1
|
Park JS, Lee DG, Myung JH, Jeong MY, Yang IG, Lee GY, Yeo JW, Park CW, Kim JH, Shin YB, Ho MJ, Jin SG, Choi YS, Kang MJ. Long-acting injectable delivery system comprising ordered mixed drug aggregates with deaggregating and uniformly embeddable viscoelastic -polysaccharide solutions. Carbohydr Polym 2025; 362:123682. [PMID: 40409821 DOI: 10.1016/j.carbpol.2025.123682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/17/2025] [Accepted: 04/28/2025] [Indexed: 05/25/2025]
Abstract
This study aimed to construct a ready-to-use, two-syringe mixing (TM) system comprising free-flowing drug aggregates with deaggregating and uniformly embeddable polysaccharide solutions as a new approach for long-acting parenteral delivery. Rotigotine (RG) and donepezil (DP), approved for the treatment of Parkinson's and Alzheimer's diseases, respectively, were employed as model compounds. For syringe filling, free-flowing drug aggregates were engineered using ordered mixing, adhering pulverized RG (1.1 ± 0.3 μm) or DP particles (0.8 ± 0.2 μm) to hydrophilic polyvinylpyrrolidone K17 particles (120 to 150 μm). Drug aggregates were effectively deaggregated and distributed as individual fine drug particles in hyaluronate (HA) or carboxymethyl cellulose (CMC) matrices via electrostatic interactions during TM process. TM systems of RG with HA or CMC and DP with HA provided extended drug release with decreased in vivo spread following subcutaneous injection. TM systems of RG and DP provided protracted pharmacokinetic profiles over 4 weeks with decreased initial exposure compared to drug suspensions and even profiles comparable to those of biodegradable polymer-based in situ forming implants (ISFI). Moreover, RG-loaded HA- or CMC-TM systems alleviated the local inflammation compared to the ISFI. Therefore, this polysaccharide-based TM system is expected to serve as a simple and effective long-acting delivery system for water-insoluble therapeutic agents.
Collapse
Affiliation(s)
- Jun Soo Park
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, South Korea
| | - Dong Gun Lee
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, South Korea
| | - Jin Hyuk Myung
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, South Korea
| | - Min Young Jeong
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, South Korea
| | - In Gyu Yang
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, South Korea
| | - Gi Yeong Lee
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, South Korea
| | - Ji Won Yeo
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, South Korea
| | - Chae Won Park
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, South Korea
| | - Jin Hwan Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, South Korea
| | - Ye Bin Shin
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, South Korea
| | - Myoung Jin Ho
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, South Korea
| | - Sung Giu Jin
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, South Korea
| | - Yong Seok Choi
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, South Korea.
| | - Myung Joo Kang
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, South Korea.
| |
Collapse
|
2
|
Rabiee N, Rabiee M. Engineered Metal-Organic Frameworks for Targeted CRISPR/Cas9 Gene Editing. ACS Pharmacol Transl Sci 2025; 8:1028-1049. [PMID: 40242591 PMCID: PMC11997888 DOI: 10.1021/acsptsci.5c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 04/18/2025]
Abstract
The development of precise and efficient delivery systems is pivotal for advancing CRISPR/Cas9 gene-editing technologies, particularly for therapeutic applications. Engineered metal-organic frameworks (MOFs) have emerged as a promising class of inorganic nonviral vectors, offering unique advantages such as tunable porosity, high cargo-loading capacity, and biocompatibility. This review explores the design and application of MOF-based nanoplatforms tailored for the targeted delivery of CRISPR/Cas9 components, aiming to enhance gene-editing precision and efficiency. By incorporating stimuli-responsive linkers and bioactive ligands, these MOFs enable controlled release of CRISPR/Cas9 payloads at the target site. Comparative discussions demonstrate superior performance of MOFs over conventional nonviral systems in terms of stability, transfection efficiency, and reduced off-target effects. Additionally, the intracellular trafficking mechanisms and the therapeutic potential of these platforms in preclinical models are discussed. These findings highlight the transformative potential of MOF-based delivery systems in overcoming the challenges associated with gene-editing technologies, such as immunogenicity and cytotoxicity, paving the way for their application in precision medicine. This review provides a blueprint for the integration of nanotechnology and genome editing, advancing the frontier of nonviral therapeutic delivery systems.
Collapse
Affiliation(s)
- Navid Rabiee
- Department
of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua−Peking
Joint Center for Life Sciences, Tsinghua
University, Beijing 100084, China
- MOE
Key Laboratory of Bioinformatics, Tsinghua
University, Beijing 100084, China
- Department
of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Mohammad Rabiee
- Biomaterials
Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 165543, Iran
| |
Collapse
|
3
|
Selim AA, Sakr TM, Essa BM, Sayed GH, Anwer KE. 99mTc-labeled benzenesulfonamide derivative-entrapped gold citrate nanoparticles as an auspicious tumour targeting. Sci Rep 2025; 15:4687. [PMID: 39920279 PMCID: PMC11806107 DOI: 10.1038/s41598-025-88862-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/31/2025] [Indexed: 02/09/2025] Open
Abstract
Sulfonamide derivatives are a significant class of medicinal compounds. Gold nanoparticles (AuNPs) offer precise cancer treatment through targeted delivery, boasting high drug-loading capacity and low toxicity. This study aimed to develop and evaluate 99mTc-labeled benzenesulfonamide derivative-entrapped gold citrate nanoparticles as a tumor-targeting agent. A novel benzenesulfonamide derivative bearing a pyridine moiety was synthesized. Compound 3 (4-((3-cyano-4-(2,4-dichlorophenyl)-6-phenylpyridin-2-yl)amino)-N-(diaminomethylene)benzenesulfonamide) exhibited remarkable anti-cancer activity against MCF-7 cells. The chemical reduction method was employed to create compound 3-citrate-AuNPs. A comprehensive examination of the synthesized nano-platform was conducted, including zeta potential, size analysis, radiochemical yield, and in-vivo biodistribution in tumor-bearing mice. The nano-platform was successfully produced with good stability, optimal particle size (9 nm diameter for AuNPs), and high radiochemical purity for [99mTc]Tc-compound 3 (88.31 ± 2.14%). In-vivo investigations revealed that intravenously administered [99mTc]Tc-compound 3-citrate-AuNPs accumulated in tumors with a high target-to-non-target ratio. The findings validate the efficacy of the novel [99mTc]Tc-compound 3-citrate-AuNPs platform as a tumor-targeting agent.
Collapse
Affiliation(s)
- Adli A Selim
- Labelled Compounds Department, Egyptian Atomic Energy Authority (EAEA), Cairo, 13759, Egypt.
| | - Tamer M Sakr
- Radioactive Isotopes and Generators Department, Egyptian Atomic Energy Authority (EAEA), Cairo, 13759, Egypt
| | - Basma M Essa
- Radioactive Isotopes and Generators Department, Egyptian Atomic Energy Authority (EAEA), Cairo, 13759, Egypt
| | - Galal H Sayed
- Heterocyclic Synthesis Lab., Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Kurls E Anwer
- Heterocyclic Synthesis Lab., Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| |
Collapse
|
4
|
Ali M, Kumar Das S, Shetake NG, Pandey BN, Kumar A. Enhanced thorium decorporation and mitigation of toxicity through combined use of Liv52® and diethylenetriamine pentaacetate. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135234. [PMID: 39042990 DOI: 10.1016/j.jhazmat.2024.135234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Thorium-232 (Th-232) is a promising fuel for advanced nuclear reactors. However, in case of internal human exposure to Th, there is currently no effective modality for its removal from liver and skeleton or for mitigating its effect. The FDA-approved agent, diethylenetriaminepentaacetate (DTPA), can remove Th and other actinides from blood circulation only. For the first time, a rationally-selected polyherbal hepatoprotective i.e. Liv52® (L52S), was evaluated in-combination with DTPA for its Th decorporation ability in Swiss mice. Inductively-coupled plasma mass spectroscopic analysis showed that oral administration of L52S in conjunction with DTPA significantly decreased Th burden from liver (20 %) and skeleton (33 %) as well as enhanced Th excretion (∼2.5 folds) through urine in comparison to DTPA or L52S alone. The combinatorial therapy was found to be complementary in-action, ameliorating Th-induced tissue damage in liver, spleen, and bone more effectively than monotherapy. Furthermore, markers of liver function (alanine transaminase) and liver inflammation and fibrosis (NF-κB & keratin) further validated the beneficial effect of L52S. The human consumption of L52S for various liver disorders further supports its clinical application for Th decorporation and mitigation of its health effects.
Collapse
Affiliation(s)
- Manjoor Ali
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Sourav Kumar Das
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Neena G Shetake
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - B N Pandey
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Amit Kumar
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
5
|
Wang Z, Li C, Pei Y, Li M, Liu Y, Xu JJ, Hua D. Dual-Enhancement Electrochemiluminescence Device for Ultratrace Uranium Visualized Monitoring in Fish, Hair, and Nail Samples. Anal Chem 2024; 96:14604-14611. [PMID: 39190775 DOI: 10.1021/acs.analchem.4c03130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Uranium is a nuclear fuel but also a hazardous contaminant due to its radioactivity and chemical toxicity. To prevent and mitigate its potential threat, the accurate monitoring of ultratrace uranium (orders of magnitude of pg g-1) in practical environmental samples has become an important scientific problem. To meet this challenge, we developed an efficient electrochemiluminescence (ECL) UO22+ detection device by a novel dual-enhancement mechanism. In detail, poly[(9,9-dioctylfuor-enyl-2,7-diyl)-alt-co-(1,4-benzo-{2,1,3}-thiadiazole)] polymer dots (Pdots) are modified by the UO22+ DNA aptamer, and rhodamine B (RhB) is combined with dsDNA to quench the ECL signal via a resonance energy transfer (RET) process. UO22+ can cut off the DNA aptamer to release RhB, which generates an ECL enhancement process, and then, UO22+ continuously combines with the DNA chain, inducing another ECL enhancement by the RET process from UO22+ to Pdots. This device achieves an ultralow detection limit (12 pg L-1) and a wide linear range (113 pg L-1-11.3 mg L-1), which can successfully give accurate determination results to the ultratrace uranium in biosamples (<1 pg g-1) to monitor the uranium simulation of fish. This work presents an efficient strategy for ultratrace uranium determination in the environment, highlighting its significance in public health and environmental fields.
Collapse
Affiliation(s)
- Ziyu Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Chengqi Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Yang Pei
- Chinese Cultural Teaching Centre, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou 215123, China
| | - Mengxiang Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Yulong Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
- Department of Nuclear Accident Medical Emergency, the Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Daoben Hua
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| |
Collapse
|
6
|
Gao R, Beladi-Mousavi M, Salinas G, Zhang L, Kuhn A. Synthesis of Multi-Functional Graphene Monolayers via Bipolar Electrochemistry. Chemphyschem 2024; 25:e202400257. [PMID: 38757220 DOI: 10.1002/cphc.202400257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Graphene has gained substantial research interest in many fields due to its remarkable properties among many other two-dimensional materials. In this study, we propose a wireless electrochemical approach, bipolar electrochemistry, for the precise modification of single layers of graphene at predefined locations, such as distinct edges or corners, with a variety of metals or polymers, thus enabling the elaboration of multi-functional monolayer graphene sheets. We illustrate the concept e. g. by depositing multiple metals, or platinum and a catalyst-containing porous polymer on the same graphene sheet, but at separate corners. This configuration allows activating chemiluminescence on the polymer spot, and simultaneously generates the driving force for autonomous motion on the Pt side through the catalytic decomposition of hydrogen peroxide into oxygen bubbles. This integration of different chemical features on the same object, exemplified by these proof-of-principle experiments, enhances the functionality of two-dimensional materials, paving the way for the use of these hybrid materials for a variety of applications, ranging from sensing and catalysis to targeted delivery.
