3 in BW. SLNs have the great potential to be used as bioactive compounds in food fortification and production of functional foods.
Collapse
Affiliation(s)
- Mohammad Shakeri
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Runak Ghobadi
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Sohrabvandi
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Khanniri
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Mollakhalili-Meybodi
- Department of Food Sciences and Technology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
8
|
Kanugo A, Dugad T. Design Optimization and Evaluation of Solid Lipid Nanoparticles of Azelnidipine for the Treatment of Hypertension. RECENT PATENTS ON NANOTECHNOLOGY 2024; 18:22-32. [PMID: 36278461 DOI: 10.2174/1872210517666221019102543] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Solid lipid nanoparticles (SLN) are the most promising lipid-based drug delivery to enhance poorly water-soluble molecules' solubility, bioavailability, and therapeutic efficacy. Azelnidipine (AZN) is a calcium channel blocker widely recommended for treating high blood pressure, but its activity is restricted due to high lipophilicity and poor solubility in the GIT. The current research focused on developing the SLN of AZN and thereby improving the absorption, bioavailability, and therapeutic efficacy in hypertension which is a leading cause of death worldwide. Recent patents on SLN were available as U.S. Patent,10,973,798B2, U.S. Patent 10,251,960B2, U.S. Patent 2021/0069121A1, U.S. Patent 2022/0151945A1. METHODS SLN was developed by hot melt emulsification and ultrasonication method using glyceryl monostearate (GMS) as solid lipid and Poloxamer 188 as a surfactant to stabilize colloidal dispersion. RESULTS Box-Behnken model was utilized, which predicted 13 batches in which concentration of GMS (X1), Poloxamer 188 (X2) and sonication time (X3) were considered independent parameters. The particle size (Y1) and entrapment efficiency (Y2) were dependable parameters, and optimized batch F2 showed a particle size of 166.4 nm, polydispersity index of 0.40 and zeta potential of -13.7 mV. The entrapment efficiency was observed at 86.21%. FTIR spectra confirm the identity and compatibility with the formulation components. The differential scanning calorimetry (DSC) confirmed the absence of melting point and interpreted that AZN was entirely incorporated in the lipid matrix and transformed from crystalline to amorphous. The ANOVA for the particle size (p-value: 0.0203), % EE (p-value: 0.0271) was found significant. The in-vitro drug release showed a sustained release pattern for about 12 h. The AZN-loaded SLN was lyophilized and intended for oral delivery. CONCLUSION AZN-loaded SLN was developed by the hot melt emulsification method, which accelerated the solubility and bioavailability and was released sustainably for treating hypertension.
Collapse
Affiliation(s)
- Abhishek Kanugo
- SVKM's NMIMS School of Pharmacy and Technology Management Shirpur, Dhule, India-425405
| | - Tejas Dugad
- Department of Pharmaceutics, SVKM NMIMS SPTM Shirpur, Dhule, India-425405
| |
Collapse
|
9
|
Kapoor D, Chilkapalli SC, Prajapati BG, Rodriques P, Patel R, Singh S, Bhattacharya S. The Astonishing Accomplishment of Biological Drug Delivery using Lipid Nanoparticles: An Ubiquitous Review. Curr Pharm Biotechnol 2024; 25:1952-1968. [PMID: 38265380 DOI: 10.2174/0113892010268824231122041237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 01/25/2024]
Abstract
Biotech drugs, including proteins, hormones, enzymes, DNA/RNA therapies, and cell-based treatments, are gaining popularity due to their effectiveness. However, effective delivery systems are needed to overcome administration challenges. Lipid nanoparticles (LNPs) have emerged as promising carriers for various therapies. LNPs are biocompatible, less likely to cause adverse reactions, and can stabilize delicate biological drugs, enhancing their stability and solubility. Scalable and cost-effective manufacturing processes make LNPs suitable for largescale production. Despite recent research efforts, challenges in stability, toxicity, and regulatory concerns have limited the commercial availability of LNP-based products. This review explores the applications, administration routes, challenges, and future directions of LNPs in delivering biopharmaceuticals.
Collapse
Affiliation(s)
- Devesh Kapoor
- Department of Pharmaceutical Technology, Dr. Dayaram Patel Pharmacy College, Bardoli 394601, Gujarat, India
| | - Shirisha C Chilkapalli
- Department of Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana-384012, Gujarat, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana-384012, Gujarat, India
| | - Paul Rodriques
- Department of Pharmaceutical Technology, Krishna School of Pharmacy and Research, KPGU, Vadodara, Mumbai NH#8, Varnama, Vadodara, Gujarat, India
| | - Ravish Patel
- Department of Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa 388 421, Anand, Gujarat, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM's NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| |
Collapse
|
10
|
Tan X, Hao Y, Ma N, Yang Y, Jin W, Meng Y, Zhou C, Zheng W, Zhang Y. M6P-modified solid lipid nanoparticles loaded with matrine for the treatment of fibrotic liver. Drug Deliv 2023; 30:2219432. [PMID: 37300371 DOI: 10.1080/10717544.2023.2219432] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/16/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Liver fibrosis is a key pathological process shared by the progression of various chronic liver diseases. Treatment of liver fibrosis can effectively block the occurrence and development of hepatic cirrhosis or even carcinoma. Currently, there is no effective drug delivery vehicle for curing liver fibrosis. In this study, we designed matrine (MT)-loaded mannose 6-phosphate (M6P) modified human serum albumin (HSA) conjugated solid lipid nanoparticles (SLN), named M6P-HSA-MT-SLN for treatment of hepatic fibrosis. We demonstrated that M6P-HSA-MT-SLN exhibited controlled and sustained release properties and good stability over 7 days. The drug release experiments showed that M6P-HSA-MT-SLN exhibited slow and controlled drug release characteristics. In addition, M6P-HSA-MT-SLN showed a significant targeted ability to fibrotic liver. Importantly, in vivo studies indicated that M6P-HSA-MT-SLN could significantly improve histopathological morphology and inhibit the fibrotic phenotype. In addition, in vivo experiments demonstrate that M6P-HSA-MT-SLN could reduce the expression of fibrosis markers and alleviate the damage of liver structure. Hence, the M6P-HSA-MT-SLN provide a promising strategy to deliver therapeutic agents to fibrotic liver to prevent liver fibrosis.
Collapse
Affiliation(s)
- Xiaochuan Tan
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yumei Hao
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Nai Ma
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yige Yang
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wenzhen Jin
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ya Meng
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chuchu Zhou
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wensheng Zheng
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yujia Zhang
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Talarico L, Pepi S, Susino S, Leone G, Bonechi C, Consumi M, Clemente I, Magnani A. Design and Optimization of Solid Lipid Nanoparticles Loaded with Triamcinolone Acetonide. Molecules 2023; 28:5747. [PMID: 37570717 PMCID: PMC10420805 DOI: 10.3390/molecules28155747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Principles of quality by design and design of experiments are acquiring more importance in the discovery and application of new drug carriers, such as solid lipid nanoparticles. In this work, an optimized synthesis of solid lipid nanoparticles loaded with Triamcinolone Acetonide is presented using an approach that involves Stearic Acid as a lipid, soy PC as an ionic surfactant, and Tween 80 as a nonionic surfactant. The constructed circumscribed Central Composite Design considers the lipid and nonionic surfactant quantities and the sonication amplitude in order to optimize particle size and Zeta potential, both measured by means of Dynamic Light Scattering, while the separation of unentrapped drug from the optimized Triamcinolone Acetonide-loaded solid lipid nanoparticles formulation is performed by Size Exclusion Chromatography and, subsequently, the encapsulation efficiency is determined by HPLC-DAD. The proposed optimized formulation-with the goal of maximizing Zeta potential and minimizing particle size-has shown good accordance with predicted values of Zeta potential and dimensions, as well as a high value of encapsulated Triamcinolone Acetonide. Experimental values obtained from the optimized synthesis reports a dimension of 683 ± 5 nm, which differs by 3% from the predicted value, and a Zeta potential of -38.0 ± 7.6 mV (12% difference from the predicted value).
Collapse
Affiliation(s)
- Luigi Talarico
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (S.P.); (S.S.); (G.L.); (C.B.); (M.C.); (I.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
- Siena Research Group—Center for Colloids and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Simone Pepi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (S.P.); (S.S.); (G.L.); (C.B.); (M.C.); (I.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
- Siena Research Group—Center for Colloids and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Surama Susino
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (S.P.); (S.S.); (G.L.); (C.B.); (M.C.); (I.C.)
| | - Gemma Leone
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (S.P.); (S.S.); (G.L.); (C.B.); (M.C.); (I.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
- Siena Research Group—Center for Colloids and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Claudia Bonechi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (S.P.); (S.S.); (G.L.); (C.B.); (M.C.); (I.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
- Siena Research Group—Center for Colloids and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Marco Consumi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (S.P.); (S.S.); (G.L.); (C.B.); (M.C.); (I.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
- Siena Research Group—Center for Colloids and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Ilaria Clemente
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (S.P.); (S.S.); (G.L.); (C.B.); (M.C.); (I.C.)
