1
|
Wang J, Cai L, Li N, Luo Z, Ren H, Zhang B, Zhao Y. Developing mRNA Nanomedicines with Advanced Targeting Functions. NANO-MICRO LETTERS 2025; 17:155. [PMID: 39979495 PMCID: PMC11842722 DOI: 10.1007/s40820-025-01665-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/06/2025] [Indexed: 02/22/2025]
Abstract
The emerging messenger RNA (mRNA) nanomedicines have sprung up for disease treatment. Developing targeted mRNA nanomedicines has become a thrilling research hotspot in recent years, as they can be precisely delivered to specific organs or tissues to enhance efficiency and avoid side effects. Herein, we give a comprehensive review on the latest research progress of mRNA nanomedicines with targeting functions. mRNA and its carriers are first described in detail. Then, mechanisms of passive targeting, endogenous targeting, and active targeting are outlined, with a focus on various biological barriers that mRNA may encounter during in vivo delivery. Next, emphasis is placed on summarizing mRNA-based organ-targeting strategies. Lastly, the advantages and challenges of mRNA nanomedicines in clinical translation are mentioned. This review is expected to inspire researchers in this field and drive further development of mRNA targeting technology.
Collapse
Affiliation(s)
- Ji Wang
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Ning Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Zhiqiang Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Haozhen Ren
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Yuanjin Zhao
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
| |
Collapse
|
2
|
Li Y, Jiang W, Nie N, Xu J, Wang X, Zhang J, Guan J, Zhu C, Zhang C, Gu Y, Chen X, Yao S, Yin Z, Wu B, Ouyang H, Zou X. Size- and Dose-Dependent Body-Wide Organ Transcriptomic Responses to Calcium Phosphate Nanomaterials. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38018117 DOI: 10.1021/acsami.3c10301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Nanomaterials are widely used in clinical practice. There are potential risks of body-wide infiltration due to their small size; however, the body-wide reliable risk assessment of nanoparticle infiltration is not fully studied and established. In this study, we demonstrated the size- and dose-dependent body-wide organ transcriptomic responses to calcium phosphate nanomaterials in vivo. In a mice model, a calcium phosphate nanocluster (amorphous calcium phosphate, ACP, ∼1 nm in diameter) and its crystallization product (ACP-M, ∼10 nm in diameter) in a series of doses was administrated systematically; multiorgan transcriptomics were then performed with tissues of heart, liver, spleen, lung, kidney, and brain to investigate the systematic effect of dose and size of nanomaterials on the whole body. The results presented gene expression trajectories correlated with the dose of the nanomaterials and tissue-specific risk effects in all detected tissues. For the dose-dependent tissue-specific risk effects, lung tissue exhibited the most significant risk signatures related to apoptosis, cell proliferation, and cell stress. The spleen showed the second most significant risk signatures associated with immune response and DNA damage. For the size-dependent tissue-specific risk effects, ACP nanomaterials could increase most of the tissue-specific risk effects of nanomaterials in multiple organs than larger calcium phosphate nanoparticles. Finally, we used the size- and dose-dependent body-wide organ transcriptomic responses/risks to nanomaterials as the standards and built up a risk prediction model to evaluate the risk of the local nanomaterials delivery. Thus, our findings could provide a size- and dose- dependent risk assessment scale of nanoparticles in the transcriptomic level. It could be useful for risk assessment of nanomaterials in the future.
Collapse
Affiliation(s)
- Yu Li
- Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
| | - Wei Jiang
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
| | - Nanfang Nie
- Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
| | - Jiaqi Xu
- Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
| | - Xiaozhao Wang
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
- Zhejiang University-University of Edinburgh Institute, Hangzhou 310058, P. R. China
| | - Junwen Zhang
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Jiahuan Guan
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Chengcheng Zhu
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Cheng Zhang
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Ying Gu
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Xiaoyi Chen
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
| | - Shasha Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Zi Yin
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
| | - Bingbing Wu
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
| | - Hongwei Ouyang
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
- Zhejiang University-University of Edinburgh Institute, Hangzhou 310058, P. R. China
| | - Xiaohui Zou
- Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
| |
Collapse
|
3
|
Fu L, Zhang Y, Farokhzad RA, Mendes BB, Conde J, Shi J. 'Passive' nanoparticles for organ-selective systemic delivery: design, mechanism and perspective. Chem Soc Rev 2023; 52:7579-7601. [PMID: 37817741 PMCID: PMC10623545 DOI: 10.1039/d2cs00998f] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Nanotechnology has shown tremendous success in the drug delivery field for more effective and safer therapy, and has recently enabled the clinical approval of RNA medicine, a new class of therapeutics. Various nanoparticle strategies have been developed to improve the systemic delivery of therapeutics, among which surface modification of targeting ligands on nanoparticles has been widely explored for 'active' delivery to a specific organ or diseased tissue. Meanwhile, compelling evidence has recently been reported that organ-selective targeting may also be achievable by systemic administration of nanoparticles without surface ligand modification. In this Review, we highlight this unique set of 'passive' nanoparticles and their compositions and mechanisms for organ-selective delivery. In particular, the lipid-based, polymer-based, and biomimetic nanoparticles with tropism to different specific organs after intravenous administration are summarized. The underlying mechanisms (e.g., protein corona and size effect) of these nanosystems for organ selectivity are also extensively discussed. We further provide perspectives on the opportunities and challenges in this exciting area of organ-selective systemic nanoparticle delivery.
Collapse
Affiliation(s)
- Liyi Fu
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yang Zhang
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ryan A Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Bárbara B Mendes
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - João Conde
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
4
|
Lazarevic M, Petrovic S, Pierfelice TV, Ignjatovic N, Piattelli A, Vlajic Tovilovic T, Radunovic M. Antimicrobial and Osteogenic Effects of Collagen Membrane Decorated with Chitosan-Nano-Hydroxyapatite. Biomolecules 2023; 13:biom13040579. [PMID: 37189328 DOI: 10.3390/biom13040579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 05/17/2023] Open
Abstract
Collagen membranes are routinely used in oral surgery for bone regeneration. Despite their numerous advantages, such as stimulating bone growth, bacterial contamination still remains one of the disadvantages of membrane use. Thus, we assessed the biocompatibility and osteogenic and antibacterial properties of a collagen membrane (OsteoBiol) modified with chitosan (CHI) and hydroxyapatite nanoparticles (HApNPs). Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR FT-IR), X-ray powder diffraction (XRD), and field emission scanning electron microscopy (FE-SEM) were performed for membrane characterization. Biocompatibility was assessed on dental pulp stem cells (DPSCs) by an MTT assay, while the osteogenic effect was assessed by an ALP activity assay and qPCR analysis of osteogenic markers (BMP4, ALP, RUNX2, and OCN). Antimicrobial properties were investigated by counting colony-forming units (CFUs) of Streptococcus mitis, Porphyromonas gingivalis, and Fusobaterium nucleatum on membranes and in the surrounding medium. Membranes showed no cytotoxicity. ALP activity was higher and ALP, BMP4, and OCN genes were up-regulated in DPSCs on modified membranes compared to unmodified membranes. The CFUs were reduced on modified membranes and in the medium. Modified membranes showed great biocompatibility and a high osteoinductive effect. Additionally, they showed antimicrobial and antibiofilm effects against periopathogens. It can be concluded that the incorporation of CHI and hydroxyapatite nanoparticles in collagen membranes may be advantageous to promote osteogenesis and reduce bacterial adhesion.