Collapse
Affiliation(s)
- Ruchao Gao
- Henan University, Engineering Research Center for Nanomaterials, 475000, Kaifeng, China
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33607, Pessac, France
| | | | - Gerardo Salinas
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33607, Pessac, France
| | - Lin Zhang
- Henan University, Engineering Research Center for Nanomaterials, 475000, Kaifeng, China
| | - Alexander Kuhn
- Henan University, Engineering Research Center for Nanomaterials, 475000, Kaifeng, China
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33607, Pessac, France
| |
Collapse
|
7
|
Sakr TM, Elsabagh MF, Fayez H, Sarhan MO, Syam YM, Anwar MM, Motaleb MA, Zaghary WA. Multi-functionalization of reduced graphene oxide nanosheets for tumor theragnosis: Synthesis, characterization, enzyme assay, in-silico study, radiolabeling and in vivo targeting evaluation. Daru 2024; 32:77-95. [PMID: 38072913 PMCID: PMC11087444 DOI: 10.1007/s40199-023-00487-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/10/2023] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND In this study, a combination of nanotechnology, organic synthesis and radiochemistry were utilized in order to design an efficient nano-system conjugated with a suitable radionuclide and an antitumor agent for possible application as tumor theragnostic agent. METHOD Four novel compounds (3 and 4a-c) bearing tetrahydroquinazoline-7-sulfonohydrazide or 1,2,3,4-tetrahydroquinazoline-7-sulfonamide scaffold were designed. Then, docking study predicted that the compounds can be considered as potential inhibitors for PARP-1. Following that; the four compounds were synthesized and properly characterized using 1HNMR, 13CNMR, IR and Mass spectroscopy. The cytotoxic effect of the four compounds was evaluated against breast cancer cell line (MDA-MB-436), where compound 3 showed the most promising cytotoxic effect. The inhibitory effect of the four compounds was evaluated in vitro against PARP-1. RESULT Carboxylated graphene oxide nanosheets (NGO-COOH) were synthesized by a modified Hummer's method and has size of range 40 nm. The NGO-COOH nanosheets were proven to be safe and biocompatible when tested in vitro against normal human lung fibroblast cells (MRC-5). The prepared NGO-COOH nanosheets were conjugated with compound 3 then radiolabeled with 99mTc to yield 99mTc-NGO-COOH-3 with a radiochemical yield of 98.5.0 ± 0.5%. 99mTc-NGO-COOH-3 was injected intravenously in solid tumor bearing mice to study the degree of localization of the nano-system at tumor tissue. The results of the study revealed, excellent localization and retention of the designed nano-system at tumor tissues with targeting ratio of 9.0. CONCLUSION Stirred a new candidate tumor theragnostic agent that is safe, selective and stable.
Collapse
Affiliation(s)
- Tamer M Sakr
- Radioisotopes Production Facility, Second Egyptian Research Reactor Complex, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
- Radioactive Isotopes and Generator Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Mohammed F Elsabagh
- Radioisotopes Production Facility, Second Egyptian Research Reactor Complex, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt.
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt.
| | - Hend Fayez
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Mona O Sarhan
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Yasmin M Syam
- Department of Therapeutic Chemistry/ National Research Centre, Cairo, Egypt
| | - Manal M Anwar
- Department of Therapeutic Chemistry/ National Research Centre, Cairo, Egypt
| | - Mohammed A Motaleb
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Wafaa A Zaghary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
8
|
Huang Z, Sun K, Luo Z, Zhang J, Zhou H, Yin H, Liang Z, You J. Spleen-targeted delivery systems and strategies for spleen-related diseases. J Control Release 2024; 370:773-797. [PMID: 38734313 DOI: 10.1016/j.jconrel.2024.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/25/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
The spleen, body's largest secondary lymphoid organ, is also a vital hematopoietic and immunological organ. It is regarded as one of the most significant organs in humans. As more researchers recognize the functions of the spleen, clinical methods for treating splenic diseases and spleen-targeted drug delivery systems to improve the efficacy of spleen-related therapies have gradually developed. Many modification strategies (size, charge, ligand, protein corona) and hitchhiking strategies (erythrocytes, neutrophils) of nanoparticles (NPs) have shown a significant increase in spleen targeting efficiency. However, most of the targeted drug therapy strategies for the spleen are to enhance or inhibit the immune function of the spleen to achieve therapeutic effects, and there are few studies on spleen-related diseases. In this review, we not only provide a detailed summary of the design rules for spleen-targeted drug delivery systems in recent years, but also introduce common spleen diseases (splenic tumors, splenic injuries, and splenomegaly) with the hopes of generating more ideas for future spleen research.
Collapse
Affiliation(s)
- Ziyao Huang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Kedong Sun
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Hang Yin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Zhile Liang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 LongMian road, NanJing, JiangSu 211198, PR China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China; Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, PR China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, PR China.
| |
Collapse
|
9
|
Amiri A, Fazaeli Y, Zare H, Eslami-Kalantari M, Feizi S, Shahedi Z, Afrasyabi M. Radiolabeled florescent-magnetic graphene oxide nanosheets: probing the biodistribution of a potential PET-MRI hybrid imaging agent for detection of fibrosarcoma tumor. Ann Nucl Med 2024; 38:350-359. [PMID: 38347280 DOI: 10.1007/s12149-024-01902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/03/2024] [Indexed: 04/15/2024]
Abstract
PURPOSE Radiolabeled graphene oxide (GO) nanosheets has been one of the most extensively studied nanoplatform for in vivo radioisotope delivery. Herein, we describe the functionalization of the surface of GO nanosheets with Fe3O4 magnetic nanoparticles, cysteine amino acid as an interface ligand, and cadmium telluride quantum dots. MATERIALS AND METHODS To enable In vivo PET imaging, the GO@Fe3O4-cys-CdTe QDs were labeled with 68Ga to yield [68Ga] Ga-Go@ Fe3O4-Cys-CdTe QDs. Furthermore, serum stability tests were performed and the biological behavior of the nanocomposite was evaluated in rats bearing fibrosarcoma tumor. RESULTS Liver, blood and tumor were the most accumulated sites at 1 h after the injection, and the radiolabeled nanocomposite as a PET/MRI imaging agent showed fast depletion from body and acceptable tumor uptake. CONCLUSION Magnetic (Fe3O4) and fluorescent components (CdTe QDs) along with a positron-emitting radionuclide will help to design a multimodal imaging system (PET/MRI/OI) which will offer the advantages of combined imaging techniques and further possible used in localized radionuclide therapy. Overall, [68Ga] Ga-GO@Fe3O4-cys-CdTe QDs nanocomposite shows great promise as a radiolabeled imaging agent owing to high accumulation in tumor region.
Collapse
Affiliation(s)
- Ahad Amiri
- Department of Physics, Yazd University, P.O. Box 89195-714, Yazd, Iran
| | - Yousef Fazaeli
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Moazzen Blvd., Rajaeeshahr, P.O. Box 31485-498, Karaj, Iran.
| | - Hakimeh Zare
- Department of Physics, Yazd University, P.O. Box 89195-714, Yazd, Iran
| | | | - Shahzad Feizi
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Moazzen Blvd., Rajaeeshahr, P.O. Box 31485-498, Karaj, Iran
| | - Zahra Shahedi
- Department of Physics, Yazd University, P.O. Box 89195-714, Yazd, Iran
| | - Mohammadreza Afrasyabi
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Moazzen Blvd., Rajaeeshahr, P.O. Box 31485-498, Karaj, Iran
| |
Collapse
|
10
|
Swidan MM, Essa BM, Sakr TM. Pristine/folate-functionalized graphene oxide as two intrinsically radioiodinated nano-theranostics: self/dual in vivo targeting comparative study. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-023-00157-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Abstract
Background
Nanomedicine offers great potentials for theranostic studies via providing higher efficacy and safety levels. This work aimed to develop and evaluate a new nanoplatform as a tumor theranostic probe.
Results
Carboxyl-functionalized graphene oxide nanosheets (FGO) was well synthesized from graphite powder and then conjugated with folic acid to act as a targeted nano-probe. Full characterization and in vitro cytotoxicity evaluation were conducted; besides, in vivo bio-evaluation was attained via intrinsic radioiodination approach in both normal and tumor-bearing Albino mice. The results indicated that FGO as well as conjugated graphene oxide nanosheets (CGO) are comparatively non-toxic to normal cells even at higher concentrations. Pharmacokinetics of FGO and CGO showed intensive and selective uptake in the tumor sites where CGO showed high T/NT of 7.27 that was 4 folds of FGO at 1 h post injection. Additionally, radioiodinated-CGO (ICGO) had declared a superior prominence over the previously published tumor targeted GO radiotracers regarding the physicochemical properties pertaining ability and tumor accumulation behavior.
Conclusions
In conclusion, ICGO can be used as a selective tumor targeting agent for cancer theranosis with aid of I-131 that has a maximum beta and gamma energies of 606.3 and 364.5 keV, respectively.
Collapse
|
11
|
Radzina M, Saule L, Mamis E, Koester U, Cocolios TE, Pajuste E, Kalnina M, Palskis K, Sawitzki Z, Talip Z, Jensen M, Duchemin C, Leufgen K, Stora T. Novel radionuclides for use in Nuclear Medicine in Europe: where do we stand and where do we go? EJNMMI Radiopharm Chem 2023; 8:27. [PMID: 37823964 PMCID: PMC10570248 DOI: 10.1186/s41181-023-00211-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND In order to support the ongoing research across Europe to facilitate access to novel radionuclides, the PRISMAP consortium (European medical radionuclides programme) was established to offer the broadest catalog of non-conventional radionuclides for medical and translational research. The aim of this article is to introduce readers with current status of novel radionuclides in Europe. MAIN BODY A consortium questionnaire was disseminated through the PRISMAP consortium and user community, professional associations and preclinical/clinical end users in Europe and the current status of clinical end-users in nuclear medicine were identified. A total of 40 preclinical/clinical users institutions took part in the survey. Clinical end users currently use the following radionuclides in their studies: 177Lu, 68 Ga, 111In, 90Y, other alpha emitters, 225Ac, 64Cu and Terbium isotopes. Radionuclides that would be of interest for users within the next 2-5 years are 64Cu, Terbium radionuclide "family" and alpha emitters, such as 225Ac. CONCLUSIONS Thanks to a questionnaire distributed by the PRISMAP consortium, the current status and needs of clinical end-users in nuclear medicine were identified.
Collapse
Affiliation(s)
- Maija Radzina
- University of Latvia, Riga, Latvia
- CERN, Geneva, Switzerland
- Riga Stradins University, Riga, Latvia
| | - Laura Saule
- University of Latvia, Riga, Latvia.