- Siena Research Group—Center for Colloids and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Agnese Magnani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (S.P.); (S.S.); (G.L.); (C.B.); (M.C.); (I.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
- Siena Research Group—Center for Colloids and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Firenze, Italy
| |
Collapse
|
12
|
Ranjbar S, Emamjomeh A, Sharifi F, Zarepour A, Aghaabbasi K, Dehshahri A, Sepahvand AM, Zarrabi A, Beyzaei H, Zahedi MM, Mohammadinejad R. Lipid-Based Delivery Systems for Flavonoids and Flavonolignans: Liposomes, Nanoemulsions, and Solid Lipid Nanoparticles. Pharmaceutics 2023; 15:1944. [PMID: 37514130 PMCID: PMC10383758 DOI: 10.3390/pharmaceutics15071944] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Herbal chemicals with a long history in medicine have attracted a lot of attention. Flavonolignans and flavonoids are considered as two classes of the above-mentioned compounds with different functional groups which exhibit several therapeutic capabilities such as antimicrobial, anti-inflammatory, antioxidant, antidiabetic, and anticancer activities. Based on the studies, high hydrophobic properties of the aforementioned compounds limit their bioavailability inside the human body and restrict their wide application. Nanoscale formulations such as solid lipid nanoparticles, liposomes, and other types of lipid-based delivery systems have been introduced to overcome the above-mentioned challenges. This approach allows the aforementioned hydrophobic therapeutic compounds to be encapsulated between hydrophobic structures, resulting in improving their bioavailability. The above-mentioned enhanced delivery system improves delivery to the targeted sites and reduces the daily required dosage. Lowering the required daily dose improves the performance of the drug by diminishing its side effects on non-targeted tissues. The present study aims to highlight the recent improvements in implementing lipid-based nanocarriers to deliver flavonolignans and flavonoids.
Collapse
Affiliation(s)
- Shahla Ranjbar
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol 9861335856, Iran
| | - Abbasali Emamjomeh
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol 9861335856, Iran
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey
| | - Kian Aghaabbasi
- Department of Biotechnology, University of Guilan, University Campus 2, Khalij Fars Highway 5th km of Ghazvin Road, Rasht 4199613776, Iran
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Azadeh Mohammadi Sepahvand
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 7148664685, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey
| | - Hamid Beyzaei
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol 9861335856, Iran
| | - Mohammad Mehdi Zahedi
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| |
Collapse
|
13
|
Viegas C, Patrício AB, Prata JM, Nadhman A, Chintamaneni PK, Fonte P. Solid Lipid Nanoparticles vs. Nanostructured Lipid Carriers: A Comparative Review. Pharmaceutics 2023; 15:1593. [PMID: 37376042 PMCID: PMC10305282 DOI: 10.3390/pharmaceutics15061593] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Solid-lipid nanoparticles and nanostructured lipid carriers are delivery systems for the delivery of drugs and other bioactives used in diagnosis, therapy, and treatment procedures. These nanocarriers may enhance the solubility and permeability of drugs, increase their bioavailability, and extend the residence time in the body, combining low toxicity with a targeted delivery. Nanostructured lipid carriers are the second generation of lipid nanoparticles differing from solid lipid nanoparticles in their composition matrix. The use of a liquid lipid together with a solid lipid in nanostructured lipid carrier allows it to load a higher amount of drug, enhance drug release properties, and increase its stability. Therefore, a direct comparison between solid lipid nanoparticles and nanostructured lipid carriers is needed. This review aims to describe solid lipid nanoparticles and nanostructured lipid carriers as drug delivery systems, comparing both, while systematically elucidating their production methodologies, physicochemical characterization, and in vitro and in vivo performance. In addition, the toxicity concerns of these systems are focused on.
Collapse
Affiliation(s)
- Cláudia Viegas
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana B. Patrício
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João M. Prata
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Akhtar Nadhman
- Institute of Integrative Biosciences, CECOS University, Hayatabad, Peshawar 25000, Pakistan
| | - Pavan Kumar Chintamaneni
- Department of Pharmaceutics, GITAM School of Pharmacy, GITAM-Hyderabad Campus, Hyderabad 502329, Telangana, India
| | - Pedro Fonte
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| |
Collapse
|
14
|
Seo Y, Lim H, Park H, Yu J, An J, Yoo HY, Lee T. Recent Progress of Lipid Nanoparticles-Based Lipophilic Drug Delivery: Focus on Surface Modifications. Pharmaceutics 2023; 15:772. [PMID: 36986633 PMCID: PMC10058399 DOI: 10.3390/pharmaceutics15030772] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Numerous drugs have emerged to treat various diseases, such as COVID-19, cancer, and protect human health. Approximately 40% of them are lipophilic and are used for treating diseases through various delivery routes, including skin absorption, oral administration, and injection. However, as lipophilic drugs have a low solubility in the human body, drug delivery systems (DDSs) are being actively developed to increase drug bioavailability. Liposomes, micro-sponges, and polymer-based nanoparticles have been proposed as DDS carriers for lipophilic drugs. However, their instability, cytotoxicity, and lack of targeting ability limit their commercialization. Lipid nanoparticles (LNPs) have fewer side effects, excellent biocompatibility, and high physical stability. LNPs are considered efficient vehicles of lipophilic drugs owing to their lipid-based internal structure. In addition, recent LNP studies suggest that the bioavailability of LNP can be increased through surface modifications, such as PEGylation, chitosan, and surfactant protein coating. Thus, their combinations have an abundant utilization potential in the fields of DDSs for carrying lipophilic drugs. In this review, the functions and efficiencies of various types of LNPs and surface modifications developed to optimize lipophilic drug delivery are discussed.
Collapse
Affiliation(s)
- Yoseph Seo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Hayeon Lim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Hyunjun Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Jiyun Yu
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Jeongyun An
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Hah Young Yoo
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| |
Collapse
|
15
|
Bio-Inspired Smart Nanoparticles in Enhanced Cancer Theranostics and Targeted Drug Delivery. J Funct Biomater 2022; 13:jfb13040207. [PMID: 36412848 PMCID: PMC9680339 DOI: 10.3390/jfb13040207] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 12/14/2022] Open
Abstract
Globally, a significant portion of deaths are caused by cancer.Compared with traditional treatment, nanotechnology offers new therapeutic options for cancer due to its ability to selectively target and control drug release. Among the various routes of nanoparticle synthesis, plants have gained significant recognition. The tremendous potential of medicinal plants in anticancer treatments calls for a comprehensive review of existing studies on plant-based nanoparticles. The study examined various metallic nanoparticles obtained by green synthesis using medicinal plants. Plants contain biomolecules, secondary metabolites, and coenzymes that facilitate the reduction of metal ions into nanoparticles. These nanoparticles are believed to be potential antioxidants and cancer-fighting agents. This review aims at the futuristic intuitions of biosynthesis and applications of plant-based nanoparticles in cancer theranostics.
Collapse
|
16
|
Osanlou R, Emtyazjoo M, Banaei A, Hesarinejad MA, Ashrafi F. Preparation of solid lipid nanoparticles and nanostructured lipid carriers containing zeaxanthin and evaluation of physicochemical properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128588] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Five decades of doxycycline: Does nanotechnology improve its properties? Int J Pharm 2022; 618:121655. [DOI: 10.1016/j.ijpharm.2022.121655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 12/18/2022]
|
18
|
Musielak E, Feliczak-Guzik A, Nowak I. Optimization of the Conditions of Solid Lipid Nanoparticles (SLN) Synthesis. Molecules 2022; 27:molecules27072202. [PMID: 35408600 PMCID: PMC9000502 DOI: 10.3390/molecules27072202] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 01/01/2023] Open
Abstract
Solid lipid nanoparticles (SLNs) have been synthesized as potential drug delivery systems. They are classified as solid lipid nanocarriers that can successfully carry both hydrophilic and hydrophobic drugs. SLNs are based on a biocompatible lipid matrix that is enzymatically degraded into natural components found in the human body. Solid lipid nanoparticles are suitable for the incorporation of hydrophobic active ingredients such as curcumin. The study included the optimization of lipid nanoparticle composition, incorporation of the active compound (curcumin), a stability evaluation of the obtained nanocarriers and characterization of their lipid matrix. Through process optimization, a dispersion of solid lipid nanoparticles (solid lipid:surfactant—2:1.25 weight ratio) predisposed to the incorporation of curcumin was developed. The encapsulation efficiency of the active ingredient was determined to be 99.80%. In stability studies, it was found that the most suitable conditions for conducting high-pressure homogenization are 300 bar pressure, three cycles and a closed-loop system. This yields the required values of the physicochemical parameters (a particle size within a 200−450 nm range; a polydispersity index of <30%; and a zeta potential of about |±30 mV|). In this work, closed-loop high-pressure homogenization was used for the first time and compared to the currently preferred open-loop method.
