1
|
Wang Y, Yang H, Zha X, Chen K, Lita NS, Qu S, Yang W, Yu W, Wang Z. Bioinspired Interlocked Nanostructured Piezoresistive Composite for Monitoring of Renal Pelvic Pressure. ACS APPLIED MATERIALS & INTERFACES 2025; 17:25903-25914. [PMID: 40249919 DOI: 10.1021/acsami.4c21636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
Inspired by the structure of Setaria viridis and based on guidance of molecular dynamics simulations, a hierarchical nanospike structure on micrometer-sized coaxial fibers has been designed at the molecular scale. A piezoresistive composite membrane of in situ-grown PDA-PPy on a TPU@PES coaxial fiber has been prepared, exhibiting good anticreep performance, high sensitivity, and fast response. The matrix material is designed as coaxial fibers, which consist of an inner PES core that provides anticreep mechanical support and an outer thermoplastic polyurethane shell that offers a large specific surface area and rich graft reaction sites. The nanospike semiconductor phase constructs an interlocking structured composite by forming a multihierarchical conducting network. The piezoresistive sensor constructed with this composite exhibits ultrahigh sensitivity (27.1 kPa-1) and quick response (23.1 ms response time and 26.3 ms recovery time). Furthermore, the chemical grafting process ensures a stable interface between the semiconductor phase and matrix material by creating covalent and hydrogen bonds. This interface not only prevents instability but also demonstrates excellent signal recovery performance and dynamic stability (10,000 cycles). Monitoring changes in renal pelvic pressure with a 3D-printed artificial renal pelvis was performed, confirming its practicality for medical monitoring.
Collapse
Affiliation(s)
- Yingzhao Wang
- Huanjiang Laboratory, Zhuji, Zhejiang province 311816, China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang province 310027, China
| | - Hua Yang
- Shanghai Academy of AI for Science, Shanghai 200232, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, School of aeronautics and astronautics and Center for X-Mechanics, Zhejiang University, Hangzhou, Zhejiang province 310027, China
| | - Xin Zha
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, School of aeronautics and astronautics and Center for X-Mechanics, Zhejiang University, Hangzhou, Zhejiang province 310027, China
| | - Kaifeng Chen
- Huanjiang Laboratory, Zhuji, Zhejiang province 311816, China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang province 310027, China
| | - Ndeutala Selma Lita
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang province 310027, China
| | - Shaoxing Qu
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, School of aeronautics and astronautics and Center for X-Mechanics, Zhejiang University, Hangzhou, Zhejiang province 310027, China
| | - Wei Yang
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, School of aeronautics and astronautics and Center for X-Mechanics, Zhejiang University, Hangzhou, Zhejiang province 310027, China
| | - Weiwen Yu
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang province 310014, China
| | - Zongrong Wang
- Huanjiang Laboratory, Zhuji, Zhejiang province 311816, China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang province 310027, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, School of aeronautics and astronautics and Center for X-Mechanics, Zhejiang University, Hangzhou, Zhejiang province 310027, China
| |
Collapse
|
2
|
Li Y, Li X, Zhu L, Liu T, Huang L. Chitosan-based biomaterials for bone tissue engineering. Int J Biol Macromol 2025; 304:140923. [PMID: 39947561 DOI: 10.1016/j.ijbiomac.2025.140923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/30/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
Common critical size bone defects encountered in clinical practice often result in inadequate bone regeneration,primarily due to the extent of damage surpassing the inherent capacity of the body for self-healing. Bone tissue engineering scaffolds possess the desirable characteristics of biomimetic bone structure, simulated extracellular matrix, optimal mechanical strength, and biological functionality, rendering them the preferred option for the treatment of bone defects. Chitosan demonstrates favorable biocompatibility, plasticity, and a range of biological activities, rendering it a highly appealing material. Chitosan and its derivatives have been found to exert an impact on bone repair through their ability to modulate macrophage polarization, angiogenesis, and the delicate equilibrium of bone remodeling. However, the efficacy of pure chitosan is constrained, necessitating its combination with other bioactive substances to achieve an optimal biomimetic scaffold that is compatible with the specific bone defect site. Chitosan is commonly utilized in the field of bone repair in four different application forms: rigid scaffold, hydrogel, membranes, and microspheres. In order to enhance comprehension of the benefits and constraints associated with chitosan, this review provides a comprehensive overview of the structure and biological properties of chitosan, the molecular mechanisms by which chitosan promotes osteogenic differentiation, the diverse methods of chitosan preparation for various applications, and the impacts of chitosan when loaded with bioactive substances.
Collapse
Affiliation(s)
- Youbin Li
- The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xudong Li
- The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Liwei Zhu
- The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Tengyue Liu
- The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Lanfeng Huang
- The Second Hospital of Jilin University, Changchun 130041, PR China.
| |
Collapse
|
3
|
Naskar A, Kilari S, Baranwal G, Kane J, Misra S. Nanoparticle-Based Drug Delivery for Vascular Applications. Bioengineering (Basel) 2024; 11:1222. [PMID: 39768040 PMCID: PMC11673055 DOI: 10.3390/bioengineering11121222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 01/05/2025] Open
Abstract
Nanoparticle (NP)-based drug delivery systems have received widespread attention due to the excellent physicochemical properties of nanomaterials. Different types of NPs such as lipid NPs, poly(lactic-co-glycolic) acid (PLGA) NPs, inorganic NPs (e.g., iron oxide and Au), carbon NPs (graphene and carbon nanodots), 2D nanomaterials, and biomimetic NPs have found favor as drug delivery vehicles. In this review, we discuss the different types of customized NPs for intravascular drug delivery, nanoparticle behaviors (margination, adhesion, and endothelium uptake) in blood vessels, and nanomaterial compatibility for successful drug delivery. Additionally, cell surface protein targets play an important role in targeted drug delivery, and various vascular drug delivery studies using nanoparticles conjugated to these proteins are reviewed. Finally, limitations, challenges, and potential solutions for translational research regarding NP-based vascular drug delivery are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (A.N.); (S.K.); (G.B.); (J.K.)
| |
Collapse
|
4
|
Shlapakova LE, Pryadko AS, Zharkova II, Volkov A, Kozadaeva M, Chernozem RV, Mukhortova YR, Chesnokova D, Zhuikov VA, Zeltser A, Dudun AA, Makhina T, Bonartseva GA, Voinova VV, Shaitan KV, Romanyuk K, Kholkin AL, Bonartsev AP, Surmeneva MA, Surmenev RA. Osteogenic Potential and Long-Term Enzymatic Biodegradation of PHB-based Scaffolds with Composite Magnetic Nanofillers in a Magnetic Field. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56555-56579. [PMID: 39377758 DOI: 10.1021/acsami.4c06835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Millions of people worldwide suffer from musculoskeletal damage, thus using the largest proportion of rehabilitation services. The limited self-regenerative capacity of bone and cartilage tissues necessitates the development of functional biomaterials. Magnetoactive materials are a promising solution due to clinical safety and deep tissue penetration of magnetic fields (MFs) without attenuation and tissue heating. Herein, electrospun microfibrous scaffolds were developed based on piezoelectric poly(3-hydroxybutyrate) (PHB) and composite magnetic nanofillers [magnetite with graphene oxide (GO) or reduced GO]. The scaffolds' morphology, structure, mechanical properties, surface potential, and piezoelectric response were systematically investigated. Furthermore, a complex mechanism of enzymatic biodegradation of these scaffolds is proposed that involves (i) a release of polymer crystallites, (ii) crystallization of the amorphous phase, and (iii) dissolution of the amorphous phase. Incorporation of Fe3O4, Fe3O4-GO, or Fe3O4-rGO accelerated the biodegradation of PHB scaffolds owing to pores on the surface of composite fibers and the enlarged content of polymer amorphous phase in the composite scaffolds. Six-month biodegradation caused a reduction in surface potential (1.5-fold) and in a vertical piezoresponse (3.5-fold) of the Fe3O4-GO scaffold because of a decrease in the PHB β-phase content. In vitro assays in the absence of an MF showed a significantly more pronounced mesenchymal stem cell proliferation on composite magnetic scaffolds compared to the neat scaffold, whereas in an MF (68 mT, 0.67 Hz), cell proliferation was not statistically significantly different when all the studied scaffolds were compared. The PHB/Fe3O4-GO scaffold was implanted into femur bone defects in rats, resulting in successful bone repair after nonperiodic magnetic stimulation (200 mT, 0.04 Hz) owing to a synergetic influence of increased surface roughness, the presence of hydrophilic groups near the surface, and magnetoelectric and magnetomechanical effects of the material.
Collapse
Affiliation(s)
- Lada E Shlapakova
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Artyom S Pryadko
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Irina I Zharkova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119234, Russia
| | - Alexey Volkov
- P. Lumumba Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Str., Moscow 117198, Russia
- Avtsyn Research Institute of Human Morphology at FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Str., Moscow 117418, Russia
| | - Maria Kozadaeva
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Roman V Chernozem
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Yulia R Mukhortova
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Dariana Chesnokova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119234, Russia
| | - Vsevolod A Zhuikov
- Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave 33, Bldg. 2, Moscow 119071, Russia
| | - Angelina Zeltser
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119234, Russia
| | - Andrey A Dudun
- Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave 33, Bldg. 2, Moscow 119071, Russia
| | - Tatiana Makhina
- Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave 33, Bldg. 2, Moscow 119071, Russia
| | - Garina A Bonartseva
- Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave 33, Bldg. 2, Moscow 119071, Russia
| | - Vera V Voinova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119234, Russia
| | - Konstantin V Shaitan
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119234, Russia
| | - Konstantin Romanyuk
- Department of Physics & CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - Andrei L Kholkin
- Department of Physics & CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - Anton P Bonartsev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119234, Russia
| | - Maria A Surmeneva
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Roman A Surmenev
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| |
Collapse
|
5
|
Memarian P, Bagher Z, Asghari S, Aleemardani M, Seifalian A. Emergence of graphene as a novel nanomaterial for cardiovascular applications. NANOSCALE 2024; 16:12793-12819. [PMID: 38919053 DOI: 10.1039/d4nr00018h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Cardiovascular diseases (CDs) are the foremost cause of death worldwide. Several promising therapeutic methods have been developed for this approach, including pharmacological, surgical intervention, cell therapy, or biomaterial implantation since heart tissue is incapable of regenerating and healing on its own. The best treatment for heart failure to date is heart transplantation and invasive surgical intervention, despite their invasiveness, donor limitations, and the possibility of being rejected by the patient's immune system. To address these challenges, research is being conducted on less invasive and efficient methods. Consequently, graphene-based materials (GBMs) have attracted a great deal of interest in the last decade because of their exceptional mechanical, electrical, chemical, antibacterial, and biocompatibility properties. An overview of GBMs' applications in the cardiovascular system has been presented in this article. Following a brief explanation of graphene and its derivatives' properties, the potential of GBMs to improve and restore cardiovascular system function by using them as cardiac tissue engineering, stents, vascular bypass grafts,and heart valve has been discussed.
