1
|
Vicente TT, Arsalani S, Quiel MS, Fernandes GSP, da Silva KR, Fukada SY, Gualdi AJ, Guidelli ÉJ, Baffa O, Carneiro AAO, Ramos AP, Pavan TZ. Improving the Theranostic Potential of Magnetic Nanoparticles by Coating with Natural Rubber Latex for Ultrasound, Photoacoustic Imaging, and Magnetic Hyperthermia: An In Vitro Study. Pharmaceutics 2024; 16:1474. [PMID: 39598597 PMCID: PMC11597301 DOI: 10.3390/pharmaceutics16111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Magnetic nanoparticles (MNPs) have gained attention in theranostics for their ability to combine diagnostic imaging and therapeutic capabilities in a single platform, enhancing targeted treatment and monitoring. Surface coatings are essential for stabilizing MNPs, improving biocompatibility, and preventing oxidation that could compromise their functionality. Natural rubber latex (NRL) offers a promising coating alternative due to its biocompatibility and stability-enhancing properties. While NRL-coated MNPs have shown potential in applications such as magnetic resonance imaging, their effectiveness in theranostics, particularly magnetic hyperthermia (MH) and photoacoustic imaging (PAI), remains underexplored. METHODS In this study, iron oxide nanoparticles were synthesized via coprecipitation, using NRL as the coating agent. The samples were labeled by NRL amount used during synthesis: NRL-100 for 100 μL and NRL-400 for 400 μL. RESULTS Characterization results showed that NRL-100 and NRL-400 samples exhibited improved stability with zeta potentials of -27 mV and -30 mV, respectively and higher saturation magnetization values of 79 emu/g and 88 emu/g of Fe3O4. Building on these findings, we evaluated the performance of these nanoparticles in biomedical applications, including magnetomotive ultrasound (MMUS), PAI, and MH. NRL-100 and NRL-400 samples showed greater displacements and higher contrast in MMUS than uncoated samples (5, 8, and 9 µm) at 0.5 wt%. In addition, NRL-coated samples demonstrated an improved signal-to-noise ratio (SNR) in PAI. SNR values were 24.72 (0.51), 31.44 (0.44), and 33.81 (0.46) dB for the phantoms containing uncoated MNPs, NRL-100, and NRL-400, respectively. Calorimetric measurements for MH confirmed the potential of NRL-coated MNPs as efficient heat-generating agents, showing values of 43 and 40 W/g for NRL-100 and NRL-400, respectively. CONCLUSIONS Overall, NRL-coated MNPs showed great promise as contrast agents in MMUS and PAI imaging, as well as in MH applications.
Collapse
Affiliation(s)
- Thiago T. Vicente
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Saeideh Arsalani
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
- UT Southwestern Medical Center, Biomedical Engineering Department, Dallas, TA 75235-7323, USA
| | - Mateus S. Quiel
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Guilherme S. P. Fernandes
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Keteryne R. da Silva
- Department of BioMolecular Sciences, FCFRP, University of São Paulo, Av. Professor Doutor Zeferino Vaz, sn, Ribeirão Preto 14040-901, São Paulo, Brazil; (K.R.d.S.); (S.Y.F.)
| | - Sandra Y. Fukada
- Department of BioMolecular Sciences, FCFRP, University of São Paulo, Av. Professor Doutor Zeferino Vaz, sn, Ribeirão Preto 14040-901, São Paulo, Brazil; (K.R.d.S.); (S.Y.F.)
| | - Alexandre J. Gualdi
- Department of Physics, Federal University of São Carlos, Rod. Washington Luiz, km 235, São Carlos 13565-905, São Paulo, Brazil;
| | - Éder J. Guidelli
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Oswaldo Baffa
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Antônio A. O. Carneiro
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Ana Paula Ramos
- Department of Chemistry, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil;
| | - Theo Z. Pavan
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| |
Collapse
|
2
|
Xuan Y, Yin M, Sun Y, Liu M, Bai G, Diao Z, Ma B. Magnetic nanoparticle-mediated enrichment technology combined with microfluidic single cell separation technology: A technology for efficient separation and degradation of functional bacteria in single cell liquid phase. BIORESOURCE TECHNOLOGY 2024; 401:130686. [PMID: 38599351 DOI: 10.1016/j.biortech.2024.130686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/25/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Although there are many microorganisms in nature, the limitations of isolation and cultivation conditions have restricted the development of artificial enhanced remediation technology using functional microbial communities. In this study, an integrated technology of Magnetic Nanoparticle-mediated Enrichment (MME) and Microfluidic Single Cell separation (MSC) that breaks through the bottleneck of traditional separation and cultivation techniques and can efficiently obtain more in situ functional microorganisms from the environment was developed. MME technology was first used to enrich rapidly growing active bacteria in the environment. Subsequently, MSC technology was applied to isolate and incubate functional bacterial communities in situ and validate the degradation ability of individual bacteria. As a result, this study has changed the order of traditional pure culture methods, which are first selected and then cultured, and provided a new method for obtaining non-culturable functional microorganisms.
Collapse
Affiliation(s)
- Yuanyan Xuan
- College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Meng Yin
- College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Yujiao Sun
- College of Water Science, Beijing Normal University, Beijing 100875, China.
| | - Meijun Liu
- College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Guomin Bai
- College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Zhidian Diao
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bo Ma
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Neumann S, Kuger L, Arlt CR, Franzreb M, Rafaja D. Influence of the hierarchical architecture of multi-core iron oxide nanoflowers on their magnetic properties. Sci Rep 2023; 13:5673. [PMID: 37029132 PMCID: PMC10082203 DOI: 10.1038/s41598-023-31294-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/09/2023] [Indexed: 04/09/2023] Open
Abstract
Magnetic properties of superparamagnetic iron oxide nanoparticles are controlled mainly by their particle size and by their particle size distribution. Magnetic properties of multi-core iron oxide nanoparticles, often called iron oxide nanoflowers (IONFs), are additionally affected by the interaction of magnetic moments between neighboring cores. The knowledge about the hierarchical structure of IONFs is therefore essential for understanding the magnetic properties of IONFs. In this contribution, the architecture of multi-core IONFs was investigated using correlative multiscale transmission electron microscopy (TEM), X-ray diffraction and dynamic light scattering. The multiscale TEM measurements comprised low-resolution and high-resolution imaging as well as geometric phase analysis. The IONFs contained maghemite with the average chemical composition [Formula: see text]-Fe[Formula: see text]O[Formula: see text]. The metallic vacancies located on the octahedral lattice sites of the spinel ferrite structure were partially ordered. Individual IONFs consisted of several cores showing frequently a specific crystallographic orientation relationship between direct neighbors. This oriented attachment may facilitate the magnetic alignment within the cores. Individual cores were composed of partially coherent nanocrystals having almost the same crystallographic orientation. The sizes of individual constituents revealed by the microstructure analysis were correlated with the magnetic particle sizes that were obtained from fitting the measured magnetization curve by the Langevin function.
Collapse
Affiliation(s)
- Stefan Neumann
- Institute of Materials Science, TU Bergakademie Freiberg, 09599, Freiberg, Germany.
| | - Laura Kuger
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Carsten-Rene Arlt
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Matthias Franzreb
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - David Rafaja
- Institute of Materials Science, TU Bergakademie Freiberg, 09599, Freiberg, Germany
| |
Collapse
|
4
|
Sadat ME, Bud’ko SL, Ewing RC, Xu H, Pauletti GM, Mast DB, Shi D. Effect of Dipole Interactions on Blocking Temperature and Relaxation Dynamics of Superparamagnetic Iron-Oxide (Fe 3O 4) Nanoparticle Systems. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16020496. [PMID: 36676230 PMCID: PMC9866362 DOI: 10.3390/ma16020496] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 05/14/2023]
Abstract
The effects of dipole interactions on magnetic nanoparticle magnetization and relaxation dynamics were investigated using five nanoparticle (NP) systems with different surfactants, carrier liquids, size distributions, inter-particle spacing, and NP confinement. Dipole interactions were found to play a crucial role in modifying the blocking temperature behavior of the superparamagnetic nanoparticles, where stronger interactions were found to increase the blocking temperatures. Consequently, the blocking temperature of a densely packed nanoparticle system with stronger dipolar interactions was found to be substantially higher than those of the discrete nanoparticle systems. The frequencies of the dominant relaxation mechanisms were determined by magnetic susceptibility measurements in the frequency range of 100 Hz-7 GHz. The loss mechanisms were identified in terms of Brownian relaxation (1 kHz-10 kHz) and gyromagnetic resonance of Fe3O4 (~1.12 GHz). It was observed that the microwave absorption of the Fe3O4 nanoparticles depend on the local environment surrounding the NPs, as well as the long-range dipole-dipole interactions. These significant findings will be profoundly important in magnetic hyperthermia medical therapeutics and energy applications.