- Riga Stradins University, Riga, Latvia.
| | - Edgars Mamis
- University of Latvia, Riga, Latvia
- CERN, Geneva, Switzerland
| | | | | | | | | | - Kristaps Palskis
- CERN, Geneva, Switzerland
- Riga Technical University, Riga, Latvia
| | | | - Zeynep Talip
- Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - Mikael Jensen
- Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | | | |
Collapse
|
12
|
Zhang Z, Gao C, Lu Z, Xie X, You J, Li Z. Sunlight-directed fluorophore-switch in photosynthesis of cyanine subcellular organelle markers for bio-imaging. Biosens Bioelectron 2023; 237:115485. [PMID: 37348191 DOI: 10.1016/j.bios.2023.115485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
The photoconvertible fluorophore synthesis enables the light controlled imaging channels switch for accurate tracking the quantity and localization of intracellular biomolecules in chemical biology. Herein, we repurposed the photochemistry of Fischer's base and developed a sunlight-directed fluorophore-switch strategy for high-efficiency trimethine cyanine (Cy3.5/Cy3) synthesis. The unexpected sunlight-directed photoconversion of Fischer's base proceeds in conventional solvents and accelerates in chloroform via photo-oxidation and hydrogen atom transfer without using extra additives, and the heterogenous dimerization mechanism was proposed and confirmed by isolation of the reactive intermediates. The reliable strategy is employed in the photosynthesis of commercially available cytomembrane marker (DiI) and other cyanine based organelle markers with appreciable yields. Sunlight-controlled fluorophore-switch of subcellular organelle markers in living cells validated the feasibility of our strategy with cell-tolerant character. Moreover, remote control synthesis of Cy3.5 in vivo directed via sunlight further demonstrated the extended application of our strategy. Therefore, this sunlight-directed strategy will facilitate exploitation of cyanine-based probes with switched fluorescence imaging channels and further enable precise description of the dynamic variations in living cells with minimal autofluorescence and cellular disturbance.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, PR China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Chunyu Gao
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, PR China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Zhihao Lu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, PR China
| | - Xiunan Xie
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, PR China
| | - Jinmao You
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, PR China
| | - Zan Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, PR China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
13
|
Chen X, Ji S, Yan Y, Lin S, He L, Huang X, Chang L, Zheng D, Lu Y. Engineered Plant-Derived Nanovesicles Facilitate Tumor Therapy: Natural Bioactivity Plus Drug Controlled Release Platform. Int J Nanomedicine 2023; 18:4779-4804. [PMID: 37635909 PMCID: PMC10460188 DOI: 10.2147/ijn.s413831] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/19/2023] [Indexed: 08/29/2023] Open
Abstract
Tumors are the second-most common disease in the world, killing people at an alarming rate. As issues with drug resistance, lack of targeting, and severe side effects are revealed, there is a growing demand for precision-targeted drug delivery systems. Plant-derived nanovesicles (PDNVs), which arecomposed of proteins, lipids, RNA, and metabolites, are widely distributed and readily accessible. The potential for anti-proliferative, pro-apoptotic, and drug-resistant-reversing effects on tumor cells, as well as the ability to alter the tumor microenvironment (TME) by modulating tumor-specific immune cells, make PDNVs promising anti-tumor therapeutics. With a lipid bilayer structure that allows drug loading and a transmembrane capacity readily endocytosed by cells, PDNVs are also expected to become a new drug delivery platform. Exogenous modifications of PDNVs enhance their circulating stability, tumor targeting ability, high cell endocytosis rate, and controlled-release capacity. In this review, we summarize PDNVs' natural antitumor activity, as well as engineered PDNVs as efficient precision-targeted drug delivery tools that enhance therapeutic effects. Additionally, we discuss critical considerations related to the issues raised in this area, which will encourage researchers to improve PDNVs as better anti-tumor therapeutics for clinic applications.
Collapse
Affiliation(s)
- Xiaohang Chen
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Shuaiqi Ji
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Yuxiang Yan
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Shuoqi Lin
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Lianghang He
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Xiaoyu Huang
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Lin Chang
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| |
Collapse
|
14
|
Cazier H, Malgorn C, Georgin D, Fresneau N, Beau F, Kostarelos K, Bussy C, Campidelli S, Pinault M, Mayne-L'Hermite M, Taran F, Junot C, Fenaille F, Sallustrau A, Colsch B. Correlative radioimaging and mass spectrometry imaging: a powerful combination to study 14C-graphene oxide in vivo biodistribution. NANOSCALE 2023; 15:5510-5518. [PMID: 36853236 DOI: 10.1039/d2nr06753f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Research on graphene based nanomaterials has flourished in the last decade due their unique properties and emerging socio-economic impact. In the context of their potential exploitation for biomedical applications, there is a growing need for the development of more efficient imaging techniques to track the fate of these materials. Herein we propose the first correlative imaging approach based on the combination of radioimaging and mass spectrometry imaging for the detection of Graphene Oxide (GO) labelled with carbon-14 in mice. In this study, 14C-graphene oxide nanoribbons were produced from the oxidative opening of 14C-carbon nanotubes, and were then intensively sonicated to provide nano-size 14C-GO flakes. After Intravenous administration in mice, 14C-GO distribution was quantified by radioimaging performed on tissue slices. On the same slices, MS-imaging provided a highly resolved distribution map of the nanomaterial based on the detection of specific radical anionic carbon clusters ranging from C2˙- to C9˙- with a base peak at m/z 72 (12C) and 74 (14C) under negative laser desorption ionization mass spectrometry (LDI-MS) conditions. This proof of concept approach synergizes the strength of each technique and could be advantageous in the pre-clinical development of future Graphene-based biomedical applications.
Collapse
Affiliation(s)
- Hélène Cazier
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191 Gif-sur-Yvette, France
| | - Carole Malgorn
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SiMos, 91191 Gif-sur-Yvette, France
| | - Dominique Georgin
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| | - Nathalie Fresneau
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
- Université Paris Saclay, CEA, CNRS, NIMBE, LICSEN, 91191 Gif-sur-Yvette, France
| | - Fabrice Beau
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SiMos, 91191 Gif-sur-Yvette, France
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, AV Hill Building, University of Manchester, Manchester M13 9PL, UK
- National Graphene Institute, University of Manchester, Manchester M13 9PL, UK
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), UAB Campus Bellaterra, Barcelona 08193, Spain
| | - Cyrill Bussy
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, AV Hill Building, University of Manchester, Manchester M13 9PL, UK
- National Graphene Institute, University of Manchester, Manchester M13 9PL, UK
| | - Stéphane Campidelli
- Université Paris Saclay, CEA, CNRS, NIMBE, LICSEN, 91191 Gif-sur-Yvette, France
| | - Mathieu Pinault
- Université Paris-Saclay, CEA, CNRS, NIMBE, LEDNA, 91191 Gif-sur-Yvette, France
| | | | - Frédéric Taran
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| | - Christophe Junot
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191 Gif-sur-Yvette, France
| | - François Fenaille
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191 Gif-sur-Yvette, France
| | - Antoine Sallustrau
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| | - Benoit Colsch
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191 Gif-sur-Yvette, France
| |
Collapse
|
15
|
Hosseini SM, Mohammadnejad J, Najafi-Taher R, Zadeh ZB, Tanhaei M, Ramakrishna S. Multifunctional Carbon-Based Nanoparticles: Theranostic Applications in Cancer Therapy and Diagnosis. ACS APPLIED BIO MATERIALS 2023; 6:1323-1338. [PMID: 36921253 DOI: 10.1021/acsabm.2c01000] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Cancer diagnosis and treatment are the most critical challenges in modern medicine. Conventional cancer treatments no longer meet the needs of the health field due to the high rate of mutations and epigenetic factors that have caused drug resistance in tumor cells. Hence, the search for unique methods and factors is quickly expanding. The development of nanotechnology in medicine and the search for a system to integrate treatment and diagnosis to achieve an effective approach to overcome the known limitations of conventional treatment methods have led to the emergence of theranostic nanoparticles and nanosystems based on these nanoparticles. An influential group of these nanoparticles is carbon-based theranostic nanoparticles. These nanoparticles have received significant attention due to their unique properties, such as electrical conductivity, high strength, excellent surface chemistry, and wide range of structural diversity (graphene, nanodiamond, carbon quantum dots, fullerenes, carbon nanotubes, and carbon nanohorns). These nanoparticles were widely used in various fields, such as tissue engineering, drug delivery, imaging, and biosensors. In this review, we discuss in detail the recent features and advances in carbon-based theranostic nanoparticles and the advanced and diverse strategies used to treat diseases with these nanoparticles.
Collapse
Affiliation(s)
- Seyed Mohammad Hosseini
- Department of Life Science Engineering Faculty of Modern Science and Technology, Nano Biotechnology Group, University of Tehran, Tehran 1439957131, Iran
| | - Javad Mohammadnejad
- Department of Life Science Engineering Faculty of Modern Science and Technology, Nano Biotechnology Group, University of Tehran, Tehran 1439957131, Iran
| | - Roqya Najafi-Taher
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 11114115, Iran
| | - Zahra Beiram Zadeh
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Mohammad Tanhaei
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| |
Collapse
|
16
|
Peng Z, Chang Q, Xing M, Lu F. Active Hydrophilic Graphene Oxide Nanocomposites Delivery Mediated by Adipose-Derived Stem Cell for Elevated Photothermal Therapy of Breast Cancer. Int J Nanomedicine 2023; 18:971-986. [PMID: 36855539 PMCID: PMC9968430 DOI: 10.2147/ijn.s380029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/23/2022] [Indexed: 02/24/2023] Open
Abstract
Purpose Graphene oxide (GO) and its derivatives have recently been identified as promising candidates for early disease diagnosis and therapy. However, the physiological stability and precise launch requirements present limitations on further clinical practices. Adipose-derived stem cells (ADSCs) were employed as an unobstructed biological vehicle to address the validate this ADSC-based tumor-targeting system for highly efficient GO delivery combined with two-stage NIR radiation for superior tumor ablation. Methods GO was modified with poly-ethylene glycol (PEG) and folic acid (FA). Afterward, the GO nanocomposite was internalized into ADSCs. The GO-PEG-FA-laden ADSCs were injected into the tail veins of the tumor-bearing mice. Subsequently, first-stage NIR radiation was utilized to disrupt the ADSCs for GO-PEG-FA release. After this, the heat generated by secondary-stage NIR radiation destroy the malignant cells and shrink the tumor, and the cascade process could be recycled until complete tumor ablation if necessary. Results The GO-PEG-FA nanocomposite exhibited negligible cytotoxicity and could be internalized into ADSCs to target specific tumor sites after 32 days of intravenous injection. The nanocomposite was released from the ADSCs and taken up into cancer cells again with the assistance of FA after the first dose of near-infrared radiation. Then, the second radiation dose could directly strike the cancer cell for cancer ablation. Conclusion In summary, we reported a stem cell-based anticancer system that used GO-PEG-FA-laden ADSCs for breast cancer therapy through NIR treatment in mice potentially opens a new avenue not only to address precise drug targeting in tumor therapy, but also future clinical practice in diverse areas.
Collapse
Affiliation(s)
- Zhangsong Peng
- Department of Plastic and Reconstruction Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Qiang Chang
- Department of Plastic and Reconstruction Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China,Department of Mechanical Engineering, University of Manitoba, Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada,Correspondence: Malcolm Xing, Department of Mechanical Engineering, University of Manitoba, Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada, Email
| | - Feng Lu
- Department of Plastic and Reconstruction Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China,Feng Lu, Department of Plastic and Reconstruction Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China, Email
| |
Collapse
|
17
|
Vincy A, Bhatia N, Vankayala R. Optical Characteristics of Indocyanine Green J-Aggregates Induced by Cisplatin for Phototheranostic Applications. ACS Biomater Sci Eng 2022; 8:5119-5128. [PMID: 36375043 DOI: 10.1021/acsbiomaterials.2c01135] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development of an optical system for combinatorial theranostics is of significant interest. Clinical translation of such theranostic agents need to cross several barriers. Herein, we have developed a facile method for the preparation of J-aggregates using FDA approved agents, namely, NIR fluorophore indocyanine green (ICG) and a chemotherapeutic drug, cisplatin (CDDP), which induces ICG to form indocyanine green J-aggregates (IJAs). The formation of IJAs has been characterized by the formation of a new absorption peak centered at ∼896 nm. The existing methods to synthesize IJAs have used several harsh reaction conditions, such as elevated temperatures, for a prolonged time duration (∼60 days). To the best of our knowledge, for the first time, we have reported the formation of IJAs assisted by CDDP at 37 °C temperature within 12 h. The presence of CDDP in ICG favors IJA formation and thereby reduces the harshness of the reaction conditions in the conventionally followed protocols. Moreover, the presence of CDDP can facilitate photoactivated combinatorial therapy. The as synthesized IJA optical system has superior properties to those of free ICG, in terms of diagnostic and therapeutic capabilities (being activatable at ∼896 nm wavelength, which can achieve deeper tissue penetration) and excellent optical and storage stability. The facile synthesis proposed along with CDDP incorporation makes the optical system a clinically relevant one-component theranostic agent.