Collapse
|
19
|
Yadav A, Singh S, Sohi H, Dang S. Advances in Delivery of Chemotherapeutic Agents for Cancer Treatment. AAPS PharmSciTech 2021; 23:25. [PMID: 34907501 DOI: 10.1208/s12249-021-02174-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/29/2021] [Indexed: 12/31/2022] Open
Abstract
Presently, most of the treatment strategies for cancer are focused on the surgical removal of cancerous tumors, along with physical and chemical treatment such as radiotherapy and chemotherapy, respectively. The primary issue associated with these methods is the inhibition of normal cell growth and serious side effects associated with systemic toxicity. The traditional chemotherapeutics which were delivered systemically were inadequate and had serious dose limiting side effects. Recent advances in the development of chemotherapeutics have simultaneously paved the way for efficient targeted drug delivery. Despite the advances in the field of oncogenic drugs, several limitations remain, such as early blood clearance, acquired resistance against cytotoxic agents, toxicity associated with chemotherapeutics, and site-specific drug delivery. Hence, this review article focuses on the recent scientific advancements made in different types of drug delivery systems, including, organic nanocarriers (polymers, albumins, liposomes, and micelles), inorganic nanocarriers (mesoporous silica nanoparticles, gold nanoparticles, platinum nanoparticles, and carbon nanotubes), aptamers, antibody-drug conjugates, and peptides. These targeted drug delivery approaches offer numerous advantages such as site-specific drug delivery, minimal toxicity, better bioavailability, and an increased overall efficacy of the chemotherapeutics. Graphical abstract.
Collapse
|
20
|
Ahmad AM, Mohammed HA, Faris TM, Hassan AS, Mohamed HB, El Dosoky MI, Aboubakr EM. Nano-Structured Lipid Carrier-Based Oral Glutathione Formulation Mediates Renoprotection against Cyclophosphamide-Induced Nephrotoxicity, and Improves Oral Bioavailability of Glutathione Confirmed through RP-HPLC Micellar Liquid Chromatography. Molecules 2021; 26:7491. [PMID: 34946570 PMCID: PMC8706828 DOI: 10.3390/molecules26247491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022] Open
Abstract
The study aimed to develop a new glutathione (GSH) oral formulation to enhance the delivery of GSH and counter the nephrotoxicity of the anticancer drug, cyclophosphamide (CP). A nanostructured lipid carrier glutathione formulation (GSH-NLCs) composed of glutathione (500 mg), stearic and oleic acid (300 mg, each), and Tween® 80 (2%, w/v) was prepared through the emulsification-solvent-evaporation technique, which exhibited a 452.4 ± 33.19 nm spheroidal-sized particulate material with narrow particle size distributions, -38.5 ± 1.4 mV zeta potential, and an entrapment efficiency of 79.8 ± 1.9%. The GSH formulation was orally delivered, and biologically tested to ameliorate the CP-induced renal toxicity in a rat model. Detailed renal morphology, before and after the GSH-NLCs administration, including the histopathological examinations, confirmed the ameliorating effects of the prepared glutathione formulation together with its safe oral delivery. CP-induced oxidative stress, superoxide dismutase depletion, elevation of malondialdehyde levels, depletion of Bcl-2 concentration levels, and upregulated NF-KB levels were observed and were controlled within the recommended and near normal/control levels. Additionally, the inflammatory mediator marker, IL-1β, serum levels were marginally normalized by delivery of the GHS-NLCs formulation. Oral administration of the pure glutathione did not exhibit any ameliorating effects on the renal tissues, which suggested that the pure glutathione is reactive and is chemically transformed during the oral delivery, which affected its pharmacological action at the renal site. The protective effects of the GSH-NLCs formulation through its antioxidant and anti-inflammatory effects suggested its prominent role in containing CP-induced renal toxicity and renal tissue damage, together with the possibility of administrating higher doses of the anticancer drug, cyclophosphamide, to achieve higher and effective anticancer action in combination with the GSH-NLCs formulation.
Collapse
Affiliation(s)
- Adel M. Ahmad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Tarek M. Faris
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Al-Azhar University, Cairo 11371, Egypt;
| | - Abeer S. Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt; (A.S.H.); (H.B.M.)
| | - Hebatallah B. Mohamed
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt; (A.S.H.); (H.B.M.)
| | - Mahmoud I. El Dosoky
- Department of Pathology, Faculty of Medicine, South Valley University, Qena 83523, Egypt;
| | - Esam M. Aboubakr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt;
| |
Collapse
|
21
|
García-Salazar G, Zambrano-Zaragoza MDL, Serrano-Mora E, Mendoza-Díaz SO, Leyva-Gomez G, Quintanar-Guerrero D. Solid lipid nanoparticles by Venturi tube: Preparation, Characterization and Optimization by Box-Behnken design. Drug Dev Ind Pharm 2021; 47:1302-1309. [PMID: 34719999 DOI: 10.1080/03639045.2021.1989456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this study, a Venturi tube is proposed as an efficient static mixer incorporated into a continuous recirculation system for obtaining solid lipid nanoparticles (SLN) of monoolein. The device's operating principle consists of producing a turbulent flux in the throat of a Venturi tube. Taking advantage of this effect SLN of monoolein were obtained by rapid diffusion of the organic phase into the aqueous phase (stabilizer), causing lipid aggregation on the nanometric particles. The main aim of the present study was to evaluate the critical factors for obtaining the SLN of monoolein in order to control the independent variables of this methodology. A Box-Behnken design was used to study such independent variables (factors) as injection rate (X1), recirculation rate (X2), and stabilizer (X3) on the dependent variables; namely, process yield (Y1), particle size (Y2), polydispersity index (Y3) and zeta potential (Y4). The optimum operating conditions for preparing SLN were: injection rate, 1.6 mL/min; recirculation rate, 4.2 L/min; and stabilizer concentration, 1.0 w/v, with a value of D = 0.84. The predicted responses of the particle size were 212.0 nm, with a polydispersity index of 0.21, a zeta potential of -19.9 mV, and a process yield of 96.0%. Under the same operating condition, SLN formed with different lipids and stabilizers were obtained with nanometric size and zeta potential of ∼ -30.0 mV. Results show that the Venturi tube method (VTM) is an innovative and versatile technique for preparing SLN of nanometric size with high process yields through a turbulent flow.
Collapse
Affiliation(s)
- Gilberto García-Salazar
- Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán, Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Av. 1° de Mayo s/n Cuautitlán Izcalli, CP 54745, Estado de México, México
| | - María Del Luz Zambrano-Zaragoza
- Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán, Laboratorio de Procesos de Transformación de Alimentos y Tecnologías Emergentes, Km 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastián Xhala, Cuautitlán Izcalli, CP 54714, Estado de México, México
| | - Eduardo Serrano-Mora
- Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán, Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Av. 1° de Mayo s/n Cuautitlán Izcalli, CP 54745, Estado de México, México
| | - Sandra Olimpia Mendoza-Díaz
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Querétaro, CP 76010, Querétaro, México
| | - Gerardo Leyva-Gomez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior S/N, Del. Coyoacán, CP 04510, Ciudad de México, México
| | - David Quintanar-Guerrero
- Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán, Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Av. 1° de Mayo s/n Cuautitlán Izcalli, CP 54745, Estado de México, México
| |
Collapse
|
22
|
Bolze H, Riewe J, Bunjes H, Dietzel A, Burg TP. Continuous Production of Lipid Nanoparticles by Ultrasound‐Assisted Microfluidic Antisolvent Precipitation. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202100149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Holger Bolze
- Max-Planck Institute for Biophysical Chemisty Research Group Biological Micro- and Nanotechnology Am Fassberg 11 37077 Göttingen Germany
- Technische Universität Darmstadt Department of Electrical Engineering and Information Technology Merckstr. 25 64283 Darmstadt Germany
| | - Juliane Riewe
- Technische Universität Braunschweig Institut für Pharmazeutische Technologie und Biopharmazie Mendelssohnstr. 1 38106 Braunschweig Germany
- Technische Universität Braunschweig PVZ – Center of Pharmaceutical Engineering Franz-Liszt-Str. 35a 38106 Braunschweig Germany
| | - Heike Bunjes
- Technische Universität Braunschweig Institut für Pharmazeutische Technologie und Biopharmazie Mendelssohnstr. 1 38106 Braunschweig Germany
- Technische Universität Braunschweig PVZ – Center of Pharmaceutical Engineering Franz-Liszt-Str. 35a 38106 Braunschweig Germany
| | - Andreas Dietzel
- Technische Universität Braunschweig Institute of Microtechnology Alte Salzdahlumer Str. 203 38124 Braunschweig Germany
- Technische Universität Braunschweig PVZ – Center of Pharmaceutical Engineering Franz-Liszt-Str. 35a 38106 Braunschweig Germany
| | - Thomas P. Burg
- Max-Planck Institute for Biophysical Chemisty Research Group Biological Micro- and Nanotechnology Am Fassberg 11 37077 Göttingen Germany
- Technische Universität Darmstadt Department of Electrical Engineering and Information Technology Merckstr. 25 64283 Darmstadt Germany
- Technische Universität Darmstadt Centre for Synthetic Biology Rundeturmstraße 12 64283 Darmstadt Germany
| |
Collapse
|
23
|
de Souza Guedes L, Martinez RM, Bou-Chacra NA, Velasco MVR, Rosado C, Baby AR. An Overview on Topical Administration of Carotenoids and Coenzyme Q10 Loaded in Lipid Nanoparticles. Antioxidants (Basel) 2021; 10:1034. [PMID: 34206935 PMCID: PMC8300771 DOI: 10.3390/antiox10071034] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
Carotenoids and coenzyme Q10 are naturally occurring antioxidant compounds that are also found in human skin. These bioactive compounds have been the focus of considerable research due to their antioxidant, anti-inflammatory, and photoprotective properties. In this review, the current state of the art in the encapsulation of carotenoids and coenzyme Q10 in lipid nanoparticles to improve their bioavailability, chemical stability, and skin absorption is discussed. Additionally, the main findings are highlighted on the cytotoxic and photoprotective effects of these systems in the skin.