Collapse
Affiliation(s)
- Md Ehsan Sadat
- Department of Physics, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Sergey L. Bud’ko
- Ames Laboratory, Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Rodney C. Ewing
- Department of Geological Sciences, Stanford University, Stanford, CA 94305-2115, USA
| | - Hong Xu
- Med-X Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Giovanni M. Pauletti
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, University of Health Sciences & Pharmacy, St. Louis, MO 63110, USA
| | - David B. Mast
- Department of Physics, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Donglu Shi
- The Materials Science and Engineering Program, Department of Mechanical and Materials Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA
- Correspondence:
| |
Collapse
|
5
|
Scialla S, Genicio N, Brito B, Florek-Wojciechowska M, Stasiuk GJ, Kruk D, Bañobre-López M, Gallo J. Insights into the Effect of Magnetic Confinement on the Performance of Magnetic Nanocomposites in Magnetic Hyperthermia and Magnetic Resonance Imaging. ACS APPLIED NANO MATERIALS 2022; 5:16462-16474. [PMID: 36569339 PMCID: PMC9778729 DOI: 10.1021/acsanm.2c03537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/27/2022] [Indexed: 06/17/2023]
Abstract
The combination of superparamagnetic iron oxide nanoparticles (SPIONs) and lipid matrices enables the integration of imaging, drug delivery, and therapy functionalities into smart theranostic nanocomposites. SPION confinement creates new interactions primarily among the embedded SPIONs and then between the nanocomposites and the surroundings. Understanding the parameters that rule these interactions in real interacting (nano)systems still represents a challenge, making it difficult to predict or even explain the final (magnetic) behavior of such systems. Herein, a systematic study focused on the performance of a magnetic nanocomposite as a magnetic resonance imaging (MRI) contrast agent and magnetic hyperthermia (MH) effector is presented. The effect of stabilizing agents and magnetic loading on the final physicochemical and, more importantly, functional properties (i.e., blocking temperature, specific absorption rate, relaxivity) was studied in detail.
Collapse
Affiliation(s)
- Stefania Scialla
- Advanced
(Magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330Braga, Portugal
| | - Nuria Genicio
- Advanced
(Magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330Braga, Portugal
| | - Beatriz Brito
- Advanced
(Magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330Braga, Portugal
- Department
of Imaging Chemistry and Biology, School of Biomedical Engineering
and Imaging Sciences, King’s College
London, Strand, LondonSE1 7EH, U.K.
- School
of Life Sciences, Faculty of Health Sciences, University of Hull, Cottingham Road, HullHU6 7RX, U.K.
| | - Malgorzata Florek-Wojciechowska
- Department
of Physics and Biophysics, Faculty of Food Science, University of Warmia & Mazury in Olsztyn, Oczapowskiego 4, 10-719Olsztyn, Poland
| | - Graeme J. Stasiuk
- Department
of Imaging Chemistry and Biology, School of Biomedical Engineering
and Imaging Sciences, King’s College
London, Strand, LondonSE1 7EH, U.K.
| | - Danuta Kruk
- Department
of Physics and Biophysics, Faculty of Food Science, University of Warmia & Mazury in Olsztyn, Oczapowskiego 4, 10-719Olsztyn, Poland
| | - Manuel Bañobre-López
- Advanced
(Magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330Braga, Portugal
| | - Juan Gallo
- Advanced
(Magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330Braga, Portugal
| |
Collapse
|
6
|
Seal P, Alam A, Fopase R, Pandey LM, Borah J. Influence of medium based dipolar interaction in relaxation mechanism and self-heating efficiency of MWCNT/MnFe2O4 nanocomposite. MATERIALS CHEMISTRY AND PHYSICS 2022; 288:126374. [DOI: 10.1016/j.matchemphys.2022.126374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
7
|
Ryu C, Lee H, Kim H, Hwang S, Hadadian Y, Mohanty A, Park IK, Cho B, Yoon J, Lee JY. Highly Optimized Iron Oxide Embedded Poly(Lactic Acid) Nanocomposites for Effective Magnetic Hyperthermia and Biosecurity. Int J Nanomedicine 2022; 17:31-44. [PMID: 35023918 PMCID: PMC8743620 DOI: 10.2147/ijn.s344257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/21/2021] [Indexed: 12/29/2022] Open
Abstract
Introduction Iron oxide magnetic nanoparticles (IONPs) have attracted considerable attention for various biomedical applications owing to their ease of synthesis, strong magnetic properties, and biocompatibility. In particular, IONPs can generate heat under an alternating magnetic field, the effects of which have been extensively studied for magnetic hyperthermia therapy. However, the development of IONPs with high heating efficiency, biocompatibility, and colloidal stability in physiological environments is still required for their safe and effective application in biomedical fields. Methods We synthesized magnetic IONP/polymer nanocomposites (MNCs) by embedding IONPs in a poly(L-lactic acid) (PLA) matrix via nanoemulsion. The IONP contents (Fe: 9–22 [w/w]%) in MNCs were varied to investigate their effects on the magnetic and hyperthermia performances based on their optimal interparticle interactions. Further, we explored the stability, cytocompatibility, biodistribution, and in vivo tissue compatibility of the MNCs. Results The MNCs showed enhanced heating efficiency with over two-fold increase compared to nonembedded bare IONPs. The relationship between the IONP content and heating performance in MNCs was nonmonotonous. The highest heating performance was obtained from MNC2, which contain 13% Fe (w/w), implying that interparticle interactions in MNCs can be optimized to achieve high heating performance. In addition, the MNCs exhibited good colloidal stability under physiological conditions and maintained their heating efficiency during 48 h of incubation in cell culture medium. Both in vitro and in vivo studies revealed excellent biocompatibility of the MNC. Conclusion Our nanocomposites, comprising biocompatible IONPs and PLA, display improved heating efficiency, good colloidal stability, and cytocompatibility, and thus will be beneficial for diverse biomedical applications, including magnetic hyperthermia for cancer treatment.
Collapse
Affiliation(s)
- Chiseon Ryu
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hwangjae Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hohyeon Kim
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Seong Hwang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Yaser Hadadian
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.,Research Center for Nanorobotics in Brain, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Ayeskanta Mohanty
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun-gun, Jeollanam-do, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun-gun, Jeollanam-do, Republic of Korea
| | - Beongki Cho
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jungwon Yoon
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.,Research Center for Nanorobotics in Brain, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
8
|
Ovejero JG, Spizzo F, Morales MP, Del Bianco L. Nanoparticles for Magnetic Heating: When Two (or More) Is Better Than One. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6416. [PMID: 34771940 PMCID: PMC8585339 DOI: 10.3390/ma14216416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 01/16/2023]
Abstract
The increasing use of magnetic nanoparticles as heating agents in biomedicine is driven by their proven utility in hyperthermia therapeutic treatments and heat-triggered drug delivery methods. The growing demand of efficient and versatile nanoheaters has prompted the creation of novel types of magnetic nanoparticle systems exploiting the magnetic interaction (exchange or dipolar in nature) between two or more constituent magnetic elements (magnetic phases, primary nanoparticles) to enhance and tune the heating power. This process occurred in parallel with the progress in the methods for the chemical synthesis of nanostructures and in the comprehension of magnetic phenomena at the nanoscale. Therefore, complex magnetic architectures have been realized that we classify as: (a) core/shell nanoparticles; (b) multicore nanoparticles; (c) linear aggregates; (d) hybrid systems; (e) mixed nanoparticle systems. After a general introduction to the magnetic heating phenomenology, we illustrate the different classes of nanoparticle systems and the strategic novelty they represent. We review some of the research works that have significantly contributed to clarify the relationship between the compositional and structural properties, as determined by the synthetic process, the magnetic properties and the heating mechanism.
Collapse
Affiliation(s)
- Jesus G. Ovejero
- Departamento de Energía, Medio Ambiente y Salud, Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain; (J.G.O.); (M.P.M.)
