1
|
Santoro A, Voto A, Fortino L, Guida R, Laudisio C, Cillo M, D’Ursi AM. Bone Defect Treatment in Regenerative Medicine: Exploring Natural and Synthetic Bone Substitutes. Int J Mol Sci 2025; 26:3085. [PMID: 40243725 PMCID: PMC11988823 DOI: 10.3390/ijms26073085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
In recent years, the management of bone defects in regenerative medicine and orthopedic surgery has been the subject of extensive research efforts. The complexity of fractures and bone loss arising from trauma, degenerative conditions, or congenital disorders necessitates innovative therapeutic strategies to promote effective healing. Although bone tissue exhibits an intrinsic regenerative capacity, extensive fractures and critical-sized defects can severely compromise this process, often requiring bone grafts or substitutes. Tissue engineering approaches within regenerative medicine have introduced novel possibilities for addressing nonunions and challenging bone defects refractory to conventional treatment methods. Key components in this field include stem cells, bioactive growth factors, and biocompatible scaffolds, with a strong focus on advancements in bone substitute materials. Both natural and synthetic substitutes present distinct characteristics and applications. Natural grafts-comprising autologous, allogeneic, and xenogeneic materials-offer biological advantages, while synthetic alternatives, including biodegradable and non-biodegradable biomaterials, provide structural versatility and reduced immunogenicity. This review provides a comprehensive analysis of the diverse bone grafting alternatives utilized in orthopedic surgery, emphasizing recent advancements and persistent challenges. By exploring both natural and synthetic bone substitutes, this work offers an in-depth examination of cutting-edge solutions, fostering further research and innovation in the treatment of complex bone defects.
Collapse
Affiliation(s)
- Angelo Santoro
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy;
- Scuola di Specializzazione in Farmacia Ospedaliera, Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy;
| | - Andrea Voto
- Department of Orthopaedics and Traumatology, AORN “San Giuseppe Moscati”, 83100 Avellino, Italy;
| | - Luigi Fortino
- Scuola di Specializzazione in Farmacia Ospedaliera, Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy;
| | - Raffaella Guida
- Presidio Ospedaliero “Villa Malta” di Sarno, Azienda Sanitaria Locale di Salerno, 84087 Sarno, Italy; (R.G.); (C.L.)
| | - Carolina Laudisio
- Presidio Ospedaliero “Villa Malta” di Sarno, Azienda Sanitaria Locale di Salerno, 84087 Sarno, Italy; (R.G.); (C.L.)
| | - Mariarosaria Cillo
- Dipartimento Farmaceutico, Azienda Sanitaria Locale di Salerno, 84124 Salerno, Italy;
| | - Anna Maria D’Ursi
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy;
| |
Collapse
|
2
|
Wu C, Lin F, Liu H, Pelletier MH, Lloyd M, Walsh WR, Nie JF. Stronger and coarser-grained biodegradable zinc alloys. Nature 2025; 638:684-689. [PMID: 39939767 DOI: 10.1038/s41586-024-08415-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/15/2024] [Indexed: 02/14/2025]
Abstract
Zinc is emerging as a key material for next-generation biodegradable implants1-5. However, its inherent softness limits its use in load-bearing orthopaedic implants. Although reducing the grain size of zinc can make it stronger, it also destabilizes its mechanical properties and thus makes it less durable at body temperature6. Here we show that extruded Zn alloys of dilute compositions can achieve ultrahigh strength and excellent durability when their micron-scale grain size is increased while maintaining a basal texture. In this inverse Hall-Petch effect, the dominant deformation mode changes from inter-granular grain boundary sliding and dynamic recrystallization at the original grain size to intra-granular pyramidal slip and unusual twinning at the increased grain size. The role of the anomalous twins, termed 'accommodation twins' in this work, is to accommodate the altered grain shape in the plane lying perpendicular to the external loading direction, in contrast to the well-known 'mechanical twins' whose role is to deliver plasticity along the external loading direction7,8. The strength level achieved in these dilute zinc alloys is nearly double those of biodegradable implants made of magnesium alloys-making them the strongest and most stable biodegradable alloys available, to our knowledge, for fabricating bone fixation implants.
Collapse
Affiliation(s)
- Chengcheng Wu
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
| | - Fengxiang Lin
- Department of Physics and Engineering Sciences, Karlstad University, Karlstad, Sweden
| | - Hong Liu
- National Engineering Research Centre of Light Alloy Net Forming, Shanghai Jiao Tong University, Shanghai, China
| | - Matthew H Pelletier
- Surgical & Orthopaedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Max Lloyd
- Surgical & Orthopaedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Williams R Walsh
- Surgical & Orthopaedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jian-Feng Nie
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
3
|
Riyaz S, Sun Y, Helmholz H, Medina TP, Medina OP, Wiese B, Will O, Albaraghtheh T, Mohamad FH, Hövener JB, Glüer CC, Römer RW. Inflammatory response toward a Mg-based metallic biomaterial implanted in a rat femur fracture model. Acta Biomater 2024; 185:41-54. [PMID: 38969080 DOI: 10.1016/j.actbio.2024.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
The immune system plays an important role in fracture healing, by modulating the pro-inflammatory and anti-inflammatory responses occurring instantly upon injury. An imbalance in these responses can lead to adverse outcomes, such as non-union of fractures. Implants are used to support and stabilize complex fractures. Biodegradable metallic implants offer the potential to avoid a second surgery for implant removal, unlike non-degradable implants. However, considering our dynamic immune system it is important to conduct in-depth studies on the immune response to these implants in living systems. In this study, we investigated the immune response to Mg and Mg-10Gd in vivo in a rat femur fracture model with external fixation. In vivo imaging using liposomal formulations was used to monitor the fluorescence-related inflammation over time. We combine ex vivo methods with our in vivo study to evaluate and understand the systemic and local effects of the implants on the immune response. We observed no significant local or systemic effects in the Mg-10Gd implanted group compared to the SHAM and Mg implanted groups over time. Our findings suggest that Mg-10Gd is a more compatible implant material than Mg, with no adverse effects observed in the early phase of fracture healing during our 4-week study. STATEMENT OF SIGNIFICANCE: Degradable metallic implants in form of Mg and Mg-10Gd intramedullary pins were assessed in a rat femur fracture model, alongside a non-implanted SHAM group with special respect to the potential to induce an inflammatory response. This pre-clinical study combines innovative non-invasive in vivo imaging techniques associated with multimodal, ex vivo cellular and molecular analytics. The study contributes to the development and evaluation of degradable biometals and their clinical application potential. The study results indicate that Mg-10Gd did not exhibit any significant harmful effects compared to the SHAM and Mg groups.