Collapse
Affiliation(s)
- Paniz Memarian
- Nanotechnology and Regenerative Medicine Commercialization Centre, London BioScience Innovation Centre, London, UK.
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Zohreh Bagher
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sheida Asghari
- Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Mina Aleemardani
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, S3 7HQ, UK.
- Department of Translational Health Science, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK.
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre, London BioScience Innovation Centre, London, UK.
| |
Collapse
|
6
|
Ochola J, Hume C, Bezuidenhout D. Analysis of morphological properties of fibrous electrospun polyurethane grafts using image segmentation. J Mech Behav Biomed Mater 2024; 155:106573. [PMID: 38744117 DOI: 10.1016/j.jmbbm.2024.106573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/07/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The concentration of the polymer in the electrospinning solution greatly influences the mechanical behaviour of electrospun vascular grafts due to the influence on scaffold morphology. The scaffold morphology (fiber diameter, fiber orientation and inter-fiber voids) of the grafts plays an important role in their behaviour during use. Even though manual methods and complex algorithms have been used so far for characterisation of the morphology of electrospun architecture, they still have several drawbacks that limit their reliability. This study therefore uses conventional, statistical region merging and a hybrid image segmentation algorithm, to characterise the morphology of the electrospun vascular grafts. Consequently, vascular grafts were fabricated using an in-house electrospinning equipment using three polymer material concentration levels (14%, 16% and 18%) of medical-grade thermoplastic polyurethane (Pellethane®). The image thresholding and segementation algorithms were then used for segmentation of SEM images extracted from the polymer grafts and then morphological parameters were investigated in terms of fiber diameter, fiber orientation, and interfiber spaces (pore area and porosity). The results indicate that electrospun image segmentation was "best" when the hybrid algorithm and the conventional algorithm was used, which implied that fiber property values computed from the hybrid algorithm were closed to the manually measurements especially for the 14% PU with fiber diameter 2.2%, fiber orientation 7.6% and porosity at 1.9%. However there was higher disperity between the manual and hybrid algorithm. This suggests more fiber uniformity in the 14%PU potentially affected the accuracy of the hybrid algorithm.
Collapse
Affiliation(s)
- Jerry Ochola
- Department of Manufacturing, Industrial and Textile Engineering, School of Engineering, Moi University, Eldoret, Kenya; Biomedical Engineering Research Center, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa.
| | - Cameron Hume
- Cardiovascular Research Unit: Chris Barnard Division of Cardiothoracic Surgery, Observatory, South Africa
| | - Deon Bezuidenhout
- Cardiovascular Research Unit: Chris Barnard Division of Cardiothoracic Surgery, Observatory, South Africa
| |
Collapse
|
7
|
Hernandez-Sanchez D, Comtois-Bona M, Muñoz M, Ruel M, Suuronen EJ, Alarcon EI. Manufacturing and validation of small-diameter vascular grafts: A mini review. iScience 2024; 27:109845. [PMID: 38799581 PMCID: PMC11126982 DOI: 10.1016/j.isci.2024.109845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
The field of small-diameter vascular grafts remains a challenge for biomaterials scientists. While decades of research have brought us much closer to developing biomimetic materials for regenerating tissues and organs, the physiological challenges involved in manufacturing small conduits that can transport blood while not inducing an immune response or promoting blood clots continue to limit progress in this area. In this short review, we present some of the most recent methods and advancements made by researchers working in the field of small-diameter vascular grafts. We also discuss some of the most critical aspects biomaterials scientists should consider when developing lab-made small-diameter vascular grafts.
Collapse
Affiliation(s)
- Deyanira Hernandez-Sanchez
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Maxime Comtois-Bona
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Marcelo Muñoz
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Marc Ruel
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, 451 Smyth Road, Ottawa ON K1H8M5, Canada
| | - Erik J. Suuronen
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, 451 Smyth Road, Ottawa ON K1H8M5, Canada
| | - Emilio I. Alarcon
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H8M5, Canada
| |
Collapse
|
8
|
Song X, Man J, Qiu Y, Wang J, Liu J, Li R, Zhang Y, Li J, Li J, Chen Y. High-density zwitterionic polymer brushes exhibit robust lubrication properties and high antithrombotic efficacy in blood-contacting medical devices. Acta Biomater 2024; 178:111-123. [PMID: 38423351 DOI: 10.1016/j.actbio.2024.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
High-performance catheters are essential for interventional surgeries, requiring reliable anti-adhesive and lubricated surfaces. This article develops a strategy for constructing high-density sulfobetaine zwitterionic polymer brushes on the surface of catheters, utilizing dopamine and sodium alginate as the primary intermediate layers, where dopamine provides mussel-protein-like adhesion to anchor the polymer brushes to the catheter surface. Hydroxyl-rich sodium alginate increases the number of grafting sites and improves the grafting mass by more than 4 times. The developed high-density zwitterionic polymer brushes achieve long-lasting and effective lubricity (μ<0.0078) and are implanted in rabbits for four hours without bio-adhesion and thrombosis in the absence of anticoagulants such as heparin. Experiments and molecular dynamics simulations demonstrate that graft mass plays a decisive role in the lubricity and anti-adhesion of polymer brushes, and it is proposed to predict the anti-adhesion of polymer brushes by their lubricity to avoid costly and time-consuming bioassays during the development of amphoteric polymer brushes. A quantitative influence of hydration in the anti-adhesion properties of amphiphilic polymer brushes is also revealed. Thus, this study provides a new approach to safe, long-lasting lubrication and anticoagulant surface modification for medical devices in contact with blood. STATEMENT OF SIGNIFICANCE: High friction and bioadhesion on medical device surfaces can pose a significant risk to patients. In response, we have developed a safer, simpler, and more application-specific surface modification strategy that addresses both the lubrication and anti-bioadhesion needs of medical device surfaces. We used dopamine and sodium alginate as intermediate layers to drastically increase the grafting density of the zwitterionic brushes and enabled the modified surfaces to have an extremely low coefficient of friction (μ = 0.0078) and to remain non-bioadhesive for 4 hours in vivo. Furthermore, we used molecular dynamics simulations to gain insight into the mechanisms behind the superior anti-adhesion properties of the high-density polymer brushes. Our work contributes to the development and application of surface-modified coatings.
Collapse
Affiliation(s)
- Xinzhong Song
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China.
| | - Yinghua Qiu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jiali Wang
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Jianing Liu
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Ruijian Li
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Yongqi Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jianyong Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Yuguo Chen
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| |
Collapse
|
9
|
Motiee ES, Karbasi S, Bidram E, Sheikholeslam M. Investigation of physical, mechanical and biological properties of polyhydroxybutyrate-chitosan/graphene oxide nanocomposite scaffolds for bone tissue engineering applications. Int J Biol Macromol 2023; 247:125593. [PMID: 37406897 DOI: 10.1016/j.ijbiomac.2023.125593] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
Mechanical properties appropriate to native tissues, as an essential component in bone tissue engineering scaffolds, plays a significant role in tissue formation. In the current study, Poly-3 hydroxybutyrate-chitosan (PC) scaffolds reinforced with graphene oxide (GO) were made by the electrospinning method. The addition of GO led to a decrease in fibers diameter, an increase in thermal capacity and an improvement in the surface hydrophilicity of nanocomposite scaffolds. A significant increase in the mechanical properties of PC/GO (PCG) nanocomposite scaffolds was achieved due to the inherent strength of GO as well as its uniform dispersion throughout the polymeric matrix owing to hydrogen bonding and polar interactions. Also, lower biological degradation of the scaffolds (~30% in 100 days) due to the presence of GO provides essential mechanical support for bone regeneration. In addition, the bioactivity results showed that GO reinforcement significantly increases the biomineralization on the surface of the scaffolds. Evaluating cell adhesion and proliferation, as well as ALP activity of MG-63 cells on PC and PCG scaffolds indicated the positive effect of GO on scaffolds' biocompatibility. Overall, the improvement of physicochemical, mechanical, and biological properties of GO-reinforced scaffolds shows the potential of PCG nanocomposite scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Elham-Sadat Motiee
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeed Karbasi
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Elham Bidram
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadali Sheikholeslam
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Li MX, Wei QQ, Mo HL, Ren Y, Zhang W, Lu HJ, Joung YK. Challenges and advances in materials and fabrication technologies of small-diameter vascular grafts. Biomater Res 2023; 27:58. [PMID: 37291675 PMCID: PMC10251629 DOI: 10.1186/s40824-023-00399-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/21/2023] [Indexed: 06/10/2023] Open
Abstract
The arterial occlusive disease is one of the leading causes of cardiovascular diseases, often requiring revascularization. Lack of suitable small-diameter vascular grafts (SDVGs), infection, thrombosis, and intimal hyperplasia associated with synthetic vascular grafts lead to a low success rate of SDVGs (< 6 mm) transplantation in the clinical treatment of cardiovascular diseases. The development of fabrication technology along with vascular tissue engineering and regenerative medicine technology allows biological tissue-engineered vascular grafts to become living grafts, which can integrate, remodel, and repair the host vessels as well as respond to the surrounding mechanical and biochemical stimuli. Hence, they potentially alleviate the shortage of existing vascular grafts. This paper evaluates the current advanced fabrication technologies for SDVGs, including electrospinning, molding, 3D printing, decellularization, and so on. Various characteristics of synthetic polymers and surface modification methods are also introduced. In addition, it also provides interdisciplinary insights into the future of small-diameter prostheses and discusses vital factors and perspectives for developing such prostheses in clinical applications. We propose that the performance of SDVGs can be improved by integrating various technologies in the near future.