Collapse
Affiliation(s)
- Milos Lazarevic
- School of Dental Medicine, University of Belgrade, 11 070 Belgrade, Serbia
| | - Sanja Petrovic
- School of Dental Medicine, University of Belgrade, 11 070 Belgrade, Serbia
| | - Tania Vanessa Pierfelice
- School of Dental Medicine, University of Belgrade, 11 070 Belgrade, Serbia
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Nenad Ignjatovic
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, 11 070 Belgrade, Serbia
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
- Facultad de Medicina, UCAM Universidad Catolica San Antonio de Murcia, 30107 Guadalupe, Spain
| | | | - Milena Radunovic
- School of Dental Medicine, University of Belgrade, 11 070 Belgrade, Serbia
| |
Collapse
|
5
|
Synthesis and Biological Properties of Alanine-Grafted Hydroxyapatite Nanoparticles. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010116. [PMID: 36676065 PMCID: PMC9867268 DOI: 10.3390/life13010116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
Hydroxyapatite attracts great attention as hard tissues implant material for bones and teeth. Its application in reconstructive medicine depends on its biocompatibility, which is in a function of composition and surface properties. The insertion of a protein element in the composition of implants can improve the cell adhesion and the osseointegration. Having this in mind, the proposal of this work was to develop L-alanine-grafted hydroxyapatite nanoparticles and to study their biocompatibility. Two L-alanine sources and three grafting methods were used for hydroxyapatite surface functionalization. The efficiency of grafting was determined based on X-ray powder diffraction, Fourier-transform infrared spectroscopy, thermal analyses, and field-emission scanning electron microscopy. The results indicated the formation of hydroxyapatite with 8-25 wt% of organic content, depending on the grafting method. Protein adsorption, cell adhesion, and viability studies were carried out to evaluate biological properties of grafted materials. The viability of MG-63 human osteoblastic cells following 24 h incubation with the alanine-grafted hydroxyapatite samples is well preserved, being in all cases above the viability of cells incubated with hydroxyapatite. The alanine-grafted hydroxyapatite prepared in situ and by simple mixture showed higher protein adsorption and cell adhesion, respectively, indicating their potential toward use in regenerative medicine.
Collapse
|
6
|
Sinha A, Simnani FZ, Singh D, Nandi A, Choudhury A, Patel P, Jha E, chouhan RS, Kaushik NK, Mishra YK, Panda PK, Suar M, Verma SK. The translational paradigm of nanobiomaterials: Biological chemistry to modern applications. Mater Today Bio 2022; 17:100463. [PMID: 36310541 PMCID: PMC9615318 DOI: 10.1016/j.mtbio.2022.100463] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022] Open
Abstract
Recently nanotechnology has evolved as one of the most revolutionary technologies in the world. It has now become a multi-trillion-dollar business that covers the production of physical, chemical, and biological systems at scales ranging from atomic and molecular levels to a wide range of industrial applications, such as electronics, medicine, and cosmetics. Nanobiomaterials synthesis are promising approaches produced from various biological elements be it plants, bacteria, peptides, nucleic acids, etc. Owing to the better biocompatibility and biological approach of synthesis, they have gained immense attention in the biomedical field. Moreover, due to their scaled-down sized property, nanobiomaterials exhibit remarkable features which make them the potential candidate for different domains of tissue engineering, materials science, pharmacology, biosensors, etc. Miscellaneous characterization techniques have been utilized for the characterization of nanobiomaterials. Currently, the commercial transition of nanotechnology from the research level to the industrial level in the form of nano-scaffolds, implants, and biosensors is stimulating the whole biomedical field starting from bio-mimetic nacres to 3D printing, multiple nanofibers like silk fibers functionalizing as drug delivery systems and in cancer therapy. The contribution of single quantum dot nanoparticles in biological tagging typically in the discipline of genomics and proteomics is noteworthy. This review focuses on the diverse emerging applications of Nanobiomaterials and their mechanistic advancements owing to their physiochemical properties leading to the growth of industries on different biomedical measures. Alongside the implementation of such nanobiomaterials in several drug and gene delivery approaches, optical coding, photodynamic cancer therapy, and vapor sensing have been elaborately discussed in this review. Different parameters based on current challenges and future perspectives are also discussed here.
Collapse
Affiliation(s)
- Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Paritosh Patel
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea
| | - Ealisha Jha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Raghuraj Singh chouhan
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Suresh K. Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| |
Collapse
|
7
|
Hormone receptor binding, selectivity and cytotoxicity of steroid D-homo lactone loaded chitosan nanoparticles for the treatment of breast and prostate cancer cells. Colloids Surf B Biointerfaces 2022; 216:112597. [PMID: 35636320 DOI: 10.1016/j.colsurfb.2022.112597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 11/23/2022]
Abstract
Chemically modified steroids have a long history as anti-neoplastic drugs. Incorporation of a lactone moiety in the steroid nucleus, as in previously obtained 3β-acetoxy-17-oxa-17a-homoandrost-5-en-16-one (A) and 3β-hidroxy-17-oxa-17a-homoandrost-5-en-16-one (B), often results in enhanced anticancer properties. In this work, chitosan-based (Ch) nanoparticles were created and loaded with potent anticancer steroidal compounds, A and B. Changes to hormone receptor binding and cytotoxicity were then measured. In agreement with our previous results for A and B, A- and B-loaded Ch displayed cytotoxic properties against cancer cell lines. Both A-Ch and B-Ch showed activity toward estrogen negative breast cancer (MDA-MB-231) and androgen negative prostate cancer cell lines (PC-3). Greater selectivity toward cancer cells versus healthy lung fibroblast (MRC-5) was observed for B-Ch particles. Cell viability and cytotoxicity measurements after a recovery period indicate more robust recovery of healthy cells versus malignant cells. Compounds A and B or their Ch-encapsulated forms were shown to have negligible affinity for the ligand binding domain of estrogen receptor β or the androgen receptor in a fluorescent yeast screen, suggesting a lack of estrogenicity and androgenicity. Steroid-loaded chitosan nanoparticles display strong cytotoxicity towards MDA-MB-231 and PC-3 with a lack of hormone activity, indicating their safety and efficacy.