Collapse
Affiliation(s)
- Luciana de Souza Guedes
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (L.d.S.G.); (R.M.M.); (N.A.B.-C.); (M.V.R.V.)
| | - Renata Miliani Martinez
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (L.d.S.G.); (R.M.M.); (N.A.B.-C.); (M.V.R.V.)
| | - Nádia A. Bou-Chacra
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (L.d.S.G.); (R.M.M.); (N.A.B.-C.); (M.V.R.V.)
| | - Maria Valéria Robles Velasco
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (L.d.S.G.); (R.M.M.); (N.A.B.-C.); (M.V.R.V.)
| | - Catarina Rosado
- CBIOS, Universidade Lusófona’s Research Center for Biosciences & Health Technologies, 1749-024 Lisbon, Portugal;
| | - André Rolim Baby
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (L.d.S.G.); (R.M.M.); (N.A.B.-C.); (M.V.R.V.)
| |
Collapse
|
24
|
Moghtaderi M, Mirzaie A, Zabet N, Moammeri A, Mansoori-Kermani A, Akbarzadeh I, Eshrati Yeganeh F, Chitgarzadeh A, Bagheri Kashtali A, Ren Q. Enhanced Antibacterial Activity of Echinacea angustifolia Extract against Multidrug-Resistant Klebsiella pneumoniae through Niosome Encapsulation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1573. [PMID: 34203811 PMCID: PMC8232788 DOI: 10.3390/nano11061573] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/30/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022]
Abstract
With the increased occurrence of antibiotic-resistant bacteria, alternatives to classical antibiotics are urgently needed for treatment of various infectious diseases. Medicinal plant extracts are among the promising candidates due to their bioactive components. The aim of this study was to prepare niosome-encapsulated Echinacea angustifolia extract and study its efficacy against multidrug-resistant Klebsiella pneumoniae strains. Encapsulation was first optimized by Design of Experiments, followed by the empirical study. The obtained niosomes were further characterized for the size and morphology using dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Spherical niosomes had a diameter of 142.3 ± 5.1 nm, as measured by DLS. The entrapment efficiency (EE%) of E. angustifolia extract reached up to 77.1% ± 0.3%. The prepared niosomes showed a controlled drug release within the tested 72 h and a storage stability of at least 2 months at both 4 and 25 °C. The encapsulated E. angustifolia displayed up to 16-fold higher antibacterial activity against multidrug-resistant K.pneumoniae strains, compared to the free extract. Additionally, the niosome exhibited negligible cytotoxicity against human foreskin fibroblasts. We anticipate that the results presented herein could contribute to the preparation of other plant extracts with improved stability and antibacterial activity, and will help reduce the overuse of antibiotics by controlled release of natural-derived drugs.
Collapse
Affiliation(s)
- Maryam Moghtaderi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran; (M.M.); (A.M.)
| | - Amir Mirzaie
- Department of Biology, Parand Branch, Islamic Azad University, Parand 3761396361, Iran
| | - Negar Zabet
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1996835113, Iran;
| | - Ali Moammeri
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran; (M.M.); (A.M.)
| | - Amirreza Mansoori-Kermani
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran 1458889694, Iran;
| | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran 1458889694, Iran;
| | - Faten Eshrati Yeganeh
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran;
| | - Arman Chitgarzadeh
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen 3973188981, Iran; (A.C.); (A.B.K.)
| | - Aliasghar Bagheri Kashtali
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen 3973188981, Iran; (A.C.); (A.B.K.)
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| |
Collapse
|
25
|
Borges GSM, Lima FA, Carneiro G, Goulart GAC, Ferreira LAM. All-trans retinoic acid in anticancer therapy: how nanotechnology can enhance its efficacy and resolve its drawbacks. Expert Opin Drug Deliv 2021; 18:1335-1354. [PMID: 33896323 DOI: 10.1080/17425247.2021.1919619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: All-trans retinoic acid (ATRA, tretinoin) is the main drug used in the treatment of acute promyelocytic leukemia (APL). Despite its impressive activity against APL, the same could not be clinically observed in other types of cancer. Nanotechnology can be a tool to enhance ATRA anticancer efficacy and resolve its drawbacks in APL as well as in other malignancies.Areas covered: This review covers ATRA use in APL and non-APL cancers, the problems that were found in ATRA therapy and how nanoencapsulation can aid to circumvent them. Pre-clinical results obtained with nanoencapsulated ATRA are shown as well as the two ATRA products based on nanotechnology that were clinically tested: ATRA-IV® and Apealea®.Expert opinion: ATRA presents interesting properties to be used in anticancer therapy with a notorious differentiation and antimetastatic activity. Bioavailability and resistance limitations impair the use of ATRA in non-APL cancers. Nanotechnology can circumvent these issues and provide tools to enhance its anticancer activities, such as co-loading of multiple drug and active targeting to tumor site.
Collapse
Affiliation(s)
- Gabriel Silva Marques Borges
- Departamento De Produtos Farmacêuticos, Faculdade De Farmácia, Universidade Federal De Minas Gerais, Belo Horizonte, Brazil
| | - Flávia Alves Lima
- Departamento De Produtos Farmacêuticos, Faculdade De Farmácia, Universidade Federal De Minas Gerais, Belo Horizonte, Brazil
| | - Guilherme Carneiro
- Departamento De Farmácia, Faculdade De Ciências Biológicas E Da Saúde, Universidade Federal Dos Vales Do Jequitinhonha E Mucuri, Diamantina, Brazil
| | - Gisele Assis Castro Goulart
- Departamento De Produtos Farmacêuticos, Faculdade De Farmácia, Universidade Federal De Minas Gerais, Belo Horizonte, Brazil
| | - Lucas Antônio Miranda Ferreira
- Departamento De Produtos Farmacêuticos, Faculdade De Farmácia, Universidade Federal De Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
26
|
Talarico L, Consumi M, Leone G, Tamasi G, Magnani A. Solid Lipid Nanoparticles Produced via a Coacervation Method as Promising Carriers for Controlled Release of Quercetin. Molecules 2021; 26:2694. [PMID: 34064488 PMCID: PMC8125226 DOI: 10.3390/molecules26092694] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/25/2022] Open
Abstract
Quercetin is a poorly water-soluble flavonoid with many benefits to human health. Besides the natural food resources that may provide Quercetin, the interest in delivery systems that could enhance its bioavailability in the human body has seen growth in recent years. Promising delivery system candidates are represented by Solid Lipid Nanoparticles (SLNs) which are composed of well-tolerated compounds and provide a relatively high encapsulation efficiency and suitable controlled release. In this study, Quercetin-loaded and negatively charged Solid Lipid Nanoparticles were synthesized based on a coacervation method, using stearic acid as a core lipid and Arabic Gum as a stabilizer. Samples were qualitatively characterized by Dynamic light scattering (DLS), Zeta Potential, Surface infrared spectroscopy (FTIR-ATR), and Time of flight secondary ion mass spectrometry (ToF-SIMS). Encapsulation efficiency, drug release, and antioxidant effect against ABTS•+ were evaluated in vitro by UV-VIS spectrophotometry.
Collapse
Affiliation(s)
- Luigi Talarico
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (G.L.); (G.T.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
| | - Marco Consumi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (G.L.); (G.T.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
| | - Gemma Leone
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (G.L.); (G.T.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
| | - Gabriella Tamasi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (G.L.); (G.T.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
| | - Agnese Magnani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (G.L.); (G.T.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
27
|
Dermatokinetic assessment of luliconazole-loaded nanostructured lipid carriers (NLCs) for topical delivery: QbD-driven design, optimization, and in vitro and ex vivo evaluations. Drug Deliv Transl Res 2021; 12:1118-1135. [PMID: 33895936 DOI: 10.1007/s13346-021-00986-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 02/07/2023]
Abstract
The present study is concerned with the QbD-based design and development of luliconazole-loaded nanostructured lipid carriers (NLCs) hydrogel for enhanced skin retention and permeation. The NLCs formulation was optimized employing a 3-factor, 3-level Box-Behnken design. The effect of formulation variable lipid content, surfactant concentration, and sonication time was studied on particle size and % EE. The optimized formulation exhibited particle size of 86.480 ± 0.799 nm; 0.213 ± 0.004 PDI, ≥ - 10 mV zeta potential and 85.770 ± 0.503% EE. The in vitro release studies revealed sustained release of NLCs up to 42 h. The designed formulation showed desirable occlusivity, spreadability (0.748 ± 0.160), extrudability (3.130 ± 1.570), and the assay was found to be 99.520 ± 0.890%. The dermatokinetics assessment revealed the Cmax Skin to be ~ 2-fold higher and AUC0-24 to be ~ 3-fold higher in the epidermis and dermis of NLCs loaded gel in contrast with the marketed cream. The Tmax of both the formulations was found to be 6 h in the epidermis and dermis. The obtained results suggested that luliconazole NLCs can serve as a promising formulation to enhance luliconazole's antifungal activity and also in increasing patient compliance by reducing the frequency of application.