Collapse
Affiliation(s)
- Sana Riyaz
- Helmholtz-Zentrum hereon GmbH, Institute of Metallic Biomaterials, Max-Planck-Straße 1, Geesthacht 21502, Germany.
| | - Yu Sun
- Helmholtz-Zentrum hereon GmbH, Institute of Metallic Biomaterials, Max-Planck-Straße 1, Geesthacht 21502, Germany
| | - Heike Helmholz
- Helmholtz-Zentrum hereon GmbH, Institute of Metallic Biomaterials, Max-Planck-Straße 1, Geesthacht 21502, Germany.
| | - Tuula Penate Medina
- Section Biomedical Imaging, Department of Radiology and Neuroradiology University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany; Institute for Experimental Cancer Research, Kiel University, 24105 Kiel, Germany
| | - Oula Penate Medina
- Section Biomedical Imaging, Department of Radiology and Neuroradiology University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany; Institute for Experimental Cancer Research, Kiel University, 24105 Kiel, Germany; Lonza Netherlands B.V., 6167 RB Geleen, the Netherlands
| | - Björn Wiese
- Helmholtz-Zentrum hereon GmbH, Institute of Metallic Biomaterials, Max-Planck-Straße 1, Geesthacht 21502, Germany
| | - Olga Will
- Section Biomedical Imaging, Department of Radiology and Neuroradiology University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Tamadur Albaraghtheh
- Helmholtz-Zentrum hereon GmbH, Institute of Metallic Biomaterials, Max-Planck-Straße 1, Geesthacht 21502, Germany; Helmholtz-Zentrum hereon GmbH, Institute of Surface Science, Max-Planck-Straße 1, Geesthacht 21502, Germany
| | - Farhad Haj Mohamad
- Section Biomedical Imaging, Department of Radiology and Neuroradiology University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Department of Radiology and Neuroradiology University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Claus Christian Glüer
- Section Biomedical Imaging, Department of Radiology and Neuroradiology University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Regine Willumeit Römer
- Helmholtz-Zentrum hereon GmbH, Institute of Metallic Biomaterials, Max-Planck-Straße 1, Geesthacht 21502, Germany
| |
Collapse
|
4
|
Wu LC, Hsieh YY, Hsu TS, Liu PY, Tsuang FY, Kuo YJ, Chen CH, Van Huynh T, Chiang CJ. 3D-printed porous titanium suture anchor: a rabbit lateral femoral condyle model. BMC Musculoskelet Disord 2024; 25:559. [PMID: 39026178 PMCID: PMC11256369 DOI: 10.1186/s12891-024-07666-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The inclusion of a connecting path in a porous implant can promote nutrient diffusion to cells and enhance bone ingrowth. Consequently, this study aimed to evaluate the biomechanical, radiographic, and histopathological performance of a novel 3D-printed porous suture anchor in a rabbit femur model. METHODS Three test groups were formed based on the type of suture anchor (SA): Commercial SA (CSA, Group A, n = 20), custom solid SA (CSSA, Group B, n = 20), and custom porous SA (CPSA, Group C, n = 20). The SAs were implanted in the lateral femoral condyle of the right leg in each rabbit. The rabbits (New Zealand white rabbits, male, mean body weight of 2.8 ± 0.5 kg, age 8 months) underwent identical treatment and were randomized into experimental and control groups via computer-generated randomization. Five rabbits (10 femoral condyles) were euthanized at 0, 4, 8, and 12 weeks post-implantation for micro-CT, histological analysis, and biomechanical testing. RESULTS At 12 weeks, the CPSA showed a higher BV/TV (median 0.7301, IQR 0.7276-0.7315) than the CSSA and CSA. The histological analysis showed mineralized osteocytes near the SA. At 4 weeks, new bone was observed around the CPSA and had penetrated its porous structure. By 12 weeks, there was no significant difference in ultimate failure load between the CSA and CPSA. CONCLUSIONS We demonstrated that the innovative 3D-printed porous suture anchor exhibited comparable pullout strength to conventional threaded suture anchors at the 12-week postoperative time-point period. Furthermore, our porous anchor design enhanced new bone formation and facilitated bone growth into the implant structure, resulting in improved biomechanical stability.
Collapse
Affiliation(s)
- Lien-Chen Wu
- Department of Orthopaedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 110, Taiwan
| | - Yueh-Ying Hsieh
- Department of Orthopaedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Ting-Shuo Hsu
- Department of Orthopaedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Po-Yi Liu
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Fon-Yih Tsuang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei City, 10022, Taiwan
- Spine Tumor Center, National Taiwan University Hospital, Taipei City, 10022, Taiwan
| | - Yi-Jie Kuo
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Department of Orthopedic Surgery, Wan Fang Hospital, Taipei Medical University, Taipei City, 116, Taiwan
| | - Chia-Hsien Chen
- Department of Orthopaedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 110, Taiwan
| | - Tin Van Huynh
- Department of Interventional Cardiology, Thong Nhat Hospital, Ho Chi Minh City, Vietnam
- International Ph.D program in medicine, college of medicine, Taipei medical university, Taipei, Taiwan
| | - Chang-Jung Chiang
- Department of Orthopaedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan.
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
5
|
Zhou Y, Zhang A, Wu J, Guo S, Sun Q. Application and Perspectives: Magnesium Materials in Bone Regeneration. ACS Biomater Sci Eng 2024; 10:3514-3527. [PMID: 38723173 PMCID: PMC11167594 DOI: 10.1021/acsbiomaterials.3c01713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 06/11/2024]
Abstract
The field of bone regeneration has always been a hot and difficult research area, and there is no perfect strategy at present. As a new type of biodegradable material, magnesium alloys have excellent mechanical properties and bone promoting ability. Compared with other inert metals, magnesium alloys have significant advantages and broad application prospects in the field of bone regeneration. By searching the official Web sites and databases of various funds, this paper summarizes the research status of magnesium composites in the field of bone regeneration and introduces the latest scientific research achievements and clinical transformations of scholars in various countries and regions, such as improving the corrosion resistance of magnesium alloys by adding coatings. Finally, this paper points out the current problems and challenges, aiming to provide ideas and help for the development of new strategies for the treatment of bone defects and fractures.