Collapse
|
8
|
Synthesis of modified natural polysaccharides for demulsification and corrosion inhibition. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Shukla SN, Gaur P, Raidas ML, Chaurasia B, Bagri SS. Novel NNO pincer type Schiff base ligand and its complexes of Fe(IIl), Co(II) and Ni(II): Synthesis, spectroscopic characterization, DFT, antibacterial and anticorrosion study. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Liu X, Wu Y, Zhao X, Wang Z. Fabrication and applications of bioactive chitosan-based organic-inorganic hybrid materials: A review. Carbohydr Polym 2021; 267:118179. [PMID: 34119147 DOI: 10.1016/j.carbpol.2021.118179] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/03/2021] [Accepted: 04/30/2021] [Indexed: 01/16/2023]
Abstract
Organic-inorganic hybrid materials like bone, shells, and teeth can be found in nature, which are usually composed of biomacromolecules and nanoscale inorganic ingredients. Synergy of organic-inorganic components in hybrid materials render them outstanding and versatile performance. Chitosan is commonly used organic materials in bionic hybrid materials since its bioactive properties and could be controllable tailored by various means to meet complex conditions in different applications. Among these fabrication means, hybridization was favored for its convenience and efficiency. This review discusses three kinds of chitosan-based hybrid materials: hybridized with hydroxyapatite, calcium carbonate, and clay respectively, which are the representative of phosphate, carbonate, and hydrous aluminosilicates. Here, we reported the latest developments of the preparation methods, composition, structure and applications of these bioactive hybrid materials, especially in the biomedical field. Despite the great progress was made in bioactive organic-inorganic hybrid materials based on chitosan, some challenges and specific directions are still proposed for future development in this review.
Collapse
Affiliation(s)
- Xiaoyang Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuxuan Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinchen Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
11
|
Infrared spectral analysis and antioxidant activity of Dictamnus dasycarpus Turcz with different growth years. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
12
|
Ghiasi B, Sefidbakht Y, Mozaffari-Jovin S, Gharehcheloo B, Mehrarya M, Khodadadi A, Rezaei M, Ranaei Siadat SO, Uskoković V. Hydroxyapatite as a biomaterial - a gift that keeps on giving. Drug Dev Ind Pharm 2020; 46:1035-1062. [PMID: 32476496 DOI: 10.1080/03639045.2020.1776321] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synthetic analogue to biogenic apatite, hydroxyapatite (HA) has a number of physicochemical properties that make it an attractive candidate for diagnosis, treatment of disease and augmentation of biological tissues. Here we describe some of the recent studies on HA, which may provide bases for a number of new medical applications. The content of this review is divided to different medical application modes utilizing HA, including tissue engineering, medical implants, controlled drug delivery, gene therapies, cancer therapies and bioimaging. A number of advantages of HA over other biomaterials emerge from this discourse, including (i) biocompatibility, (ii) bioactivity, (iii) relatively simple synthesis protocols for the fabrication of nanoparticles with specific sizes and shapes, (iv) smart response to environmental stimuli, (v) facile functionalization and surface modification through noncovalent interactions, and (vi) the capacity for being simultaneously loaded with a wide range of therapeutic agents and switched to bioimaging modalities for uses in theranostics. A special section is dedicated to analysis of the safety of particulate HA as a component of parenterally administrable medications. It is concluded that despite the fact that many benefits come with the usage of HA, its deficiencies and potential side effects must be addressed before the translation to the clinical domain is pursued. Although HA has been known in the biomaterials world as the exemplar of safety, this safety proves to be the function of size, morphology, surface ligands and other structural and compositional parameters defining the particles. For this reason, each HA, especially when it comes in a novel structural form, must be treated anew from the safety research angle before being allowed to enter the clinical stage.
Collapse
Affiliation(s)
- Behrad Ghiasi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.,Nanobiotechnology Laboratory, The Faculty of New Technologies Engineering (NTE), Shahid Beheshti University, Tehran, Iran
| | - Sina Mozaffari-Jovin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Arash Khodadadi
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Science, Kerman, Iran
| | - Maryam Rezaei
- Institute of Biochemistry and Biophysics (IBB), Tehran University, Tehran, Iran
| | - Seyed Omid Ranaei Siadat
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.,Nanobiotechnology Laboratory, The Faculty of New Technologies Engineering (NTE), Shahid Beheshti University, Tehran, Iran
| | - Vuk Uskoković
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA
| |
Collapse
|
13
|
Kollenda SA, Klose J, Knuschke T, Sokolova V, Schmitz J, Staniszewska M, Costa PF, Herrmann K, Westendorf AM, Fendler WP, Epple M. In vivo biodistribution of calcium phosphate nanoparticles after intravascular, intramuscular, intratumoral, and soft tissue administration in mice investigated by small animal PET/CT. Acta Biomater 2020; 109:244-253. [PMID: 32251787 DOI: 10.1016/j.actbio.2020.03.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022]
Abstract
Calcium phosphate nanoparticles were covalently surface-functionalized with the ligand DOTA and loaded with the radioisotope 68Ga. The biodistribution of such 68Ga-labelled nanoparticles was followed in vivo in mice by positron emission tomography in combination with computer tomography (PET-CT). The biodistribution of 68Ga-labelled nanoparticles was compared for different application routes: intravenous, intramuscular, intratumoral, and into soft tissue. The particle distribution was measured in vivo by PET-CT after 5 min, 15 min, 30 min, 1 h, 2 h, and 4 h, and ex vivo after 5 h. After intravenous injection (tail vein), the nanoparticles rapidly entered the lungs with later redistribution into liver and spleen. The nanoparticles remained mostly at the injection site following intramuscular, intratumoral, or soft tissue application, with less than 10 percent being mobilized into the blood stream. STATEMENT OF SIGNIFICANCE: The in vivo biodistribution of DOTA-terminated calcium phosphate nanoparticles was followed by PET/CT. To our knowledge, this is the first study of this kind. Four different application routes of clinical relevance were pursued: Intravascular, intramuscular, intratumoral, and into soft tissue. Given the high importance of calcium phosphate as biomaterial and for nanoparticular drug delivery and immunization, this is most important to assess the biofate of calcium phosphate nanoparticles for therapeutic application and also judge biodistribution of nanoscopic calcium phosphate ceramics, including debris from endoprostheses and related implants.