Collapse
Affiliation(s)
- Mei-Xian Li
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong, 226019, China
- School of Textile and Clothing, Nantong University, Nantong, 226019, China
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Qian-Qi Wei
- Department of Infectious Diseases, General Hospital of Tibet Military Command, Xizang, China
| | - Hui-Lin Mo
- School of Textile and Clothing, Nantong University, Nantong, 226019, China
| | - Yu Ren
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong, 226019, China
- School of Textile and Clothing, Nantong University, Nantong, 226019, China
| | - Wei Zhang
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong, 226019, China.
- School of Textile and Clothing, Nantong University, Nantong, 226019, China.
| | - Huan-Jun Lu
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, China.
| | - Yoon Ki Joung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
- Division of Bio-Medical Science and Technology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
11
|
Wang J, Dai D, Xie H, Li D, Xiong G, Zhang C. Biological Effects, Applications and Design Strategies of Medical Polyurethanes Modified by Nanomaterials. Int J Nanomedicine 2022; 17:6791-6819. [PMID: 36600880 PMCID: PMC9807071 DOI: 10.2147/ijn.s393207] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022] Open
Abstract
Polyurethane (PU) has wide application and popularity as medical apparatus due to its unique structural properties relationship. However, there are still some problems with medical PUs, such as a lack of functionality, insufficient long-term implantation safety, undesired stability, etc. With the rapid development of nanotechnology, the nanomodification of medical PU provides new solutions to these clinical problems. The introduction of nanomaterials could optimize the biocompatibility, antibacterial effect, mechanical strength, and degradation of PUs via blending or surface modification, therefore expanding the application range of medical PUs. This review summarizes the current applications of nano-modified medical PUs in diverse fields. Furthermore, the underlying mechanisms in efficiency optimization are analyzed in terms of the enhanced biological and mechanical properties critical for medical use. We also conclude the preparation schemes and related parameters of nano-modified medical PUs, with discussions about the limitations and prospects. This review indicates the current status of nano-modified medical PUs and contributes to inspiring novel and appropriate designing of PUs for desired clinical requirements.
Collapse
Affiliation(s)
- Jianrong Wang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Danni Dai
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Hanshu Xie
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Dan Li
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Gege Xiong
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Chao Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| |
Collapse
|
12
|
Kanjwal MA, Ghaferi AA. Graphene Incorporated Electrospun Nanofiber for Electrochemical Sensing and Biomedical Applications: A Critical Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:8661. [PMID: 36433257 PMCID: PMC9697565 DOI: 10.3390/s22228661] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The extraordinary material graphene arrived in the fields of engineering and science to instigate a material revolution in 2004. Graphene has promptly risen as the super star due to its outstanding properties. Graphene is an allotrope of carbon and is made up of sp2-bonded carbon atoms placed in a two-dimensional honeycomb lattice. Graphite consists of stacked layers of graphene. Due to the distinctive structural features as well as excellent physico-chemical and electrical conductivity, graphene allows remarkable improvement in the performance of electrospun nanofibers (NFs), which results in the enhancement of promising applications in NF-based sensor and biomedical technologies. Electrospinning is an easy, economical, and versatile technology depending on electrostatic repulsion between the surface charges to generate fibers from the extensive list of polymeric and ceramic materials with diameters down to a few nanometers. NFs have emerged as important and attractive platform with outstanding properties for biosensing and biomedical applications, because of their excellent functional features, that include high porosity, high surface area to volume ratio, high catalytic and charge transfer, much better electrical conductivity, controllable nanofiber mat configuration, biocompatibility, and bioresorbability. The inclusion of graphene nanomaterials (GNMs) into NFs is highly desirable. Pre-processing techniques and post-processing techniques to incorporate GNMs into electrospun polymer NFs are precisely discussed. The accomplishment and the utilization of NFs containing GNMs in the electrochemical biosensing pathway for the detection of a broad range biological analytes are discussed. Graphene oxide (GO) has great importance and potential in the biomedical field and can imitate the composition of the extracellular matrix. The oxygen-rich GO is hydrophilic in nature and easily disperses in water, and assists in cell growth, drug delivery, and antimicrobial properties of electrospun nanofiber matrices. NFs containing GO for tissue engineering, drug and gene delivery, wound healing applications, and medical equipment are discussed. NFs containing GO have importance in biomedical applications, which include engineered cardiac patches, instrument coatings, and triboelectric nanogenerators (TENGs) for motion sensing applications. This review deals with graphene-based nanomaterials (GNMs) such as GO incorporated electrospun polymeric NFs for biosensing and biomedical applications, that can bridge the gap between the laboratory facility and industry.
Collapse
|
13
|
Wang SX, Lu YB, Wang XX, Wang Y, Song YJ, Wang X, Nyamgerelt M. Graphene and graphene-based materials in axonal repair of spinal cord injury. Neural Regen Res 2022; 17:2117-2125. [PMID: 35259817 PMCID: PMC9083163 DOI: 10.4103/1673-5374.335822] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/08/2021] [Accepted: 09/16/2021] [Indexed: 02/05/2023] Open
Abstract
Graphene and graphene-based materials have the ability to induce stem cells to differentiate into neurons, which is necessary to overcome the current problems faced in the clinical treatment of spinal cord injury. This review summarizes the advantages of graphene and graphene-based materials (in particular, composite materials) in axonal repair after spinal cord injury. These materials have good histocompatibility, and mechanical and adsorption properties that can be targeted to improve the environment of axonal regeneration. They also have good conductivity, which allows them to make full use of electrical nerve signal stimulation in spinal cord tissue to promote axonal regeneration. Furthermore, they can be used as carriers of seed cells, trophic factors, and drugs in nerve tissue engineering scaffolds to provide a basis for constructing a local microenvironment after spinal cord injury. However, to achieve clinical adoption of graphene and graphene-based materials for the repair of spinal cord injury, further research is needed to reduce their toxicity.
Collapse
Affiliation(s)
- Shi-Xin Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Yu-Bao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu Province, China
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xue-Xi Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province, China
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, Gansu Province, China
| | - Yan Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Yu-Jun Song
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Xiao Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Munkhtuya Nyamgerelt
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| |
Collapse
|
14
|
Xu C, Hong Y. Rational design of biodegradable thermoplastic polyurethanes for tissue repair. Bioact Mater 2022; 15:250-271. [PMID: 35386346 PMCID: PMC8940769 DOI: 10.1016/j.bioactmat.2021.11.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/09/2021] [Accepted: 11/24/2021] [Indexed: 12/25/2022] Open
Abstract
As a type of elastomeric polymers, non-degradable polyurethanes (PUs) have a long history of being used in clinics, whereas biodegradable PUs have been developed in recent decades, primarily for tissue repair and regeneration. Biodegradable thermoplastic (linear) PUs are soft and elastic polymeric biomaterials with high mechanical strength, which mimics the mechanical properties of soft and elastic tissues. Therefore, biodegradable thermoplastic polyurethanes are promising scaffolding materials for soft and elastic tissue repair and regeneration. Generally, PUs are synthesized by linking three types of changeable blocks: diisocyanates, diols, and chain extenders. Alternating the combination of these three blocks can finely tailor the physio-chemical properties and generate new functional PUs. These PUs have excellent processing flexibilities and can be fabricated into three-dimensional (3D) constructs using conventional and/or advanced technologies, which is a great advantage compared with cross-linked thermoset elastomers. Additionally, they can be combined with biomolecules to incorporate desired bioactivities to broaden their biomedical applications. In this review, we comprehensively summarized the synthesis, structures, and properties of biodegradable thermoplastic PUs, and introduced their multiple applications in tissue repair and regeneration. A whole picture of their design and applications along with discussions and perspectives of future directions would provide theoretical and technical supports to inspire new PU development and novel applications.
Collapse
Affiliation(s)
- Cancan Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| |
Collapse
|
15
|
Xu Z, Ma Y, Dai H, Tan S, Han B. Advancements and Applications in the Composites of Silk Fibroin and Graphene-Based Materials. Polymers (Basel) 2022; 14:polym14153110. [PMID: 35956625 PMCID: PMC9370577 DOI: 10.3390/polym14153110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Silk fibroin and three kinds of graphene-based materials (graphene, graphene oxide, and reduced graphene oxide) have been widely investigated in biomedical fields. Recently, the hybrid composites of silk fibroin and graphene-based materials have attracted much attention owing to their combined advantages, i.e., presenting outstanding biocompatibility, mechanical properties, and excellent electrical conductivity. However, maintaining bio-toxicity and biodegradability at a proper level remains a challenge for other applications. This report describes the first attempt to summarize the hybrid composites’ preparation methods, properties, and applications to the best of our knowledge. We strongly believe that this review will open new doors for coming researchers.
Collapse
|
16
|
Wu T, Li B, Huang W, Zeng X, Shi Y, Lin Z, Lin C, Xu W, Xia H, Zhang T. Developing a novel calcium magnesium silicate/graphene oxide incorporated silk fibroin porous scaffold with enhanced osteogenesis, angiogenesis and inhibited osteoclastogenesis. Biomed Mater 2022; 17. [PMID: 35395653 DOI: 10.1088/1748-605x/ac65cc] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/08/2022] [Indexed: 11/11/2022]
Abstract
Recently, biofunctional ions (Mg2+, Si4+, etc.) and graphene derivatives are proved to be promising in stimulating bone formation. In this study, a novel inorganic/organic composite porous scaffold based on silk fibroin (SF), graphene oxide (GO), and calcium magnesium silicate (CMS) was developed for bone repair. The porous scaffolds obtained by lyophilization showed a little difference in pore structure while GO and CMS displayed a good interaction with SF matrix. The addition of CMS with good mineralization potential and sustainedly release ability of biofunctional ions (Ca2+, Mg2+ and Si4+) increased the strength of SF scaffolds a little and facilitated the osteogenic differentiation of bone mesenchymal stem cells (BMSCs) by upregulating bone formation-related genes (ALP, COL1, OC and Runx2). The further incorporation of GO in SF scaffolds enhanced the compressive strength and water retention, and also remarkably promoted the osteogenic differentiation of BMSCs. Besides, the angiogenesis of human umbilical vein endothelial cells was significantly promoted by CMS/GO/SF scaffold extract through the upregulation of angiogenesis genes (eNOs and bFGF). Moreover, the osteoclastic formation ability of RAW264.7 cells was suppressed by the released ions from CMS/GO/SF scaffold through the down-regulation of CAK, MMP9 and TRAP. The promoted osteogenesis, angiogenesis and inhibited osteoclastogenesis functions of CMS/GO/SF composite scaffold may enable it as a novel therapy for bone repair and regeneration.