- Servicio de Dosimetría y Radioprotección, Hospital General Universitario Gregorio Marañón, E-28007 Madrid, Spain
| | - Federico Spizzo
- Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, I-44122 Ferrara, Italy;
| | - M. Puerto Morales
- Departamento de Energía, Medio Ambiente y Salud, Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain; (J.G.O.); (M.P.M.)
| | - Lucia Del Bianco
- Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, I-44122 Ferrara, Italy;
| |
Collapse
|
9
|
Understanding MNPs Behaviour in Response to AMF in Biological Milieus and the Effects at the Cellular Level: Implications for a Rational Design That Drives Magnetic Hyperthermia Therapy toward Clinical Implementation. Cancers (Basel) 2021; 13:cancers13184583. [PMID: 34572810 PMCID: PMC8465027 DOI: 10.3390/cancers13184583] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Magnetic hyperthermia therapy is an alternative treatment for cancer that complements traditional therapies and that has shown great promise in recent years. In this review, we assess the current applications of this therapy in order to understand why its translation from the laboratory to the clinic has been less smooth than was anticipated, identifying the possible bottlenecks and proposing solutions to the problems encountered. Abstract Hyperthermia has emerged as a promising alternative to conventional cancer therapies and in fact, traditional hyperthermia is now commonly used in combination with chemotherapy or surgery during cancer treatment. Nevertheless, non-specific application of hyperthermia generates various undesirable side-effects, such that nano-magnetic hyperthermia has arisen a possible solution to this problem. This technique to induce hyperthermia is based on the intrinsic capacity of magnetic nanoparticles to accumulate in a given target area and to respond to alternating magnetic fields (AMFs) by releasing heat, based on different principles of physics. Unfortunately, the clinical implementation of nano-magnetic hyperthermia has not been fluid and few clinical trials have been carried out. In this review, we want to demonstrate the need for more systematic and basic research in this area, as many of the sub-cellular and molecular mechanisms associated with this approach remain unclear. As such, we shall consider here the biological effects that occur and why this theoretically well-designed nano-system fails in physiological conditions. Moreover, we will offer some guidelines that may help establish successful strategies through the rational design of magnetic nanoparticles for magnetic hyperthermia.
Collapse
|
10
|
Mourdikoudis S, Kostopoulou A, LaGrow AP. Magnetic Nanoparticle Composites: Synergistic Effects and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004951. [PMID: 34194936 PMCID: PMC8224446 DOI: 10.1002/advs.202004951] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 05/17/2023]
Abstract
Composite materials are made from two or more constituent materials with distinct physical or chemical properties that, when combined, produce a material with characteristics which are at least to some degree different from its individual components. Nanocomposite materials are composed of different materials of which at least one has nanoscale dimensions. Common types of nanocomposites consist of a combination of two different elements, with a nanoparticle that is linked to, or surrounded by, another organic or inorganic material, for example in a core-shell or heterostructure configuration. A general family of nanoparticle composites concerns the coating of a nanoscale material by a polymer, SiO2 or carbon. Other materials, such as graphene or graphene oxide (GO), are used as supports forming composites when nanoscale materials are deposited onto them. In this Review we focus on magnetic nanocomposites, describing their synthetic methods, physical properties and applications. Several types of nanocomposites are presented, according to their composition, morphology or surface functionalization. Their applications are largely due to the synergistic effects that appear thanks to the co-existence of two different materials and to their interface, resulting in properties often better than those of their single-phase components. Applications discussed concern magnetically separable catalysts, water treatment, diagnostics-sensing and biomedicine.
Collapse
Affiliation(s)
- Stefanos Mourdikoudis
- Biophysics GroupDepartment of Physics and AstronomyUniversity College LondonLondonWC1E 6BTUK
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories21 Albemarle StreetLondonW1S 4BSUK
| | - Athanasia Kostopoulou
- Institute of Electronic Structure and Laser (IESL)Foundation for Research and Technology‐Hellas (FORTH)100 Nikolaou PlastiraHeraklionCrete70013Greece
| | - Alec P. LaGrow
- International Iberian Nanotechnology LaboratoryBraga4715‐330Portugal
| |
Collapse
|
11
|
Nanomagnetic Actuation of Hybrid Stents for Hyperthermia Treatment of Hollow Organ Tumors. NANOMATERIALS 2021; 11:nano11030618. [PMID: 33801426 PMCID: PMC7999083 DOI: 10.3390/nano11030618] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
This paper describes a magnetic nanotechnology that locally enables hyperthermia treatment of hollow organ tumors by using polymer hybrid stents with incorporated magnetic nanoparticles (MNP). The hybrid stents are implanted and activated in an alternating magnetic field to generate therapeutically effective heat, thereby destroying the tumor. Here, we demonstrate the feasibility of nanomagnetic actuation of three prototype hybrid stents for hyperthermia treatment of hollow organ tumors. The results show that the heating efficiency of stent filaments increases with frequency from approximately 60 W/gFe (95 kHz) to approximately 250 W/gFe (270 kHz). The same trend is observed for the variation of magnetic field amplitude; however, heating efficiency saturates at approximately 30 kA/m. MNP immobilization strongly influences heating efficiency showing a relative difference in heating output of up to 60% compared to that of freely dispersed MNP. The stents showed uniformly distributed heat on their surface reaching therapeutically effective temperatures of 43 °C and were tested in an explanted pig bile duct for their biological safety. Nanomagnetic actuation of hybrid stents opens new possibilities in cancer treatment of hollow organ tumors.
Collapse
|
12
|
Barrera G, Allia P, Tiberto P. Dipolar interactions among magnetite nanoparticles for magnetic hyperthermia: a rate-equation approach. NANOSCALE 2021; 13:4103-4121. [PMID: 33570053 DOI: 10.1039/d0nr07397k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rate equations are used to study the dynamic magnetic properties of interacting magnetite nanoparticles viewed as double well systems (DWS) subjected to a driving field in the radio-frequency range. Dipole-dipole interaction among particles is modeled by inserting an ad-hoc term in the energy barrier to simulate the dependence of the interaction on both the interparticle distance and degree of dipole collinearity. The effective magnetic power released by an assembly of interacting nanoparticles dispersed in a diamagnetic host is shown to be a complex function of nanoparticle diameter, mean particle interdistance and frequency. Dipolar interaction markedly modifies the way a host material is heated by an assembly of embedded nanoparticles in magnetic hyperthermia treatments. Nanoparticle fraction and strength of the interaction can dramatically influence the amplitude and shape of the heating curves of the host material; the heating ability of interacting nanoparticles is shown to be either improved or reduced by their concentration in the host material. A frequency-dependent cut-off length of dipolar interactions is determined and explained. Particle polydispersity entailing a distribution of particle sizes brings about non-trivial effects on the heating curves depending on the strength of dipolar interaction.
Collapse
Affiliation(s)
- Gabriele Barrera
- INRIM, Advanced Materials Metrology and Life Sciences, Strada delle Cacce 91, I-10135 Torino, Italy.
| | - Paolo Allia
- INRIM, Advanced Materials Metrology and Life Sciences, Strada delle Cacce 91, I-10135 Torino, Italy.
| | - Paola Tiberto
- INRIM, Advanced Materials Metrology and Life Sciences, Strada delle Cacce 91, I-10135 Torino, Italy.
| |
Collapse
|
13
|
Jamir M, Islam R, Pandey LM, Borah J. Effect of surface functionalization on the heating efficiency of magnetite nanoclusters for hyperthermia application. JOURNAL OF ALLOYS AND COMPOUNDS 2021; 854:157248. [DOI: 10.1016/j.jallcom.2020.157248] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
14
|
Pilati V, Gomide G, Gomes RC, Goya GF, Depeyrot J. Colloidal Stability and Concentration Effects on Nanoparticle Heat Delivery for Magnetic Fluid Hyperthermia. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1129-1140. [PMID: 33443443 DOI: 10.1021/acs.langmuir.0c03052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The heat produced by magnetic nanoparticles, when they are submitted to a time-varying magnetic field, has been used in many auspicious biotechnological applications. In the search for better performance in terms of the specific power absorption (SPA) index, researchers have studied the influence of the chemical composition, size and dispersion, shape, and exchange stiffness in morphochemical structures. Monodisperse assemblies of magnetic nanoparticles have been produced using elaborate synthetic procedures, where the product is generally dispersed in organic solvents. However, the colloidal stability of these rough dispersions has not received much attention in these studies, hampering experimental determination of the SPA. To investigate the influence of colloidal stability on the heating response of ferrofluids, we produced bimagnetic core@shell NPs chemically composed of a ZnMn mixed ferrite core covered by a maghemite shell. Aqueous ferrofluids were prepared with these samples using the electric double layer (EDL) as a strategy to maintain colloidal stability. By starting from a proper sample, ultrastable concentrated ferrofluids were achieved by both tuning the ion/counterion ratio and controlling the water content. As the colloidal stability mainly depends on the ion configuration on the surface of the magnetic nanoparticles, different levels of nanoparticle clustering are achieved by changing the ionic force and pH of the medium. Thus, the samples were submitted to two procedures of EDL destabilization, which involved dilution with an alkaline solution and a neutral pH viscous medium. The SPA results of all prepared ferrofluid samples show a reduction of up to half the efficiency of the standard sample when the ferrofluids are in a neutral pH or concentrated regime. Such results are explained in terms of magnetic dipolar interactions. Our results point to the importance of ferrofluid colloidal stability in a more reliable experimental determination of the NP heat generation performance.