Collapse
Affiliation(s)
- Sebastian A Kollenda
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Jasmin Klose
- Department of Nuclear Medicine, University Hospital and German Cancer Consortium (DKTK) Partner Site Essen, University of Duisburg-Essen, Essen, Germany
| | - Torben Knuschke
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Viktoriya Sokolova
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Jochen Schmitz
- Department of Radiopharmacy and Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Magdalena Staniszewska
- Department of Nuclear Medicine, University Hospital and German Cancer Consortium (DKTK) Partner Site Essen, University of Duisburg-Essen, Essen, Germany
| | - Pedro Fragoso Costa
- Department of Nuclear Medicine, University Hospital and German Cancer Consortium (DKTK) Partner Site Essen, University of Duisburg-Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital and German Cancer Consortium (DKTK) Partner Site Essen, University of Duisburg-Essen, Essen, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University Hospital and German Cancer Consortium (DKTK) Partner Site Essen, University of Duisburg-Essen, Essen, Germany.
| | - Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
14
|
Shukla SN, Gaur P, Raidas ML, Chaurasia B. Tailored synthesis of unsymmetrical tetradentate ONNO schiff base complexes of Fe(IIl), Co(II) and Ni(II): Spectroscopic characterization, DFT optimization, oxygen-binding study, antibacterial and anticorrosion activity. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127362] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Mirković M, Radović M, Stanković D, Milanović Z, Janković D, Matović M, Jeremić M, Antić B, Vranješ-Đurić S. 99mTc-bisphosphonate-coated magnetic nanoparticles as potential theranostic nanoagent. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:124-133. [PMID: 31146983 DOI: 10.1016/j.msec.2019.04.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 04/01/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022]
Abstract
Novel theranostic nanoplatform is expected to integrate imaging for guiding and monitoring of the tumor therapy with great therapeutic efficacy and fewer side effects. Here we describe the preparation of a multifunctional 99mTc-bisphosphonate-coated magnetic nanoparticles (MNPs) based on Fe3O4 and coated with two hydrophilic bisphosphonate ligands, i.e., methylene diphosphonate (MDP) and 1-hydroxyethane-1,1- diphosphonate (HEDP). The presence of the bisphosphonates on the MNPs surface, enabled their biocompatibility, colloidal stability and successful binding of the radionuclide. The morphology, size, structure, surface charge and magnetic properties of obtained bisphosphonate-coated Fe3O4 MNPs were characterized by transmission electron microscopy, X-ray powder diffraction, dynamic light scattering, laser Doppler electrophoresis, Fourier transform infrared spectroscopy and vibrating sample magnetometer. The specific power absorption values for Fe3O4-MDP and Fe3O4-HEDP were 113 W/g and 141 W/g, respectively, indicated their heating ability under applied magnetic field. Coated MNPs were radiolabeled with 99mTc using stannous chloride as the reducing agent in a reproducible high yield (95% for Fe3O4-MDP and 97% for Fe3O4-HEDP MNPs) and were remained stable in saline and human serum for 24 h. Ex vivo biodistribution studies presented significant liver and spleen uptake in healthy Wistar rats after intravenous administration at all examined time points due to the colloidal nature of both 99mTc-MNPs. Results of scintigraphy studies are in accordance with ex vivo biodistribution studies, demonstrating high in vivo stability of radiolabeled MNPs and therefore results of both methods were proved as accurate information on the biodistribution profile of investigated MNPs. Overall, in vitro and in vivo stability as well as heating ability, indicate that biocompatible radiolabeled bisphosphonate magnetic nanoparticles exhibit promising potential as a theranostic nanoagent.
Collapse
Affiliation(s)
- Marija Mirković
- Laboratory for Radioisotopes, Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia.
| | - Magdalena Radović
- Laboratory for Radioisotopes, Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia
| | - Dragana Stanković
- Laboratory for Radioisotopes, Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia
| | - Zorana Milanović
- Laboratory for Radioisotopes, Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia
| | - Drina Janković
- Laboratory for Radioisotopes, Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia
| | - Milovan Matović
- Centre of Nuclear Medicine, Clinical Centre Kragujevac, Zmaj Jovina 30, 34000 Kragujevac, Serbia
| | - Marija Jeremić
- Centre of Nuclear Medicine, Clinical Centre Kragujevac, Zmaj Jovina 30, 34000 Kragujevac, Serbia
| | - Bratislav Antić
- Laboratory of Theoretical and Condensed Matter Physics, Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia
| | - Sanja Vranješ-Đurić
- Laboratory for Radioisotopes, Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia
| |
Collapse
|
16
|
Zuñiga A, Forte Nerán R, Albertengo L, Rodríguez MS. Synthesis, characterization and evaluation of reactional parameters on substitution degree of N-hexyl-N-methylene phosphonic chitosan. Carbohydr Polym 2018; 202:1-10. [DOI: 10.1016/j.carbpol.2018.08.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 11/15/2022]
|
17
|
Gorgieva S, Vuherer T, Kokol V. Autofluorescence-aided assessment of integration and μ-structuring in chitosan/gelatin bilayer membranes with rapidly mineralized interface in relevance to guided tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:226-241. [DOI: 10.1016/j.msec.2018.07.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 01/31/2023]
|
18
|
Lu MK, Lin TY, Chang CC. Chemical identification of a sulfated glucan from Antrodia cinnamomea and its anti-cancer functions via inhibition of EGFR and mTOR activity. Carbohydr Polym 2018; 202:536-544. [DOI: 10.1016/j.carbpol.2018.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/29/2018] [Accepted: 09/05/2018] [Indexed: 12/13/2022]
|
19
|
Ignjatović NL, Sakač M, Kuzminac I, Kojić V, Marković S, Vasiljević-Radović D, Wu VM, Uskoković V, Uskoković DP. Chitosan Oligosaccharide Lactate Coated Hydroxyapatite Nanoparticles as a Vehicle for the Delivery of Steroid Drugs and the Targeting of Breast Cancer Cells. J Mater Chem B 2018; 6:6957-6968. [PMID: 30931125 PMCID: PMC6436965 DOI: 10.1039/c8tb01995a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Low targeting efficiency and fast metabolism of antineoplastic drugs are hindrances to effective chemotherapies and there is an ongoing search for better drugs, but also better carriers. Steroid derivatives, 3β-hydroxy-16-hydroxymino-androst-5-en-17-one (A) and 3β,17β-dihydroxy-16-hydroxymino-androst-5-ene (B) as cancer growth inhibitors were chemically synthesized and captured in a carrier composed of hydroxyapatite (HAp) nanoparticles coated with chitosan oligosaccharide lactate (ChOLS). The only difference between the two derivatives is that A has a carbonyl group at the C17 position of the five-membered ring and B has a hydroxyl. This small difference in the structure resulted not only in different physicochemical properties of the A- and B-loaded HAp/ChOSL, but also in different biological activities. The morphology of drug-loaded HAp/ChOSL particles was spherical, but the size depended on the drug identity: d50=138 nm for A-loaded HAp/ChOSL and d50=223 nm for B-loaded HAp/ChOSL. Cell-selective toxicity was tested against human breast carcinoma (MCF7 and MDA-MB-231), human lung carcinoma (A549) and human lung fibroblasts (MRC-5). The small selectivity of pure derivatives A and B toward breast cancer cells became drastically increased when they were delivered using HAp/ChOSL particles. Whereas the ratio of the cytotoxicity imposed onto breast cancer cells and the cytotoxicity imposed onto healthy MRC-5 fibroblasts ranged from 1.5 to 1.7 for pure A and from 1.5 to 2.3 for pure derivative B depending on the concentration, it increased to 5.4 for A-loaded HAp/ChOSL and 5.1 for B-loaded HAp/ChOSL. FACS analysis demonstrated poor uptake of HAp/ChOSL particles by MCF7 cells, suggesting that the drug release occurs extracellularly. The augmented activity of the drugs was most likely due to sustained release, although the favorable positive charge of the carrier, allowing it to adhere to the negatively charged plasma membrane and release the drugs steadily and directly to the hydrophobic cell membrane milieu, was delineated as a possible complementary mechanism.