Collapse
|
28
|
Preparation, characterization and in vivo pharmacokinetic evaluation of curcuminoids-loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs). J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102352] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Bolze H, Riewe J, Bunjes H, Dietzel A, Burg TP. Protective Filtration for Microfluidic Nanoparticle Precipitation for Pharmaceutical Applications. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202000475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Holger Bolze
- Max Planck Institute for Biophysical Chemistry Research Group Biological Micro- and Nanotechnology Am Fassberg 11 37077 Göttingen Germany
- Technische Universität Darmstadt Department of Electrical Engineering and Information Technology Merckstr. 25 64283 Darmstadt Germany
| | - Juliane Riewe
- Technische Universität Braunschweig Institut für Pharmazeutische Technologie und Biopharmazie Mendelssohnstr. 1 38106 Braunschweig Germany
- Technische Universität Braunschweig PVZ – Center of Pharmaceutical Engineering Franz-Liszt-Str. 35a 38106 Braunschweig Germany
| | - Heike Bunjes
- Technische Universität Braunschweig Institut für Pharmazeutische Technologie und Biopharmazie Mendelssohnstr. 1 38106 Braunschweig Germany
- Technische Universität Braunschweig PVZ – Center of Pharmaceutical Engineering Franz-Liszt-Str. 35a 38106 Braunschweig Germany
| | - Andreas Dietzel
- Technische Universität Braunschweig Institute of Microtechnology Alte Salzdahlumer Str. 203 38124 Braunschweig Germany
- Technische Universität Braunschweig PVZ – Center of Pharmaceutical Engineering Franz-Liszt-Str. 35a 38106 Braunschweig Germany
| | - Thomas P. Burg
- Max Planck Institute for Biophysical Chemistry Research Group Biological Micro- and Nanotechnology Am Fassberg 11 37077 Göttingen Germany
- Technische Universität Darmstadt Department of Electrical Engineering and Information Technology Merckstr. 25 64283 Darmstadt Germany
| |
Collapse
|
30
|
Kunjiappan S, Sankaranarayanan M, Karan Kumar B, Pavadai P, Babkiewicz E, Maszczyk P, Glodkowska-Mrowka E, Arunachalam S, Ram Kumar Pandian S, Ravishankar V, Baskararaj S, Vellaichamy S, Arulmani L, Panneerselvam T. Capsaicin-loaded solid lipid nanoparticles: design, biodistribution, in silico modeling and in vitro cytotoxicity evaluation. NANOTECHNOLOGY 2021; 32:095101. [PMID: 33113518 DOI: 10.1088/1361-6528/abc57e] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lower doses of capsaicin (8-methyl-N-vanillyl-6-nonenamide) have the potential to serve as an anticancer drug, however, due to its pungency, irritant effect, poor water solubility and high distribution volume often linked to various off-target effects, its therapeutic use is limited. This study aimed to determine the biodistribution and anticancer efficacy of capsaicin loaded solid lipid nanoparticles (SLNs) in human hepatocellular carcinoma in vitro. In this study, SLNs of stearic acid loaded with capsaicin was formulated by the solvent evaporation-emulsification technique and were instantly characterized for their encapsulation efficiency, morphology, loading capacity, stability, particle size, charge and in vitro drug release profile. Synthesized SLNs were predominantly spherical, 80 nm diameter particles that proved to be biocompatible with good stability in aqueous conditions. In vivo biodistribution studies of the formulated SLNs showed that 48 h after injection in the lateral tail vein, up to 15% of the cells in the liver, 1.04% of the cells in the spleen, 3.05% of the cells in the kidneys, 3.76% of the cells in the heart, 1.31% of the cells in the lungs and 0% of the cells in the brain of rats were determined. Molecular docking studies against the identified targets in HepG2 cells showed that the capsaicin is able to bind Abelson tyrosine-protein kinase, c-Src kinase, p38 MAP kinase and VEGF-receptor. Molecular dynamic simulation showed that capsaicin-VEGF receptor complex is highly stable at 50 nano seconds. The IC50 of capsaicin loaded SLNs in HepG2 cells in vitro was 21.36 μg × ml-1. These findings suggest that capsaicin loaded SLNs are stable in circulation for a period up to 3 d, providing a controlled release of loaded capsaicin and enhanced anticancer activity.
Collapse
Affiliation(s)
- Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil-626126, India
| | - Murugesan Sankaranarayanan
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani-333031, India
| | - Banoth Karan Kumar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani-333031, India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru-560054, India
| | - Ewa Babkiewicz
- Department of Hydrobiology, Faculty of Biology, University of Warsaw at Biology & Chemistry Research Center, 02-089 Warsaw, Poland
| | - Piotr Maszczyk
- Department of Hydrobiology, Faculty of Biology, University of Warsaw at Biology & Chemistry Research Center, 02-089 Warsaw, Poland
| | - Eliza Glodkowska-Mrowka
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Indira Gandhi St. 14, 02-776 Warsaw, Poland
| | - Sankarganesh Arunachalam
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil-626126, India
| | | | | | - Suraj Baskararaj
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil-626126, India
| | - Sivakumar Vellaichamy
- Department of Pharmaceutics, Arulmigu Kalasalingam College of Pharmacy, Krishnankoil-626126, India
| | - Lalitha Arulmani
- Senior Scientist, Virtis Biolabs, Pvt., Ltd, Kannankurichi, Salem-636008, India
| | - Theivendren Panneerselvam
- Department of Pharmaceutical Chemistry, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal-637205, India
| |
Collapse
|
31
|
Akbarzadeh I, Shayan M, Bourbour M, Moghtaderi M, Noorbazargan H, Eshrati Yeganeh F, Saffar S, Tahriri M. Preparation, Optimization and In-Vitro Evaluation of Curcumin-Loaded Niosome@calcium Alginate Nanocarrier as a New Approach for Breast Cancer Treatment. BIOLOGY 2021; 10:173. [PMID: 33652630 PMCID: PMC7996962 DOI: 10.3390/biology10030173] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Cancer is one of the most common causes of mortality, and its various treatment methods can have many challenges for patients. As one of the most widely used cancer treatments, chemotherapy may result in diverse side effects. The lack of targeted drug delivery to tumor tissues can raise the possibility of damage to healthy tissues, with attendant dysfunction. In the present study, an optimum formulation of curcumin-loaded niosomes with a calcium alginate shell (AL-NioC) was developed and optimized by a three-level Box-Behnken design-in terms of dimension and drug loading efficiency. The niosomes were characterized by transmission electron microscopy, Fourier-transform infrared spectroscopy, and dynamic light scattering. The as-formulated niosomes showed excellent stability for up to 1 month at 4 °C. Additionally, the niosomal formulation demonstrated a pH-dependent release; a slow-release profile in physiological pH (7.4), and a more significant release rate at acidic conditions (pH = 3). Cytotoxicity studies showed high compatibility of AL-NioC toward normal MCF10A cells, while significant toxicity was observed in MDA-MB-231 and SKBR3 breast cancer cells. Gene expression studies of the cancer cells showed downregulation of Bcl2, cyclin D, and cyclin E genes, as well as upregulation of P53, Bax, caspase-3, and caspase-9 genes expression following the designed treatment. Flow cytometry studies confirmed a significant enhancement in the apoptosis rate in the presence of AL-NioC in both MDA-MB-231 and SKBR3 cells as compared to other samples. In general, the results of this study demonstrated that-thanks to its biocompatibility toward normal cells-the AL-NioC formulation can efficiently deliver hydrophobic drugs to target cancer cells while reducing side effects.
Collapse
Affiliation(s)
- Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran 1458889694, Iran
| | - Mona Shayan
- Core Facility Center, Pasteur Institute of Iran, Tehran 1316943551, Iran; (M.S.); (S.S.)
| | - Mahsa Bourbour
- Department of Biotechnology, Alzahra University, Tehran 1993893973, Iran;
| | - Maryam Moghtaderi
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran 141556619, Iran;
| | - Hassan Noorbazargan
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | - Faten Eshrati Yeganeh
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran;
| | - Samaneh Saffar
- Core Facility Center, Pasteur Institute of Iran, Tehran 1316943551, Iran; (M.S.); (S.S.)
| | | |
Collapse
|
32
|
Nayek S, Raghavendra N, Sajeev Kumar B. Development of novel S PC-3 gefitinib lipid nanoparticles for effective drug delivery in breast cancer. Tissue distribution studies and cell cytotoxicity analysis. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Obeid MA, Aljabali AAA, Rezigue M, Amawi H, Alyamani H, Abdeljaber SN, Ferro VA. Use of Nanoparticles in Delivery of Nucleic Acids for Melanoma Treatment. Methods Mol Biol 2021; 2265:591-620. [PMID: 33704742 DOI: 10.1007/978-1-0716-1205-7_41] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Melanoma accounts for 4% of all skin cancer malignancies, with only 14% of diagnosed patients surviving for more than 5 years after diagnosis. Until now, there is no clear understanding of the detailed molecular contributors of melanoma pathogenesis. Accordingly, more research is needed to understand melanoma development and prognosis.All the treatment approaches that are currently applied have several significant limitations that prevent effective use in melanoma. One major limitation in the treatment of cancer is the acquisition of multidrug resistance (MDR). The MDR results in significant treatment failure and poor clinical outcomes in several cancers, including skin cancer. Treatment of melanoma is especially retarded by MDR. Despite the current advances in targeted and immune-mediated therapy, treatment arms of melanoma are severely limited and stand as a significant clinical challenge. Further, the poor pharmacokinetic profile of currently used chemotherapeutic agents is another reason for treatment failure. Therefore, more research is needed to develop novel drugs and carrier tools for more effective and targeted treatment.Nucleic acid therapy is based on nucleic acids or chemical compounds that are closely related, such as antisense oligonucleotides, aptamers, and small-interfering RNAs that are usually used in situations when a specific gene implicated in a disorder is deemed a therapeutically beneficial target for inhibition. However, the proper application for nucleic acid therapies is hampered by the development of an effective delivery system that can maintain their stability in the systemic circulation and enhance their uptake by the target cells. In this chapter, the prognosis of the different types of melanoma along with the currently used medications is highlighted, and the different types of nucleic acids along with the currently available nanoparticle systems for delivering these nucleic acids into melanoma cells are discussed. We also discuss recently conducted research on the use of different types of nanoparticles for nucleic acid delivery into melanoma cells and highlight the most significant outcomes.