Collapse
Affiliation(s)
- Tingting Wu
- Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Medicine and Health, Guangdong Academy of Sciences, No. 1307, Guangzhou Avenue Middle, Guangzhou, Guangdong, 510500, CHINA
| | - Binglin Li
- PLA General Hospital of Southern Theatre Command, No.111, Liuhua Road, Guangzhou, Guangdong, 510010, CHINA
| | - Wenhan Huang
- Department of Orthopaedics, Guangdong Academy of Medical Sciences, No.06, Zhongshan 2nd Road, Guangzhou, 510080, CHINA
| | - Xianli Zeng
- Southern Medical University, No.1023-1063, Shatai South Road, Baiyun District, Guangzhou, 510515, CHINA
| | - YiWan Shi
- Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510630, CHINA
| | - Zefeng Lin
- Department of Orthopedics,, PLA General Hospital of Southern Theatre Command, No.111, Liuhua road, Guangzhou, Guangdong, 510010, CHINA
| | - Chengxiong Lin
- Guangdong Academy of Sciences, No. 1307, Guangzhou Avenue Middle, Guangzhou, Guangdong, 510500, CHINA
| | - Weikang Xu
- Guangdong Academy of Sciences, No. 1307, Guangzhou Avenue Middle, Guangzhou, Guangdong, 510500, CHINA
| | - Hong Xia
- PLA General Hospital of Southern Theatre Command, No.111, Liuhua Road, Guangzhou, Guangdong, 510010, CHINA
| | - Tao Zhang
- PLA General Hospital of Southern Theatre Command, No.111, Liuhua Road, Guangzhou, 510010, CHINA
| |
Collapse
|
17
|
Tofighi Nasab S, Roodbari NH, Goodarzi V, Khonakdar HA, Mansoori K, Nourani MR. Novel electrospun conduit based on polyurethane/collagen enhanced by nanobioglass for peripheral nerve tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:801-822. [PMID: 34983332 DOI: 10.1080/09205063.2021.2021350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Peripheral nerve injury can significantly affect the daily life of individuals with impaired nerve function and permanent nerve deformity. One of the most common treatments is autograft transplantation. Tissue engineering is one of the efficient methods to regenerate injured nerves using scaffolds, cells, and growth factors. Conduits, which are produced by a variety of techniques, could be used as an alternative treatment for patients with damaged nerves. The electrospinning technique is one of the most important and widely used methods for generating nanofiber conduits from biocompatible polymers. In this study, using the electrospinning method, three different conduits, including polyurethane (PU), polyurethane/collagen (PU/C), and a new conduit based on polyurethane + collagen + nanobioglass (PU/C/NBG), were prepared. The characteristics of these three types of conduits were evaluated by SEM, XRD, and various experiments, including porosity, degradation, contact angle, DMTA, FTIR, MTT, and DAPI staining. The results of MTT and DAPI assays revealed the safety of conduits and proper cell attachment. Overall, the results obtained from various experiments showed that the novel PU/C/NBG conduit has better mechanical properties in terms of porosity, hydrophilicity, and biocompatibility in comparison with PU and PU/C conduits and could be a suitable candidate for peripheral nerve regeneration and axonal growth due to its repair potential.
Collapse
Affiliation(s)
- Somayeh Tofighi Nasab
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasim Hayati Roodbari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vahabodin Goodarzi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Kourosh Mansoori
- Neuromusculoskeletal Research Center Firozgar Hospital, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Reza Nourani
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Rodrigues ICP, Lopes ÉSN, Pereira KD, Huber SC, Jardini AL, Annichino-Bizzacchi JM, Luchessi AD, Gabriel LP. Extracellular matrix-derived and low-cost proteins to improve polyurethane-based scaffolds for vascular grafts. Sci Rep 2022; 12:5230. [PMID: 35347181 PMCID: PMC8960935 DOI: 10.1038/s41598-022-09040-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/04/2022] [Indexed: 11/22/2022] Open
Abstract
Vascular graft surgeries are often conducted in trauma cases, which has increased the demand for scaffolds with good biocompatibility profiles. Biodegradable scaffolds resembling the extracellular matrix (ECM) of blood vessels are promising vascular graft materials. In the present study, polyurethane (PU) was blended with ECM proteins collagen and elastin (Col-El) and gelatin (Gel) to produce fibrous scaffolds by using the rotary jet spinning (RJS) technique, and their effects on in vitro properties were evaluated. Morphological and structural characterization of the scaffolds was performed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Micrometric fibers with nanometric rugosity were obtained. Col-El and Gel reduced the mechanical strength and increased the hydrophilicity and degradation rates of PU. No platelet adhesion or activation was observed. The addition of proteins to the PU blend increased the viability, adhesion, and proliferation of human umbilical vein endothelial cells (HUVECs). Therefore, PU-Col-El and PU-Gel scaffolds are promising biomaterials for vascular graft applications.
Collapse
Affiliation(s)
- Isabella C P Rodrigues
- School of Applied Sciences, University of Campinas, Rua Pedro Zaccaria, 1300, Limeira, SP, 13484-350, Brazil.,School of Mechanical Engineering, University of Campinas, Rua Mendeley, 200, Campinas, SP, 13083-860, Brazil
| | - Éder S N Lopes
- School of Mechanical Engineering, University of Campinas, Rua Mendeley, 200, Campinas, SP, 13083-860, Brazil.
| | - Karina D Pereira
- School of Applied Sciences, University of Campinas, Rua Pedro Zaccaria, 1300, Limeira, SP, 13484-350, Brazil.,Institute of Biosciences, São Paulo State University, Rio Claro, SP, Brazil
| | - Stephany C Huber
- Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil
| | - André Luiz Jardini
- School of Chemical Engineering, University of Campinas, Campinas, SP, Brazil
| | | | - Augusto D Luchessi
- School of Applied Sciences, University of Campinas, Rua Pedro Zaccaria, 1300, Limeira, SP, 13484-350, Brazil.,Institute of Biosciences, São Paulo State University, Rio Claro, SP, Brazil
| | - Laís P Gabriel
- School of Applied Sciences, University of Campinas, Rua Pedro Zaccaria, 1300, Limeira, SP, 13484-350, Brazil.
| |
Collapse
|
19
|
Fathi-Karkan S, Banimohamad-Shotorbani B, Saghati S, Rahbarghazi R, Davaran S. A critical review of fibrous polyurethane-based vascular tissue engineering scaffolds. J Biol Eng 2022; 16:6. [PMID: 35331305 PMCID: PMC8951709 DOI: 10.1186/s13036-022-00286-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
Certain polymeric materials such as polyurethanes (PUs) are the most prevalent class of used biomaterials in regenerative medicine and have been widely explored as vascular substitutes in several animal models. It is thought that PU-based biomaterials possess suitable hemo-compatibility with comparable performance related to the normal blood vessels. Despite these advantages, the possibility of thrombus formation and restenosis limits their application as artificial functional vessels. In this regard, various surface modification approaches have been developed to enhance both hemo-compatibility and prolong patency. While critically reviewing the recent advances in vascular tissue engineering, mainly PU grafts, this paper summarizes the application of preferred cell sources to vascular regeneration, physicochemical properties, and some possible degradation mechanisms of PU to provide a more extensive perspective for future research.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Golgasht St, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Banimohamad-Shotorbani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soodabeh Davaran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Jin Q, Guangzhe J, Ju J, Xu L, Tang L, Fu Y, Hou R, Atala A, Zhao W. Bioprinting small-diameter vascular vessel with endothelium and smooth muscle by the approach of two-step crosslinking process. Biotechnol Bioeng 2022; 119:1673-1684. [PMID: 35244205 PMCID: PMC9314886 DOI: 10.1002/bit.28075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/20/2022] [Accepted: 02/26/2022] [Indexed: 11/30/2022]
Abstract
Three‐dimensional bioprinting shows great potential for autologous vascular grafts due to its simplicity, accuracy, and flexibility. The 6‐mm‐diameter vascular grafts are used in clinic. However, producing small‐diameter vascular grafts are still an enormous challenge. Normally, sacrificial hydrogels are used as temporary lumen support to mold tubular structure which will affect the stability of the fabricated structure. In this study, we have developed a new bioprinting approach to fabricating small‐diameter vessel using two‐step crosslinking process. The ¼ lumen wall of bioprinted gelatin mechacrylate (GelMA) flat structure was exposed to ultraviolet (UV) light briefly for gaining certain strength, while ¾ lumen wall showed as concave structure which remained uncrosslinked. Precrosslinked flat structure was merged towards the uncrosslinked concave structure. Two individual structures were combined tightly into an intact tubular structure after receiving more UV exposure time. Complicated tubular structures were constructed by these method. Notably, the GelMA‐based bioink loaded with smooth muscle cells are bioprinted to form the outer layer of the tubular structure and human umbilical vein endothelial cells were seeded onto the inner surface of the tubular structure. A bionic vascular vessel with dual layers was fabricated successfully, and kept good viability and functionality. This study may provide a novel idea for fabricating biomimetic vascular network or other more complicated organs.
Collapse
Affiliation(s)
- Qianheng Jin
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.,Department of Hand surgery, Ruihua affiliated hospital of Soochow University, Suzhou, China
| | - Jin Guangzhe
- Department of Hand surgery, Ruihua affiliated hospital of Soochow University, Suzhou, China
| | - Jihui Ju
- Department of Hand surgery, Ruihua affiliated hospital of Soochow University, Suzhou, China
| | - Lei Xu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.,Department of Hand surgery, Ruihua affiliated hospital of Soochow University, Suzhou, China
| | - Linfeng Tang
- Department of Hand surgery, Ruihua affiliated hospital of Soochow University, Suzhou, China
| | - Yi Fu
- Department of Human Anatomy, Histology and Embryology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Ruixing Hou
- Department of Hand surgery, Ruihua affiliated hospital of Soochow University, Suzhou, China
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Weixin Zhao
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
21
|
Curcumin and Silver Doping Enhance the Spinnability and Antibacterial Activity of Melt-Electrospun Polybutylene Succinate Fibers. NANOMATERIALS 2022; 12:nano12020283. [PMID: 35055300 PMCID: PMC8781972 DOI: 10.3390/nano12020283] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023]
Abstract
Melt electrospinning is a polymer processing technology for the manufacture of microfibers and nanofibers. Additives are required to reduce the melt viscosity and increase its conductivity in order to minimize the fiber diameter, and can also impart additional beneficial properties. We investigated the preparation of polybutylene succinate (PBS) microfibers incorporating different weight percentages of two multifunctional additives (the organic dye curcumin and inorganic silver nanoparticles) using a single-nozzle laboratory-scale device. We determined the influence of these additives on the polymer melt viscosity, electrical conductivity, degradation profile, thermal behavior, fiber diameter, and antibacterial activity. The formation of a Taylor cone followed by continuous fiber deposition was observed for compounds containing up to 3% (w/w) silver nanoparticles and up to 10% (w/w) curcumin, the latter achieving the minimum average fiber diameter of 12.57 µm. Both additives reduced the viscosity and increased the electrical conductivity of the PBS melt, and also retained their specific antibacterial properties when compounded and spun into fibers. This is the first report describing the effect of curcumin and silver nanoparticles on the properties of PBS fibers manufactured using a single-nozzle melt-electrospinning device. Our results provide the basis to develop environmentally benign antibacterial melt-electrospun PBS fibers for biomedical applications.