Collapse
Affiliation(s)
| | | | - Jibin Wu
- Department of Plastic Surgery, The First Hospital of China Medical University, 110001 Shenyang, Liaoning Province, PR China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, 110001 Shenyang, Liaoning Province, PR China
| | - Qiang Sun
- Department of Plastic Surgery, The First Hospital of China Medical University, 110001 Shenyang, Liaoning Province, PR China
| |
Collapse
|
6
|
Waelti SL, Fandak J, Markart S, Willems EP, Wildermuth S, Fischer T, Dietrich TJ, Matissek C, Krebs T. Prospective evaluation of ultrasound features of magnesium-based bioabsorbable screw resorption in pediatric fractures. Eur Radiol 2024; 34:1556-1566. [PMID: 37658140 DOI: 10.1007/s00330-023-10091-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/27/2023] [Accepted: 07/04/2023] [Indexed: 09/03/2023]
Abstract
OBJECTIVE Bioabsorbable magnesium-based alloy screws release gas upon resorption. The resulting findings in the adjacent soft tissues and joints may mimic infection. The aim of the study was to evaluate the ultrasound (US) findings in soft tissues and joints during screw resorption. METHODS Prospectively acquired US studies from pediatric patients treated with magnesium screws were evaluated for screw head visibility, posterior acoustic shadowing, twinkling artifact, foreign body granuloma, gas (soft tissue, intra-articular), alterations of the skin and subcutaneous fat, perifascial fluid, localized fluid collections, hypervascularization, and joint effusion. RESULTS Sixty-six US studies of 28 pediatric patients (nfemale = 9, nmale = 19) were included. The mean age of the patients at the time of surgery was 10.84 years; the mean time between surgery and ultrasound was 128.3 days (range = 6-468 days). The screw head and posterior acoustic shadowing were visible in 100% of the studies, twinkling artifact in 6.1%, foreign body granuloma in 92.4%, gas locules in soft tissue in 100% and intra-articular in 18.2%, hyperechogenicity of the subcutaneous fat in 90.9%, cobblestoning of the subcutaneous fat in 24.2%, loss of normal differentiation between the epidermis/dermis and the subcutaneous fat in 57.6%, localized fluid collection in 9.9%, perifascial fluid in 12.1%, hypervascularization in 27.3%, and joint effusion in 18.2%. CONCLUSION US findings in pediatric patients treated with magnesium screws strongly resemble infection, but are normal findings in the setting of screw resorption. CLINICAL RELEVANCE STATEMENT Bioabsorbable magnesium-based alloy screws release gas during resorption. The resulting US findings in the adjacent soft tissues and joints in pediatric patients may mimic infection, but are normal findings. KEY POINTS • Bioabsorbable magnesium-based alloy screws release gas upon resorption. • The resulting ultrasound findings in children's soft tissues and joints closely resemble those of soft tissue infection or osteosynthesis-associated infection. • Be familiar with these ultrasound findings in order to avoid inadvertently misdiagnosing a soft tissue infection or osteosynthesis-associated infection.
Collapse
Affiliation(s)
- Stephan L Waelti
- Department of Radiology and Nuclear Medicine, Children's Hospital of Eastern Switzerland, Claudiusstrasse 6, 9006, St. Gallen, Switzerland.
- Department of Radiology and Nuclear Medicine, Cantonal Hospital St. Gallen, St. Gallen, Switzerland.
| | - Jozef Fandak
- Department of Radiology and Nuclear Medicine, Children's Hospital of Eastern Switzerland, Claudiusstrasse 6, 9006, St. Gallen, Switzerland
- Department of Radiology and Nuclear Medicine, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Stefan Markart
- Department of Radiology and Nuclear Medicine, Children's Hospital of Eastern Switzerland, Claudiusstrasse 6, 9006, St. Gallen, Switzerland
- Department of Radiology and Nuclear Medicine, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Erik P Willems
- Clinical Trials Unit, Biostatistics, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Simon Wildermuth
- Department of Radiology and Nuclear Medicine, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Tim Fischer
- Department of Radiology and Nuclear Medicine, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Tobias J Dietrich
- Department of Radiology and Nuclear Medicine, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Christoph Matissek
- Department of Pediatric Surgery, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Thomas Krebs
- Department of Pediatric Surgery, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| |
Collapse
|
7
|
Huang B, Yang M, Kou Y, Jiang B. Absorbable implants in sport medicine and arthroscopic surgery: A narrative review of recent development. Bioact Mater 2024; 31:272-283. [PMID: 37637087 PMCID: PMC10457691 DOI: 10.1016/j.bioactmat.2023.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/29/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023] Open
Abstract
Over the past two decades, advances in arthroscopic and minimally invasive surgical techniques have led to significant growth in sports medicine surgery. Implants such as suture anchors, interference screws, and endo-buttons are commonly used in these procedures. However, traditional implants made of metal or inert materials are not absorbable, leading to complications that affect treatment outcomes. To address this issue, absorbable materials with excellent mechanical properties, good biocompatibility, and controlled degradation rates have been developed and applied in clinical practice. These materials include absorbable polymers, absorbable bioceramics, and absorbable metals. In this paper, we will provide a comprehensive summary of these absorbable materials from the perspective of clinicians, and discuss their clinical applications and related research in sport medicine.
Collapse
Affiliation(s)
- Boxuan Huang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, 100044, China
- National Center for Trauma Medicine, Beijing, 100044, China
| | - Ming Yang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, 100044, China
- National Center for Trauma Medicine, Beijing, 100044, China
| | - Yuhui Kou
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, 100044, China
- National Center for Trauma Medicine, Beijing, 100044, China
| | - Baoguo Jiang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, 100044, China
- National Center for Trauma Medicine, Beijing, 100044, China
- Medical School, Shenzhen University, Shenzhen, 518060, Guangdong, China
- Shenzhen University General Hospital, Shenzhen, 518055, Guangdong, China
| |
Collapse
|
8
|
Rahim MI, Waqas SFUH, Lienenklaus S, Willbold E, Eisenburger M, Stiesch M. Effect of titanium implants along with silver ions and tetracycline on type I interferon-beta expression during implant-related infections in co-culture and mouse model. Front Bioeng Biotechnol 2023; 11:1227148. [PMID: 37929187 PMCID: PMC10621036 DOI: 10.3389/fbioe.2023.1227148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023] Open
Abstract
Type I interferon-beta (IFN-β) is a crucial component of innate and adaptive immune systems inside the host. The formation of bacterial biofilms on medical implants can lead to inflammatory diseases and implant failure. Biofilms elicit IFN-β production inside the host that, in turn, restrict bacterial growth. Biofilms pose strong antibiotic resistance, whereas surface modification of medical implants with antibacterial agents may demonstrate strong antimicrobial effects. Most of the previous investigations were focused on determining the antibacterial activities of implant surfaces modified with antibacterial agents. The present study, for the first time, measured antibacterial activities and IFN-β expression of titanium surfaces along with silver or tetracycline inside co-culture and mouse models. A periodontal pathogen: Aggregatibacter actinomycetemcomitans reported to induce strong inflammation, was used for infection. Silver and tetracycline were added to the titanium surface using the heat evaporation method. Macrophages showed reduced compatibility on titanium surfaces with silver, and IFN-β expression inside cultured cells significantly decreased. Macrophages showed compatibility on implant surfaces with tetracycline, but IFN-β production significantly decreased inside seeded cells. The decrease in IFN-β production inside macrophages cultured on implant surfaces with silver and tetracycline was not related to the downregulation of Ifn-β gene. Bacterial infection significantly upregulated mRNA expression levels of Isg15, Mx1, Mx2, Irf-3, Irf-7, Tlr-2, Tnf-α, Cxcl-1, and Il-6 genes. Notably, mRNA expression levels of Mx1, Irf7, Tlr2, Tnf-α, Cxcl1, and Il-6 genes inside macrophages significantly downregulated on implant surfaces with silver or tetracycline. Titanium with tetracycline showed higher antibacterial activities than silver. The in vivo evaluation of IFN-β expression around implants was measured inside transgenic mice constitutive for IFN-β expression. Of note, the non-invasive in vivo imaging revealed a significant decrease in IFN-β expression around subcutaneous implants with silver compared to titanium and titanium with tetracycline in sterile or infected situations. The histology of peri-implant tissue interfaces around infected implants with silver showed a thick interface with a significantly higher accumulation of inflammatory cells. Titanium implants with silver and tetracycline remained antibacterial in mice. Findings from this study unequivocally indicate that implant surfaces with silver decrease IFN-β expression, a crucial component of host immunity.