Collapse
Affiliation(s)
- Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan.
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Meriem Rezigue
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Haneen Amawi
- Department of Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Hanin Alyamani
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Shatha N Abdeljaber
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
34
|
Taylor JM, Scale K, Arrowsmith S, Sharp A, Flynn S, Rannard S, McDonald TO. Using pyrene to probe the effects of poloxamer stabilisers on internal lipid microenvironments in solid lipid nanoparticles. NANOSCALE ADVANCES 2020; 2:5572-5577. [PMID: 36133871 PMCID: PMC9417865 DOI: 10.1039/d0na00582g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/10/2020] [Indexed: 06/16/2023]
Abstract
Solid lipid nanoparticles (SLNs) have proved to be effective nanocarriers with many advantages over other non-lipid-based systems. The development of new SLN formulations is often hindered through poor drug loading capacity and time-consuming optimisation of lipid/stabiliser combinations. One challenge in the development of new SLN formulations is understanding the complex interactions between amphiphilic stabilisers and hydrophobic lipids; the nature of these interactions can significantly impact SLN properties, including the internal polarity within the nanoparticle core. Herein, we report the use of pyrene to probe the internal lipid microenvironment inside SLNs. We investigate the effect of using different poloxamer stabilisers on the internal polarity of SLNs formed using the common solid lipid, Compritol 888 ATO. We show that the polarity of the internal lipid environment is modified by the length of the poly(propylene oxide) (PPO) block of the poloxamer stabiliser, with longer PPO blocks producing SLNs with less polar lipid cores. Blending of stabilisers could also be used to tune the polarity of the core lipid environment, which may allow for adjusting the polarity of the lipid to assist the loading of different therapeutics.
Collapse
Affiliation(s)
- Jessica M Taylor
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Kyle Scale
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Sarah Arrowsmith
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, Liverpool Women's Hospital, University of Liverpool Crown Street Liverpool L8 7SS UK
| | - Andy Sharp
- Department of Women's and Children's Health, Liverpool Women's Hospital, University of Liverpool Crown Street Liverpool L8 7SS UK
| | - Sean Flynn
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Steve Rannard
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Tom O McDonald
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| |
Collapse
|
35
|
Tailoring functional nanostructured lipid carriers for glioblastoma treatment with enhanced permeability through in-vitro 3D BBB/BBTB models. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 121:111774. [PMID: 33579439 DOI: 10.1016/j.msec.2020.111774] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/25/2020] [Accepted: 11/27/2020] [Indexed: 01/14/2023]
Abstract
The blood-brain barrier (BBB) and blood-brain tumour barrier (BBTB) pose a significant challenge to drug delivery to brain tumours, including aggressive glioblastoma (GB). The present study rationally designed functional nanostructured lipid carriers (NLC) to tailor their BBB penetrating properties with high encapsulation of CNS negative chemotherapeutic drug docetaxel (DTX). We investigated the effect of four liquid lipids, propylene glycol monolaurate (Lauroglycol® 90), Capryol® propylene glycol monocaprylate, caprylocaproylmacrogol-8-glycerides (Labrasol®) and polyoxyl-15-hydroxystearate (Kolliphor® HS15) individually and in combination to develop NLCs with effective permeation across in-vitro 3D BBB model without alteration in the integrity of the barrier. With desirable spherical shape as revealed by TEM and an average particle size of 123.3 ± 0.642 nm and zeta potential of -32 mV, DTX-NLCs demonstrated excellent stability for six months in its freeze-dried form. The confocal microscopy along with flow cytometry data revealed higher internalisation of DTX-NLCs in U87MG over SVG P12 cells. Micropinocytosis was observed to be one of the dominant pathways for internalisation in U87MG cells while clathrin-mediated pathway was more predominat in patient-derived glioblastoma cells. The NLCs readily penetrated the actively proliferating peripheral cells on the surface of the 3D tumour spheroids as compared to the necrotic core. The DTX-NLCs induced cell arrest through G2/M phase with a significant decrease in the mitochondrial reserve capacity of cells. The NLCs circumvented BBTB with high permeability followed by accumulation in glioblastoma cells with patient-derived cells displaying ~2.4-fold higher uptake in comparison to U87MG when studied in a 3D in-vitro model of BBTB/GB. We envisage this simple and industrially feasible technology as a potential candidate to be developed as GB nanomedicine.
Collapse
|
36
|
Cordeiro AP, Feuser PE, Figueiredo PG, Cunha ESD, Martinez GR, Machado-de-Ávila RA, Rocha MEM, Araújo PHHD, Sayer C. In vitro synergic activity of diethyldithiocarbamate and 4-nitrochalcone loaded in beeswax nanoparticles against melanoma (B16F10) cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111651. [PMID: 33545819 DOI: 10.1016/j.msec.2020.111651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/03/2020] [Accepted: 10/13/2020] [Indexed: 11/27/2022]
Abstract
The use of nanoparticles as drug delivery systems to simultaneously carry several therapeutic agents is an attractive idea to create new synergic treatments and to develop the next generation of cancer therapies. Therefore, the goal of this study was the simultaneous encapsulation of a hydrophilic drug, sodium diethyldithiocarbamate (DETC), and a hydrophobic drug, 4-nitrochalcone (4NC), in beeswax nanoparticles (BNs) to evaluate the in vitro synergic activity of this combination against melanoma (B16F10) cells. BNs were prepared by water/oil/water double emulsion in the absence of organic solvents. Transmission electron microscopy imaging and dynamic light scattering analyses indicated the formation of BNs with a semispherical shape, average diameter below 250 nm, relatively narrow distributions, and negative zeta potential. The double emulsion technique proved to be effective for the simultaneous encapsulation of DETC and 4NC with efficiencies of 86.2% and 98.7%, respectively, and this encapsulation did not affect the physicochemical properties of the BNs. DETC and 4NC loaded in BNs exhibited a higher cytotoxicity toward B16F10 cells than free 4NC and DETC. This simultaneous encapsulation led to a synergic effect of DETC and 4NC on B16F10 cells, decreasing the cell viability from 46% (DETC BNs) and 54% (4NC BNs) to 64% (DETC+4NC BNs). Therefore, the IC50 of DETC+4NC was also lower than that of either when individually encapsulated, and that of free DETC or 4NC. Therefore, DETC and 4NC were efficiently simultaneously encapsulated in BNs and this drug combination was able to generate an in vitro synergic therapeutic effect on B16F10 cells.
Collapse
Affiliation(s)
- Arthur Poester Cordeiro
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, SC, Brazil
| | - Paulo Emílio Feuser
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, SC, Brazil
| | | | | | | | | | | | | | - Claudia Sayer
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, SC, Brazil.
| |
Collapse
|
37
|
Smith T, Affram K, Nottingham EL, Han B, Amissah F, Krishnan S, Trevino J, Agyare E. Application of smart solid lipid nanoparticles to enhance the efficacy of 5-fluorouracil in the treatment of colorectal cancer. Sci Rep 2020; 10:16989. [PMID: 33046724 PMCID: PMC7552424 DOI: 10.1038/s41598-020-73218-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 09/08/2020] [Indexed: 01/19/2023] Open
Abstract
5-Fluorouracil (5-FU) is a standard treatment option for colorectal cancer (CRC) but its rapid metabolism and systemic instability (short half-life) has hindered its therapeutic efficacy. The objective of this study was to develop a novel drug delivery system, solid lipid nanoparticle (SLN), capable of delivering high payload of 5-FU to treat CRC. The rational was to improve 5FU-nanocarrier compatibility and therapeutic efficacy. The SLN-loaded 5-FU was developed by utilizing a Strategic and unique Method to Advance and Refine the Treatment (SMART) of CRC through hot and cold homogenization approach. The SLN was made of unique PEGylated lipids and combination of the surfactants. Cytotoxicity studies, clonogenic assay, flow cytometry and confocal imaging were conducted to evaluate the effectiveness and cellular uptake of 5FU-SLN4 in HCT-116 cancer cells. Pharmacokinetic (PK) parameters and receptor expressions were determined while tumor efficacy studies were conducted on mouse bearing subcutaneous HCT-116 cancer. Among the all the formulations, 5FU-SLN4 was the most effective with particle size of was 263 ± 3 nm, zeta potential was 0.1 ± 0.02 and entrapment efficiency of 81 ± 10%. The IC50 value of 5FU-SLN4 (7.4 ± 0.02 µM) was 2.3 fold low compared with 5-FU (17.7 ± 0.03 µM). For tumor efficacy studies, 5FU-SLN4 significantly inhibited tumor growth in comparison to 5-FU while area-under plasma concentration-time curve (AUC) of 5FU-SLN4 was 3.6 fold high compared with 5-FU. HER2 receptors expression were markedly reduced in 5-FU-SLN4 treated mice compared with 5FU and liver and kidney tissues showed no toxicity at dose of 20 mg/kg. 5FU-SLN4 was highly cytotoxic against HCT-116 cells and significantly inhibited subcutaneous tumor growth in mice compared with 5-FU. This emphasizes the significance of developing a smart nano-delivery system to optimize the delivery efficiency of anticancer drugs to tumors.