Collapse
|
22
|
Xue W, Du J, Li Q, Wang Y, Lu Y, Fan J, Yu S, Yang Y. Preparation, properties and application of graphene-based materials in tissue engineering scaffolds. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1121-1136. [PMID: 34751592 DOI: 10.1089/ten.teb.2021.0127] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tissue engineering has great application prospect as an effective treatment for tissue and organ injury, functional reduction or loss. Bioactive tissues are reconstructed and damaged organs are repaired by the three elements including cells, scaffold materials and growth factors. Graphene-based composites can be used as reinforcing auxiliary materials for tissue scaffold preparation because of their large specific surface area, and good mechanical support. Tissue engineering scaffolds with graphene-based composites have been widely studied. Part of research have focused on the application of graphene-based composites in single tissue engineering; The basic principles of graphene materials used in tissue engineering are summarized in some researches. Some studies emphasized the key problems and solutions urgently needed to be solved in the development of tissue engineering, and discussed their application prospect. Some related studies mainly focused on the conductivity of graphene, and discussed the application of electroactive scaffolds in tissue engineering. In this review, the composite materials for preparing tissue engineering scaffolds are briefly described, which emphasizes the preparation methods, biological properties and practical applications of graphene-based composite scaffolds. The synthetic techniques with stressing solvent casting, electrospinning and 3D printing are introduced in detail. The mechanical, cell-oriented and biocompatible properties of graphene-based composite scaffolds in tissue engineering are analyzed and summarized. Their applications in bone tissue engineering, nerve tissue engineering, cardiovascular tissue engineering and other tissue engineering are summarized systematically. In addition, this work also looks forward to the difficulties and challenges in the future research, providing some references for the follow-up research of graphene-based composites in tissue engineering scaffolds.
Collapse
Affiliation(s)
- Wenqiang Xue
- Shanxi Medical University, 74648, Taiyuan, Shanxi , China;
| | - Jinglei Du
- Second Hospital of Shanxi Medical University, 74761, Taiyuan, Shanxi , China;
| | - Qiang Li
- Second Hospital of Shanxi Medical University, 74761, Taiyuan, Shanxi , China;
| | - Yan Wang
- Shanxi Medical University, 74648, Taiyuan, Shanxi , China;
| | - Yemin Lu
- Shanxi Medical University, 74648, Taiyuan, Shanxi , China;
| | - Jiangbo Fan
- Shanxi Medical University, 74648, Taiyuan, Shanxi , China;
| | - Shiping Yu
- Second Hospital of Shanxi Medical University, 74761, 582 Wuyi Road, Taiyuan City, Shanxi Province, Taiyuan, China, 030001;
| | - Yongzhen Yang
- Taiyuan University of Technology, 47846, Taiyuan, Shanxi , China;
| |
Collapse
|
23
|
Aram E, Mehdipour-Ataei S. Carbon-based nanostructured composites for tissue engineering and drug delivery. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1785456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Elham Aram
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol, Iran
| | | |
Collapse
|
24
|
Shao W, Cui C, Xiong J, Wang L, Zhao X, Hou Y, Chang S, Sun N, Zhang Y, Gao Y, Ni Q, Liu F, He J. Small‐Diameter PLCL/PCL Nanofiber Grafted TSF Vascular Scaffolds with a Double‐Layer Structure for Vascular Tissue Engineering. MACROMOLECULAR MATERIALS AND ENGINEERING 2021; 306. [DOI: 10.1002/mame.202100462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 01/06/2025]
Abstract
AbstractSuccessful construction of small‐diameter double‐layer vascular scaffolds (SDVSs) whose inner diameters are less than 1.5 mm, especially those with multilayer mimic structures, remains a challenge in vascular tissue engineering. In this study, poly(L‐lactide‐co‐caprolactone) (PLCL)/poly(Ɛ‐caprolactone) (PCL)/tussah silk fibroin (TSF) SDVSs with a double‐layer structure are prepared by one‐step method based on friction twisting core‐spun electrospinning technology. The constructed PLCL/PCL SDVSs grafted TSF have an obvious double‐layer structure; tube wall thickness 524 ± 28 µm; and inner tube diameter 1390 ± 40 µm. Compared with traditional nanofiber vascular scaffolds (TS), the axial and radial tensile strengths of PLCL/PCL SDVSs grafted TSF increase by 86% and 34%, respectively. They also show good scaffold elastic recovery and burst pressure (BP) (8505 ± 875 mmHg). Compared with the PLCL/PCL SDVSs, the inner and outer layers of PLCL/PCL SDVSs grafted TSF show good hydrophilicity and protein adsorption performance. The in vitro cell viability results indicate that the inner and outer layers of PLCL/PCL SDVSs grafted TSF show enhanced proliferation and adhesion of vein endothelial cells (VECs) and smooth muscle cells (SMCs), respectively. Therefore, the successful preparation of PLCL/PCL SDVSs grafted TSF provides more possibilities for the clinical transplantation of small‐diameter vascular scaffolds.
Collapse
Affiliation(s)
- Weili Shao
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou 450007 China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province Zhengzhou 450007 China
| | - Chen Cui
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou 450007 China
| | - Junpeng Xiong
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou 450007 China
| | - Ling Wang
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou 450007 China
| | - Xu Zhao
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou 450007 China
| | - Yijun Hou
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou 450007 China
| | - Shuzhen Chang
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou 450007 China
| | - Ning Sun
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou 450007 China
| | - Yuting Zhang
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou 450007 China
| | - Yanfei Gao
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou 450007 China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province Zhengzhou 450007 China
| | - Qingqing Ni
- Faculty of Textile Science and Technology Shinshu University 3‐15‐1 Tokida Ueda 386‐8567 Japan
| | - Fan Liu
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou 450007 China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province Zhengzhou 450007 China
| | - Jianxin He
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou 450007 China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province Zhengzhou 450007 China
| |
Collapse
|
25
|
Anju, Yadav RS, Pötschke P, Pionteck J, Krause B, Kuřitka I, Vilcakova J, Skoda D, Urbánek P, Machovsky M, Masař M, Urbánek M, Jurca M, Kalina L, Havlica J. High-Performance, Lightweight, and Flexible Thermoplastic Polyurethane Nanocomposites with Zn 2+-Substituted CoFe 2O 4 Nanoparticles and Reduced Graphene Oxide as Shielding Materials against Electromagnetic Pollution. ACS OMEGA 2021; 6:28098-28118. [PMID: 34723009 PMCID: PMC8552366 DOI: 10.1021/acsomega.1c04192] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/30/2021] [Indexed: 03/08/2024]
Abstract
The development of flexible, lightweight, and thin high-performance electromagnetic interference shielding materials is urgently needed for the protection of humans, the environment, and electronic devices against electromagnetic radiation. To achieve this, the spinel ferrite nanoparticles CoFe2O4 (CZ1), Co0.67Zn0.33Fe2O4 (CZ2), and Co0.33Zn0.67Fe2O4 (CZ3) were prepared by the sonochemical synthesis method. Further, these prepared spinel ferrite nanoparticles and reduced graphene oxide (rGO) were embedded in a thermoplastic polyurethane (TPU) matrix. The maximum electromagnetic interference (EMI) total shielding effectiveness (SET) values in the frequency range 8.2-12.4 GHz of these nanocomposites with a thickness of only 0.8 mm were 48.3, 61.8, and 67.8 dB for CZ1-rGO-TPU, CZ2-rGO-TPU, and CZ3-rGO-TPU, respectively. The high-performance electromagnetic interference shielding characteristics of the CZ3-rGO-TPU nanocomposite stem from dipole and interfacial polarization, conduction loss, multiple scattering, eddy current effect, natural resonance, high attenuation constant, and impedance matching. The optimized CZ3-rGO-TPU nanocomposite can be a potential candidate as a lightweight, flexible, thin, and high-performance electromagnetic interference shielding material.