Collapse
Affiliation(s)
- Antony Vincy
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India
| | - Nitin Bhatia
- Department of Electrical engineering, Indian Institute of Technology Jodhpur, Karwar 342030, India
| | - Raviraj Vankayala
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India
| |
Collapse
|
18
|
Metal nanoparticles-assisted early diagnosis of diseases. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Yadav S, Singh Raman AP, Meena H, Goswami AG, Bhawna, Kumar V, Jain P, Kumar G, Sagar M, Rana DK, Bahadur I, Singh P. An Update on Graphene Oxide: Applications and Toxicity. ACS OMEGA 2022; 7:35387-35445. [PMID: 36249372 PMCID: PMC9558614 DOI: 10.1021/acsomega.2c03171] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/30/2022] [Indexed: 08/24/2023]
Abstract
Graphene oxide (GO) has attracted much attention in the past few years because of its interesting and promising electrical, thermal, mechanical, and structural properties. These properties can be altered, as GO can be readily functionalized. Brodie synthesized the GO in 1859 by reacting graphite with KClO3 in the presence of fuming HNO3; the reaction took 3-4 days to complete at 333 K. Since then, various schemes have been developed to reduce the reaction time, increase the yield, and minimize the release of toxic byproducts (NO2 and N2O4). The modified Hummers method has been widely accepted to produce GO in bulk. Due to its versatile characteristics, GO has a wide range of applications in different fields like tissue engineering, photocatalysis, catalysis, and biomedical applications. Its porous structure is considered appropriate for tissue and organ regeneration. Various branches of tissue engineering are being extensively explored, such as bone, neural, dentistry, cartilage, and skin tissue engineering. The band gap of GO can be easily tuned, and therefore it has a wide range of photocatalytic applications as well: the degradation of organic contaminants, hydrogen generation, and CO2 reduction, etc. GO could be a potential nanocarrier in drug delivery systems, gene delivery, biological sensing, and antibacterial nanocomposites due to its large surface area and high density, as it is highly functionalized with oxygen-containing functional groups. GO or its composites are found to be toxic to various biological species and as also discussed in this review. It has been observed that superoxide dismutase (SOD) and reactive oxygen species (ROS) levels gradually increase over a period after GO is introduced in the biological systems. Hence, GO at specific concentrations is toxic for various species like earthworms, Chironomus riparius, Zebrafish, etc.
Collapse
Affiliation(s)
- Sandeep Yadav
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | | | - Harshvardhan Meena
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department
of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, India
- Department
of Chemistry, University of Delhi, Delhi, India
| | - Abhay Giri Goswami
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | - Bhawna
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Special
Centre for Nanoscience, Jawaharlal Nehru
University, Delhi, India
| | - Vinod Kumar
- Special
Centre for Nanoscience, Jawaharlal Nehru
University, Delhi, India
| | - Pallavi Jain
- Department
of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, NCR Campus, Uttar Pradesh, India
| | - Gyanendra Kumar
- Department
of Chemistry, University of Delhi, Delhi, India
- Swami Shraddhanand
College, University of Delhi, Delhi, India
| | - Mansi Sagar
- Department
of Chemistry, University of Delhi, Delhi, India
| | - Devendra Kumar Rana
- Department
of Physics, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | - Indra Bahadur
- Department
of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Prashant Singh
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| |
Collapse
|
20
|
|
21
|
Kazakov AG, Babenya JS, Ekatova TY, Belyshev SS, Khankin VV, Albaghdadi O, Kuznetsov AA, Dovhyi II, Bezhin NA, Tananaev IG. Photonuclear Alchemy: Obtaining Medical Isotopes of Gold from Mercury Irradiated on Electron Accelerators. Molecules 2022; 27:molecules27175532. [PMID: 36080299 PMCID: PMC9457897 DOI: 10.3390/molecules27175532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
In our work, the photonuclear production of 198,199Au isotopes for nuclear medicine purposes was studied, and a method for their recovery from irradiated mercury was developed. The yields of the corresponding nuclear reactions were determined, and a comparison of various methods of obtaining gold radioisotopes was provided. New sorbents based on benzo-15-crown-5, which selectively binds gold, were studied, and the optimal conditions for Au recovery with a high degree of purification from mercury were found. It was established that, for the fast and quantitative recovery of Au isotopes, it was necessary to add at least 0.1 mg of the carrier. As a result, the developed method can be regularly used to obtain 198,199Au for the research of radiopharmaceuticals based on them.
Collapse
Affiliation(s)
- Andrey G. Kazakov
- Radiochemistry Laboratory, Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences (GEOKHI RAS), Kosygin St., 19, 119991 Moscow, Russia
- Correspondence:
| | - Julia S. Babenya
- Radiochemistry Laboratory, Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences (GEOKHI RAS), Kosygin St., 19, 119991 Moscow, Russia
| | - Taisya Y. Ekatova
- Radiochemistry Laboratory, Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences (GEOKHI RAS), Kosygin St., 19, 119991 Moscow, Russia
| | - Sergey S. Belyshev
- Department of Physics, Lomonosov Moscow State University (MSU), Leninskie Gory, 1, Bld. 2, 119991 Moscow, Russia
- Skobeltsyn Institute of Nuclear Physics, Lomonosov MSU, Leninskie Gory, 1, Bld.2, 119991 Moscow, Russia
| | - Vadim V. Khankin
- Skobeltsyn Institute of Nuclear Physics, Lomonosov MSU, Leninskie Gory, 1, Bld.2, 119991 Moscow, Russia
| | - Omar Albaghdadi
- Department of Physics, Lomonosov Moscow State University (MSU), Leninskie Gory, 1, Bld. 2, 119991 Moscow, Russia
| | - Alexander A. Kuznetsov
- Department of Physics, Lomonosov Moscow State University (MSU), Leninskie Gory, 1, Bld. 2, 119991 Moscow, Russia
- Skobeltsyn Institute of Nuclear Physics, Lomonosov MSU, Leninskie Gory, 1, Bld.2, 119991 Moscow, Russia
| | - Illarion I. Dovhyi
- Department of Marine Biogeochemistry, Marine Hydrophysical Institute of the Russian Academy of Sciences, Kapitanskaya Str., 2, 299011 Sevastopol, Russia
| | - Nikolay A. Bezhin
- Department of Marine Biogeochemistry, Marine Hydrophysical Institute of the Russian Academy of Sciences, Kapitanskaya Str., 2, 299011 Sevastopol, Russia
- Department of Chemistry and Chemical Engineering, Sevastopol State University (SSU), Universitetskaya Str., 33, 299053 Sevastopol, Russia
| | - Ivan G. Tananaev
- Radiochemistry Laboratory, Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences (GEOKHI RAS), Kosygin St., 19, 119991 Moscow, Russia
- Department of Chemistry and Chemical Engineering, Sevastopol State University (SSU), Universitetskaya Str., 33, 299053 Sevastopol, Russia
- Department of Nuclear Technology, Far Eastern Federal University, Sukhanov Str., 8, 690091 Vladivostok, Russia
| |
Collapse
|
22
|
Voitko KV, Goshovska YV, Demianenko EM, Sementsov YI, Zhuravskyi SV, Mys LA, Korkach YP, Kolev H, Sagach VF. Graphene oxide nanoflackes prevent reperfussion injury of Langerdorff isolated rat heart providing antioxidative activity in situ. Free Radic Res 2022; 56:328-341. [PMID: 35769030 DOI: 10.1080/10715762.2022.2096450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Carbon materials possess powerful antioxidant activity that might be promising for the development of new generation treatment of cardiovascular diseases, ischemic conditions, and reperfusion injury. The present study aimed to characterize the structure of nanosized graphene oxide (GrO) sample and evaluate the antioxidant efficacy of GrO in situ models of oxidative stress widely used in pre-clinical studies. The structure and surface chemistry of the initial samples were analyzed via LDS, RAMAN, LDI, TPD-MS, and FTIR methods. The GrO showed a strong ability to scavenge DPPH, hydroxyl, and superoxide anion free radicals and have a total antioxidant capacity. The DFT quantum-chemical calculation demonstrated the radical scavenging effect of GrO proceeding due to the physical adsorption of the free radical on the surface. For evaluation of the antioxidant effect of GrO in situ, we used the model of ischemia-reperfusion (I/R) of Langendorff isolated rat heart. We revealed that intravenous pretreatment of Wistar male rats with GrO significantly increased resistance of myocardium to I/R, improved restoration of heart function, prevented non-effective oxygen utilization, and I/R induced reactive oxygen species production in cardiac tissue. Thus, our data demonstrate the perspective of further use of GrO for the development of antiischemic therapy.
Collapse
Affiliation(s)
- Kateryna V Voitko
- Department of Physico-chemistry of Carbon Materials;Chuiko Institute of Surface Chemistry, NAS of Ukraine; 17 General Naumov Str.,Kyiv 03164, Ukraine
| | - Yulia V Goshovska
- Department of Blood Circulation, Bogomoletz Institute of Physiology, NASof Ukraine, 4 Bogomolets str., 01024, Kyiv, Ukraine
| | - Eugeniy M Demianenko
- Department of Quantum Chemistry and Chemical Physics of Nanosystems;Chuiko Institute of Surface Chemistry, NAS of Ukraine, 17 General Naumov Str., Kyiv 03164, Ukraine
| | - Yury I Sementsov
- Department of Physico-chemistry of Carbon Materials;Chuiko Institute of Surface Chemistry, NAS of Ukraine; 17 General Naumov Str.,Kyiv 03164, Ukraine
| | - Sergey V Zhuravskyi
- Department of Physico-chemistry of Carbon Materials;Chuiko Institute of Surface Chemistry, NAS of Ukraine; 17 General Naumov Str.,Kyiv 03164, Ukraine
| | - Lida A Mys
- Department of Blood Circulation, Bogomoletz Institute of Physiology, NASof Ukraine, 4 Bogomolets str., 01024, Kyiv, Ukraine
| | - Yulia P Korkach
- Department of Blood Circulation, Bogomoletz Institute of Physiology, NASof Ukraine, 4 Bogomolets str., 01024, Kyiv, Ukraine
| | - Hristo Kolev
- Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bldg 11, 1113 Sofia, Bulgaria
| | - Vadym F Sagach
- Department of Blood Circulation, Bogomoletz Institute of Physiology, NASof Ukraine, 4 Bogomolets str., 01024, Kyiv, Ukraine
| |
Collapse
|
23
|
Alinejad AH, Kakavand T, Aboudzadeh Rovais MR, Kakaei S. Study of the 199Au nanoparticles production parameters via irradiation of platinum target by using thermal neutrons. Appl Radiat Isot 2022; 184:110187. [PMID: 35339808 DOI: 10.1016/j.apradiso.2022.110187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/09/2022] [Accepted: 03/04/2022] [Indexed: 11/25/2022]
Abstract
In this study, the production parameters of 199Au nanoparticles (199AuNPs) have been investigated by a two-part study. The first part is about investigating the indirect method of producing non-carrier-added (NCA) 199Au radionuclide. MCNPX-2.6, TALYS-1.9, and ALICE/ASH-0.1 codes were applied as the theoretical approach to simulate the core of Tehran research reactor (TRR) for determining the activity of 199Au, specifying the production yield of 199Au, and calculating the excitation function of P198t(n,γ)P199t→A199u reaction. As the corresponding experimental approach, two 11 mg and 15.5 mg samples of enriched 198Pt metal powder were irradiated by thermal neutrons for 21 h and 10 min. The liquid-liquid extraction (LLX) technique has been used with a different solvent for each sample. LLX using ethyl acetate and LLX using Di-(2-Ethylhexyl) phosphoric acid (HDEHP) were applied for the 15.5 mg and the 11 mg samples respectively. The chemical yield of 199Au was calculated more than %99 for the 15.5 mg sample, and more than %80 for the 11 mg sample. The second part is about synthesizing 199AuNPs in an average size of 50 nm by using Turkevich method.