Collapse
Affiliation(s)
- Muhammad Imran Rahim
- Department of Prosthetic Dentistry and Biomedical Materials Science, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Syed Fakhar-ul-Hassnain Waqas
- Biomarkers for Infectious Diseases, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Stefan Lienenklaus
- Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Elmar Willbold
- Department of Orthopedic Surgery, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Michael Eisenburger
- Department of Prosthetic Dentistry and Biomedical Materials Science, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| |
Collapse
|
9
|
Deichsel A, Glasbrenner J, Raschke MJ, Klimek M, Peez C, Briese T, Herbst E, Kittl C. Interference screws manufactured from magnesium display similar primary stability for soft tissue anterior cruciate ligament graft fixation compared to a biocomposite material - a biomechanical study. J Exp Orthop 2023; 10:103. [PMID: 37815666 PMCID: PMC10564698 DOI: 10.1186/s40634-023-00663-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023] Open
Abstract
PURPOSE Biodegradable interference screws (IFS) can be manufactured from different biomaterials. Magnesium was previously shown to possess osteoinductive properties, making it a promising material to promote graft-bone healing in anterior cruciate ligament reconstruction (ACLR). The purpose of this study was to compare IFS made from magnesium to a contemporary biocomposite IFS. METHODS In a porcine model of ACL reconstruction, deep porcine flexor tendons were trimmed to a diameter of 8 mm, sutured in Krackow technique, and fixed with either 8 × 30 mm biocomposite IFS (Bc-IFS) or 8 × 30 mm magnesium IFS (Mg-IFS) in an 8 mm diameter bone tunnel in porcine tibiae. Cyclic loading for 1000 cycles from 0 to 250 N was applied, followed by load to failure testing. Elongation, load to failure and stiffness of the tested constructs was determined. RESULTS After 1000 cycles at 250 N, elongation was 4.8 mm ± 1.5 in the Bc-IFS group, and 4.9 mm ± 1.5 in the Mg-IFS group. Load to failure was 649.5 N ± 174.3 in the Bc-IFS group, and 683.8 N ± 116.5 in the Mg-IFS group. Stiffness was 125.3 N/mm ± 21.9 in the Bc-IFS group, and 122.5 N/mm ± 20.3 in the Mg-IFS group. No significant differences regarding elongation, load to failure and stiffness between Bc-IFS and Mg-IFS were observed. CONCLUSION Magnesium IFS show comparable biomechanical primary stability in comparison to biocomposite IFS and may therefore be an alternative to contemporary biodegradable IFS.
Collapse
Affiliation(s)
- Adrian Deichsel
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Münster, Albert-Schweitzer-Campus, Building W1, 48149, Münster, Germany
| | - Johannes Glasbrenner
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Münster, Albert-Schweitzer-Campus, Building W1, 48149, Münster, Germany
| | - Michael J Raschke
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Münster, Albert-Schweitzer-Campus, Building W1, 48149, Münster, Germany
| | - Matthias Klimek
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Münster, Albert-Schweitzer-Campus, Building W1, 48149, Münster, Germany
| | - Christian Peez
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Münster, Albert-Schweitzer-Campus, Building W1, 48149, Münster, Germany
| | - Thorben Briese
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Münster, Albert-Schweitzer-Campus, Building W1, 48149, Münster, Germany
| | - Elmar Herbst
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Münster, Albert-Schweitzer-Campus, Building W1, 48149, Münster, Germany
| | - Christoph Kittl
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Münster, Albert-Schweitzer-Campus, Building W1, 48149, Münster, Germany.
| |
Collapse
|
10
|
Hu J, Shao J, Huang G, Zhang J, Pan S. In Vitro and In Vivo Applications of Magnesium-Enriched Biomaterials for Vascularized Osteogenesis in Bone Tissue Engineering: A Review of Literature. J Funct Biomater 2023; 14:326. [PMID: 37367290 DOI: 10.3390/jfb14060326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Bone is a highly vascularized tissue, and the ability of magnesium (Mg) to promote osteogenesis and angiogenesis has been widely studied. The aim of bone tissue engineering is to repair bone tissue defects and restore its normal function. Various Mg-enriched materials that can promote angiogenesis and osteogenesis have been made. Here, we introduce several types of orthopedic clinical uses of Mg; recent advances in the study of metal materials releasing Mg ions (pure Mg, Mg alloy, coated Mg, Mg-rich composite, ceramic, and hydrogel) are reviewed. Most studies suggest that Mg can enhance vascularized osteogenesis in bone defect areas. Additionally, we summarized some research on the mechanisms related to vascularized osteogenesis. In addition, the experimental strategies for the research of Mg-enriched materials in the future are put forward, in which clarifying the specific mechanism of promoting angiogenesis is the crux.
Collapse
Affiliation(s)
- Jie Hu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jiahui Shao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Gan Huang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jieyuan Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Shuting Pan
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
11
|
Waelti SL, Wildermuth S, Willems EP, Fischer T, Dietrich TJ, Leschka S, Matissek C, Krebs T, Markart S. Prospective Evaluation of Magnetic Resonance Imaging Features of Magnesium-Based Alloy Screw Resorption in Pediatric Fractures. J Clin Med 2023; 12:jcm12083016. [PMID: 37109351 PMCID: PMC10141748 DOI: 10.3390/jcm12083016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND The resorption of magnesium-based alloy bioabsorbable screws results in the release of hydrogen gas, which can mimic infection and enter the growth plate. The screw itself and the released gas may also affect image quality. OBJECTIVE The evaluation of magnetic resonance imaging (MRI) findings during the most active phase of screw resorption is the objective, with particular focus on the growth plate and to assess for the presence of metal-induced artifacts. MATERIAL AND METHODS In total, 30 prospectively acquired MRIs from 17 pediatric patients with fractures treated with magnesium screws were assessed for the presence and distribution of intraosseous, extraosseous, and intra-articular gas; gas within the growth plate; osteolysis along the screw; joint effusion; bone marrow edema; periosteal reaction; soft tissue edema; and metal-induced artifacts. RESULTS Gas locules were found in the bone and soft tissues in 100% of the examinations, intra-articular in 40%, and in 37% of unfused growth plates. Osteolysis and the periosteal reaction were present in 87%, bone marrow edema in 100%, soft tissue edema in 100%, and joint effusion in 50% of examinations. Pile-up artifacts were present in 100%, and geometric distortion in 0% of examinations. Fat suppression was not significantly impaired in any examination. CONCLUSIONS Gas and edema in the bone and soft tissues are normal findings during the resorption of magnesium screws and should not be misinterpreted as infection. Gas can also be detected within growth plates. MRI examinations can be performed without metal artifact reduction sequences. Standard fat suppression techniques are not significantly affected.