Collapse
Affiliation(s)
- Vanessa Pilati
- Complex Fluids Group, Instituto de Física, Universidade de Brasília, Caixa Postal 04455, 70919-970 Brasília, Federal District, Brazil
| | - Guilherme Gomide
- Complex Fluids Group, Instituto de Física, Universidade de Brasília, Caixa Postal 04455, 70919-970 Brasília, Federal District, Brazil
| | - Rafael Cabreira Gomes
- Departamento de Física, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Gerardo F Goya
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Jérôme Depeyrot
- Complex Fluids Group, Instituto de Física, Universidade de Brasília, Caixa Postal 04455, 70919-970 Brasília, Federal District, Brazil
| |
Collapse
|
15
|
Magnetite (Fe3O4) Nanoparticles in Biomedical Application: From Synthesis to Surface Functionalisation. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6040068] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanotechnology has gained much attention for its potential application in medical science. Iron oxide nanoparticles have demonstrated a promising effect in various biomedical applications. In particular, magnetite (Fe3O4) nanoparticles are widely applied due to their biocompatibility, high magnetic susceptibility, chemical stability, innocuousness, high saturation magnetisation, and inexpensiveness. Magnetite (Fe3O4) exhibits superparamagnetism as its size shrinks in the single-domain region to around 20 nm, which is an essential property for use in biomedical applications. In this review, the application of magnetite nanoparticles (MNPs) in the biomedical field based on different synthesis approaches and various surface functionalisation materials was discussed. Firstly, a brief introduction on the MNP properties, such as physical, thermal, magnetic, and optical properties, is provided. Considering that the surface chemistry of MNPs plays an important role in the practical implementation of in vitro and in vivo applications, this review then focuses on several predominant synthesis methods and variations in the synthesis parameters of MNPs. The encapsulation of MNPs with organic and inorganic materials is also discussed. Finally, the most common in vivo and in vitro applications in the biomedical world are elucidated. This review aims to deliver concise information to new researchers in this field, guide them in selecting appropriate synthesis techniques for MNPs, and to enhance the surface chemistry of MNPs for their interests.
Collapse
|
16
|
Ranoo S, Lahiri BB, Nandy M, Philip J. Enhanced magnetic heating efficiency at acidic pH for magnetic nanoemulsions stabilized with a weak polyelectrolyte. J Colloid Interface Sci 2020; 579:582-597. [PMID: 32623124 DOI: 10.1016/j.jcis.2020.06.093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/08/2020] [Accepted: 06/22/2020] [Indexed: 02/02/2023]
Abstract
HYPOTHESIS Magnetic fluid hyperthermia has attracted considerable attention for cancer therapeutics. Magnetic nanoemulsions are potential candidates for multi-modal hyperthermia due to the possibility of volumetric loading with suitable chemo/photo-therapy agents. Often, the nanocarriers are stabilized using organic molecules that behave differently under varying pH and hence, an understanding of their interfacial behaviour is important for practical applications. EXPERIMENTS We probe the magnetic heating efficiency of poly acrylic acid (PAA) stabilized oil-in-water magnetic nanoemulsions, as a function of pH, where the conformational changes of the PAA molecules are studied using dynamic light scattering and inter-droplet force measurements. FINDINGS A ~50% enhanced heating efficiency is observed when solution pH is reduced from ~9 to 3, which is attributed to the coil-to-globule conformational changes of the PAA molecules. The increased ionization of the carboxylic acid groups, at higher pH, leads to reduced hydrophobicity that results in an increase in the interfacial thermal resistance causing a lower magneto-thermal heating efficiency at higher pH. The proposed interfacial heat transfer hypothesis is experimentally verified using thermal imaging, where a lower rate of heat transfer is obtained at higher pH. The observed enhanced hyperthermia efficiency at low pH is beneficial for designing efficient pH-responsive nano-carriers for multi-modal hyperthermia.
Collapse
Affiliation(s)
- Surojit Ranoo
- Smart Materials Section, Corrosion Science and Technology Division, Materials Characterization Group, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam, Tamil Nadu 603102, India
| | - B B Lahiri
- Smart Materials Section, Corrosion Science and Technology Division, Materials Characterization Group, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam, Tamil Nadu 603102, India.
| | - Manali Nandy
- Smart Materials Section, Corrosion Science and Technology Division, Materials Characterization Group, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam, Tamil Nadu 603102, India
| | - John Philip
- Smart Materials Section, Corrosion Science and Technology Division, Materials Characterization Group, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam, Tamil Nadu 603102, India.
| |
Collapse
|
17
|
Bhattacharjee S, Mazumder N, Mondal S, Panigrahi K, Banerjee A, Das D, Sarkar S, Roy D, Chattopadhyay KK. Size-modulation of functionalized Fe 3O 4: nanoscopic customization to devise resolute piezoelectric nanocomposites. Dalton Trans 2020; 49:7872-7890. [PMID: 32469013 DOI: 10.1039/d0dt01167c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Magnetite (Fe3O4), a representative relaxor multiferroic material, possesses fundamentally appealing multifaceted size-dependent properties. Herein, to evaluate a prototype spinel transition metal oxide (STMO), monodispersed and highly water-dispersible spherical magnetite nanoparticles (MNPs) with an enormous size range (3.7-242.8 nm) were synthesized via a facile microwave-assisted and polyol-mediated solvothermal approach at a controlled temperature and pressure using unique crystallite growth inhibitors. The excellent long-term colloidal stability of the MNPs in a polar environment and increase in their zeta potential confirmed the coordinative effect of the carboxylate groups derived from the covalent surface functionalization, which was also validated by FTIR spectroscopy, TGA and XPS analysis. The optical bandgap (Eg) between the crystal field split-off bands, which was calculated using the absorption spectra, increased gradually with a decrease in size of the MNPs within a broad UV-Vis range (1.59-4.92 eV). The red-shifting of the asymmetric Raman peaks with a smaller size and short-range electron-phonon coupling could be explained by the modified phonon confinement model (MPCM), whereas ferrimagnetic nature rejigged by superparamagnetism was verified from Mössbauer analysis. These stoichiometric, non-toxic, polar and magnetic nanocrystals are not only ideal for biomedical applications, but also suitable as electroactive porous host networks. Finally, the size-modulated MNPs were incorporated in poly(vinylidene fluoride) [PVDF]-based polytype nanogenerators as an electret filler to demonstrate their piezoelectric performance (VOC∼115.95 V and ISC∼1.04 μA), exhibiting substantial electromagnetic interference shielding.
Collapse
|
18
|
Yan L, Li P, Zhao X, Ji R, Zhao L. Physiological and metabolic responses of maize (Zea mays) plants to Fe 3O 4 nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137400. [PMID: 32105936 DOI: 10.1016/j.scitotenv.2020.137400] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 05/25/2023]
Abstract
Fe3O4 nanoparticles (NPs), as representative magnetic materials, have been widely used in the industrial and biomedical sectors, and their environmental impacts must be evaluated for their sustainable use. In this study, the interactions between Fe3O4 NPs and maize plants were investigated by a combination of phenotypic and metabolic approaches. Maize plants (Zea mays) were grown in soil treated with Fe3O4 NPs at 0, 50 and 500 mg/kg for 4 weeks. Fe3O4 NPs had no impact on plant biomass or photosynthesis. However, root length of maize plant significantly increased, with decreased malondialdehyde (MDA) level, indicating the positive effects on root development and membrane integrity. Inductively coupled plasma optical emission spectrometry (ICP-OES) revealed that Fe3O4 NPs resulted in a significant Fe accumulation in roots, instead of leaves. In addition, 500 mg/kg Fe3O4 NPs significantly promoted dehydrogenase enzyme activity by 84.9%. Metabolomics revealed that maize root metabolomes were re-programmed by Fe3O4 NPs exposure. Metabolic pathways associated with antioxidant and defence were inactivated by Fe3O4 NPs, indicating the protective role of Fe3O4 NPs for microbes and plant roots. Taken together, the results indicate a limited impact of environmental Fe3O4 NPs on plant growth. Taken together, the results of this study offer new insights into the molecular mechanisms by which maize responds to Fe3O4 NP exposure.