Collapse
Affiliation(s)
| | - Tayeb Kakavand
- Department of Physics, Imam Khomeini International University, Qazvin, Iran
| | | | - Saeed Kakaei
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| |
Collapse
|
24
|
Deng B, Ma B, Ma Y, Cao P, Leng X, Huang P, Zhao Y, Ji T, Lu X, Liu L. Doxorubicin and CpG loaded liposomal spherical nucleic acid for enhanced Cancer treatment. J Nanobiotechnology 2022; 20:140. [PMID: 35303868 PMCID: PMC8932194 DOI: 10.1186/s12951-022-01353-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/04/2022] [Indexed: 01/01/2023] Open
Abstract
Chemotherapeutics that can trigger immunogenic cell death (ICD) and release tumor-specific antigens are effective on treating a variety of cancers. The codelivery of chemotherapeutics with adjuvants is a promising strategy to achieve synergistic therapeutic effect. However, low drug loading and complicated preparation of current delivery systems lead to carrier-associated toxicity and immunogenicity. Herein, we developed a facile approach to construct liposomal spherical nucleic acids (SNA) by the self-assembly of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE)-doxorubicin conjugate and DOPE-matrix metalloproteinases-9 (MMP-9) responsive peptide-CpG conjugate (DOPE-MMP-CpG). Liposomal SNAs efficiently co-delivered DOX and CpG into tumors and released the two drugs upon biological stimuli of MMP-9 enzyme in tumor microenvironment (TME) and high concentration of endogenous glutathione in tumor cells. We demonstrated that liposomal SNA enhanced activation of dendritic cells (DCs), promoted expansion of CD8+ and CD4+ T cells in both tumors and spleen, inhibited tumor growth, and extended animal survival. This work provided a simple strategy of delivering chemotherapeutics and adjuvants to tumors with synergistic therapeutic effect and reduced side effect.
Collapse
Affiliation(s)
- Bo Deng
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Bing Ma
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Yingying Ma
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Pei Cao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xigang Leng
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Pengyu Huang
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Yuanyuan Zhao
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, No. 2, 1st North Street, Zhongguancun, Beijing, 100190, People's Republic of China
| | - Tianjiao Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xueguang Lu
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, No. 2, 1st North Street, Zhongguancun, Beijing, 100190, People's Republic of China.
| | - Lanxia Liu
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| |
Collapse
|
25
|
Green nanotechnology—An innovative pathway towards biocompatible and medically relevant gold nanoparticles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Ji H, Wang X, Wang P, Gong Y, Wang Y, Liu C, Ji G, Wang X, Wang M. Lanthanide-based metal-organic frameworks solidified by gelatin-methacryloyl hydrogels for improving the accuracy of localization and excision of small pulmonary nodules. J Nanobiotechnology 2022; 20:60. [PMID: 35109862 PMCID: PMC8808773 DOI: 10.1186/s12951-022-01263-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/14/2022] [Indexed: 12/19/2022] Open
Abstract
The localization of invisible and impalpable small pulmonary nodules has become an important concern during surgery, since current widely used techniques for localization have a number of limitations, such as invasive features of hookwires and microcoils, and rapid diffusion after injection of indocyanine green (ICG). Lanthanide-based metal–organic frameworks (MOFs) have been proven as potential fluorescent agents because of their prominent luminescent characteristics, including large Stokes shifts, high quantum yields, long decay lifetimes, and undisturbed emissive energies. In addition, lanthanides, such as Eu, can efficiently absorb X-rays for CT imaging. In this study, we synthesized Eu-UiO-67-bpy (UiO = University of Oslo, bpy = 2,2'-bipyridyl) as a fluorescent dye with a gelatin-methacryloyl (GelMA) hydrogel as a liquid carrier. The prepared complex exhibits constant fluorescence emission owing to the luminescent characteristics of Eu and the stable structure of UiO-67-bpy with restricted fluorescence diffusion attributed to the photocured GelMA. Furthermore, the hydrogel provides stiffness to make the injection site tactile and improve the accuracy of localization and excision. Finally, our complex enables fluorescence-CT dual-modal imaging of the localization site. ![]()
Collapse
Affiliation(s)
- Haoran Ji
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiaofeng Wang
- Excellent Science and Technology Innovation Group of Jiangsu Province, College of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Pei Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yan Gong
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yun Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chang Liu
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Guangyu Ji
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Xiansong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Mingsong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
27
|
Ebrahimi M, Asadi M, Akhavan O. Graphene-based Nanomaterials in Fighting the Most Challenging Viruses and Immunogenic Disorders. ACS Biomater Sci Eng 2021; 8:54-81. [PMID: 34967216 DOI: 10.1021/acsbiomaterials.1c01184] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Viral diseases have long been among the biggest challenges for healthcare systems around the world. The recent Coronavirus Disease 2019 (COVID-19) pandemic is an example of how complicated the situation can get if we are not prepared to combat a viral outbreak in time, which brings up the need for quick and affordable biosensing platforms and vast knowledge of potential antiviral effects and drug/gene delivery opportunities. The same challenges have also existed for nonviral immunogenic disorders. Nanomedicine is considered a novel candidate for effectively overcoming these worldwide challenges. Among the versatile nanomaterials commonly used in biomedical applications, graphene has recently earned much attention thanks to its special and inspiring physicochemical properties, such as its large surface area, efficient thermal/electrical properties, carbon-based chemical purity with controllable biocompatibility, easy functionalization, capability of single-molecule detection, anticancer characteristics, 3D template feature in tissue engineering, and, in particular, antibacterial/antiviral activities. In this Review, the most important and challenging viruses of our era, such as human immunodeficiency virus, Ebola, SARS-CoV-2, norovirus, and hepatitis virus, and immunogenic disorders, such as asthma, Alzheimer's disease, and Parkinson's disease, in which graphene-based nanomaterials can effectively take part in the prevention, detection, treatment, medication, and health effect issues, have been covered and discussed.
Collapse
Affiliation(s)
- Mahsa Ebrahimi
- Department of Physics, Sharif University of Technology, 11155-9161 Tehran, Islamic Republic of Iran
| | - Mohamad Asadi
- Department of Electrical Engineering, Sharif University of Technology, 11155-4363 Tehran, Islamic Republic of Iran
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, 11155-9161 Tehran, Islamic Republic of Iran
| |
Collapse
|
28
|
Chen Q, Zhang L, Li L, Tan M, Liu W, Liu S, Xie Z, Zhang W, Wang Z, Cao Y, Shang T, Ran H. Cancer cell membrane-coated nanoparticles for bimodal imaging-guided photothermal therapy and docetaxel-enhanced immunotherapy against cancer. J Nanobiotechnology 2021; 19:449. [PMID: 34952587 PMCID: PMC8710014 DOI: 10.1186/s12951-021-01202-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mono-therapeutic modality has limitations in combating metastatic lesions with complications. Although emerging immunotherapy exhibits preliminary success, solid tumors are usually immunosuppressive, leading to ineffective antitumor immune responses and immunotherapeutic resistance. The rational combination of several therapeutic modalities may potentially become a new therapeutic strategy to effectively combat cancer. RESULTS Poly lactic-co-glycolic acid (PLGA, 50 mg) nanospheres were constructed with photothermal transduction agents (PTAs)-Prussian blue (PB, 2.98 mg) encapsulated in the core and chemotherapeutic docetaxel (DTX, 4.18 mg)/ immune adjuvant-imiquimod (R837, 1.57 mg) loaded in the shell. Tumor cell membranes were further coated outside PLGA nanospheres (designated "M@P-PDR"), which acted as "Nano-targeted cells" to actively accumulate in tumor sites, and were guided/monitored by photoacoustic (PA)/ magnetic resonance (MR) imaging. Upon laser irradiation, photothermal effects were triggered. Combined with DTX, PTT induced in situ tumor eradication. Assisted by the immune adjuvant R837, the maturation rate of DCs increased by 4.34-fold compared with that of the control. In addition, DTX polarized M2-phenotype tumor-associated macrophages (TAMs) to M1-phenotype, relieving the immunosuppressive TME. The proportion of M2-TAMs decreased from 68.57% to 32.80%, and the proportion of M1-TAMs increased from 37.02% to 70.81%. Integrating the above processes, the infiltration of cytotoxic T lymphocytes (CTLs) increased from 17.33% (control) to 35.5%. Primary tumors and metastasis were significantly inhibited when treated with "Nano-targeted cells"-based cocktail therapy. CONCLUSION "Nano-targeted cells"-based therapeutic cocktail therapy is a promising approach to promote tumor regression and counter metastasis/recurrence.
Collapse
Affiliation(s)
- Qiaoqi Chen
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Liang Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China.,Department of Ultrasound, The First Affiliated Hospital, Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Lin Li
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Mixiao Tan
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Weiwei Liu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Shuling Liu
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, People's Republic of China
| | - Zhuoyan Xie
- Chongqing General Hospital, University of Chinese Academy of Sciences, No.114 Longshan Road, Yubei District, Chongqing, 401121, People's Republic of China
| | - Wei Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Tingting Shang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China.
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China.
| |
Collapse
|
29
|
Ferreira-Gonçalves T, Ferreira D, Ferreira HA, Reis CP. Nanogold-based materials in medicine: from their origins to their future. Nanomedicine (Lond) 2021; 16:2695-2723. [PMID: 34879741 DOI: 10.2217/nnm-2021-0265] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The properties of gold-based materials have been explored for centuries in several research fields, including medicine. Multiple published production methods for gold nanoparticles (AuNPs) have shown that the physicochemical and optical properties of AuNPs depend on the production method used. These different AuNP properties have allowed exploration of their usefulness in countless distinct biomedical applications over the last few years. Here we present an extensive overview of the most commonly used AuNP production methods, the resulting distinct properties of the AuNPs and the potential application of these AuNPs in diagnostic and therapeutic approaches in biomedicine.
Collapse
Affiliation(s)
- Tânia Ferreira-Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health Technologies (DFFTS), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa, 1649-003, Portugal
| | - David Ferreira
- Comprehensive Health Research Centre (CHRC), Departamento de Desporto e Saúde, Escola de Saúde e Desenvolvimento Humano, Universidade de Évora, Largo dos Colegiais, Évora, 7000, Portugal
| | - Hugo A Ferreira
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, 1749-016, Portugal
| | - Catarina P Reis
- Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health Technologies (DFFTS), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa, 1649-003, Portugal.,Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, 1749-016, Portugal
| |
Collapse
|
30
|
Zacouteguy AMB, Limberger GM, de Oliveira PSC, da Fonseca DB, Bruch GE, Barros DM. The adverse effects of injected functionalized multi-walled carbon nanotube (f-MWCNT) on in vivo neurosecretory brain cells of Jamaican field cricket, Gryllus assimilis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:66968-66977. [PMID: 34244942 DOI: 10.1007/s11356-021-15308-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Carbon nanotubes (CNTs) have been increasingly more prevalent due to their use in product technology owing to their exceptional electrical and thermal conductivity and tensile strength because of their nanostructure and strength of the bonds among carbon atoms. The potential increase of CNTs in the environment is a concern, and studies to assess the toxic effects of these nanomaterials (NMs) are needed. However, so far, most of the studies are focused on aquatic species and much less is understood about the effects of NM in terrestrial organisms. This investigation used a functionalized multi-walled carbon nanotube (f-MWCNT) and the Jamaican cricket Gryllus assimilis to assess the effects of this NM. Cricket nymphs were injected with f-MWCNT suspension-at three different concentrations. The insecticide Fipronil was used as a positive control. Survival was monitored, and histological analysis was made in the brains. Pyknotic cells were quantified in two brain regions, a neurosecretory called Pars intercerebralis (PI), and an associative region called mushroom body (MB). No mortality was observed in any f-MWCNT concentration tested. A significant increase in pyknotic cells was observed as sub-lethal effect for the intermediate concentration of f-MWCNT, at PI, while any significant change was observed at the Kenyon cells of the MB. These results are discussed in the context of agglomeration and dispersion of the f-MWCNT at different concentrations, and availability of the f-MWCNT on the circulatory system, as well as the natural decay of pyknotic cells with time and different patterns of adult cricket neurogenesis. Our results showed that f-MWCNT had negative effects in the neurosecretory region of the brain.