Collapse
Affiliation(s)
- Nenad L. Ignjatović
- Institute of Technical Sciences of the Serbian Academy of Science and Arts, Knez Mihailova 35/IV, P.O. Box 377, 11000 Belgrade, Serbia
| | - Marija Sakač
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Ivana Kuzminac
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Vesna Kojić
- Faculty of Medicine, Oncology Institute of Vojvodina, University of Novi Sad, Put Dr Goldmana 4, Sremska Kamenica 21204, Serbia
| | - Smilja Marković
- Institute of Technical Sciences of the Serbian Academy of Science and Arts, Knez Mihailova 35/IV, P.O. Box 377, 11000 Belgrade, Serbia
| | - Dana Vasiljević-Radović
- University of Belgrade, Institute for Chemistry, Technology and Metallurgy, Njegoševa 12, Belgrade, Serbia
| | - Victoria M. Wu
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, Chapman University, 9501 Jeronimo Road, Irvine, CA 92618, USA
| | - Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, IL, USA
| | - Dragan P. Uskoković
- Institute of Technical Sciences of the Serbian Academy of Science and Arts, Knez Mihailova 35/IV, P.O. Box 377, 11000 Belgrade, Serbia
| |
Collapse
|
20
|
Cui G, Guo J, Zhang Y, Zhao Q, Fu S, Han T, Zhang S, Wu Y. Chitosan oligosaccharide derivatives as green corrosion inhibitors for P110 steel in a carbon-dioxide-saturated chloride solution. Carbohydr Polym 2018; 203:386-395. [PMID: 30318227 DOI: 10.1016/j.carbpol.2018.09.038] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 12/23/2022]
Abstract
Two chitosan oligosaccharide derivatives (PHC and BHC) were synthesized for use as corrosion inhibitors. They were characterized using Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). The inhibition efficiency of PHC and BHC on P110 steel corrosion in a 3.5 wt.% NaCl CO2-saturated solution at 80℃ was studied using gravimetric measurement, scanning electron microscopy (SEM), atomic force microscopy (AFM), electrochemical analysis, and quantum chemical calculation. The results indicated that inhibition efficiency increased with increasing concentration of inhibitor. Energy dispersive X-ray (EDX), contact angle, and electrochemical impedance spectroscopy (EIS) measurements showed that the inhibitors had been successfully adsorbed to the surface of the P110 steel. The results of potentiodynamic polarization indicated that both compounds were mixed-type inhibitors.
Collapse
Affiliation(s)
- Guodong Cui
- Enhanced Oil Recovery Institute, China University of Petroleum, Beijing 102249, China
| | - Jixiang Guo
- Enhanced Oil Recovery Institute, China University of Petroleum, Beijing 102249, China.
| | - Yu Zhang
- Enhanced Oil Recovery Institute, China University of Petroleum, Beijing 102249, China
| | - Qing Zhao
- Enhanced Oil Recovery Institute, China University of Petroleum, Beijing 102249, China
| | - Shunkang Fu
- Enhanced Oil Recovery Institute, China University of Petroleum, Beijing 102249, China
| | - Tong Han
- Enhanced Oil Recovery Institute, China University of Petroleum, Beijing 102249, China
| | - Shiling Zhang
- Enhanced Oil Recovery Institute, China University of Petroleum, Beijing 102249, China
| | - Yanhua Wu
- Enhanced Oil Recovery Institute, China University of Petroleum, Beijing 102249, China
| |
Collapse
|
21
|
Review of potential health risks associated with nanoscopic calcium phosphate. Acta Biomater 2018; 77:1-14. [PMID: 30031162 DOI: 10.1016/j.actbio.2018.07.036] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/15/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023]
Abstract
Calcium phosphate is applied in many products in biomedicine, but also in toothpastes and cosmetics. In some cases, it is present in nanoparticulate form, either on purpose or after degradation or mechanical abrasion. Possible concerns are related to the biological effect of such nanoparticles. A thorough literature review shows that calcium phosphate nanoparticles as such have no inherent toxicity but can lead to an increase of the intracellular calcium concentration after endosomal uptake and lysosomal degradation. However, cells are able to clear the calcium from the cytoplasm within a few hours, unless very high doses of calcium phosphate are applied. The observed cytotoxicity in some cell culture studies, mainly for unfunctionalized particles, is probably due to particle agglomeration and subsequent sedimentation onto the cell layer, leading to a very high local particle concentration, a high particle uptake, and subsequent cell death. There is no risk from an oral uptake of calcium phosphate nanoparticles due to their rapid dissolution in the stomach. The risk from dermal or mucosal uptake is very low. Calcium phosphate nanoparticles can enter the bloodstream by inhalation, but no adverse effects have been observed, except for a prolonged exposition to high particle doses. Calcium phosphate nanoparticles inside the body (e.g. after implantation or due to abrasion) do not pose a risk as they are typically resorbed and dissolved by osteoclasts and macrophages. There is no indication for a significant influence of the calcium phosphate phase or the particle shape (e.g. spherical or rod-like) on the biological response. In summary, the risk associated with an exposition to nanoparticulate calcium phosphate in doses that are usually applied in biomedicine, health care products, and cosmetics is very low and most likely not present at all. STATEMENT OF SIGNIFICANCE Calcium phosphate is a well-established biomaterial. However, there are occasions when it occurs in a nanoparticulate form (e.g. as nanoparticle or as nanoparticulate bone substitution material) or after abrasion from a calcium phosphate-coated metal implant. In the light of the current discussion on the safety of nanoparticles, there have been concerns about potential adverse effects of nano-calcium phosphate, e.g. in a statement of a EU study group from 2016 about possible dangers associated with non-spherical nano-hydroxyapatite in cosmetics. In the US, there was a discussion in 2016 about the dangers of nano-calcium phosphate in babyfood. In this review, the potential exposition routes for nano-calcium phosphate are reviewed, with special emphasis on its application as biomaterial.