Collapse
Affiliation(s)
- Taylor Smith
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, 1415 South Martin Luther King Blvd, Tallahassee, FL, 32307, USA
| | - Kevin Affram
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, 1415 South Martin Luther King Blvd, Tallahassee, FL, 32307, USA
| | - Ebony L Nottingham
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, 1415 South Martin Luther King Blvd, Tallahassee, FL, 32307, USA
| | - Bo Han
- Department of Surgery, Keck School of Medicine University of Southern California, Los Angeles, CA, USA
| | - Felix Amissah
- College of Pharmacy, Ferris State University, Big Rapids, MI, USA
| | | | - Jose Trevino
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Edward Agyare
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, 1415 South Martin Luther King Blvd, Tallahassee, FL, 32307, USA.
| |
Collapse
|
38
|
Duan Y, Dhar A, Patel C, Khimani M, Neogi S, Sharma P, Siva Kumar N, Vekariya RL. A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems. RSC Adv 2020; 10:26777-26791. [PMID: 35515778 PMCID: PMC9055574 DOI: 10.1039/d0ra03491f] [Citation(s) in RCA: 269] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/03/2020] [Indexed: 12/24/2022] Open
Abstract
Drug delivery technology has a wide spectrum, which is continuously being upgraded at a stupendous speed. Different fabricated nanoparticles and drugs possessing low solubility and poor pharmacokinetic profiles are the two major substances extensively delivered to target sites. Among the colloidal carriers, nanolipid dispersions (liposomes, deformable liposomes, virosomes, ethosomes, and solid lipid nanoparticles) are ideal delivery systems with the advantages of biodegradation and nontoxicity. Among them, nano-structured lipid carriers and solid lipid nanoparticles (SLNs) are dominant, which can be modified to exhibit various advantages, compared to liposomes and polymeric nanoparticles. Nano-structured lipid carriers and SLNs are non-biotoxic since they are biodegradable. Besides, they are highly stable. Their (nano-structured lipid carriers and SLNs) morphology, structural characteristics, ingredients used for preparation, techniques for their production, and characterization using various methods are discussed in this review. Also, although nano-structured lipid carriers and SLNs are based on lipids and surfactants, the effect of these two matrixes to build excipients is also discussed together with their pharmacological significance with novel theranostic approaches, stability and storage.
Collapse
Affiliation(s)
- Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University Henan 450018 China
| | - Abhishek Dhar
- Department of Instrumentation & Electronics Engineering, Jadavpur University Kolkata 700106 India
| | - Chetan Patel
- School of Sciences, P P Savani University NH-8, GETCO, Near Biltech, Village: Dhamdod, Kosamba, Dist. Surat 394125 Gujarat India
| | - Mehul Khimani
- School of Sciences, P P Savani University NH-8, GETCO, Near Biltech, Village: Dhamdod, Kosamba, Dist. Surat 394125 Gujarat India
| | - Swarnali Neogi
- Department of Instrumentation & Electronics Engineering, Jadavpur University Kolkata 700106 India
| | - Prolay Sharma
- Department of Instrumentation & Electronics Engineering, Jadavpur University Kolkata 700106 India
| | - Nadavala Siva Kumar
- Department of Chemical Engineering, King Saud University P.O. Box 800 Riyadh 11421 Saudi Arabia
| | - Rohit L Vekariya
- Department for Management of Science and Technology Development, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
39
|
Optimized doxycycline-loaded niosomal formulation for treatment of infection-associated prostate cancer: An in-vitro investigation. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101715] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
40
|
Pandey SS, Patel MA, Desai DT, Patel HP, Gupta AR, Joshi SV, Shah DO, Maulvi FA. Bioavailability enhancement of repaglinide from transdermally applied nanostructured lipid carrier gel: Optimization, in vitro and in vivo studies. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101731] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Harshita, Barkat MA, Das SS, Pottoo FH, Beg S, Rahman Z. Lipid-Based Nanosystem As Intelligent Carriers for Versatile Drug Delivery Applications. Curr Pharm Des 2020; 26:1167-1180. [DOI: 10.2174/1381612826666200206094529] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 01/19/2020] [Indexed: 01/15/2023]
Abstract
:The contemporary drug discovery research shows that most of the drug candidates are highly potent, but showing poor aqueous solubility leads a variety of challenges for formulation scientists to develop a suitable formulation to improve the systemic bioavailability of such drugs. Lipid-based nanocarriers act as a major and most projecting approach overcoming the limitations which affect several physiochemical properties of drug such as the solubility, partition coefficient and bioavailability or absorption. This also fulfills a variety of product requirements and helps to overcome several limitations as decided by symptoms of the disease, various routes of administration of drug, price concern, increasing strength of product, noxious or harmful effect of drug, and dose efficacy. The lipidic nanosystem formulates aqueous drug in lipid base and is also a commercially feasible approach for the formulation of different dosage forms meant for topical or transdermal, oral, ocular, pulmonary, and parenteral delivery. This review provides a brief on lipid-based drug delivery nanocarrier and the mechanisms by which lipids and lipidic excipients improve the oral absorption of drugs with poor aqueous solubility and also provide a viewpoint on the promising applications of lipidic nanoparticulate systems.
Collapse
Affiliation(s)
- Harshita
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Al Jamiah, Hafr Al Batin 39524, Saudi Arabia
| | - Md. Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Al Jamiah, Hafr Al Batin 39524, Saudi Arabia
| | - Sabya S. Das
- Department of Pharmaceutical Sciences & Technology, BIT, Mesra, Ranchi-835215, Jharkhand, India
| | - Faheem H. Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (Formerly University of Dammam), 31441, Dammam, Saudi Arabia
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ziyaur Rahman
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station , TX 77843, United States
| |
Collapse
|
42
|
Affiliation(s)
- Raj Kumar
- School of Basic Sciences and Advanced Materials Research CentreIndian Institute of Technology Mandi Mandi, Himachal Pradesh India- 175005
| |
Collapse
|
43
|
Kumar R, Singh A, Sharma K, Dhasmana D, Garg N, Siril PF. Preparation, characterization and in vitro cytotoxicity of Fenofibrate and Nabumetone loaded solid lipid nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110184. [DOI: 10.1016/j.msec.2019.110184] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 08/17/2019] [Accepted: 09/09/2019] [Indexed: 12/29/2022]
|
44
|
Huang Z, Ma C, Wu M, Li X, Lu C, Zhang X, Ma X, Yang Y, Huang Y, Pan X, Wu C. Exploring the drug-lipid interaction of weak-hydrophobic drug loaded solid lipid nanoparticles by isothermal titration calorimetry. JOURNAL OF NANOPARTICLE RESEARCH 2020; 22:3. [DOI: 10.1007/s11051-019-4671-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/25/2019] [Indexed: 06/25/2024]
|
45
|
Cordenonsi LM, Santer A, Sponchiado RM, Wingert NR, Raffin RP, Schapoval EES. Amazonia Products in Novel Lipid Nanoparticles for Fucoxanthin Encapsulation. AAPS PharmSciTech 2019; 21:32. [PMID: 31863211 DOI: 10.1208/s12249-019-1601-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/03/2019] [Indexed: 11/30/2022] Open
Abstract
Lipid nanoparticles (LNs) are traditional systems able to effectively increase skin hydration. However, due to its reduced viscosity, LNs suspensions are less attractive for skin administration. To overcome this disadvantage, the LN were incorporated in the semi-solid formulation is easy manipulation. This study demonstrated that it is possible to obtain novel LN-loaded fucoxanthin (LN-FUCO) for topical administration containing a combination of bacuri butter and tucumã oil prepared by high shear homogenization for improved stability. The particle size was found to be 243.0 nm and the entrapment efficiency up to 98% of FUCO was incorporated and achieved the suitability of formula. The LN-FUCO hydrogel characteristics of slight acidity, drug content near 100%, and nanometric mean size assure to this formulation high compatibility to dermal application. Photostability assay by UVA, LN-FUCO, and LN-FUCO hydrogel improved photostability and conferred greater protection against FUCO degradation. The results obtained from in vitro skin permeation studies presented a significant difference between LN-FUCO hydrogel and FUCO (p < 0.05), with no detection of the drug in the receptor medium. Therefore, high shear homogenization is demonstrated to be a simple, available, and effective method to prepare high-quality LN-FUCO hydrogel for topical application.