Collapse
Affiliation(s)
- Lei Yan
- College of Resources and Environment, Northeast Agricultural University, Harbin 150000, China
| | - Peiye Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150000, China
| | - Xiaopeng Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
19
|
Almessiere MA, Slimani Y, Demir Korkmaz A, Güner S, Baykal A, Shirsath SE, Ercan I, Kögerler P. Sonochemical synthesis of Dy 3+ substituted Mn 0.5Zn 0.5Fe 2-xO 4 nanoparticles: Structural, magnetic and optical characterizations. ULTRASONICS SONOCHEMISTRY 2020; 61:104836. [PMID: 31683234 DOI: 10.1016/j.ultsonch.2019.104836] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/11/2019] [Accepted: 10/21/2019] [Indexed: 05/27/2023]
Abstract
Mn0.5Zn0.5DyxFe2-xO4 (x ≤ 0.03) nanoparticles (NPs) were fabricated by using Ultrasonic irradiation using UZ SONOPULS HD 2070 ultrasonic homogenizer (frequency of 20 kHz and power of 70 W). Structural and morphological analyses were performed via XRD (X-ray powder diffractometer), TEM (Transmission electron microscopy) and SEM (Scanning electron microscopy). XRD presented the formation of Mn-Zn ferrite with average crystal size in 11 to 18 nm range. Direct optical energy band gaps (Eg) were specified applying diffuse reflectance investigations. Eg values are in a small band range of 1.61-1.67 eV. Low (10 K) and room temperature VSM data were recorded applying ±90 kOe external magnetic field. All samples exhibit superparamagnetic properties at RT. Magnetization parameters significantly increase due to coordination of Dy3+ rare earth ions. Magnetic moment per molecule (nB) increases from 0.952 μB to 1.137 μB and from 2.312 μB to 2.547 μB at RT and at 10 K data respectively. 10 K coercivity (Hc) values decrease from 260 Oe to 43 Oe. All samples have squareness ratios (SQR) of 0.231-0.400 range assigning the multi-domain structure at 10 K. ZFC-FC magnetization curves that were registered for two selected samples exhibit a divergence and a sharp drop below their Tpeak positions. This event is typically correlated to the collective freezing of system and spin-glass-like phase. Real part AC susceptibility data slightly shift toward high temperature regions with increasing frequencies. Critical Slowing Down (CSD) model explained the spin dynamics of interacting NPs consistently with literature and proved the spin-glass behavior of samples at low temperatures.
Collapse
Affiliation(s)
- M A Almessiere
- Department of Biophysics, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia; Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - Y Slimani
- Department of Biophysics, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia.
| | - A Demir Korkmaz
- Department of Chemistry, Istanbul Medeniyet University, 34700 Uskudar-Istanbul, Turkey
| | - S Güner
- Institute of Inorganic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - A Baykal
- Department of Nano-Medicine Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - S E Shirsath
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW 2052, Australia
| | - I Ercan
- Department of Biophysics, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - P Kögerler
- Institute of Inorganic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
20
|
Cędrowska E, Pruszyński M, Gawęda W, Żuk M, Krysiński P, Bruchertseifer F, Morgenstern A, Karageorgou MA, Bouziotis P, Bilewicz A. Trastuzumab Conjugated Superparamagnetic Iron Oxide Nanoparticles Labeled with 225Ac as a Perspective Tool for Combined α-Radioimmunotherapy and Magnetic Hyperthermia of HER2-Positive Breast Cancer. Molecules 2020; 25:molecules25051025. [PMID: 32106568 PMCID: PMC7179151 DOI: 10.3390/molecules25051025] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 12/18/2022] Open
Abstract
It has been proven and confirmed in numerous repeated tests, that the use of a combination of several therapeutic methods gives much better treatment results than in the case of separate therapies. Particularly promising is the combination of ionizing radiation and magnetic hyperthermia in one drug. To achieve this objective, magnetite nanoparticles have been modified in their core with α emitter 225Ac, in an amount affecting only slightly their magnetic properties. By 3-phosphonopropionic acid (CEPA) linker nanoparticles were conjugated covalently with trastuzumab (Herceptin®), a monoclonal antibody that recognizes ovarian and breast cancer cells overexpressing the HER2 receptors. The synthesized bioconjugates were characterized by transmission electron microscopy (TEM), Dynamic Light Scattering (DLS) measurement, thermogravimetric analysis (TGA) and application of 131I-labeled trastuzumab for quantification of the bound biomolecule. The obtained results show that one 225Ac@Fe3O4-CEPA-trastuzumab bioconjugate contains an average of 8–11 molecules of trastuzumab. The labeled nanoparticles almost quantitatively retain 225Ac (>98%) in phosphate-buffered saline (PBS) and physiological salt, and more than 90% of 221Fr and 213Bi over 10 days. In human serum after 10 days, the fraction of 225Ac released from 225Ac@Fe3O4 was still less than 2%, but the retention of 221Fr and 213Bi decreased to 70%. The synthesized 225Ac@Fe3O4-CEPA-trastuzumab bioconjugates have shown a high cytotoxic effect toward SKOV-3 ovarian cancer cells expressing HER2 receptor in-vitro. The in-vivo studies indicate that this bioconjugate exhibits properties suitable for the treatment of cancer cells by intratumoral or post-resection injection. The intravenous injection of the 225Ac@Fe3O4-CEPA-trastuzumab radiobioconjugate is excluded due to its high accumulation in the liver, lungs and spleen. Additionally, the high value of a specific absorption rate (SAR) allows its use in a new very perspective combination of α radionuclide therapy with magnetic hyperthermia.
Collapse
Affiliation(s)
- Edyta Cędrowska
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (E.C.); (W.G.)
| | - Marek Pruszyński
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (E.C.); (W.G.)
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
- Correspondence: (M.P.); (A.B.); Tel.: +48-22-5041357 (A.B.)
| | - Weronika Gawęda
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (E.C.); (W.G.)
| | - Michał Żuk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (M.Ż.); (P.K.)
| | - Paweł Krysiński
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (M.Ż.); (P.K.)
| | - Frank Bruchertseifer
- Department for Nuclear Safety and Security, Joint Research Centre, European Commission, 76125 Karlsruhe, Germany; (F.B.); (A.M.)
| | - Alfred Morgenstern
- Department for Nuclear Safety and Security, Joint Research Centre, European Commission, 76125 Karlsruhe, Germany; (F.B.); (A.M.)
| | - Maria-Argyro Karageorgou
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, N.C.S.R. ‘Demokritos’, Aghia Paraskevi, 15341 Athens, Greece; (M.-A.K.); (P.B.)
- Department of Physics, National and Kapodistrian University of Athens, Zografou Panepistimioupolis, 15784 Athens, Greece
| | - Penelope Bouziotis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, N.C.S.R. ‘Demokritos’, Aghia Paraskevi, 15341 Athens, Greece; (M.-A.K.); (P.B.)
| | - Aleksander Bilewicz
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (E.C.); (W.G.)
- Correspondence: (M.P.); (A.B.); Tel.: +48-22-5041357 (A.B.)
| |
Collapse
|
21
|
Das H, Debnath N, Arai T, Kawaguchi T, Sakamoto N, Shinozaki K, Suzuki H, Wakiya N. Superparamagnetic magnesium ferrite/silica core-shell nanospheres: A controllable SiO2 coating process for potential magnetic hyperthermia application. ADV POWDER TECHNOL 2019. [DOI: 10.1016/j.apt.2019.09.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Composites based on zirconia and transition metal oxides for osteosarcoma treatment. Design, structural, magnetic and mechanical evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:1097-1113. [DOI: 10.1016/j.msec.2019.01.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 12/15/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022]
|
23
|
Zhou M, Xie F, Li G, Wang Q, Tang L, Yan M, Bi H. Biocompatible HA@Fe 3 O 4 @N-CDs hybrids for detecting and absorbing lead ion. J Biomed Mater Res A 2019; 107:1532-1540. [PMID: 30821077 DOI: 10.1002/jbm.a.36666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/11/2019] [Accepted: 02/21/2019] [Indexed: 02/01/2023]
Abstract
The trinary hydroxyapatite@Fe3 O4 @N-doped carbon dots (HA@Fe3 O4 @N-CDs) hybrids were prepared by one-pot hydrothermal approach and utilized to detect and remove lead ion from aqueous solution. The structures and morphologies of as-obtained nanorod-like HA@Fe3 O4 @N-CDs hybrids were characterized by X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy measurements. These HA@Fe3 O4 @N-CDs hybrids possess good magnetism by magnetic hysteresis test and multi-colored fluorescence by the CLSM measurement. Furthermore, the as-obtained hybrids display excellent biocompatibility by MTT assay. Importantly, the trinary magnetic HA@Fe3 O4 @N-CDs hybrids as a green detector and adsorbent of Pb2+ were investigated. The influence of the different pH, the concentration of heavy metal, and the maximum adsorption capacity on removal efficiency was measured in detail. The maximum Pb2+ adsorption capacity on HA@Fe3 O4 @N-CDs hybrids is 450 mg/g. The kinetic mechanism was a pseudo-second order model, and the isotherm data was fitted well by the Langmuir isotherm and Freundlich model. Hence, the nanorod-like HA@Fe3 O4 @N-CDs hybrids could be a multifunctional material with significant potential applications in heavy metal detection and adsorption, bone tissue regeneration, magnetic therapy, and biomedicine. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2019.