Collapse
Affiliation(s)
- Aline Maciel Bueno Zacouteguy
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, RS, 96203-001, Brazil
| | - Guilherme Martins Limberger
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, RS, 96203-001, Brazil
| | | | | | - Gisele Eva Bruch
- Departamento de Física/ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniela Martí Barros
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, RS, 96203-001, Brazil.
| |
Collapse
|
31
|
Gallium-68 labeled Gd-CdTe quantum dots: a novel nuclear imaging agent for detection of fibrosarcoma tumor. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-08058-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Afshari R, Akhavan O, Hamblin MR, Varma RS. Review of Oxygenation with Nanobubbles: Possible Treatment for Hypoxic COVID-19 Patients. ACS APPLIED NANO MATERIALS 2021; 4:11386-11412. [PMID: 37556289 PMCID: PMC8565459 DOI: 10.1021/acsanm.1c01907] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/12/2021] [Indexed: 05/05/2023]
Abstract
The coronavirus disease (COVID-19) pandemic, which has spread around the world, caused the death of many affected patients, partly because of the lack of oxygen arising from impaired respiration or blood circulation. Thus, maintaining an appropriate level of oxygen in the patients' blood by devising alternatives to ventilator systems is a top priority goal for clinicians. The present review highlights the ever-increasing application of nanobubbles (NBs), miniature gaseous vesicles, for the oxygenation of hypoxic patients. Oxygen-containing NBs can exert a range of beneficial physiologic and pharmacologic effects that include tissue oxygenation, as well as tissue repair mechanisms, antiinflammatory properties, and antibacterial activity. In this review, we provide a comprehensive survey of the application of oxygen-containing NBs, with a primary focus on the development of intravenous platforms. The multimodal functions of oxygen-carrying NBs, including antimicrobial, antiinflammatory, drug carrying, and the promotion of wound healing are discussed, including the benefits and challenges of using NBs as a treatment for patients with acute hypoxemic respiratory failure, particularly due to COVID-19.
Collapse
Affiliation(s)
- Ronak Afshari
- Department of Physics, Sharif University
of Technology, P.O. Box 11155-9161, Tehran 14588-89694,
Iran
| | - Omid Akhavan
- Department of Physics, Sharif University
of Technology, P.O. Box 11155-9161, Tehran 14588-89694,
Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science,
University of Johannesburg, Doornfontein 2028, South
Africa
| | - Rajender S. Varma
- Regional Center of Advanced Technologies and Materials,
Czech Advanced Technology and Research Institute, Palacky
University, Šlechtitelů 27, Olomouc 78371, Czech
Republic
| |
Collapse
|
33
|
Choiński J, Łyczko M. Prospects for the production of radioisotopes and radiobioconjugates for theranostics. BIO-ALGORITHMS AND MED-SYSTEMS 2021. [DOI: 10.1515/bams-2021-0136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
The development of diagnostic methods in medicine as well as the progress in the synthesis of biologically active compounds allows the use of selected radioisotopes for the simultaneous diagnosis and treatment of diseases, especially cancerous ones, in patients. This approach is called theranostic. This review article includes chemical and physical characterization of chosen theranostic radioisotopes and their compounds that are or could be useful in nuclear medicine.
Collapse
Affiliation(s)
| | - Monika Łyczko
- Institute of Nuclear Chemistry and Technology , Warsaw , Poland
| |
Collapse
|
34
|
Burdanova MG, Kharlamova MV, Kramberger C, Nikitin MP. Applications of Pristine and Functionalized Carbon Nanotubes, Graphene, and Graphene Nanoribbons in Biomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3020. [PMID: 34835783 PMCID: PMC8626004 DOI: 10.3390/nano11113020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022]
Abstract
This review is dedicated to a comprehensive description of the latest achievements in the chemical functionalization routes and applications of carbon nanomaterials (CNMs), such as carbon nanotubes, graphene, and graphene nanoribbons. The review starts from the description of noncovalent and covalent exohedral modification approaches, as well as an endohedral functionalization method. After that, the methods to improve the functionalities of CNMs are highlighted. These methods include the functionalization for improving the hydrophilicity, biocompatibility, blood circulation time and tumor accumulation, and the cellular uptake and selectivity. The main part of this review includes the description of the applications of functionalized CNMs in bioimaging, drug delivery, and biosensors. Then, the toxicity studies of CNMs are highlighted. Finally, the further directions of the development of the field are presented.
Collapse
Affiliation(s)
- Maria G. Burdanova
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institutskii Pereulok 9, 141700 Dolgoprudny, Russia;
- Department of Physics, Moscow Region State University, Very Voloshinoy Street, 24, 141014 Mytishi, Russia
| | - Marianna V. Kharlamova
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutskii Pereulok 9, 141700 Dolgoprudny, Russia;
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/BC/2, 1060 Vienna, Austria
| | - Christian Kramberger
- Faculty of Physics, University of Vienna, Strudlhofgasse 4, 1090 Vienna, Austria;
| | - Maxim P. Nikitin
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutskii Pereulok 9, 141700 Dolgoprudny, Russia;
| |
Collapse
|
35
|
Xue X, Yu J, Lu F, Jiang H, Wang X. Enhancement of Cancer Chemotherapeutic Efficacy via Bone-Targeted Drug Delivery Carrier in Bone Metastases. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:4455-4468. [PMID: 34737552 PMCID: PMC8560329 DOI: 10.2147/dddt.s333999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/14/2021] [Indexed: 12/25/2022]
Abstract
Purpose Bone metastases are common in malignant tumors, especially for the advanced cancers. Chemotherapy is an important treatment in clinic, but the application is limited due to the severe adverse reactions. We try to design bone-targeted drug delivery systems (DDS) for the delivery of chemotherapeutic drugs in bone metastatic carcinoma. Material and Methods We added alendronate (Aln) to metal organic framework (MOF) to synthesize a new bone-targeted DDS named Aln-MOF. Doxorubicin (DOX) as a classic anti-cancer drug was encapsulated. The material characterization, drug release and bone affinity were detected. In vitro experiment, the cell toxicity was detected by cck-8 test and cellular uptake were detected by laser scanning confocal microscope and flow cytometry. In vivo experiment, the pharmacokinetics of DDS in the blood was analyzed by fluorescence spectrophotometer and the biodistribution was detected by a multi-mode optical in vivo imaging system. The anti-tumor effects of MOFDOX and Aln-MOFDOX were evaluated by monitoring the tumor volume and weight during the animal experiment. In addition, the toxicity of DDS to different organs was determined by HE staining. Results Aln-MOF showed good stability, no cytotoxicity and better bone affinity than MOF. Both MOFDOX and Aln-MOFDOX could release DOX, and the release rate at pH = 5.5 was faster than the rate at pH = 7.4. The cellular uptake of Aln-MOF and MOF showed no difference. Aln-MOF had a long retention time in blood, which is beneficial for the enrichment of Aln-MOF in tumor sites. Aln-MOF mainly concentrated at bone metastases in mice. MOFDOX and Aln-MOFDOX could effectively delay tumor progression, and the effect of Aln-MOFDOX was more obvious (P < 0.05). Conclusion Our study confirmed that Aln-MOF has good stability, bone targeting and biosafety. Aln-MOFDOX could release DOX and effectively kill tumor cells of bone metastases. Aln-MOFDOX has a promising prospect in the treatment of bone metastasis.
Collapse
Affiliation(s)
- Xinghe Xue
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, People's Republic of China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325027, Zhejiang, People's Republic of China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011, Zhejiang, People's Republic of China
| | - Jiachen Yu
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, People's Republic of China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325027, Zhejiang, People's Republic of China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011, Zhejiang, People's Republic of China
| | - Fengfeng Lu
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, People's Republic of China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325027, Zhejiang, People's Republic of China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011, Zhejiang, People's Republic of China
| | - Hongyi Jiang
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, People's Republic of China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325027, Zhejiang, People's Republic of China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011, Zhejiang, People's Republic of China
| | - Xiangyang Wang
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, People's Republic of China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325027, Zhejiang, People's Republic of China
| |
Collapse
|
36
|
Behroozi Z, Rahimi B, Kookli K, Safari MS, Hamblin MR, Razmgir M, Janzadeh A, Ramezani F. Distribution of gold nanoparticles into the brain: a systematic review and meta-analysis. Nanotoxicology 2021; 15:1059-1072. [PMID: 34591733 DOI: 10.1080/17435390.2021.1966116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite the widespread use of gold nanoparticles (GNPs), there is no consensus on their distribution to different tissues and organs. The present systematic review and meta-analysis addresses the accumulation of GNPs in brain tissue. Extensive searches were conducted in electronic databases, Medline, Web of Science, EMBASE, and Scopus. Based on inclusion and exclusion criteria, primary and secondary screening was performed. The value of brain accumulation of gold nanoparticle (the percentage of the injection dose of GNPs/gram of brain tissue that applied as effect size (ES) in analysis) and the standard error of the mean were extracted from articles and analyzed by calculating the pooled ES and the pooled confidence interval (CI) using STATA software. p ≤ 0.05 was considered significant. Thirty-eight studies were included in the meta-analysis. The results showed that the amount of GNPs was 0.06% of the injection dose/gram of brain tissue (ES = 0.06, %95 CI: 0.06-0.06, p < 0.0001). Considering the time between injection and tissue harvest (follow-up time), after 1 h the GNPs in brain tissue was 0.288% of the injection dose/gram of tissue (ES = 0.29, 95% CI: 0.25-0.33, p < 0.0001), while after four weeks it was only 0.02% (ES = 0.02, 95% CI: 0.01-0.03, p < 0.0001) of the injection dose/gram of tissue. The amount of GNPs in brain tissue was higher for PEG-coated GNPs compared to uncoated GNPs, and it was 5.6 times higher for rod-shaped GNPs compared to spherical GNPs. The mean amount of GNPs in the brain tissues of animals bearing a tumor was 5.8 times higher than in normal animals.
Collapse
Affiliation(s)
- Zahra Behroozi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Rahimi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Keihan Kookli
- International campus, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad S Safari
- Veterinary Faculty of Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Maryam Razmgir
- Medical Librarianship and Information Science, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Janzadeh
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Ma X, Lee C, Zhang T, Cai J, Wang H, Jiang F, Wu Z, Xie J, Jiang G, Li Z. Image-guided selection of Gd@C-dots as sensitizers to improve radiotherapy of non-small cell lung cancer. J Nanobiotechnology 2021; 19:284. [PMID: 34551763 PMCID: PMC8456633 DOI: 10.1186/s12951-021-01018-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/29/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Recently, gadolinium-intercalated carbon dots (Gd@C-dots) have demonstrated potential advantages over traditional high-Z nanoparticles (HZNPs) as radiosensitizers due to their high stability, minimal metal leakage, and remarkable efficacy. RESULTS In this work, two Gd@C-dots formulations were fabricated which bore carboxylic acid (CA-Gd@C-dots) or amino group (pPD-Gd@C-dots), respectively, on the carbon shell. While it is critical to develop innovative nanomateirals for cancer therapy, determining their tumor accumulation and retention is equally important. Therefore, in vivo positron emission tomography (PET) was performed, which found that 64Cu-labeled pPD-Gd@C-dots demonstrated significantly improved tumor retention (up to 48 h post injection) compared with CA-Gd@C-dots. Indeed, cell uptake of 64Cu-pPD-Gd@C-dots reached close to 60% of total dose compared with ~ 5% of 64Cu-CA-Gd@C-dots. pPD-Gd@C-dots was therefore further evaluated as a new radiosensitizer for non-small cell lung cancer treatment. While single dose radiation plus intratumorally injected pPD-Gd@C-dots did lead to improved tumor suppression, the inhibition effect was further improved with two doses of radiation. The persistent retention of pPD-Gd@C-dots in tumor region eliminates the need of reinjecting radiosensitizer for the second radiation. CONCLUSIONS PET offers a simple and straightforward way to study nanoparticle retention in vivo, and the selected pPD-Gd@C-dots hold great potential as an effective radiosensitizer.