Collapse
Affiliation(s)
- Stephan L Waelti
- Department of Radiology and Nuclear Medicine, Children's Hospital of Eastern Switzerland, 9006 St. Gallen, Switzerland
- Department of Radiology and Nuclear Medicine, Cantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland
| | - Simon Wildermuth
- Department of Radiology and Nuclear Medicine, Cantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland
| | - Erik P Willems
- Clinical Trials Unit, Biostatistics, Cantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland
| | - Tim Fischer
- Department of Radiology and Nuclear Medicine, Cantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland
| | - Tobias J Dietrich
- Department of Radiology and Nuclear Medicine, Cantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland
| | - Sebastian Leschka
- Department of Radiology and Nuclear Medicine, Cantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland
| | - Christoph Matissek
- Department of Pediatric Surgery, Children's Hospital of Eastern Switzerland, 9006 St. Gallen, Switzerland
| | - Thomas Krebs
- Department of Pediatric Surgery, Children's Hospital of Eastern Switzerland, 9006 St. Gallen, Switzerland
| | - Stefan Markart
- Department of Radiology and Nuclear Medicine, Children's Hospital of Eastern Switzerland, 9006 St. Gallen, Switzerland
- Department of Radiology and Nuclear Medicine, Cantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland
| |
Collapse
|
12
|
Waelti SL, Markart S, Willems EP, Fischer T, Dietrich TJ, Ditchfield M, Matissek C, Krebs T. Radiographic features of magnesium-based bioabsorbable screw resorption in paediatric fractures. Pediatr Radiol 2022; 52:2368-2376. [PMID: 35606529 DOI: 10.1007/s00247-022-05383-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/28/2022] [Accepted: 04/13/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Resorption of magnesium-based alloy bioabsorbable screws produces hydrogen gas, which can be mistaken as a sign of infection and may affect the physis or fixed bone fragment. OBJECTIVE We evaluated the temporal and spatial occurrence of gas and the occurrence of a breakage of the fixed bone fragment or screw following magnesium screw fixation. MATERIALS AND METHODS Radiographs of paediatric patients treated with magnesium screws were retrospectively reviewed. Temporal occurrence and distribution of gas in the bone, the physis and soft tissues, breakage of the screw or fixed bone fragment and joint effusion were assessed. RESULTS One hundred and three radiographs in 35 paediatric patients were reviewed (mean age: 10.6 years). Follow-up ranged from 1 to 730 days. Gas in the bone increases up to week 5, remains constant up to week 16 and then decreases. Gas in soft tissues, intra-articular gas and joint effusions gradually reduce over time. In 1/23 (4.3%) patients with an open physis, gas intrusion into the physis occurred. Breakage of the bone fragment fixated by the screw was observed in 4/35 (11.4%) patients within the first 6 weeks. Screw breakage was observed in 16/35 (45.7%) patients, with a median time to first detection of 300 days. CONCLUSION Gas bubbles in bone and soft tissue are normal findings in the context of screw resorption and should not be confused with soft-tissue infection or osteomyelitis. Gas is rarely visible in the physis. Breakage of the fixed bone fragment and/or screw can occur.
Collapse
Affiliation(s)
- Stephan L Waelti
- Department of Radiology and Nuclear Medicine, Children's Hospital of Eastern Switzerland, Claudiusstrasse 6, 9006, St. Gallen, Switzerland.
- Department of Radiology and Nuclear Medicine, Cantonal Hospital St. Gallen, St. Gallen, Switzerland.
| | - Stefan Markart
- Department of Radiology and Nuclear Medicine, Children's Hospital of Eastern Switzerland, Claudiusstrasse 6, 9006, St. Gallen, Switzerland
- Department of Radiology and Nuclear Medicine, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Erik P Willems
- Clinical Trials Unit, Biostatistics, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Tim Fischer
- Department of Radiology and Nuclear Medicine, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Tobias J Dietrich
- Department of Radiology and Nuclear Medicine, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Michael Ditchfield
- Department of Diagnostic Imaging, Monash Children's Hospital, Monash Health, Clayton, Australia
| | - Christoph Matissek
- Department of Paediatric Surgery, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Thomas Krebs
- Department of Paediatric Surgery, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| |
Collapse
|
13
|
Cheng P, Weng Z, Hamushan M, Cai W, Zhang Y, Ren Z, Sun Y, Zhang X, Shen H, Han P. High-purity magnesium screws modulate macrophage polarization during the tendon-bone healing process in the anterior cruciate ligament reconstruction rabbit model. Regen Biomater 2022; 9:rbac067. [PMID: 36284747 PMCID: PMC9580517 DOI: 10.1093/rb/rbac067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/11/2022] [Accepted: 09/04/2022] [Indexed: 10/10/2024] Open
Abstract
Magnesium (Mg) screws perform clinical potential in anterior cruciate ligament (ACL) reconstruction, and promote fibrocartilaginous entheses regeneration at the femoral entrance. We aim to prove that high-purity Magnesium (HP Mg) screws modulate macrophage polarization in fibrocartilage interface regeneration both in vitro and in vivo. HP Mg extracts performed good cytocompatibility and significantly promoted M2 macrophage polarization in the flow cytometry and ELISA assays. M2 macrophages stimulated fibrochondrocyte differentiation of co-cultured hBMSCs, and HP Mg extracts had synergistic effect on the process. Then we applied HP Mg screws, with Ti screws as control, in the ACL reconstruction rabbit model. In the histological and immunofluorescence analysis, HP Mg screws inhibited M1 polarization at 2 weeks and highly promoted M2 polarization at 2 and 4 weeks at the tendon-bone interface. Furthermore, regeneration of fibrocartilaginous entheses, rather than the fibrovascular scar interface, was detected in the HP Mg group at 12 weeks. For further mechanism study via RNA-seq detection and WB assays, we found that AKT1 was highly activated in M2 polarization, and HP Mg could stimulate AKT1 expression, rather than AKT2, in the early phase of tendon-bone healing. Our study elucidated macrophage polarization during tendon-bone healing process and emphasized HP Mg on M2 polarization and fibrocartilage interface regeneration via the selective activation of AKT1 and PI3K/AKT pathway.