Collapse
Affiliation(s)
- Mingchen Zhou
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Fei Xie
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Guocang Li
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Qiyang Wang
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Longxiang Tang
- College of Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Manqing Yan
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Hong Bi
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| |
Collapse
|
24
|
Kubo T, Tachibana K, Naito T, Mukai S, Akiyoshi K, Balachandran J, Otsuka K. Magnetic Field Stimuli-Sensitive Drug Release Using a Magnetic Thermal Seed Coated with Thermal-Responsive Molecularly Imprinted Polymer. ACS Biomater Sci Eng 2018; 5:759-767. [DOI: 10.1021/acsbiomaterials.8b01401] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Takuya Kubo
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kaname Tachibana
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Toyohiro Naito
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Sadaatsu Mukai
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Jeyadevan Balachandran
- Department of Material Science, University of Shiga Prefecture, 2500 Hassaka-cho, Hikone City, 522-8533 Shiga Prefecture, Japan
| | - Koji Otsuka
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
25
|
Zou MF, Chen XY, Lin XJ, Chen MY, Ding NN, Yang LY, Ouyang XK. Fabrication of magnetic carboxyl-functionalized attapulgite/calcium alginate beads for lead ion removal from aqueous solutions. Int J Biol Macromol 2018; 120:789-800. [DOI: 10.1016/j.ijbiomac.2018.08.144] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/04/2018] [Accepted: 08/26/2018] [Indexed: 11/27/2022]
|
26
|
Bender P, Fock J, Hansen MF, Bogart LK, Southern P, Ludwig F, Wiekhorst F, Szczerba W, Zeng LJ, Heinke D, Gehrke N, Díaz MTF, González-Alonso D, Espeso JI, Fernández JR, Johansson C. Influence of clustering on the magnetic properties and hyperthermia performance of iron oxide nanoparticles. NANOTECHNOLOGY 2018; 29:425705. [PMID: 30052525 DOI: 10.1088/1361-6528/aad67d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Clustering of magnetic nanoparticles can drastically change their collective magnetic properties, which in turn may influence their performance in technological or biomedical applications. Here, we investigate a commercial colloidal dispersion (FeraSpinTMR), which contains dense clusters of iron oxide cores (mean size around 9 nm according to neutron diffraction) with varying cluster size (about 18-56 nm according to small angle x-ray diffraction), and its individual size fractions (FeraSpinTMXS, S, M, L, XL, XXL). The magnetic properties of the colloids were characterized by isothermal magnetization, as well as frequency-dependent optomagnetic and AC susceptibility measurements. From these measurements we derive the underlying moment and relaxation frequency distributions, respectively. Analysis of the distributions shows that the clustering of the initially superparamagnetic cores leads to remanent magnetic moments within the large clusters. At frequencies below 105 rad s-1, the relaxation of the clusters is dominated by Brownian (rotation) relaxation. At higher frequencies, where Brownian relaxation is inhibited due to viscous friction, the clusters still show an appreciable magnetic relaxation due to internal moment relaxation within the clusters. As a result of the internal moment relaxation, the colloids with the large clusters (FS-L, XL, XXL) excel in magnetic hyperthermia experiments.
Collapse
Affiliation(s)
- P Bender
- Universidad de Cantabria, E-39005 Santander, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Asiri S, Güner S, Demir A, Yildiz A, Manikandan A, Baykal A. Synthesis and Magnetic Characterization of Cu Substituted Barium Hexaferrites. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0735-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Sahiner N, Sengel SB. Tannic acid decorated poly(methacrylic acid) micro and nanoparticles with controllable tannic acid release and antioxidant properties. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
29
|
Munoz-Menendez C, Conde-Leboran I, Baldomir D, Chubykalo-Fesenko O, Serantes D. The role of size polydispersity in magnetic fluid hyperthermia: average vs. local infra/over-heating effects. Phys Chem Chem Phys 2016; 17:27812-20. [PMID: 26437746 DOI: 10.1039/c5cp04539h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and safe hyperthermia cancer treatment requires the accurate control of the heating performance of magnetic nanoparticles, which is directly related to their size. However, in any particle system the existence of some size polydispersity is experimentally unavoidable, which results in a different local heating output and consequently a different hyperthermia performance depending on the size of each particle. With the aim to shed some light on this significant issue, we have used a Monte Carlo technique to study the role of size polydispersity in heat dissipation at both the local (single particle) and global (macroscopic average) levels. We have systematically varied size polydispersity, temperature and interparticle dipolar interaction conditions, and evaluated local heating as a function of these parameters. Our results provide a simple guide on how to choose, for a given polydispersity degree, the more adequate average particle size so that the local variation in the released heat is kept within some limits that correspond to safety boundaries for the average-system hyperthermia performance. All together we believe that our results may help in the design of more effective magnetic hyperthermia applications.
Collapse
Affiliation(s)
- Cristina Munoz-Menendez
- Instituto de Investigacións Tecnolóxicas and Departamento de Física Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | | | | | | | | |
Collapse
|
30
|
Li X, Wei J, Aifantis KE, Fan Y, Feng Q, Cui FZ, Watari F. Current investigations into magnetic nanoparticles for biomedical applications. J Biomed Mater Res A 2016; 104:1285-1296. [PMID: 26779606 DOI: 10.1002/jbm.a.35654] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 12/25/2015] [Accepted: 01/13/2016] [Indexed: 12/28/2022]
Abstract
It is generally recognized that nanoparticles possess unique physicochemical properties that are largely different from those of conventional materials, specifically the electromagnetic properties of magnetic nanoparticles (MNPs). These properties have attracted many researchers to launch investigations into their potential biomedical applications, which have been reviewed in this article. First, common types of MNPs were briefly introduced. Then, the biomedical applications of MNPs were reviewed in seven parts: magnetic resonance imaging (MRI), cancer therapy, the delivery of drugs and genes, bone and dental repair, tissue engineering, biosensors, and in other aspects, which indicated that MNPs possess great potentials for many kinds of biomedical applications due to their unique properties. Although lots of achievements have been obtained, there is still a lot of work to do. New synthesis techniques and methods are still needed to develop the MNPs with satisfactory biocompatibility. More effective methods need to be exploited to prepare MNPs-based composites with fine microstructures and high biomedical performances. Other promising research points include the development of more appropriate techniques of experiments both in vitro and in vivo to detect and analyze the biocompatibility and cytotoxicity of MNPs and understand the possible influencing mechanism of the two properties. More comprehensive investigations into the diagnostic and therapeutic applications of composites containing MNPs with "core-shell" structure and deeper understanding and further study into the properties of MNPs to reveal their new biomedical applications, are also described in the conclusion and perspectives part.