Collapse
|
22
|
The effect of the androstane lung cancer inhibitor content on the cell-selective toxicity of hydroxyapatite-chitosan-PLGA nanocomposites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:371-377. [DOI: 10.1016/j.msec.2018.04.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/04/2018] [Accepted: 04/12/2018] [Indexed: 01/23/2023]
|
23
|
Wu TJ, Chiu HY, Yu J, Cautela MP, Sarmento B, das Neves J, Catala C, Pazos-Perez N, Guerrini L, Alvarez-Puebla RA, Vranješ-Đurić S, Ignjatović NL. Nanotechnologies for early diagnosis, in situ disease monitoring, and prevention. NANOTECHNOLOGIES IN PREVENTIVE AND REGENERATIVE MEDICINE 2018. [PMCID: PMC7156018 DOI: 10.1016/b978-0-323-48063-5.00001-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanotechnology is an enabling technology with great potential for applications in stem cell research and regenerative medicine. Fluorescent nanodiamond (FND), an inherently biocompatible and nontoxic nanoparticle, is well suited for such applications. We had developed a prospective isolation method using CD157, CD45, and CD54 to obtain lung stem cells. Labeling of CD45−CD54+CD157+ cells with FNDs did not eliminate their abilities for self-renewal and differentiation. The FND labeling in combination with cell sorting, fluorescence lifetime imaging microscopy, and immunostaining identified transplanted stem cells allowed tracking of their engraftment and regenerative capabilities with single-cell resolution. Time-gated fluorescence (TGF) imaging in mouse tissue sections indicated that they reside preferentially at the bronchoalveolar junctions of lungs, especially in naphthalene-injured mice. Our results presented in Subchapter 1.1 demonstrate not only the remarkable homing capacity and regenerative potential of the isolated stem cells, but also the ability of finding rare lung stem cells in vivo using FNDs. The topical use of antiretroviral-based microbicides, namely of a dapivirine ring, has been recently shown to partially prevent transmission of HIV through the vaginal route. Among different formulation approaches, nanotechnology tools and principles have been used for the development of tentative vaginal and rectal microbicide products. Subchapter 1.2 provides an overview of antiretroviral drug nanocarriers as novel microbicide candidates and discusses recent and relevant research on the topic. Furthermore, advances in developing vaginal delivery platforms for the administration of promising antiretroviral drug nanocarriers are reviewed. Although mostly dedicated to the discussion of nanosystems for vaginal use, the development of rectal nanomicrobicides is also addressed. Infectious diseases are currently responsible for over 8 million deaths per year. Efficient treatments require accurate recognition of pathogens at low concentrations, which in the case of blood infection (septicemia) can go as low as 1 mL–1. Detecting and quantifying bacteria at such low concentrations is challenging and typically demands cultures of large samples of blood (∼1 mL) extending over 24–72 h. This delay seriously compromises the health of patients and is largely responsible for the death toll of bacterial infections. Recent advances in nanoscience, spectroscopy, plasmonics, and microfluidics allow for the development of optical devices capable of monitoring minute amounts of analytes in liquid samples. In Subchapter 1.3 we critically discuss these recent developments that will, in the future, enable the multiplex identification and quantification of microorganisms directly on their biological matrix with unprecedented speed, low cost, and sensitivity. Radiolabeled nanoparticles (NPs) are finding an increasing interest in a broad range of biomedical applications. They may be used to detect and characterize diseases, to deliver relevant therapeutics, and to study the pharmacokinetic/pharmacodynamic parameters of nanomaterials. The use of radiotracer techniques in the research of novel NPs offers many advantages, but there are still some limitations. The binding of radionuclides to NPs has to be irreversible to prevent their escape to other tissues or organs. Due to the short half-lives of radionuclides, the manufacturing process is time limited and difficult, and there is also a risk of contamination. Subchapter 1.4 presents the main selection criteria for radionuclides and applicable radiolabeling procedures used for the radiolabeling of various NPs. Also, an overview of different types of NPs that have so far been labeled with radionuclides is presented.
Collapse
Affiliation(s)
- Tsai-Jung Wu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Kuei Shang, Taiwan
| | - Hsiao-Yu Chiu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Kuei Shang, Taiwan,China Medical University, Taichung, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Kuei Shang, Taiwan,Institute of Cellular and Organismic Biology, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mitić Ž, Stolić A, Stojanović S, Najman S, Ignjatović N, Nikolić G, Trajanović M. Instrumental methods and techniques for structural and physicochemical characterization of biomaterials and bone tissue: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.127] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Novel and facile microwave-assisted synthesis of Mo-doped hydroxyapatite nanorods: Characterization, gamma absorption coefficient, and bioactivity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:1093-1100. [PMID: 28575944 DOI: 10.1016/j.msec.2017.04.131] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 01/26/2023]
Abstract
In the current work, the authors report the microwave-assisted synthesis Molybdenum-doped (from 0.05 to 5wt%) hydroxyapatite (HAp) for the first time. The morphology of Mo-doped HAp is nanorods of diameter in the range of 25-70nm and length in the range of 25nm to 200nm. The good crystalline nature was confirmed from X-ray diffraction patterns and also lattice parameters, grain size, strain and dislocation density were determined. The crystallite size was found to be in the range 16 to 30nm and crystallinity was found to be enhanced from 0.5 to 0.7 with doping. The field emission SEM micrographs show that the morphology of the synthesized nanostructures of pure and Mo-doped HAp are nanorods of few nanometers. The vibrational modes were identified using the FT-Raman and FT-IR spectroscopy. The dielectric properties were studied and the AC electrical conductivity was found to be increased with increasing the concentration of Mo ions doping in HAp. Moreover, antimicrobial studies were also carried out to understand the anti-bacterial and anti-fungi properties. The results suggest that it may be a good bio-ceramics material for bio-medical applications. Mo-doped HAp was subjected to the gamma irradiation produced from Cs-137 (662keV) and its related parameters such as linear absorption coefficient, the half-value layer (HVL) and the tenth value layer TVL were calculated and analyzed.