Collapse
Affiliation(s)
- Anju
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| | - Raghvendra Singh Yadav
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| | - Petra Pötschke
- Leibniz
Institute of Polymer Research Dresden (IPF Dresden), 01069 Dresden, Germany
| | - Jürgen Pionteck
- Leibniz
Institute of Polymer Research Dresden (IPF Dresden), 01069 Dresden, Germany
| | - Beate Krause
- Leibniz
Institute of Polymer Research Dresden (IPF Dresden), 01069 Dresden, Germany
| | - Ivo Kuřitka
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| | - Jarmila Vilcakova
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| | - David Skoda
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| | - Pavel Urbánek
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| | - Michal Machovsky
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| | - Milan Masař
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| | - Michal Urbánek
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| | - Marek Jurca
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| | - Lukas Kalina
- Materials
Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno, Czech
Republic
| | - Jaromir Havlica
- Materials
Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno, Czech
Republic
| |
Collapse
|
26
|
Endothelial cells performance on 3D electrospun PVA/graphene nanocomposite tubular scaffolds. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03340-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Pereira AT, Schneider KH, Henriques PC, Grasl C, Melo SF, Fernandes IP, Kiss H, Martins MCL, Bergmeister H, Gonçalves IC. Graphene Oxide Coating Improves the Mechanical and Biological Properties of Decellularized Umbilical Cord Arteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32662-32672. [PMID: 34240610 DOI: 10.1021/acsami.1c04028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The lack of small-diameter vascular grafts (inner diameter <5 mm) to substitute autologous grafts in arterial bypass surgeries has a massive impact on the prognosis and progression of cardiovascular diseases, the leading cause of death globally. Decellularized arteries from different sources have been proposed as an alternative, but their poor mechanical performance and high collagen exposure, which promotes platelet and bacteria adhesion, limit their successful application. In this study, these limitations were surpassed for decellularized umbilical cord arteries through the coating of their lumen with graphene oxide (GO). Placental and umbilical cord arteries were decellularized and perfused with a suspension of GO (C/O ratio 2:1) with ∼1.5 μm lateral size. A homogeneous GO coating that completely covered the collagen fibers was obtained for both arteries, with improvement of mechanical properties being achieved for umbilical cord decellularized arteries. GO coating increased the maximum force in 27%, the burst pressure in 29%, the strain in 25%, and the compliance in 10%, compared to umbilical cord decellularized arteries. The achieved theoretical burst pressure (1960 mmHg) and compliance (13.9%/100 mmHg) are similar to the human saphenous vein and mammary artery, respectively, which are used nowadays as the gold standard in coronary and peripheral artery bypass surgeries. Furthermore, and very importantly, coatings with GO did not compromise the endothelial cell adhesion but decreased platelet and bacteria adhesion to decellularized arteries, which will impact on the prevention of thrombosis and infection, until full re-endothetialization is achieved. Overall, our results reveal that GO coating has an effective role in the improvement of decellularized umbilical cord artery performance, which is a huge step toward their application as a small-diameter vascular graft.
Collapse
Affiliation(s)
- Andreia T Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Karl H Schneider
- Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute of Cardiovascular Research, 1090 Vienna, Austria
| | - Patrícia C Henriques
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Christian Grasl
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Sofia F Melo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Inês P Fernandes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Herbert Kiss
- Department of Obstetrics and Gynecology, Division of Obstetrics and Feto-Maternal Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - M Cristina L Martins
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Helga Bergmeister
- Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute of Cardiovascular Research, 1090 Vienna, Austria
| | - Inês C Gonçalves
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- FEUP-Faculdade de Engenharia da Universidade do Porto, 4200-465 Porto, Portugal
| |
Collapse
|
28
|
Ataee B, Khorasani MT, Karimi M, Daliri-Joupari M. Surface modification of polyurethane/HCNT nanocomposite with octavinyl polyhedral oligomeric silsesquioxane as a heart valve material. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1937160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Boshra Ataee
- Department of Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Majid Karimi
- Polymerization Engineering Department, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Morteza Daliri-Joupari
- Department of Animal, Avian and Marine Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
29
|
Tanaka T, Tanaka R, Ogawa Y, Takagi Y, Sata M, Asakura T. Evaluation of small-diameter silk vascular grafts implanted in dogs. JTCVS OPEN 2021; 6:148-156. [PMID: 36003556 PMCID: PMC9390453 DOI: 10.1016/j.xjon.2021.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 11/25/2022]
Abstract
Objectives Methods Results Conclusions
Collapse
|
30
|
Su Y, Toftdal MS, Le Friec A, Dong M, Han X, Chen M. 3D Electrospun Synthetic Extracellular Matrix for Tissue Regeneration. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yingchun Su
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
- Department of Biological and Chemical Engineering Aarhus University DK-8000 Aarhus C Denmark
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University DK-8000 Aarhus C Denmark
| | - Mette Steen Toftdal
- Department of Biological and Chemical Engineering Aarhus University DK-8000 Aarhus C Denmark
- Stem Cell Delivery and Pharmacology Novo Nordisk A/S DK-2760 Måløv Denmark
| | - Alice Le Friec
- Department of Biological and Chemical Engineering Aarhus University DK-8000 Aarhus C Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University DK-8000 Aarhus C Denmark
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Menglin Chen
- Department of Biological and Chemical Engineering Aarhus University DK-8000 Aarhus C Denmark
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University DK-8000 Aarhus C Denmark
| |
Collapse
|
31
|
Dou J, Li P, Zhao Y, Zhou L, Li X, Wang J, Huang N. Copper‐mediated polyurethane materials with enzyme‐like catalysis for biocompatibility improvement in blood environments. BIOSURFACE AND BIOTRIBOLOGY 2021. [DOI: 10.1049/bsb2.12009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Jiaxin Dou
- Key Lab of Advanced Technology for Materials of Education Ministry Southwest Jiaotong University Chengdu China
| | - Peichuang Li
- Key Lab of Advanced Technology for Materials of Education Ministry Southwest Jiaotong University Chengdu China
- Heze Branch Qilu University of Technology (Shandong Academy of Sciences) Biological Engineering Technology Innovation Center of Shandong Province Heze China
| | - Yuancong Zhao
- Key Lab of Advanced Technology for Materials of Education Ministry Southwest Jiaotong University Chengdu China
| | - Lei Zhou
- Key Lab of Advanced Technology for Materials of Education Ministry Southwest Jiaotong University Chengdu China
| | - Xin Li
- Key Lab of Advanced Technology for Materials of Education Ministry Southwest Jiaotong University Chengdu China
| | - Jin Wang
- Key Lab of Advanced Technology for Materials of Education Ministry Southwest Jiaotong University Chengdu China
| | - Nan Huang
- Key Lab of Advanced Technology for Materials of Education Ministry Southwest Jiaotong University Chengdu China
| |
Collapse
|
32
|
Biocompatibility and Angiogenic Effect of Chitosan/Graphene Oxide Hydrogel Scaffolds on EPCs. Stem Cells Int 2021; 2021:5594370. [PMID: 34113384 PMCID: PMC8154284 DOI: 10.1155/2021/5594370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/29/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022] Open
Abstract
Angiogenesis in the field of tissue engineering has attracted significant attention. Graphene oxide has become a promising nanomaterial in tissue engineering for its unique biochemical properties. Therefore, herein, a series of chitosan (CS)/graphene oxide (GO) hydrogel scaffolds were synthesized by crosslinking CS and GO at different concentrations (0.1, 0.5, and 1.0 wt.%) using genipin. Compared with the CS hydrogel scaffolds, the CS/GO hydrogel scaffolds have a better network structure and mechanical strength. Then, we used endothelial progenitor cells (EPCs) extracted from human umbilical cord blood and cocultured these EPCs with the as-prepared scaffolds. The scaffolds with 0.1 and 0.5 wt.%GO showed no considerable cytotoxicity, could promote the proliferation of EPCs and tube formation, and upregulated the expressions of CD34, VEGF, MMP9, and SDF-1 in EPCs compared to the case of the scaffold with 1.0 wt.%GO. This study shows that the addition of graphene oxide improves the structure of chitosan hydrogel and enhances the proliferation activity and angiogenic capacity of EPCs.
Collapse
|
33
|
Grant JJ, Pillai SC, Hehir S, McAfee M, Breen A. Biomedical Applications of Electrospun Graphene Oxide. ACS Biomater Sci Eng 2021; 7:1278-1301. [PMID: 33729744 DOI: 10.1021/acsbiomaterials.0c01663] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Graphene oxide (GO) has broad potential in the biomedical sector. The oxygen-abundant nature of GO means the material is hydrophilic and readily dispersible in water. GO has also been known to improve cell proliferation, drug loading, and antimicrobial properties of composites. Electrospun composites likewise have great potential for biomedical applications because they are generally biocompatible and bioresorbable, possess low immune rejection risk, and can mimic the structure of the extracellular matrix. In the current review, GO-containing electrospun composites for tissue engineering applications are described in detail. In addition, electrospun GO-containing materials for their use in drug and gene delivery, wound healing, and biomaterials/medical devices have been examined. Good biocompatibility and anionic-exchange properties of GO make it an ideal candidate for drug and gene delivery systems. Drug/gene delivery applications for electrospun GO composites are described with a number of examples. Various systems using electrospun GO-containing therapeutics have been compared for their potential uses in cancer therapy. Micro- to nanosized electrospun fibers for wound healing applications and antimicrobial applications are explained in detail. Applications of various GO-containing electrospun composite materials for medical device applications are listed. It is concluded that the electrospun GO materials will find a broad range of biomedical applications such as cardiac patches, medical device coatings, sensors, and triboelectric nanogenerators for motion sensing and biosensing.
Collapse
Affiliation(s)
- Jamie J Grant
- Nanotechnology and Bio-engineering Research Division, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland.,The Centre for Precision Engineering, Materials & Manufacturing Research, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland
| | - Suresh C Pillai
- Nanotechnology and Bio-engineering Research Division, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland.,The Centre for Precision Engineering, Materials & Manufacturing Research, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland
| | - Sarah Hehir
- Nanotechnology and Bio-engineering Research Division, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland.,The Centre for Precision Engineering, Materials & Manufacturing Research, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland
| | - Marion McAfee
- Nanotechnology and Bio-engineering Research Division, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland.,The Centre for Precision Engineering, Materials & Manufacturing Research, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland
| | - Ailish Breen
- Nanotechnology and Bio-engineering Research Division, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland.,The Centre for Precision Engineering, Materials & Manufacturing Research, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland
| |
Collapse
|
34
|
Rahmati M, Mills DK, Urbanska AM, Saeb MR, Venugopal JR, Ramakrishna S, Mozafari M. Electrospinning for tissue engineering applications. PROGRESS IN MATERIALS SCIENCE 2021; 117:100721. [DOI: 10.1016/j.pmatsci.2020.100721] [Citation(s) in RCA: 311] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
35
|
Ostheller ME, Balakrishnan NK, Groten R, Seide G. Detailed Process Analysis of Biobased Polybutylene Succinate Microfibers Produced by Laboratory-Scale Melt Electrospinning. Polymers (Basel) 2021; 13:polym13071024. [PMID: 33810218 PMCID: PMC8037628 DOI: 10.3390/polym13071024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/29/2022] Open
Abstract
Melt electrospinning is widely used to manufacture fibers with diameters in the low micrometer range. Such fibers are suitable for many biomedical applications, including sutures, stents and tissue engineering. We investigated the preparation of polybutylene succinate microfibers using a single-nozzle laboratory-scale device, while varying the electric field strength, process throughput, nozzle-to-collector distance and the temperature of the polymer melt. The formation of a Taylor cone followed by continuous fiber deposition was observed for all process parameters, but whipping behavior was enhanced when the electric field strength was increased from 50 to 60 kV. The narrowest fibers (30.05 µm) were produced using the following parameters: electric field strength 60 kV, melt temperature 235 °C, throughput 0.1 mL/min and nozzle-to-collector distance 10 cm. Statistical analysis confirmed that the electric field strength was the most important parameter controlling the average fiber diameter. We therefore report the first production of melt-electrospun polybutylene succinate fibers in the low micrometer range using a laboratory-scale device. This offers an economical and environmentally sustainable alternative to conventional solution electrospinning for the preparation of safe fibers in the micrometer range suitable for biomedical applications.