Collapse
Affiliation(s)
- Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Jianrong Wei
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Katerina E Aifantis
- Department of Civil Engineering-Engineering Mechanics, University of Arizona, Tucson, Arizona, 85721
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Qingling Feng
- Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing, 100084, China
| | - Fu-Zhai Cui
- Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing, 100084, China
| | - Fumio Watari
- Department of Biomedical Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586, Japan
| |
Collapse
|
31
|
Coral DF, Zélis PM, Marciello M, Morales MDP, Craievich A, Sánchez FH, van Raap MBF. Effect of Nanoclustering and Dipolar Interactions in Heat Generation for Magnetic Hyperthermia. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1201-13. [PMID: 26751761 DOI: 10.1021/acs.langmuir.5b03559] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Biomedical magnetic colloids commonly used in magnetic hyperthermia experiments often display a bidisperse structure, i.e., are composed of stable nanoclusters coexisting with well-dispersed nanoparticles. However, the influence of nanoclusters in the optimization of colloids for heat dissipation is usually excluded. In this work, bidisperse colloids are used to analyze the effect of nanoclustering and long-range magnetic dipolar interaction on the magnetic hyperthermia efficiency. Two kinds of colloids, composed of magnetite cores with mean sizes of around 10 and 18 nm, coated with oleic acid and dispersed in hexane, and coated with meso-2,3-dimercaptosuccinic acid and dispersed in water, were analyzed. Small-angle X-ray scattering was applied to thoroughly characterize nanoparticle structuring. We proved that the magnetic hyperthermia performances of nanoclusters and single nanoparticles are distinctive. Nanoclustering acts to reduce the specific heating efficiency whereas a peak against concentration appears for the well-dispersed component. Our experiments show that the heating efficiency of a magnetic colloid can increase or decrease when dipolar interactions increase and that the colloid concentration, i.e., dipolar interaction, can be used to improve magnetic hyperthermia. We have proven that the power dissipated by an ensemble of dispersed magnetic nanoparticles becomes a nonextensive property as a direct consequence of the long-range nature of dipolar interactions. This knowledge is a key point in selecting the correct dose that has to be injected to achieve the desired outcome in intracellular magnetic hyperthermia therapy.
Collapse
Affiliation(s)
- Diego F Coral
- Physics Department, Physics Institute of La Plata (IFLP- CONICET), Faculty of Exact Sciences, National University of La Plata , c.c. 67, 1900 La Plata, Argentina
| | - Pedro Mendoza Zélis
- Physics Department, Physics Institute of La Plata (IFLP- CONICET), Faculty of Exact Sciences, National University of La Plata , c.c. 67, 1900 La Plata, Argentina
| | - Marzia Marciello
- Department of Biomaterials and Bioinspired Materials, Materials Science Institute of Madrid (ICMM)/CSIC , Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
| | - María del Puerto Morales
- Department of Biomaterials and Bioinspired Materials, Materials Science Institute of Madrid (ICMM)/CSIC , Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
| | - Aldo Craievich
- Institute of Physics, University of Sao Paulo , C.P. 66318 Sao Paulo SP, Brazil
| | - Francisco H Sánchez
- Physics Department, Physics Institute of La Plata (IFLP- CONICET), Faculty of Exact Sciences, National University of La Plata , c.c. 67, 1900 La Plata, Argentina
| | - Marcela B Fernández van Raap
- Physics Department, Physics Institute of La Plata (IFLP- CONICET), Faculty of Exact Sciences, National University of La Plata , c.c. 67, 1900 La Plata, Argentina
| |
Collapse
|
32
|
Prasad NK, Srivastava M, Alla SK, Danda JR, Aditya D, Mandal RK. ZrxFe3−xO4 (0.01 ≤ x ≤ 1.0) nanoparticles: a possible magnetic in vivo switch. RSC Adv 2016. [DOI: 10.1039/c6ra04815c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AC field controlled temperature during magnetic hyperthermia for ZrxFe3−xO4 (0.01 ≤ x ≤ 1.0) based ferrofluids. The unexpected behavior observed despite their high magnetization (~50 Am2 kg−1) and Curie temperature (TC > 300 °C).
Collapse
Affiliation(s)
- N. K. Prasad
- Department of Metallurgical Engineering
- Indian Institute of Technology
- Banaras Hindu University
- Varanasi
- India
| | - M. Srivastava
- Department of Metallurgical Engineering
- Indian Institute of Technology
- Banaras Hindu University
- Varanasi
- India
| | - S. K. Alla
- Department of Metallurgical Engineering
- Indian Institute of Technology
- Banaras Hindu University
- Varanasi
- India
| | - J. R. Danda
- Department of Metallurgical Engineering
- Indian Institute of Technology
- Banaras Hindu University
- Varanasi
- India
| | - D. Aditya
- Department of Metallurgical Engineering
- Indian Institute of Technology
- Banaras Hindu University
- Varanasi
- India
| | - R. K. Mandal
- Department of Metallurgical Engineering
- Indian Institute of Technology
- Banaras Hindu University
- Varanasi
- India
| |
Collapse
|
33
|
Meyer TA, Quinto CA, Bao G. Controlling Iron Oxide Nanoparticle Clustering Using Dual Solvent Exchange Coating Method. IEEE MAGNETICS LETTERS 2016; 7:1700904. [PMID: 33747365 PMCID: PMC7971408 DOI: 10.1109/lmag.2015.2508006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIOs) have considerable promise for magnetic resonance imaging, drug/gene delivery, and hyperthermia applications. It has been shown recently that self-assembly of SPIOs into large superstructures can have a significant impact on their magnetic properties and functionality. In this work, we developed a novel method for controlling the clustering of SPIOs with two different core sizes (8 nm and 15 nm) by varying the amount of amphiphilic coating molecules used during the dual solvent exchange coating process. We show that hydrodynamic size and T2 relaxivity can be increased using this approach, while the specific absorption rate is decreased. These results demonstrate a new, simple method for triggering the self-assembly of SPIO clusters using commercially available and biocompatible phospholipid-poly(ethylene glycol) conjugates.
Collapse
Affiliation(s)
- Travis A Meyer
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Christopher A Quinto
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Gang Bao
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| |
Collapse
|
34
|
Liu H, Xie Y, Zhang Y, Cai Y, Li B, Mao H, Yu R. CA4-loaded doxorubicin prodrug coating Fe3O4 nanoparticles for tumor combination therapy. RSC Adv 2016. [DOI: 10.1039/c6ra24562e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fe3O4 nanoparticles (NPs) have attracted a great deal of attention due to their magnetic properties, low toxicity, high surface area and their small sizes.
Collapse
Affiliation(s)
- Hongmei Liu
- Brain Hospital
- Affiliated Hospital of Xuzhou Medical University
- Xuzhou
- China
- Insititute of Nervous System Diseases
| | - Yandong Xie
- Brain Hospital
- Affiliated Hospital of Xuzhou Medical University
- Xuzhou
- China
- Insititute of Nervous System Diseases
| | - Yafei Zhang
- Brain Hospital
- Affiliated Hospital of Xuzhou Medical University
- Xuzhou
- China
- Insititute of Nervous System Diseases
| | - Yifan Cai
- Brain Hospital
- Affiliated Hospital of Xuzhou Medical University
- Xuzhou
- China
- Insititute of Nervous System Diseases
| | - Baiyang Li
- Brain Hospital
- Affiliated Hospital of Xuzhou Medical University
- Xuzhou
- China
- Insititute of Nervous System Diseases
| | - Honglin Mao
- Brain Hospital
- Affiliated Hospital of Xuzhou Medical University
- Xuzhou
- China
- Insititute of Nervous System Diseases
| | - Rutong Yu
- Brain Hospital
- Affiliated Hospital of Xuzhou Medical University
- Xuzhou
- China
- Insititute of Nervous System Diseases
| |
Collapse
|
35
|
Liébana-Viñas S, Simeonidis K, Wiedwald U, Li ZA, Ma Z, Myrovali E, Makridis A, Sakellari D, Vourlias G, Spasova M, Farle M, Angelakeris M. Optimum nanoscale design in ferrite based nanoparticles for magnetic particle hyperthermia. RSC Adv 2016. [DOI: 10.1039/c6ra17892h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The study demonstrates the multiplex enhancement of the magnetic hyperthermia response by nanoscale design and magnetism tuning without sparing the biocompatibility of iron-oxide.
Collapse
|
36
|
Composite Chitosan/Agarose Ferrogels for Potential Applications in Magnetic Hyperthermia. Gels 2015; 1:69-80. [PMID: 30674166 PMCID: PMC6318601 DOI: 10.3390/gels1010069] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/12/2015] [Accepted: 07/03/2015] [Indexed: 11/17/2022] Open
Abstract
Composite ferrogels were obtained by encapsulation of magnetic nanoparticles at two different concentrations (2.0 and 5.0 % w/v) within mixed agarose/chitosan hydrogels having different concentrations of agarose (1.0, 1.5 and 2.0% (w/v)) and a fixed concentration of chitosan (0.5% (w/v)). The morphological characterization carried out by scanning electron microscopy showed that dried composite ferrogels present pore sizes in the micrometer range. Thermogravimetric measurements showed that ferrogels present higher degradation temperatures than blank chitosan/agarose hydrogels without magnetic nanoparticles. In addition, measurements of the elastic moduli of the composite ferrogels evidenced that the presence of magnetic nanoparticles in the starting aqueous solutions prevents to some extent the agarose gelation achieved by simply cooling chitosan/agarose aqueous solutions. Finally, it is shown that composite chitosan/agarose ferrogels are able to heat in response to the application of an alternating magnetic field so that they can be considered as potential biomaterials to be employed in magnetic hyperthermia treatments.