Collapse
Affiliation(s)
- PengFei Cheng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai 200233, China
| | - ZhenJun Weng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai 200233, China
| | - Musha Hamushan
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai 200233, China
| | - Weijie Cai
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai 200233, China
| | - Yubo Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai 200233, China
| | - Zun Ren
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai 200233, China
| | - Yunchu Sun
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai 200233, China
| | - XiaoNong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Suzhou Origin Medical Technology Co. Ltd, Suzhou, 215513, China
| | - Hao Shen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai 200233, China
| | - Pei Han
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai 200233, China
| |
Collapse
|
14
|
Vujović S, Desnica J, Stanišić D, Ognjanović I, Stevanovic M, Rosic G. Applications of Biodegradable Magnesium-Based Materials in Reconstructive Oral and Maxillofacial Surgery: A Review. Molecules 2022; 27:molecules27175529. [PMID: 36080296 PMCID: PMC9457564 DOI: 10.3390/molecules27175529] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Reconstruction of defects in the maxillofacial region following traumatic injuries, craniofacial deformities, defects from tumor removal, or infections in the maxillofacial area represents a major challenge for surgeons. Various materials have been studied for the reconstruction of defects in the maxillofacial area. Biodegradable metals have been widely researched due to their excellent biological properties. Magnesium (Mg) and Mg-based materials have been extensively studied for tissue regeneration procedures due to biodegradability, mechanical characteristics, osteogenic capacity, biocompatibility, and antibacterial properties. The aim of this review was to analyze and discuss the applications of Mg and Mg-based materials in reconstructive oral and maxillofacial surgery in the fields of guided bone regeneration, dental implantology, fixation of facial bone fractures and soft tissue regeneration.
Collapse
Affiliation(s)
- Sanja Vujović
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Jana Desnica
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Dragana Stanišić
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Irena Ognjanović
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Momir Stevanovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
- Correspondence: (M.S.); (G.R.); Tel.: +381-641-327752 (M.S.); +381-633-92812 (G.R.)
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
- Correspondence: (M.S.); (G.R.); Tel.: +381-641-327752 (M.S.); +381-633-92812 (G.R.)
| |
Collapse
|
15
|
Suljevic O, Fischerauer SF, Weinberg AM, Sommer NG. Immunological reaction to magnesium-based implants for orthopedic applications. What do we know so far? A systematic review on in vivo studies. Mater Today Bio 2022; 15:100315. [PMID: 35757033 PMCID: PMC9214802 DOI: 10.1016/j.mtbio.2022.100315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/15/2022] [Accepted: 06/02/2022] [Indexed: 12/09/2022] Open
Abstract
Magnesium-based implants (Mg) became an attractive candidate in orthopedic surgery due to their valuable properties, such as osteoconductivity, biodegradability, elasticity and mechanical strength. However, previous studies on biodegradable and non-biodegradable metal implants showed that these materials are not inert when placed in vivo as they interact with host defensive mechanisms. The aim of this study was to systematically review available in vivo studies with Mg-based implants that investigated immunological reactions to these implants. The following questions were raised: Do different types of Mg-based implants in terms of shape, size and alloying system cause different extent of immune response? and; Are there missing links to properly understand immunological reactions upon implantation and degradation of Mg-based implants? The database used for the literature research was PubMed (U.S. National Library of Medicine) and it was undertaken in the end of 2021. The inclusion criteria comprised (i) in vivo studies with bony implantation of Mg-based implants and (ii) analysis of the presence of local immune cells or systemic inflammatory parameters. We further excluded any studies involving coated Mg-implants, in vitro studies, and studies in which the implants had no bone contact. The systematic search process was conducted according to PRISMA guidelines. Initially, the search yielded 225 original articles. After reading each article, and based on the inclusion and exclusion criteria, 16 articles were included in the systematic review. In the available studies, Mg-based implants were not found to cause any severe inflammatory reaction, and only a mild to moderate inflammatory potential was attributed to the material. The timeline of foreign body giant cell formation showed to be different between the reviewed studies. The variety of degradation kinetics of different tested implants and discrepancies in studies regarding the time points of immunological investigations impair the conclusion of immunological reactions. This may be induced by different physical properties of an implant such as size, shape and alloying system. Further research is essential to elucidate the underlying mechanisms by which implant degradation affects the immune system. Also, better understanding will facilitate the decision of patients whether to undergo surgery with new device implantation.
Collapse
Affiliation(s)
- Omer Suljevic
- Department of Orthopedics and Traumatology, Medical University of Graz, Graz, Austria
| | - Stefan F. Fischerauer
- Department of Orthopedics and Traumatology, Medical University of Graz, Graz, Austria
| | - Annelie M. Weinberg
- Department of Orthopedics and Traumatology, Medical University of Graz, Graz, Austria
| | - Nicole G. Sommer
- Department of Orthopedics and Traumatology, Medical University of Graz, Graz, Austria
| |
Collapse
|
16
|
Design, Simulation and Performance Research of New Biomaterial Mg30Zn30Sn30Sr5Bi5. COATINGS 2022. [DOI: 10.3390/coatings12040531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study focused on the design and the preparation method of a new biomaterial, Mg30Zn30Sn30Sr5Bi5 (at%) alloy, and its simulation and property analyses. Based on the comprehensive consideration of the preparation of high-entropy alloys, the selection of biomaterial elements, and the existing research results of common Mg-based materials, the atomic percentage of various elements, that is, Mg:Zn:Sn:Sr:Bi = 30:30:30:5:5, was determined. Using the theoretical methods of thermodynamic performance analysis and solidification performance analysis, the proposed composition was simulated and analyzed. The analysis results showed that the mechanical properties of the new material can meet the design requirements, and it can be prepared in physical form. XRD, SEM, PSD, compression tests, and other experimental tests were conducted on the material, and the alloy composition and distribution law showed various characteristics, which conformed to the “chaotic” characteristics of high-entropy alloys. The elastic modulus of the material was 17.98 GPa, which is within the 0–20 GPa elastic modulus range of human bone. This means that it can avoid the occurrence of stress shielding problems more effectively during the material implantation process.