Collapse
Affiliation(s)
- Maike-Elisa Ostheller
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands; (M.-E.O.); (N.K.B.)
| | - Naveen Kumar Balakrishnan
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands; (M.-E.O.); (N.K.B.)
| | - Robert Groten
- Department of Textile and Clothing Technology, Niederrhein University of Applied Sciences, Campus Moenchengladbach, Webschulstrasse 31, 41065 Moenchengladbach, Germany;
| | - Gunnar Seide
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands; (M.-E.O.); (N.K.B.)
- Correspondence:
| |
Collapse
|
36
|
van Kampen KA, Olaret E, Stancu IC, Moroni L, Mota C. Controllable four axis extrusion-based additive manufacturing system for the fabrication of tubular scaffolds with tailorable mechanical properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111472. [PMID: 33321595 DOI: 10.1016/j.msec.2020.111472] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/21/2020] [Accepted: 07/13/2020] [Indexed: 11/17/2022]
Abstract
Many tubular tissues such as blood vessels and trachea can suffer long-segmental defects through trauma and disease. With current limitations in the use of autologous grafts, the need for a synthetic substitute is of continuous interest as possible alternatives. Fabrication of these tubular organs is commonly done with techniques such as electrospinning and melt electrowriting using a rotational collector. Current additive manufacturing (AM) systems do not commonly implement the use of a rotational axis, which limits their application for the fabrication of tubular scaffolds. In this study, a four axis extrusion-based AM system similar to fused deposition modeling (FDM) has been developed to create tubular hollow scaffolds. A rectangular and a diamond pore design were further investigated for mechanical characterization, as a standard and a biomimicry pore geometry respectively. We demonstrated that in the radial compression mode the diamond pore design had a higher Young's modulus (19,8 ± 0,7 MPa compared to 2,8 ± 0,5 MPa), while in the longitudinal tensile mode the rectangular pore design had a higher Young's modulus (5,8 ± 0,2 MPa compared to 0,1 ± 0,01 MPa). Three-point bending analyses revealed that the diamond pore design is more resistant to luminal collapse compared to the rectangular design. This data showed that by changing the scaffold pore design, a wide range of mechanical properties could be obtained. Furthermore, a full control over scaffold design and geometry can be achieved with the developed 4-axis extrusion-based system, which has not been reported with other techniques. This flexibility allow the manufacturing of scaffolds for diverse tubular tissue regeneration applications by designing suitable deposition patterns to match their mechanical pre-requisites.
Collapse
Affiliation(s)
- Kenny A van Kampen
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitsingel 40, 6229ER Maastricht, the Netherlands
| | - Elena Olaret
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Izabela-Cristina Stancu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitsingel 40, 6229ER Maastricht, the Netherlands
| | - Carlos Mota
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitsingel 40, 6229ER Maastricht, the Netherlands.
| |
Collapse
|
37
|
Eivazi Zadeh Z, Solouk A, Shafieian M, Haghbin Nazarpak M. Electrospun polyurethane/carbon nanotube composites with different amounts of carbon nanotubes and almost the same fiber diameter for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111403. [PMID: 33255006 DOI: 10.1016/j.msec.2020.111403] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/03/2020] [Accepted: 08/15/2020] [Indexed: 01/17/2023]
Abstract
The aim of this study was to investigate the net effect of raw carbon nanotube (CNTs) on the final properties of polyurethane (PU)/CNT composites considering their biomedical applications. So, neat PU and PU/CNT composites containing different amounts of CNTs (0.05%, 0.1%, 0.5%, and 1%) were prepared by electrospinning. Electrospinning parameters optimized to have a bead-free structure with no significant difference between their mean fiber diameter and porosity percentage. The results showed adding CNTs caused an increase in crystallinity percentage, water absorption ratio, young modulus, toughness, conductivity, degradation time in an accelerated medium, clotting time, and human umbilical vein endothelial cells adhesion. But a direct relationship between CNT percentage and the calcium adsorption was not detected. Moreover, no significant cytotoxicity was observed for 7-day extracts of all samples. These nanocomposites have a vast range of properties which make them a good candidate as neural, cardiovascular, osseous biomaterials or tendon, and ligament substitute.
Collapse
Affiliation(s)
- Zahra Eivazi Zadeh
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Atefeh Solouk
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Mehdi Shafieian
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | | |
Collapse
|
38
|
Nanoscience and nanotechnology in fabrication of scaffolds for tissue regeneration. INTERNATIONAL NANO LETTERS 2020. [DOI: 10.1007/s40089-020-00318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
39
|
Hajzamani D, Shokrollahi P, Najmoddin N, Shokrolahi F. Effect of engineered PLGA‐gelatin‐chitosan/
PLGA‐gelatin
/
PLGA‐gelatin‐graphene
three‐layer scaffold on adhesion/proliferation of
HUVECs. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4915] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Dorfam Hajzamani
- Department of Biomedical Engineering, Science and Research BranchIslamic Azad University Tehran Iran
- Department of BiomaterialsIran Polymer and Petrochemical Institute Tehran Iran
| | - Parvin Shokrollahi
- Department of BiomaterialsIran Polymer and Petrochemical Institute Tehran Iran
| | - Najmeh Najmoddin
- Department of Biomedical Engineering, Science and Research BranchIslamic Azad University Tehran Iran
| | - Fatemeh Shokrolahi
- Department of BiomaterialsIran Polymer and Petrochemical Institute Tehran Iran
| |
Collapse
|
40
|
Naureen B, Haseeb ASMA, Basirun WJ, Muhamad F. Recent advances in tissue engineering scaffolds based on polyurethane and modified polyurethane. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111228. [PMID: 33254956 DOI: 10.1016/j.msec.2020.111228] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Abstract
Organ repair, regeneration, and transplantation are constantly in demand due to various acute, chronic, congenital, and infectious diseases. Apart from traditional remedies, tissue engineering (TE) is among the most effective methods for the repair of damaged tissues via merging the cells, growth factors, and scaffolds. With regards to TE scaffold fabrication technology, polyurethane (PU), a high-performance medical grade synthetic polymer and bioactive material has gained significant attention. PU possesses exclusive biocompatibility, biodegradability, and modifiable chemical, mechanical and thermal properties, owing to its unique structure-properties relationship. During the past few decades, PU TE scaffold bioactive properties have been incorporated or enhanced with biodegradable, electroactive, surface-functionalised, ayurvedic products, ceramics, glass, growth factors, metals, and natural polymers, resulting in the formation of modified polyurethanes (MPUs). This review focuses on the recent advances of PU/MPU scaffolds, especially on the biomedical applications in soft and hard tissue engineering and regenerative medicine. The scientific issues with regards to the PU/MPU scaffolds, such as biodegradation, electroactivity, surface functionalisation, and incorporation of active moieties are also highlighted along with some suggestions for future work.
Collapse
Affiliation(s)
- Bushra Naureen
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - A S M A Haseeb
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - W J Basirun
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Institute of Nanotechnology and catalyst (NANOCAT), University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Farina Muhamad
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
41
|
Hu Q, Su C, Zeng Z, Zhang H, Feng R, Feng J, Li S. Fabrication of multilayer tubular scaffolds with aligned nanofibers to guide the growth of endothelial cells. J Biomater Appl 2020; 35:553-566. [DOI: 10.1177/0885328220935090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aligned electrospun fibers used for the fabrication of tubular scaffolds possess the ability to regulate cellular alignment and relevant functional expression, with applications in tissue engineering. Despite significant progress in the fabrication of small-diameter vascular grafts (SDVGs) over the past decade, several challenges remain; one of the most problematic of these is the fabrication of aligned nanofibers for multilayer SDVGs. Furthermore, delamination between each layer is difficult to avoid during the fabrication of multilayer structures. This study introduces a new fabrication method for minute delamination four-layer tubular scaffolds (FLTSs) that consist of an interior layer with highly longitudinal aligned nanofibers, two middle layers composed of electrospun sloped and circumferentially aligned fibers, and an exterior layer comprising random fibers. These FLTSs are used to simulate the structures and functions of native blood vessels. Here, thermoplastic polyurethane (TPU)/polycaprolactone (PCL)/polyethylene glycol (PEG) were electrospun to fabricate FLTSs or tubular scaffolds with completely random fibers layer (RLTSs). The surface wettability of the TPU/PCL/PEG tubular scaffold was tested by water contact angle analysis. In particular, compared with RLTSs, FLTSs showed excellent mechanical properties, with higher circumferential and longitudinal tensile properties. Furthermore, the high viability of the human umbilical vein endothelial cells (HUVECs) on the FLTSs indicated the biocompatibility of the tubular scaffolds comparing to RLTSs. The aligned and random composite structure of the FLTSs are conducive to promoting the growth of HUVECs, and the cell adhesion and proliferation on these scaffolds was found to be superior to that on RLTSs. These results demonstrate that the fabricated FLTSs have the potential for application in vascular tissue regeneration and clinical arterial replacements.
Collapse
Affiliation(s)
- Qingxi Hu
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, China
| | - Caiping Su
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Zhaoxiang Zeng
- National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
| | - Haiguang Zhang
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, China
| | - Rui Feng
- National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
| | - Jiaxuan Feng
- National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
| | - Shuai Li
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| |
Collapse
|
42
|
Tiwari S, Patil R, Dubey SK, Bahadur P. Graphene nanosheets as reinforcement and cell-instructive material in soft tissue scaffolds. Adv Colloid Interface Sci 2020; 281:102167. [PMID: 32361407 DOI: 10.1016/j.cis.2020.102167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
Abstract
Mechanical strength of polymeric scaffolds deteriorates quickly in the physiological mileu. This can be minimized by reinforcing the polymeric matrix with graphene, a planar two-dimensional material with unique physicochemical and biological properties. Association between the sheet and polymer chains offers a range of porosity commensurate with tissue requirements. Besides, studies suggest that corrugated structure of graphene offers desirable bio-mechanical cues for tissue regeneration. This review covers three important aspects of graphene-polymer composites, (a) the opportunity on reinforcing the polymer matrix with graphene, (b) challenges associated with limited aqueous processability of graphene, and (c) physiological signaling in the presence of graphene. Among numerous graphene materials, our discussion is limited to graphene oxide (GO) and reduced graphene oxide (rGO) nanosheets. Challenges associated with limited dispersity of hydrophobic sheets within the polymeric matrix have been discussed at molecular level.