Collapse
|
37
|
Zulhijah R, Suhendi A, Yoshimi K, Kartikowati CW, Ogi T, Iwaki T, Okuyama K. Low-Energy Bead-Mill Dispersion of Agglomerated Core-Shell α-Fe/Al₂O₃ and α″-Fe₁₆N₂/Al₂O₃ Ferromagnetic Nanoparticles in Toluene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6011-6019. [PMID: 25984828 DOI: 10.1021/acs.langmuir.5b00901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Magnetic materials such as α″-Fe16N2 and α-Fe, which have the largest magnetic moment as hard and soft magnetic materials, are difficult to produce as single domain magnetic nanoparticles (MNPs) because of quasistable state and high reactivity, respectively. The present work reports dispersion of agglomerated plasma-synthesized core-shell α″-Fe16N2/Al2O3 and α-Fe/Al2O3 in toluene by a new bead-mill with very fine beads to prepare single domain MNPs. As a result, optimization of the experimental conditions (bead size, rotation speed, and dispersion time) enables the break-up of agglomerated particles into primary particles without destroying the particle structure. Slight deviation from the optimum conditions, i.e., lower or higher dispersion energy, gives undispersed or broken particles due to fragile core-shell structure against stress or impact force of beads. The dispersibility of α″-Fe16N2/Al2O3 is more restricted than that of α-Fe/Al2O3, because of the preparation conditions. Especially for α″-Fe16N2/Al2O3, no change on crystallinity (98% α″-Fe16N2) or magnetization saturation after dispersion was observed, showing that this method is appropriate to disperse α″-Fe16N2/Al2O3 MNPs. A different magnetic hysteresis behavior is observed for well-dispersed α″-Fe16N2/Al2O3 MNPs, and the magnetic coercivity of these NPs is constricted when the magnetic field close to zero due to magnetic dipole coupling among dispersed α″-Fe16N2 MNPs.
Collapse
Affiliation(s)
- Rizka Zulhijah
- †Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima, 739-8527, Japan
| | - Asep Suhendi
- †Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima, 739-8527, Japan
- ‡Program Studi Teknik Fisika, Fakultas Teknik Elektro, Telkom University, Jl. Telekomunikasi Terusan Buah Batu, Bandung, 40257, Indonesia
| | - Kazuki Yoshimi
- †Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima, 739-8527, Japan
| | - Christina Wahyu Kartikowati
- †Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima, 739-8527, Japan
| | - Takashi Ogi
- †Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima, 739-8527, Japan
| | - Toru Iwaki
- †Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima, 739-8527, Japan
| | - Kikuo Okuyama
- †Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima, 739-8527, Japan
| |
Collapse
|
38
|
Shi D, Sadat ME, Dunn AW, Mast DB. Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications. NANOSCALE 2015; 7:8209-32. [PMID: 25899408 DOI: 10.1039/c5nr01538c] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Iron oxide exhibits fascinating physical properties especially in the nanometer range, not only from the standpoint of basic science, but also for a variety of engineering, particularly biomedical applications. For instance, Fe3O4 behaves as superparamagnetic as the particle size is reduced to a few nanometers in the single-domain region depending on the type of the material. The superparamagnetism is an important property for biomedical applications such as magnetic hyperthermia therapy of cancer. In this review article, we report on some of the most recent experimental and theoretical studies on magnetic heating mechanisms under an alternating (AC) magnetic field. The heating mechanisms are interpreted based on Néel and Brownian relaxations, and hysteresis loss. We also report on the recently discovered photoluminescence of Fe3O4 and explain the emission mechanisms in terms of the electronic band structures. Both optical and magnetic properties are correlated to the materials parameters of particle size, distribution, and physical confinement. By adjusting these parameters, both optical and magnetic properties are optimized. An important motivation to study iron oxide is due to its high potential in biomedical applications. Iron oxide nanoparticles can be used for MRI/optical multimodal imaging as well as the therapeutic mediator in cancer treatment. Both magnetic hyperthermia and photothermal effect has been utilized to kill cancer cells and inhibit tumor growth. Once the iron oxide nanoparticles are up taken by the tumor with sufficient concentration, greater localization provides enhanced effects over disseminated delivery while simultaneously requiring less therapeutic mass to elicit an equal response. Multi-modality provides highly beneficial co-localization. For magnetite (Fe3O4) nanoparticles the co-localization of diagnostics and therapeutics is achieved through magnetic based imaging and local hyperthermia generation through magnetic field or photon application. Here, Fe3O4 nanoparticles are shown to provide excellent conjugation bases for entrapment of therapeutic molecules, fluorescent agents, and targeting ligands; enhancement of solid tumor treatment is achieved through co-application of local hyperthermia with chemotherapeutic agents.
Collapse
Affiliation(s)
- Donglu Shi
- The Materials Science and Engineering Program, Department of Mechanical and Materials Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA.
| | | | | | | |
Collapse
|
39
|
Campanini M, Ciprian R, Bedogni E, Mega A, Chiesi V, Casoli F, de Julián Fernández C, Rotunno E, Rossi F, Secchi A, Bigi F, Salviati G, Magén C, Grillo V, Albertini F. Lorentz microscopy sheds light on the role of dipolar interactions in magnetic hyperthermia. NANOSCALE 2015; 7:7717-7725. [PMID: 25835488 DOI: 10.1039/c5nr00273g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Monodispersed Fe3O4 nanoparticles with comparable size distributions have been synthesized by two different synthesis routes, co-precipitation and thermal decomposition. Thanks to the different steric stabilizations, the described samples can be considered as a model system to investigate the effects of magnetic dipolar interactions on the aggregation states of the nanoparticles. Moreover, the presence of magnetic dipolar interactions can strongly affect the nanoparticle efficiency as a hyperthermic mediator. In this paper, we present a novel way to visualize and map the magnetic dipolar interactions in different kinds of nanoparticle aggregates by the use of Lorentz microscopy, an easy and reliable in-line electron holographic technique. By exploiting Lorentz microscopy, which is complementary to the magnetic measurements, it is possible to correlate the interaction degrees of magnetic nanoparticles with their magnetic behaviors. In particular, we demonstrate that Lorentz microscopy is successful in visualizing the magnetic configurations stabilized by dipolar interactions, thus paving the way to the comprehension of the power loss mechanisms for different nanoparticle aggregates.
Collapse
Affiliation(s)
- M Campanini
- Istituto Materiali per l'Elettronica ed il Magnetismo IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Xu JK, Zhang FF, Sun JJ, Sheng J, Wang F, Sun M. Bio and nanomaterials based on Fe3O4. Molecules 2014; 19:21506-28. [PMID: 25532846 PMCID: PMC6271433 DOI: 10.3390/molecules191221506] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 12/27/2022] Open
Abstract
During the past few years, nanoparticles have been used for various applications including, but not limited to, protein immobilization, bioseparation, environmental treatment, biomedical and bioengineering usage, and food analysis. Among all types of nanoparticles, superparamagnetic iron oxide nanoparticles, especially Fe3O4, have attracted a great deal of attention due to their unique magnetic properties and the ability of being easily chemical modified for improved biocompatibility, dispersibility. This review covers recent advances in the fabrication of functional materials based on Fe3O4 nanoparticles together with their possibilities and limitations for application in different fields.
Collapse
Affiliation(s)
- Jia-Kun Xu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Fang-Fang Zhang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Jing-Jing Sun
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Jun Sheng
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Fang Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Mi Sun
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| |
Collapse
|
42
|
Abstract
Spinel magnetite Fe3O4nanoparticles were synthesized using rambutan peel waste extract as a green ligation and chelating agent. The green synthesized nanoparticles were characterized employing X-ray diffraction (XRD), Raman spectroscopy, FTIR spectroscopy and transmission electron microscopy (TEM) studies. The XRD study revealed spinel phase hda a magnetite structure. The formation of iron oxide nanoparticles using rambutan extract was confirmed employing IR studies. XRD, FTIR and Raman spectrum analyses all supports the synthesis of Fe3O4nanoparticles. The TEM revealed the spinel morphology of the biosynthesized nanoparticles with 200 nm.
Collapse
|