Collapse
|
26
|
Ignjatović NL, Penov-Gaši KM, Wu VM, Ajduković JJ, Kojić VV, Vasiljević-Radović D, Kuzmanović M, Uskoković V, Uskoković DP. Selective anticancer activity of hydroxyapatite/chitosan-poly(d,l)-lactide-co-glycolide particles loaded with an androstane-based cancer inhibitor. Colloids Surf B Biointerfaces 2016; 148:629-639. [PMID: 27694053 DOI: 10.1016/j.colsurfb.2016.09.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/15/2016] [Accepted: 09/27/2016] [Indexed: 12/12/2022]
Abstract
In an earlier study we demonstrated that hydroxyapatite nanoparticles coated with chitosan-poly(d,l)-lactide-co-glycolide (HAp/Ch-PLGA) target lungs following their intravenous injection into mice. In this study we utilize an emulsification process and freeze drying to load the composite HAp/Ch-PLGA particles with 17β-hydroxy-17α-picolyl-androst-5-en-3β-yl-acetate (A), a chemotherapeutic derivative of androstane and a novel compound with a selective anticancer activity against lung cancer cells. 1H NMR and 13C NMR techniques confirmed the intact structure of the derivative A following its entrapment within HAp/Ch-PLGA particles. The thermogravimetric and differential thermal analyses coupled with mass spectrometry were used to assess the thermal degradation products and properties of A-loaded HAp/Ch-PLGA. The loading efficiency, as indicated by the comparison of enthalpies of phase transitions in pure A and A-loaded HAp/Ch-PLGA, equaled 7.47wt.%. The release of A from HAp/Ch-PLGA was sustained, neither exhibiting a burst release nor plateauing after three weeks. Atomic force microscopy and particle size distribution analyses were used to confirm that the particles were spherical with a uniform size distribution of d50=168nm. In vitro cytotoxicity testing of A-loaded HAp/Ch-PLGA using MTT and trypan blue dye exclusion assays demonstrated that the particles were cytotoxic to the A549 human lung carcinoma cell line (46±2%), while simultaneously preserving high viability (83±3%) of regular MRC5 human lung fibroblasts and causing no harm to primary mouse lung fibroblasts. In conclusion, composite A-loaded HAp/Ch-PLGA particles could be seen as promising drug delivery platforms for selective cancer therapies, targeting malignant cells for destruction, while having a significantly lesser cytotoxic effect on the healthy cells.
Collapse
Affiliation(s)
- Nenad L Ignjatović
- Institute of Technical Sciences of the Serbian Academy of Science and Arts, Knez Mihailova 35/IV, P.O. Box 377, 11000 Belgrade, Serbia
| | - Katarina M Penov-Gaši
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Victoria M Wu
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, 9401 Jeronimo Road, Irvine, CA 92618-1908, USA
| | - Jovana J Ajduković
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Vesna V Kojić
- University of Novi Sad, Faculty of Medicine, Oncology Institute of Vojvodina, Dr Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Dana Vasiljević-Radović
- University of Belgrade, Institute for Chemistry, Technology and Metallurgy, Njegoševa 12, Belgrade, Serbia
| | - Maja Kuzmanović
- Institute of Technical Sciences of the Serbian Academy of Science and Arts, Knez Mihailova 35/IV, P.O. Box 377, 11000 Belgrade, Serbia
| | - Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, 9401 Jeronimo Road, Irvine, CA 92618-1908, USA; Department of Bioengineering, University of Illinois, 851 South Morgan Street, Chicago, IL 60607-7052, USA.
| | - Dragan P Uskoković
- Institute of Technical Sciences of the Serbian Academy of Science and Arts, Knez Mihailova 35/IV, P.O. Box 377, 11000 Belgrade, Serbia.
| |
Collapse
|
27
|
Uskoković V. When 1+1>2: Nanostructured composites for hard tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 57:434-51. [PMID: 26354283 PMCID: PMC4567690 DOI: 10.1016/j.msec.2015.07.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/15/2015] [Accepted: 07/23/2015] [Indexed: 12/20/2022]
Abstract
Multicomponent, synergistic and multifunctional nanostructures have taken over the spotlight in the realm of biomedical nanotechnologies. The most prospective materials for bone regeneration today are almost exclusively composites comprising two or more components that compensate for the shortcomings of each one of them alone. This is quite natural in view of the fact that all hard tissues in the human body, except perhaps the tooth enamel, are composite nanostructures. This review article highlights some of the most prospective breakthroughs made in this research direction, with the hard tissues in main focus being those comprising bone, tooth cementum, dentin and enamel. The major obstacles to creating collagen/apatite composites modeled after the structure of bone are mentioned, including the immunogenicity of xenogeneic collagen and continuously failing attempts to replicate the biomineralization process in vitro. Composites comprising a polymeric component and calcium phosphate are discussed in light of their ability to emulate the soft/hard composite structure of bone. Hard tissue engineering composites created using hard material components other than calcium phosphates, including silica, metals and several types of nanotubes, are also discoursed on, alongside additional components deliverable using these materials, such as cells, growth factors, peptides, antibiotics, antiresorptive and anabolic agents, pharmacokinetic conjugates and various cell-specific targeting moieties. It is concluded that a variety of hard tissue structures in the body necessitates a similar variety of biomaterials for their regeneration. The ongoing development of nanocomposites for bone restoration will result in smart, theranostic materials, capable of acting therapeutically in direct feedback with the outcome of in situ disease monitoring at the cellular and subcellular scales. Progress in this research direction is expected to take us to the next generation of biomaterials, designed with the purpose of fulfilling Daedalus' dream - not restoring the tissues, but rather augmenting them.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
28
|
Ignjatović N, Wu V, Ajduković Z, Mihajilov-Krstev T, Uskoković V, Uskoković D. Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 60:357-364. [PMID: 26706541 DOI: 10.1016/j.msec.2015.11.061] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/04/2015] [Accepted: 11/23/2015] [Indexed: 11/26/2022]
Abstract
Composite biomaterials comprising nanostructured hydroxyapatite (HAp) have an enormous potential for natural bone tissue reparation, filling and augmentation. Chitosan (Ch) as a naturally derived polymer has many physicochemical and biological properties that make it an attractive material for use in bone tissue engineering. On the other hand, poly-D,L-lactide-co-glycolide (PLGA) is a synthetic polymer with a long history of use in sustained drug delivery and tissue engineering. However, while chitosan can disrupt the cell membrane integrity and may induce blood thrombosis, PLGA releases acidic byproducts that may cause tissue inflammation and interfere with the healing process. One of the strategies to improve the biocompatibility of Ch and PLGA is to combine them with compounds that exhibit complementary properties. In this study we present the synthesis and characterization, as well as in vitro and in vivo analyses of a nanoparticulate form of HAp coated with two different polymeric systems: (a) Ch and (b) a Ch-PLGA polymer blend. Solvent/non-solvent precipitation and freeze-drying were used for synthesis and processing, respectively, whereas thermogravimetry coupled with mass spectrometry was used for phase identification purposes in the coating process. HAp/Ch composite particles exhibited the highest antimicrobial activity against all four microbial strains tested in this work, but after the reconstruction of the bone defect they also caused inflammatory reactions in the newly formed tissue where the defect had lain. Coating HAp with a polymeric blend composed of Ch and PLGA led to a decrease in the reactivity and antimicrobial activity of the composite particles, but also to an increase in the quality of the newly formed bone tissue in the reconstructed defect area.