Collapse
Affiliation(s)
- Xiaofen Ma
- Department of Nuclear Medicine, Guangdong Second Provincial General Hospital, 466 Xingang Middle Road, Haizhu District, Guangdong Province, 510317, Guangzhou City, People's Republic of China
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Chaebin Lee
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA, 30602, USA
| | - Tao Zhang
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Jinghua Cai
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Hui Wang
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Fangchao Jiang
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA, 30602, USA
| | - Zhanhong Wu
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Jin Xie
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA, 30602, USA.
| | - Guihua Jiang
- Department of Nuclear Medicine, Guangdong Second Provincial General Hospital, 466 Xingang Middle Road, Haizhu District, Guangdong Province, 510317, Guangzhou City, People's Republic of China.
| | - Zibo Li
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
38
|
Bhardwaj SK, Mujawar M, Mishra YK, Hickman N, Chavali M, Kaushik A. Bio-inspired graphene-based nano-systems for biomedical applications. NANOTECHNOLOGY 2021; 32. [PMID: 34371491 DOI: 10.1088/1361-6528/ac1bdb] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 08/08/2021] [Indexed: 05/15/2023]
Abstract
The increasing demands of environmentally sustainable, affordable, and scalable materials have inspired researchers to explore greener nanosystems of unique properties which can enhance the performance of existing systems. Such nanosystems, extracted from nature, are state-of-art high-performance nanostructures due to intrinsic hierarchical micro/nanoscale architecture and generous interfacial interactions in natural resources. Among several, bio-inspired nanosystems graphene nanosystems have emerged as an essential nano-platform wherein a highly electroactive, scalable, functional, flexible, and adaptable to a living being is a key factor. Preliminary investigation project bio-inspired graphene nanosystems as a multi-functional nano-platform suitable for electronic devices, energy storage, sensors, and medical sciences application. However, a broad understanding of bio-inspired graphene nanosystems and their projection towards applied application is not well-explored yet. Considering this as a motivation, this mini-review highlights the following; the emergence of bio-inspired graphene nanosystems, over time development to make them more efficient, state-of-art technology, and potential applications, mainly biomedical including biosensors, drug delivery, imaging, and biomedical systems. The outcomes of this review will certainly serve as a guideline to motivate scholars to design and develop novel bio-inspired graphene nanosystems to develop greener, affordable, and scalable next-generation biomedical systems.
Collapse
Affiliation(s)
| | - Mubarak Mujawar
- Department of Electrical and Computer Engineering, College of Engineering and Computing, Florida International University, Miami, FL, 33174, United States of America
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark
| | - Nicoleta Hickman
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805, United States of America
| | - Murthy Chavali
- Office of the Dean (Research) & Department of Chemistry, Faculty of Sciences, Alliance University, Bengaluru 562 106, Karnataka, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805, United States of America
| |
Collapse
|
39
|
Jaymand M, Davatgaran Taghipour Y, Rezaei A, Derakhshankhah H, Foad Abazari M, Samadian H, Hamblin MR. Radiolabeled carbon-based nanostructures: New radiopharmaceuticals for cancer therapy? Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Guo Z, Chakraborty S, Monikh FA, Varsou DD, Chetwynd AJ, Afantitis A, Lynch I, Zhang P. Surface Functionalization of Graphene-Based Materials: Biological Behavior, Toxicology, and Safe-By-Design Aspects. Adv Biol (Weinh) 2021; 5:e2100637. [PMID: 34288601 DOI: 10.1002/adbi.202100637] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/11/2021] [Indexed: 01/08/2023]
Abstract
The increasing exploitation of graphene-based materials (GBMs) is driven by their unique properties and structures, which ignite the imagination of scientists and engineers. At the same time, the very properties that make them so useful for applications lead to growing concerns regarding their potential impacts on human health and the environment. Since GBMs are inert to reaction, various attempts of surface functionalization are made to make them reactive. Herein, surface functionalization of GBMs, including those intentionally designed for specific applications, as well as those unintentionally acquired (e.g., protein corona formation) from the environment and biota, are reviewed through the lenses of nanotoxicity and design of safe materials (safe-by-design). Uptake and toxicity of functionalized GBMs and the underlying mechanisms are discussed and linked with the surface functionalization. Computational tools that can predict the interaction of GBMs behavior with their toxicity are discussed. A concise framing of current knowledge and key features of GBMs to be controlled for safe and sustainable applications are provided for the community.
Collapse
Affiliation(s)
- Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Swaroop Chakraborty
- Department of Biological Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, 382355, India
| | - Fazel Abdolahpur Monikh
- Department of Environmental & Biological Sciences, University of Eastern Finland, P.O. Box 111, Joensuu, FI-80101, Finland
| | - Dimitra-Danai Varsou
- School of Chemical Engineering, National Technical University of Athens, Athens, 15780, Greece
| | - Andrew J Chetwynd
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Antreas Afantitis
- Department of ChemoInformatics, NovaMechanics Ltd., Nicosia, 1046, Cyprus
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
41
|
Li Y, Xiong J, Guo W, Jin Y, Miao W, Wang C, Zhang H, Hu Y, Huang H. Decomposable black phosphorus nano-assembly for controlled delivery of cisplatin and inhibition of breast cancer metastasis. J Control Release 2021; 335:59-74. [PMID: 33992704 DOI: 10.1016/j.jconrel.2021.05.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 11/29/2022]
Abstract
Novel platforms for cisplatin delivery with a controllable manner and combinable with other treatment modality to achieve synergistic antitumor effect and inhibition metastasis for treatment of triple negative breast cancer (TNBC) are highly desirable. Herein, we report a black phosphorus (BP) nanosheets-based nano-assembly which consists of cisplatin, BP, polydopamine (PDA) and hyaluronic acid (HA), cisplatin/BP/PDA-HA (CBPH), for controlled delivery of cisplatin and inhibition tumor growth as well as lung metastasis of TNBC. For constructing CBPH, the surface of BP was dual modified by PDA and HA, resulting in enhanced stability, tumor target ability and photothermal efficiency of BP. Cisplatin was released in response both to internal and external stimuli existed in tumor microenvironment, including low pH, hydrogen peroxide and NIR light, as accompanied by decomposition of BP. In vitro experiments demonstrated CBPH-treated 4 T1 cells showed elevated intracellular content of Pt and Pt-DNA adduct, which was further improved when exposure to NIR light, leading to potent antitumor effect in a synergistic pattern. Anti-metastasis studies in 2D monolayers and 3D organoids revealed that CBPH plus NIR light treatment exhibited significantly decreased migration, invasion and regrowth ability of 4 T1 cells. Furthermore, TNBC-bearing mice with systemic administrate of CBPH showed enhanced tumor accumulation of cisplatin and light-triggered inhibition of tumor growth at primary site and lung metastasis, with alleviated toxicity. But CBPH is yet to be optimized for realizing smart cisplatin delivery in response to acidic and redox stimuli in vivo. Collectively, our study demonstrates that this novel BP-based nano-assembly with controllable tumor delivery of cisplatin and metastasis inhibition of breast cancer expand the use of BP in biomedicine field and hold great promise for further development.
Collapse
Affiliation(s)
- Yuanyuan Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Jianming Xiong
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Wenjing Guo
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Yangye Jin
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Wenjun Miao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China.
| | - Cong Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Hongman Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yi Hu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China.
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
42
|
Rasekholghol A, Fazaeli Y, Moradi Dehaghi S, Ashtari P, Kardan M, Feizi S, Samiee Matin M. CdTe quantum dots on gold-198 nano particles: introducing a novel theranostic agent. RADIOCHIM ACTA 2020. [DOI: 10.1515/ract-2020-0047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The influence of coating a CdTe quantum dots (QDs) layer on the 198Au nanoparticles (NPs) in biodistribution of 198Au nanoparticles was investigated. The 198Au nanoparticles were prepared by irradiating the highly pure metallic gold in Tehran research nuclear reactor and subsequently 198Au-NPs were synthesized and subjected to surface modification with cysteamine and CdTe QDs to form an adduct. The prepared nanomaterials were characterized with X-ray diffraction, radio thin layer chromatography, transmission electron microscopy, and scanning electron microscopy. In-vivo biodistribution and tumor avidity studies were performed by intravenously injecting of cysteamine@198AuNPs: CdTe QDs nanocomposite into rats. The %ID/g (percent of the initial dose per gram tissue weight) in dissected organs and Fibrosarcoma tumor specimens was then measured. The hydrophilicity of the cysteamine@198AuNPs was increased by surface modification with CdTe QDs. Rapid excretion from body and high tumor uptake for cysteamine@198AuNPs: CdTe QDs revealed that this radiotracer could potentially be used in nuclear medicine as a theranostic agent.
Collapse
Affiliation(s)
- Ariam Rasekholghol
- Department of Chemistry , Islamic Azad University , Tehran North Branch , Tehran , Islamic Republic of Iran
| | - Yousef Fazaeli
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI) , Moazzen Blvd., Rajaeeshahr , P.O. Box 31485-498 , Karaj , Islamic Republic of Iran
| | - Shahram Moradi Dehaghi
- Department of Chemistry , Islamic Azad University , Tehran North Branch , Tehran , Islamic Republic of Iran
| | - Parviz Ashtari
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI) , Moazzen Blvd., Rajaeeshahr , P.O. Box 31485-498 , Karaj , Islamic Republic of Iran
| | - Mohammadreza Kardan
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI) , Moazzen Blvd., Rajaeeshahr , P.O. Box 31485-498 , Karaj , Islamic Republic of Iran
| | - Shahzad Feizi
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI) , Moazzen Blvd., Rajaeeshahr , P.O. Box 31485-498 , Karaj , Islamic Republic of Iran
| | - Milad Samiee Matin
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI) , Moazzen Blvd., Rajaeeshahr , P.O. Box 31485-498 , Karaj , Islamic Republic of Iran
| |
Collapse
|
43
|
Lin JY, Lai PX, Sun YC, Huang CC, Su CK. Biodistribution of Graphene Oxide Determined through Postadministration Labeling with DNA-Conjugated Gold Nanoparticles and ICPMS. Anal Chem 2020; 92:13997-14005. [PMID: 32856458 DOI: 10.1021/acs.analchem.0c02909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent research has revealed the use of graphene oxide (GO) and its derivatives as a potential biomaterial because of their attractive physicochemical characteristics and functional properties. However, if GO and related derivatives are to become useful materials for biomedical applications, it will be necessary to evaluate their biodistribution for health and safety considerations. To obtain a more accurate biodistribution for GO, we (i) developed a postadministration labeling strategy employing DNA-conjugated gold nanoparticles (DNA-AuNPs) to selectively label administered GO in Solvable-treated tissue samples and (ii) constructed an automatic sample pretreatment scheme (using a C18-packed minicolumn) to effectively separate the DNA-AuNP-labeled GO from the unbound DNA-AuNPs and the dissolved tissue matrices, thereby enabling ultrasensitive, interference-free quantification of GO through measurement (inductively coupled plasma mass spectrometry) of the Au signal intensities. The DNA-AuNPs can bind to GO in a concentration- and time-dependent manner. After optimizing the labeling conditions (DNA length, incubation pH, DNA-AuNP concentration, and incubation time) and the separation scheme (sample loading flow rate, rinsing volume, and eluent composition), we found that A20R20-AuNPs (R20: random DNA sequence including A, T, C, and G) had the strongest binding affinity for labeling of the administered GO (dissociation constant: 36.0 fM) and that the method's detection limit reached 9.3 ag L-1 with a calibration curve having a working range from 10-1 to 1010 fg L-1. Moreover, this approach revealed that the intravenously administered GO accumulated predominantly in the liver and spleen at 1 and 12 h post administration, with apparent discrepancies in the concentrations measured using pre- and postadministration labeling strategies.