Collapse
|
17
|
Liu WC, Chang CH, Chen CH, Lu CK, Ma CH, Huang SI, Fan WL, Shen HH, Tsai PI, Yang KY, Fu YC. 3D-Printed Double-Helical Biodegradable Iron Suture Anchor: A Rabbit Rotator Cuff Tear Model. MATERIALS 2022; 15:ma15082801. [PMID: 35454494 PMCID: PMC9027822 DOI: 10.3390/ma15082801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 12/16/2022]
Abstract
Suture anchors are extensively used in rotator cuff tear surgery. With the advancement of three-dimensional printing technology, biodegradable metal has been developed for orthopedic applications. This study adopted three-dimensional-printed biodegradable Fe suture anchors with double-helical threads and commercialized non-vented screw-type Ti suture anchors with a tapered tip in the experimental and control groups, respectively. The in vitro study showed that the Fe and Ti suture anchors exhibited a similar ultimate failure load in 20-pound-per-cubic-foot polyurethane foam blocks and rabbit bone. In static immersion tests, the corrosion rate of Fe suture anchors was 0.049 ± 0.002 mm/year. The in vivo study was performed on New Zealand white rabbits and SAs were employed to reattach the ruptured supraspinatus tendon. The in vivo ultimate failure load of the Fe suture anchors was superior to that of the Ti suture anchors at 6 weeks. Micro-computed tomography showed that the bone volume fraction and bone surface density in the Fe suture anchors group 2 and 6 weeks after surgery were superior, and the histology confirmed that the increased bone volume around the anchor was attributable to mineralized osteocytes. The three-dimensional-printed Fe suture anchors outperformed the currently used Ti suture anchors.
Collapse
Affiliation(s)
- Wen-Chih Liu
- Ph.D. Program in Biomedical Engineering, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (W.-C.L.); (C.-H.C.)
- Department Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Orthopedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Hau Chang
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan;
| | - Chung-Hwan Chen
- Ph.D. Program in Biomedical Engineering, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (W.-C.L.); (C.-H.C.)
- Department Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Orthopedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
- Department of Orthopedic Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80420, Taiwan
| | - Chun-Kuan Lu
- Department of Orthopedic Surgery, Park One International Hospital, Kaohsiung 81367, Taiwan;
| | - Chun-Hsien Ma
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 31057, Taiwan; (C.-H.M.); (S.-I.H.); (W.-L.F.); (H.-H.S.); (P.-I.T.)
| | - Shin-I Huang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 31057, Taiwan; (C.-H.M.); (S.-I.H.); (W.-L.F.); (H.-H.S.); (P.-I.T.)
| | - Wei-Lun Fan
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 31057, Taiwan; (C.-H.M.); (S.-I.H.); (W.-L.F.); (H.-H.S.); (P.-I.T.)
| | - Hsin-Hsin Shen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 31057, Taiwan; (C.-H.M.); (S.-I.H.); (W.-L.F.); (H.-H.S.); (P.-I.T.)
| | - Pei-I Tsai
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 31057, Taiwan; (C.-H.M.); (S.-I.H.); (W.-L.F.); (H.-H.S.); (P.-I.T.)
| | - Kuo-Yi Yang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 31057, Taiwan; (C.-H.M.); (S.-I.H.); (W.-L.F.); (H.-H.S.); (P.-I.T.)
- Correspondence: (K.-Y.Y.); (Y.-C.F.)
| | - Yin-Chih Fu
- Ph.D. Program in Biomedical Engineering, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (W.-C.L.); (C.-H.C.)
- Department Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Orthopedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan;
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (K.-Y.Y.); (Y.-C.F.)
| |
Collapse
|
18
|
Augustin J, Feichtner F, Waselau AC, Julmi S, Klose C, Wriggers P, Maier HJ, Meyer-Lindenberg A. Effect of pore size on tissue ingrowth and osteoconductivity in biodegradable Mg alloy scaffolds. J Appl Biomater Funct Mater 2022; 20:22808000221078168. [PMID: 35189733 DOI: 10.1177/22808000221078168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Magnesium has mechanical properties similar to those of bone and is being considered as a potential bone substitute. In the present study, two different pore sized scaffolds of the Mg alloy LAE442, coated with magnesium fluoride, were compared. The scaffolds had interconnecting pores of either 400 (p400) or 500 µm (p500). ß-TCP served as control. Ten scaffolds per time group (6, 12, 24, 36 weeks) were implanted in the trochanter major of rabbits. Histological analyses, µCT scans, and SEM/EDX were performed. The scaffolds showed slow volume decreases (week 36 p400: 9.9%; p500: 7.5%), which were accompanied by uncritical gas releases. In contrast, ß-TCP showed accelerated resorption (78.5%) and significantly more new bone inside (18.19 ± 1.47 mm3). Bone fragments grew into p400 (0.17 ± 0.19 mm3) and p500 (0.36 ± 0.26 mm3), reaching the centrally located pores within p500 more frequently. In particular, p400 displayed a more uneven and progressively larger surface area (week 36 p400: 253.22 ± 19.44; p500: 219.19 ± 4.76 mm2). A better osseointegration of p500 was indicated by significantly more trabecular contacts and a 200 µm wide bone matrix being in the process of mineralization and in permanent contact with the scaffold. The number of macrophages and foreign body giant cells were at an acceptable level concerning resorbable biomaterials. In terms of ingrown bone and integrative properties, LAE442 scaffolds could not achieve the results of ß-TCP. In this long-term study, p500 appears to be a biocompatible and more osteoconductive pore size for the Mg alloy LAE442.
Collapse
Affiliation(s)
- Julia Augustin
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Munich, Germany
| | - Franziska Feichtner
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Munich, Germany
| | - Anja-Christina Waselau
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Munich, Germany
| | - Stefan Julmi
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, Garbsen, Germany
| | - Christian Klose
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, Garbsen, Germany
| | - Peter Wriggers
- Institute of Continuum Mechanics, Leibniz Universität Hannover, Garbsen, Germany
| | - Hans Jürgen Maier
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, Garbsen, Germany
| | - Andrea Meyer-Lindenberg
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
19
|
Hou P, Sun Y, Yang W, Wu H, Sun L, Xiu X, Xiu C, Zhang X, Zhang W. Magnesium promotes osteogenesis via increasing OPN expression and activating CaM/CaMKIV/CREB1 pathway. J Biomed Mater Res B Appl Biomater 2022; 110:1594-1603. [PMID: 35106922 DOI: 10.1002/jbm.b.35020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/05/2022] [Accepted: 01/18/2022] [Indexed: 11/11/2022]
Abstract
Magnesium (Mg) based alloy has been used as a biodegradable implant for fracture repair with considerable efficacy, and it has been proved that magnesium ion (Mg2+ ), one of the degradation products, could stimulate osteogenesis. Here, we investigated the osteogenesis property of magnesium both in vitro and in vivo, and to identify the cellular and molecular mechanisms that mediate these effects. Results showed that magnesium exerts a dose-dependent increase in the proliferation of MC3T3 and MG63 cells, and in the expression of osteopontin (OPN), a promising biomarker of osteogenesis. Subsequently, the protein-protein interaction (PPI) network analysis showed the interactions between calmodulin (CaM) and calmodulin-dependent protein kinase (CaMK) and CREB1. The ratio of p-CaMKIV/CaMKIV and p-CREB1/CREB were increased at protein level in MC3T3 and MG63 cells after treatment with Mg2+ . Dual-luciferase reporter gene assay showed that p-CREB1 could directly bind to OPN promoter and up-regulate the transcription of OPN after nuclear entry. Meanwhile, the expression of OPN and p-CREB1, which increased after Mg2+ treatment, was down-regulated by sh-CaMKIV or sh-CREB1. Moreover, the mineralized deposit and expression of OPN were reduced after treatment with an inhibitor of CaMKIV, KN93. In addition, massive cavities in the cortical bone around the Mg screw were showed in vivo after injection of KN93. These data indicated that the osteogenic effect of Mg is related to the activation OPN through CaM/CaMKIV/CREB1 signaling pathway.