Collapse
|
46
|
Acoustic cavitation assisted hot melt mixing technique for solid lipid nanoparticles formulation, characterization, and controlled delivery of poorly water soluble drugs. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101277] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
47
|
Esposito E, Sguizzato M, Drechsler M, Mariani P, Carducci F, Nastruzzi C, Valacchi G, Cortesi R. Lipid nanostructures for antioxidant delivery: a comparative preformulation study. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1789-1801. [PMID: 31501750 PMCID: PMC6720232 DOI: 10.3762/bjnano.10.174] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/07/2019] [Indexed: 05/12/2023]
Abstract
This investigation is a study of new lipid nanoparticles for cutaneous antioxidant delivery. Several molecules, such as α-tocopherol and retinoic acid, have been shown to improve skin condition and even counteract the effects of exogenous stress factors such as smoking on skin aging. This work describes the design and development of lipid nanoparticles containing antioxidant agents (α-tocopherol or retinoic acid) to protect human skin against pollutants. Namely, solid lipid nanoparticles and nanostructured lipid carriers were prepared using different lipids (tristearin, compritol, precirol or suppocire) in the presence or absence of caprylic/capric triglycerides. The formulations were characterized by particle size analysis, cryogenic transmission electron microscopy, small-angle X-ray diffraction, encapsulation efficiency, preliminary stability, in vitro cytotoxicity and protection against cigarette smoke. Nanostructured lipid carriers were found to reduce agglomerate formation and provided better dimensional stability, as compared to solid lipid nanoparticles, suggesting their suitability for antioxidant loading. Based on the preformulation study, tristearin-based nanostructured lipid carriers loaded with α-tocopherol were selected for ex vivo studies since they displayed superior physico-chemical properties as compared to the other nanostructured lipid carriers compositions. Human skin explants were treated with α-tocopherol-loaded nanostructured lipid carriers and then exposed to cigarette smoke, and the protein levels of the stress-induced enzyme heme oxygenase were analyzed in skin homogenates. Interestingly, it was found that pretreatment with the nanoformulation resulted in significantly reduced heme oxygenase upregulation as compared to control samples, suggesting a protective effect provided by the nanoparticles.
Collapse
Affiliation(s)
- Elisabetta Esposito
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy
| | - Maddalena Sguizzato
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy
| | - Markus Drechsler
- Bavarian Polymerinstitute "Electron and Optical Microscopy" University of Bayreuth, Germany
| | - Paolo Mariani
- Dipartmento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, I-60131 Ancona, Italy
| | - Federica Carducci
- Dipartmento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, I-60131 Ancona, Italy
| | - Claudio Nastruzzi
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy
| | - Giuseppe Valacchi
- NC State University, Plants for Human Health Institute, Animal Science Dept. NC Research Campus, Kannapolis, NC 28081, USA
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, I-44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul, Korea
| | - Rita Cortesi
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy
| |
Collapse
|
48
|
Essaghraoui A, Belfkira A, Hamdaoui B, Nunes C, Lima SAC, Reis S. Improved Dermal Delivery of Cyclosporine A Loaded in Solid Lipid Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1204. [PMID: 31461853 PMCID: PMC6780175 DOI: 10.3390/nano9091204] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 12/15/2022]
Abstract
Cyclosporine A (CsA) is an immunosuppressant frequently used in the therapy of autoimmune disorders, including skin-related diseases. Aiming towards topical delivery, CsA was successfully incorporated into lipid nanoparticles of Lipocire DM and Pluronic F-127 using the hot homogenization method. Two different nanocarriers were optimized: solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) where oleic acid was the liquid lipid. The developed nanoparticles showed mean sizes around 200 nm, a negative surface charge, and drug entrapment efficiencies around 85% and 70% for SLNs and NLCs, respectively. The spherical CsA-loaded lipid nanoparticles were stable for 9 weeks when stored at room temperature, and exhibited in vitro pH-dependent release under skin mimetic conditions, following the Peppas-Korsmeyer model. CsA, when loaded in SLNs, was safe to be used up to 140 μg mL-1 in fibroblasts and keratinocytes, while CsA-loaded NLCs and free drug exhibited IC50 values of 55 and 95 μg mL-1 (fibroblasts) and 28 and 30 μg mL-1 (keratinocytes), respectively. The developed SLNs were able to retain the drug in pork skin with a reduced permeation rate in relation to NLCs. These findings suggest that SLNs are a potential alternative to produce stable and safe CsA nanocarriers for topical administration.
Collapse
Affiliation(s)
- Abderrazzaq Essaghraoui
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Laboratory of Bioorganic and Macromolecular Chemistry (LBMC), Faculty of Sciences and Technologies, Cadi Ayyad University, Av. Abdelkarim Elkhattabi, BP 549 Guéliz, Marrakesh 40000, Morocco
| | - Ahmed Belfkira
- Laboratory of Bioorganic and Macromolecular Chemistry (LBMC), Faculty of Sciences and Technologies, Cadi Ayyad University, Av. Abdelkarim Elkhattabi, BP 549 Guéliz, Marrakesh 40000, Morocco
| | - Bassou Hamdaoui
- Laboratory of Bioorganic and Macromolecular Chemistry (LBMC), Faculty of Sciences and Technologies, Cadi Ayyad University, Av. Abdelkarim Elkhattabi, BP 549 Guéliz, Marrakesh 40000, Morocco
| | - Cláudia Nunes
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Sofia A Costa Lima
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Salette Reis
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
49
|
Kumar R, Singh A, Garg N. Acoustic Cavitation-Assisted Formulation of Solid Lipid Nanoparticles using Different Stabilizers. ACS OMEGA 2019; 4:13360-13370. [PMID: 31460464 PMCID: PMC6705237 DOI: 10.1021/acsomega.9b01532] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/26/2019] [Indexed: 05/04/2023]
Abstract
Because of excellent bioavailability and high biocompatibility, solid lipid nanoparticles (SLNs) have gained attention in recent years, especially in drug delivery systems. SLNs are composed of a drug that is loaded in a lipid matrix and stabilized by surfactants. In this work, we have investigated the feasibility of the acoustic cavitation-assisted hot melt mixing method for the formulation of SLNs using different stabilizers. A lipid Compritol 888 ATO (CPT) and a poorly water-soluble drug ketoprofen (KP) were used as a model lipid and drug, respectively. Gelucire 50/13 (GEL), poloxamer 407 (POL), and Pluronic F-127 (PLU) were used as the stabilizers. The effect of the stabilizers on the physico-chemical properties of SLNs was thoroughly studied in this work. The particle size and stability in water at different temperatures were measured using a dynamic light scattering method. The spherical shape (below 250 nm) and core-shell morphology were confirmed by field-emission scanning electron microscopy and transmission electron microscopy. The chemical, crystal, and thermal properties of SLNs were studied by FTIR, XRD analysis, and DSC, respectively. SLNs prepared using different stabilizers showed an encapsulation efficiency of nearly 90% and a drug loading efficiency of 12%. SLNs showed more than 90% of drug released in 72 h and increased with pH was confirmed using in vitro drug release studies. SLNs were nontoxic to raw 264.7 cells. All stabilizers were found suitable for acoustic cavitation-assisted SLN formulation with high encapsulation efficiency and drug loading and good biocompatibility.
Collapse
Affiliation(s)
- Raj Kumar
- School
of Basic Sciences, Advanced Material Research Centre, and Bio-X Research Centre, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Ashutosh Singh
- School
of Basic Sciences, Advanced Material Research Centre, and Bio-X Research Centre, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Neha Garg
- School
of Basic Sciences, Advanced Material Research Centre, and Bio-X Research Centre, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| |
Collapse
|
50
|
Carvacrol Loaded Solid Lipid Nanoparticles of Propylene Glycol Monopalmitate and Glyceryl Monostearate: Preparation, Characterization, and Synergistic Antimicrobial Activity. NANOMATERIALS 2019; 9:nano9081162. [PMID: 31416170 PMCID: PMC6723752 DOI: 10.3390/nano9081162] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
To develop solid lipid nanoparticles (SLNs) with stable lipid matrix structures for the delivery of bioactive compounds, a new class of SLNs was studied using propylene glycol monopalmitate (PGMP) and glyceryl monostearate (GMS) mixtures and carvacrol as a model lipophilic antimicrobial. Stable SLNs were fabricated at PGMP:GMS mass ratios of 2:1 and 1:1, and the carvacrol loading was up to 30% of lipids with >98% encapsulation efficiency and absence of visual instability. Fluorescence spectra and release profiles indicated the carvacrol was successfully encapsulated and homogeneously distributed within the SLNs. SLNs fabricated with equal masses of PGMP and GMS had better stability of carvacrol during storage and higher sphericity than those with a ratio of 2:1 and were much more effective than free carvacrol against Escherichia coli O157:H7 and Staphylococcus aureus. These findings demonstrated the potential applications of the studied SLNs in delivering lipophilic bioactive compounds in food and other products.
Collapse
|