Collapse
Affiliation(s)
- Nenad Ignjatović
- Institute of Technical Sciences of the Serbian Academy of Science and Arts, Knez Mihailova 35/IV, P.O. Box 377, 11000 Belgrade, Serbia
| | - Victoria Wu
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, College of Engineering and College of Medicine, University of Illinois at Chicago, Chicago, USA
| | - Zorica Ajduković
- University of Niš, Faculty of Medicine, Clinic of Stomatology, Department of Prosthodontics, Bulevar Zorana Djindjica 81, 18000 Niš, Serbia
| | - Tatjana Mihajilov-Krstev
- University of Niš, Faculty of Science and Mathematics, Department of Biology and Ecology, Višegradska 33, P. O. Box 224, 18000 Niš, Serbia
| | - Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, College of Engineering and College of Medicine, University of Illinois at Chicago, Chicago, USA
| | - Dragan Uskoković
- Institute of Technical Sciences of the Serbian Academy of Science and Arts, Knez Mihailova 35/IV, P.O. Box 377, 11000 Belgrade, Serbia.
| |
Collapse
|
29
|
Kaygili O, Keser S, Kom M, Eroksuz Y, Dorozhkin SV, Ates T, Ozercan IH, Tatar C, Yakuphanoglu F. Strontium substituted hydroxyapatites: Synthesis and determination of their structural properties, in vitro and in vivo performance. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 55:538-546. [PMID: 26117787 DOI: 10.1016/j.msec.2015.05.081] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 04/10/2015] [Accepted: 05/28/2015] [Indexed: 01/20/2023]
Abstract
The objective of this study is to present a detailed report related to the synthesis and characterization of strontium substituted hydroxyapatites. Based on this purpose, hydroxyapatite (HAp) bioceramics with different amounts of strontium (e.g., 0, 0.45, 0.90, 1.35, 1.80 and 2.25 at.%) were prepared using a sol-gel method. The effects of Sr substitution on the structural properties and biocompatibility of the samples were studied by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) techniques, in vitro and in vivo tests. All the samples composed of the nanoparticles ranging from 21 to 27 nm. The presence of Sr at low levels influenced the crystal size, crystallinity degree, lattice parameters and volume of the unit cell of the HAp. Both in vitro conditions and soaking period in simulated body fluid (SBF) significantly affected these properties. Especially, the (Ca+Sr)/P molar ratio gradually decreases with increasing soaking period in SBF. Animal experiments revealed the bone formation and osseointegration for all samples, and as compared with other groups, more reasonable, were observed for the sample with the lowest Sr content.
Collapse
Affiliation(s)
- Omer Kaygili
- Department of Physics, Faculty of Science, Firat University, 23119 Elazig, Turkey.
| | - Serhat Keser
- Department of Chemistry, Faculty of Science, Firat University, 23119 Elazig, Turkey
| | - Mustafa Kom
- Department of Surgery, Faculty of Veterinary Medicine, Firat University, 23119 Elazig, Turkey
| | - Yesari Eroksuz
- Department of Pathology, Faculty of Veterinary Medicine, Firat University, 23119 Elazig, Turkey
| | | | - Tankut Ates
- Department of Physics, Faculty of Science, Firat University, 23119 Elazig, Turkey
| | - Ibrahim H Ozercan
- Department of Pathology, School of Medicine, Firat University, 23119 Elazig, Turkey
| | - Cengiz Tatar
- Department of Physics, Faculty of Science, Firat University, 23119 Elazig, Turkey
| | | |
Collapse
|
30
|
Sandhöfer B, Meckel M, Delgado-López JM, Patrício T, Tampieri A, Rösch F, Iafisco M. Synthesis and preliminary in vivo evaluation of well-dispersed biomimetic nanocrystalline apatites labeled with positron emission tomographic imaging agents. ACS APPLIED MATERIALS & INTERFACES 2015; 7:10623-10633. [PMID: 25915450 DOI: 10.1021/acsami.5b02624] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In recent years, biomimetic synthetic apatite nanoparticles (AP-NPs), having chemical similarity with the mineral phase of bone, have attracted a great interest in nanomedicine as potential drug carriers. To evaluate the therapeutic perspectives of AP-NPs through the mechanisms of action and organs they interact with, the noninvasive monitoring of their in vivo behavior is of paramount importance. To this aim, here the feasibility to radiolabel AP-NPs ("naked" and surface-modified with citrate to reduce their aggregation) with two positron emission tomographic (PET) imaging agents ([(18)F]NaF and (68)Ga-NO2AP(BP)) was investigated. [(18)F]NaF was used for the direct incorporation of the radioisotope into the crystal lattice, while the labeling by surface functionalization was accomplished by using (68)Ga-NO2AP(BP) (a new radio-metal chelating agent). The labeling results with both tracers were fast, straightforward, and reproducible. AP-NPs demonstrated excellent ability to bind relevant quantities of both radiotracers and good in vitro stability in clinically relevant media after the labeling. In vivo PET studies in healthy Wistar rats established that the radiolabeled AP-NPs gave significant PET signals and they were stable over the investigated time (90 min) since any tracer desorption was detected. These preliminary in vivo studies furthermore showed a clear ability of citrated versus naked AP-NPs to accumulate in different organs. Interestingly, contrary to naked AP-NPs, citrated ones, which unveiled higher colloidal stability in aqueous suspensions, were able to escape the first physiological filter, i.e., the lungs, being then accumulated in the liver and, to a lesser extent, in the spleen. The results of this work, along with the fact that AP-NPs can be also functionalized with targeting ligands, with therapeutic agents, and also with metals for a combination of different imaging modalities, make AP-NPs very encouraging materials for further investigations as theranostic agents in nanomedicine.
Collapse
Affiliation(s)
- Benedikt Sandhöfer
- †Institute of Nuclear Chemistry, Johannes Gutenberg-University, Fritz-Strassmann-Weg 2, 55128, Mainz, Germany
| | - Marian Meckel
- †Institute of Nuclear Chemistry, Johannes Gutenberg-University, Fritz-Strassmann-Weg 2, 55128, Mainz, Germany
| | - José Manuel Delgado-López
- ‡Instituto Andaluz de Ciencias de la Tierra (IACT), (CSIC-UGR), Laboratorio de Estudios Cristalográficos, Avenida Las Palmeras 4, 18100 Armilla, Spain
| | - Tatiana Patrício
- §Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Anna Tampieri
- §Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Frank Rösch
- †Institute of Nuclear Chemistry, Johannes Gutenberg-University, Fritz-Strassmann-Weg 2, 55128, Mainz, Germany
| | - Michele Iafisco
- §Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| |
Collapse
|