Collapse
Affiliation(s)
- Jou-Yu Lin
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Pei-Xing Lai
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Yuh-Chang Sun
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan.,Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Cheng-Kuan Su
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
44
|
Wang F, Feng Y, He S, Wang L, Guo M, Cao Y, Wang Y, Yu Y. Nickel nanoparticles-loaded three-dimensional porous magnetic graphene-like material for non-enzymatic glucose sensing. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
The Basic Properties of Gold Nanoparticles and their Applications in Tumor Diagnosis and Treatment. Int J Mol Sci 2020; 21:ijms21072480. [PMID: 32260051 PMCID: PMC7178173 DOI: 10.3390/ijms21072480] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 12/14/2022] Open
Abstract
Gold nanoparticles (AuNPs) have been widely studied and applied in the field of tumor diagnosis and treatment because of their special fundamental properties. In order to make AuNPs more suitable for tumor diagnosis and treatment, their natural properties and the interrelationships between these properties should be systematically and profoundly understood. The natural properties of AuNPs were discussed from two aspects: physical and chemical. Among the physical properties of AuNPs, localized surface plasmon resonance (LSPR), radioactivity and high X-ray absorption coefficient are widely used in the diagnosis and treatment of tumors. As an advantage over many other nanoparticles in chemicals, AuNPs can form stable chemical bonds with S-and N-containing groups. This allows AuNPs to attach to a wide variety of organic ligands or polymers with a specific function. These surface modifications endow AuNPs with outstanding biocompatibility, targeting and drug delivery capabilities. In this review, we systematically summarized the physicochemical properties of AuNPs and their intrinsic relationships. Then the latest research advancements and the developments of basic research and clinical trials using these properties are summarized. Further, the difficulties to be overcome and possible solutions in the process from basic laboratory research to clinical application are discussed. Finally, the possibility of applying the results to clinical trials was estimated. We hope to provide a reference for peer researchers to better utilize the excellent physicochemical properties of gold nanoparticles in oncotherapy.
Collapse
|
46
|
Fazaeli Y, Zare H, Karimi S, Feizi S. 68Ga CdTe/CdS fluorescent quantum dots for detection of tumors: investigation on the effect of nanoparticle size on stability and in vivo pharmacokinetics. RADIOCHIM ACTA 2020. [DOI: 10.1515/ract-2019-3184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Background
Quantum dots (QDs)-based theranostics offer exciting new approaches to diagnose and therapy of cancer. To take advantage of the unique properties of these fluorescent QDs for different biomedical applications, their structures, size and/or surface chemistry need to be optimized, allowing their stability and functionalities to be tailored for different biomedical applications.
Methodology
Cadmium telluride/Cadmium sulfide QDs (CdTe/CdS QDs) were synthesized and their structure, size, photostability and functionalities as a bioprobe for detection of Fibrosarcoma tumors were studied and compared with Cadmium telluride (CdTe) QDs. Hence, CdTe/CdS QDs were labeled with 68Ga radionuclide for fast in vivo biological nuclear imaging. Using gamma paper chromatography (γ-PC), the physicochemical properties of the prepared labeled QDs were assessed. In vivo biodistribution and positron emission tomography (PET) imaging of the 68Ga@ CdTe/CdS QDs nanocrystals were investigated in Sprague Dawley® rats bearing Fibrosarcoma tumor.
Results
CdS shell on the surface of CdTe core increases the size and photostability against high energy radiations; therefore, CdTe/CdS QDs show prolonged fluorescence as compared to CdTe QDs.
Conclusion
Excellent accumulation in tumor was observed for core/shell quantum dots, but this study showed that small changes in the size of the QDs (+1 nm), after adding the CdS shell around CdTe core, greatly change their biodistribution (especially the liver uptake).
Collapse
Affiliation(s)
- Yousef Fazaeli
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI) , Moazzen Blvd., Rajaeeshahr, P.O. Box 31485-498 , Karaj , Iran
| | - Hakimeh Zare
- Department of Physics , Yazd University , Yazd , Iran
| | - Shokufeh Karimi
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI) , Moazzen Blvd., Rajaeeshahr, P.O. Box 31485-498 , Karaj , Iran
| | - Shahzad Feizi
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI) , Moazzen Blvd., Rajaeeshahr, P.O. Box 31485-498 , Karaj , Iran
| |
Collapse
|
47
|
Fang X, Guo H, Zhang W, Fang H, Li Q, Bai S, Zhang P. Reduced graphene oxide–GelMA–PCL hybrid nanofibers for peripheral nerve regeneration. J Mater Chem B 2020; 8:10593-10601. [DOI: 10.1039/d0tb00779j] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Graphene oxide is currently used in peripheral nerve engineering but has certain limitations, such as cytotoxicity and lack of electrical conductivity, both of which are crucial in regulating nerve-associated cell behaviors.
Collapse
Affiliation(s)
- Xingxing Fang
- Department of Orthopedics and Trauma
- Peking University People's Hospital
- Beijing
- China
- Department of Spine Surgery
| | - Haichang Guo
- Department of Materials Science and Engineering, CAPT/HEDPS
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Engineering
- Peking University
- Beijing
| | - Wei Zhang
- Department of Orthopedics and Trauma
- Peking University People's Hospital
- Beijing
- China
- National Center for Trauma Medicine
| | - Haoming Fang
- Department of Materials Science and Engineering, CAPT/HEDPS
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Engineering
- Peking University
- Beijing
| | - Qicheng Li
- Department of Orthopedics and Trauma
- Peking University People's Hospital
- Beijing
- China
- National Center for Trauma Medicine
| | - Shulin Bai
- Department of Materials Science and Engineering, CAPT/HEDPS
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Engineering
- Peking University
- Beijing
| | - Peixun Zhang
- Department of Orthopedics and Trauma
- Peking University People's Hospital
- Beijing
- China
- National Center for Trauma Medicine
| |
Collapse
|
48
|
Mehrabian MH, Feizi S, Moradi Dehaghi S. Cadmium telluride quantum dots/graphene oxide/poly vinyl acetate (CdTe QDs/GO/PVAc) nanocomposite: a novel sensor for real time gamma radiation detection. RADIOCHIM ACTA 2019. [DOI: 10.1515/ract-2019-3209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The design of organic/inorganic nanoparticles hybrids provides the great potential for the fabrication of γ-ray sensor systems. Herein, structural and dosimetric properties of the gamma irradiated poly vinyl acetate (PVAc) doped with cadmium telluride quantum dots (CdTe QDs) and graphene oxide (GO) nanoflakes have been investigated. Thioglycolic acid (TGA) capped water-soluble CdTe QDs and (GO) nanoflakes are synthesized and characterized. Then, CdTe QDs/GO/PVAc sensors were formed by post-depositing CdTe and GO over polymer matrix. The photophysical interactions between nanoparticles and organic polymer have been investigated using ohmic contact detectors with two gold coated electrodes. Real time dose rate information of the sensors such as sensitivity, repeatability, and the linearity of dose rate response were assessed. A wider photoelectric response range and wider gamma harvesting range were observed in the resultant hybrid gamma sensor at a standard bias voltage with respect to non-hybrid CdTe QDs/PVAc sensors.
Collapse
Affiliation(s)
| | - Shahzad Feizi
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI) , Moazzen Blvd., Rajaeeshahr, P.O. Box 31485-498 , Karaj , Iran
| | | |
Collapse
|
49
|
Darabdhara G, Das MR, Singh SP, Rengan AK, Szunerits S, Boukherroub R. Ag and Au nanoparticles/reduced graphene oxide composite materials: Synthesis and application in diagnostics and therapeutics. Adv Colloid Interface Sci 2019; 271:101991. [PMID: 31376639 DOI: 10.1016/j.cis.2019.101991] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/04/2019] [Accepted: 07/15/2019] [Indexed: 11/16/2022]
Abstract
The exceptional electrical, thermal, optical and mechanical properties have made two dimensional sp2 hybridized graphene a material of choice in both academic as well as industrial research. In the last few years, researchers have devoted their efforts towards the development of graphene/polymer, graphene/metal nanoparticle and graphene/ceramic nanocomposites. These materials display excellent mechanical, electrical, thermal, catalytic, magnetic and optical properties which cannot be obtained separately from the individual components. Fascinating physical and chemical properties are displayed by noble metal nanomaterials and thus they represent model building blocks for modifying nanoscale structures for diverse applications extending from catalysis, optics to nanomedicine. Insertion of noble metal (Au, Ag) nanoparticles (NPs) into chemically derived graphene is thus of primary importance to open new avenues for both materials in various fields where the specific properties of each material act synergistically to provide hybrid materials with exceptional performances. This review attempts to summarize the different synthetic procedures for the preparation of Ag and Au NPs/reduced graphene oxide (rGO) composites. The synthesis processes of metal NPs/rGO composites are categorised into in-situ and ex-situ techniques. The in-situ approach consists of simultaneous reduction of metal salts and GO to obtain metal NPs/rGO nanocomposite materials, while in the ex-situ process, the metal NPs of desired size and shape are first synthesized and then transferred onto the GO or rGO matrix. The application of the Ag NPs and Au NPs/rGO composite materials in the area of biomedical (drug delivery and photothermal therapy) and biosensing are the focus of this review article.
Collapse
Affiliation(s)
- Gitashree Darabdhara
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST, Jorhat, India
| | - Manash R Das
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST, Jorhat, India.
| | - Surya P Singh
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Aravind K Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India.
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000 Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000 Lille, France.
| |
Collapse
|
50
|
Tang W, Gao H, Ni D, Wang Q, Gu B, He X, Peng W. Bovine serum albumin-templated nanoplatform for magnetic resonance imaging-guided chemodynamic therapy. J Nanobiotechnology 2019; 17:68. [PMID: 31109332 PMCID: PMC6528315 DOI: 10.1186/s12951-019-0501-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Nanotechnology in medicine has greatly expanded the therapeutic strategy that may be explored for cancer treatment by exploiting the specific tumor microenvironment such as mild acidity, high glutathione (GSH) concentration and overproduced hydrogen peroxide (H2O2). Among them, tumor microenvironment responsive chemodynamic therapy (CDT) utilized the Fenton or Fenton-like reaction to produce excess hydroxyl radical (·OH) for the destruction of tumor cells. However, the produced ·OH is easily depleted by the excess GSH in tumors, which would undoubtedly impair the CDT's efficiency. To overcome this obstacle and enhance the treatment efficiency, we design the nanoplatforms for magnetic resonance imaging (MRI)-guided CDT. RESULTS In this study, we applied the bovine serum albumin (BSA)-templated CuS:Gd nanoparticles (CuS:Gd NPs) for MRI-guided CDT. The Cu2+ in the CuS:Gd NPs could be reduced to Cu+ by GSH in tumors, which further reacted with H2O2 and triggered Fenton-like reaction to simultaneously generate abundant ·OH and deplete GSH for tumor enhanced CDT. Besides, the Gd3+ in CuS:Gd NPs endowed them with excellent MRI capability, which could be used to locate the tumor site and monitor the therapy process preliminarily. CONCLUSIONS The designed nanoplatforms offer a major step forward in CDT for effective treatment of tumors guided by MRI.
Collapse
Affiliation(s)
- Wei Tang
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hongbo Gao
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Dalong Ni
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, WI, 53705, USA
| | - QiFeng Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Bingxin Gu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
| | - Xinhong He
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Weijun Peng
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|