Collapse
|
43
|
Singh A, Banerjee SL, Dhiman V, Bhadada SK, Sarkar P, Khamrai M, Kumari K, Kundu PP. Fabrication of calcium hydroxyapatite incorporated polyurethane-graphene oxide nanocomposite porous scaffolds from poly (ethylene terephthalate) waste: A green route toward bone tissue engineering. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122436] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Electrospinning of polyurethane/graphene oxide for skin wound dressing and its in vitro characterization. J Biomater Appl 2020; 35:135-145. [DOI: 10.1177/0885328220916866] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Electrospinning polyurethane has been utilized as skin wound dressing for protecting skin wounds from infection and thus facilitating their healings, but also limited by its imperfect biocompatibility, mechanical and antibacterial properties. This paper presents our study on the addition of graphene oxide to electrospinning polyurethane for improved properties, as well as its in vitro characterization. Polyurethane/graphene oxide wound dressing was electrospun with varying amount of graphene oxide (from 0.0% to 2.0%); and in vitro tests was carried out to characterize the wound dressing properties and performance from the structural, mechanical, and biological perspectives. Scanning electron microscopy and Fourier-transform infrared spectroscopy were used to confirm the interaction between graphene oxide particles and polyurethane fibers, while the scanning electron microscopy images further illustrated that the wound dressing was of a porous structure with fibre diameters depending on the amount of graphene oxide added; specifically, 20 to 180 nm were for composite polyurethane/graphene oxide fibers and 600 to 900 nm for pure polyurethane. Our results also revealed that the hydrophilicity and swelling properties of the wound dressing could be regulated by the amount of graphene oxide added to the polyurethane/graphene oxide composites. Mechanical, antibacterial, and cytotoxicity properties of the composite polyurethane/graphene oxide wound dressing were examined with the results illustrating that the addition of graphene oxide could improve the properties of the electrospun wound dressing. Combined together, our study illustrates that electrospinning polyurethane/graphene oxide composite is promising as skin wound dressing.
Collapse
|
45
|
In Vivo Stability of Polyurethane-Based Electrospun Vascular Grafts in Terms of Chemistry and Mechanics. Polymers (Basel) 2020; 12:polym12040845. [PMID: 32272564 PMCID: PMC7240619 DOI: 10.3390/polym12040845] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/31/2022] Open
Abstract
The biostability of the polyurethanes Tecoflex EG-80A and Pellethane 2363-80A, used as basic polymers of the vascular grafts (VGs) produced by electrospinning, as well as the tensile strength of Tecoflex VGs, are studied. Solutions of Tecoflex or Pellethane with gelatin and bivalirudin in 1,1,1,3,3,3-hexafluoroisopropanol are used for VG production. After 1, 12, and 24 weeks of VG implantation in the infrarenal position of the abdominal aorta of Wistar rats, VGs are explanted, fixed in formalin, freed from outer tissues, dialyzed, and dried. The polyurethanes are extracted from VGs by dispersion/extraction in tetrahydrofuran (THF) and freed from the excess of THF-insoluble biopolymers. The stability of polyurethanes is assessed by IR spectroscopy and gel permeation chromatography. Pellethane has emerged to be stable at all experimental points. Tecoflex loses approximately 10% of its molecular weight (both Mn and Mw) after 3 months and restored its initial value within 6 months of its functioning as a graft. Mechanical testing demonstrates a 30% reduction in the tensile strength after 3 months in VG and a 10% increase after 6 months. The stability and mechanical properties of polyurethane-based VGs demonstrate their utility for the reconstitution of damaged arteries.
Collapse
|
46
|
Rahmati Nejad M, Yousefzadeh M, Solouk A. Electrospun PET/PCL small diameter nanofibrous conduit for biomedical application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110692. [PMID: 32204006 DOI: 10.1016/j.msec.2020.110692] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/20/2022]
Abstract
In recent years, the mortality rate caused by cardiovascular diseases has increased dramatically around the world. Tissue engineering is considered as a novel and efficient approach to offer a substituent of engineered tissues for defective body tissues. For this purpose, fabrication of the scaffold that resembles the physical and mechanical properties of natural body vessels, and culturing appropriate cells seems to be a promising approach. Due to the fibrous structure of the vascular wall, the nanofibrous scaffold produced by electrospinning could be a proper choice for vascular tissue engineering. One of the main properties of artificial vessels is its mechanical properties consistency with the native one in order to mimic its natural characteristics. To do so, in present study two biocompatible polymers, polyethylene terephthalate (PET) and polycaprolactone (PCL) with different blend ratio were electrospun into a tubular nanofibrous structure with 6 mm internal diameter and the mechanical properties such as tensile strength, modulus, compliance, bursting pressure, elastic recovery, and suture retention were investigated. The results revealed that PET/PCL (1:3) had better similar properties with the reported natural one as its longitudinal and transverse tensile strength was about 9.47 and 6.38 MPa, respectively. The longitudinal strain at break, compliance, bursting pressure, and suture retention were 205.88 ± 51.12%, 4.19 ± 0.78%/100 mmHg, 6378.76 ± 2159.20 mmHg, and 287.73 ± 13.10 gmf, respectively. The elasticity of this studied sample was 60.21 ± 12.49% as it was relieved, and this may be a good candidate for the artificial vessel in this size, as the MTT test confirmed its appropriate substrate for cell culture.
Collapse
Affiliation(s)
- Maryam Rahmati Nejad
- Textile Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran.
| | - Maryam Yousefzadeh
- Textile Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran.
| | - Atefeh Solouk
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran.
| |
Collapse
|
47
|
Carbon Biomaterials. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Gostev AA, Chernonosova VS, Murashov IS, Sergeevichev DS, Korobeinikov AA, Karaskov AM, Karpenko AA, Laktionov PP. Electrospun polyurethane-based vascular grafts: physicochemical properties and functioning in vivo. ACTA ACUST UNITED AC 2019; 15:015010. [PMID: 31694007 DOI: 10.1088/1748-605x/ab550c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
General physicochemical properties of the vascular grafts (VGs) produced from the solutions of Tecoflex (Tec) with gelatin (GL) and bivalirudin (BV) by electrospinning are studied. The electrospun VGs of Tec-GL-BV and expanded polytetrafluoroethylene (e-PTFE) implanted in the abdominal aorta of 36 Wistar rats have been observed over different time intervals up to 24 weeks. A comparison shows that 94.5% of the Tec-GL-BV VGs and only 66.6% of e-PTFE VGs (р = 0.0438) are free of occlusions after a 6 month implantation. At the intermediate observation points, Tec-GL-BV VGs demonstrate severe neovascularization of the VG neoadventitial layer as compared with e-PTFE grafts. A histological examination demonstrates a small thickness of the neointima layer and a low level of calcification in Tec-GL-BV VGs as compared with the control grafts. Thus, polyurethane-based protein-enriched VGs have certain advantages over e-PTFE VGs, suggesting their utility in clinical studies.
Collapse
Affiliation(s)
- Alexandr A Gostev
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, 630055 Russia
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Physico-mechanical and in vitro characterization of electrically conductive electrospun nanofibers of poly urethane/single walled carbon nano tube by great endothelial cells adhesion for vascular tissue engineering. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1916-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Jiang H, Mani MP, Jaganathan SK. Multifaceted Characterization And In Vitro Assessment Of Polyurethane-Based Electrospun Fibrous Composite For Bone Tissue Engineering. Int J Nanomedicine 2019; 14:8149-8159. [PMID: 31632024 PMCID: PMC6790118 DOI: 10.2147/ijn.s214646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/28/2019] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Recently several new approaches were emerging in bone tissue engineering to develop a substitute for remodelling the damaged tissue. In order to resemble the native extracellular matrix (ECM) of the human tissue, the bone scaffolds must possess necessary requirements like large surface area, interconnected pores and sufficient mechanical strength. MATERIALS AND METHODS A novel bone scaffold has been developed using polyurethane (PE) added with wintergreen (WG) and titanium dioxide (TiO2). The developed nanocomposites were characterized through field emission scanning electron microscopy (FESEM), Fourier transform and infrared spectroscopy (FTIR), X-ray diffraction (XRD), contact angle measurement, thermogravimetric analysis (TGA), atomic force microscopy (AFM) and tensile testing. Furthermore, anticoagulant assays, cell viability analysis and calcium deposition were used to investigate the biological properties of the prepared hybrid nanocomposites. RESULTS FESEM depicted the reduced fibre diameter for the electrospun PE/WG and PE/WG/TiO2 than the pristine PE. The addition of WG and TiO2 resulted in the alteration in peak intensity of PE as revealed in the FTIR. Wettability measurements showed the PE/WG showed decreased wettability and the PE/WG/TiO2 exhibited improved wettability than the pristine PE. TGA measurements showed the improved thermal behaviour for the PE with the addition of WG and TiO2. Surface analysis indicated that the composite has a smoother surface rather than the pristine PE. Further, the incorporation of WG and TiO2 improved the anticoagulant nature of the pristine PE. In vitro cytotoxicity assay has been performed using fibroblast cells which revealed that the electrospun composites showed good cell attachment and proliferation after 5 days. Moreover, the bone apatite formation study revealed the enhanced deposition of calcium content in the fabricated composites than the pristine PE. CONCLUSION Fabricated nanocomposites rendered improved physico-chemical properties, biocompatibility and calcium deposition which are conducive for bone tissue engineering.
Collapse
Affiliation(s)
- Haoli Jiang
- Orthopaedics Department, The Third People’s Hospital of Shenzhen, Shenzhen, Guangdong518114, People’s Republic of China
| | - Mohan Prasath Mani
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai81310, Malaysia
| | - Saravana Kumar Jaganathan
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- IJNUTM Cardiovascular Engineering Center, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai81310, Malaysia
- Department of Engineering, Faculty of Science and Engineering, University of Hull, HullHU6 7RX, UK
| |
Collapse
|