Collapse
Affiliation(s)
- Peng Hou
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yu Sun
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Weichao Yang
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hongliu Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Luyuan Sun
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xinjie Xiu
- College of Food Science and Engineering of Qingdao Agricultural University, Qingdao, China
| | - Chaoyang Xiu
- College of Food Science and Engineering of Qingdao Agricultural University, Qingdao, China
| | - Xiaonong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wen Zhang
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
20
|
Dehestani P, Farahmand F, Borjali A, Bashti K, Chizari M. Bone density may affect primary stability of anterior cruciate ligament reconstruction when organic core bone plug fixation technique used. J Exp Orthop 2022; 9:5. [PMID: 34989893 PMCID: PMC8739403 DOI: 10.1186/s40634-021-00441-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 12/06/2021] [Indexed: 11/10/2022] Open
Abstract
Purpose Core Bone Plug Fixation (CBPF) technique is an implant-less methodology for ACL reconstruction. This study investigates the effect of bone density on CBPF stability to identify the bone quality that is likely to benefit from this technique. Methods Artificial blocks with 160 (Group 1), 240 (Group 2), and 320 (Group 3) kg/m3 densities were used to simulate human bone with diverse qualities. These groups are representative of the elderly, middle age and young people, respectively. A tunnel was made in each test sample using a cannulated drill bit which enabled harvesting the core bone plug intact. Fresh animal tendon grafts were prepared and passed through the tunnel, so the core bone was pushed in to secure the tendon. The fixation stability was tested by applying a cyclic load following by a pullout load until the failure occurred. The selected group was compared with interference screw fixation technique as a gold standard method in ACL reconstruction. Results The Group 2 stiffness and yield strength were significantly larger than Group 1. The graft slippage of Group 1 was significantly less than Group 3. The ultimate strengths were 310 N and 363 N, in Groups 2 and 3, significantly larger than that of Group 1. The ultimate strength in fixation by interference screw was 693.18 N, significantly larger than the bone plug method. Conclusions The stability of CBPF was greatly affected by bone density. This technique is more suitable for young and middle-aged people. With further improvements, the CBPF might be an alternative ACL reconstruction technique for patients with good bone quality. Clinical relevance The CBPF technique offers an implant-less organic ACL reconstruction technique with numerous advantages and likely would speed up the healing process by using the patient’s own bones and tissues rather than any non-biologic fixations.
Collapse
Affiliation(s)
- Pouya Dehestani
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Farzam Farahmand
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.,Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Borjali
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Kaveh Bashti
- Department of Orthopedics, Division of Knee Surgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Chizari
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.,School of Physics, Engineering and Computer Sciences, University of Hertfordshire, College Ln, Hatfield, AL10 9AB, UK
| |
Collapse
|
21
|
Chai H, Sang S, Luo Y, He R, Yuan X, Zhang X. Icariin-loaded Sulfonated Polyetheretherketone with Osteogenesis Promotion and Osteoclastogenesis Inhibition Properties via Immunomodulation for Advanced Osseointegration. J Mater Chem B 2022; 10:3531-3540. [PMID: 35416810 DOI: 10.1039/d1tb02802b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Preventing prosthesis loosening due to insufficient osseointegration is critical for patients with osteoporosis. Endowing implants with immunomodulatory function can effectively enhance osseointegration. In this work, we loaded icariin (ICA) onto...
Collapse
Affiliation(s)
- Haobu Chai
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| | - Shang Sang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| | - Yao Luo
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| | - Renke He
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| | - Xiangwei Yuan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| | - Xianlong Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| |
Collapse
|
22
|
Sonnow L, Ziegler A, Pöhler GH, Kirschner MH, Richter M, Cetin M, Unal M, Kose O. Alterations in magnetic resonance imaging characteristics of bioabsorbable magnesium screws over time in humans: a retrospective single center study. Innov Surg Sci 2021; 6:105-113. [PMID: 35224178 PMCID: PMC8826160 DOI: 10.1515/iss-2021-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/04/2021] [Indexed: 11/28/2022] Open
Abstract
Objectives This study aimed to examine the alterations in magnetic resonance imaging (MRI) characteristics of bioabsorbable magnesium (Mg) screws over time in a single center study in humans. Methods Seventeen patients who underwent medial malleolar (MM) fracture or osteotomy fixation using bioabsorbable Mg screws and had at least one postoperative MRI were included in this retrospective study. Six of them had more than one MRI in the postoperative period and were subject of the artifact reduction measurements. 1.5T or 3T MRI scans were acquired in different periods in each patient. The size and extent of the artifact were assessed independently by two experienced radiologists both quantitatively (distance measurement) and qualitatively (Likert scale). Results In the quantitative measurements of the six follow-up patients the screw’s signal loss artifact extent significantly decreased over the time, regardless of the MRI field strength (p<0.001). The mean artifact reduction was 0.06 mm (95% confidence interval [CI]: 0.05–0.07) for proton density weighted [PDw] and 0.04 mm (95% CI: 0.03–0.05) for T1 weighted (T1w) sequences per week. The qualitative assessments similarly showed significant artifact reduction in all MRI sequences. Different imaging findings, like bone marrow edema (BME), liquid collections, and gas formation were reported. The overall inter-reader agreement was high (κ=0.88, p<0.001). Conclusions The time-dependent artifact reduction of Mg screws in postoperative controls might indicate the expected self-degradation of the Mg implants. In addition, different MRI findings were reported, which are characteristic of Mg implants. Further MRI studies are required to get a better understanding of Mg imaging properties.
Collapse
Affiliation(s)
- Lena Sonnow
- Department of Diagnostic and Interventional Radiology , Hannover Medical School , Hannover , Germany
| | - Andreas Ziegler
- Medizincampus Davos , Davos , Switzerland
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal , Pietermaritzburg , South Africa
- Department of Cardiology , University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Gesa H. Pöhler
- Department of Diagnostic and Interventional Radiology , Hannover Medical School , Hannover , Germany
| | | | | | - Mustafa Cetin
- Department of Radiology , Antalya Education and Research Hospital , Antalya , Turkey
| | - Melih Unal
- Department of Orthopedics and Traumatology , Antalya Education and Research Hospital , Antalya , Turkey
| | - Ozkan Kose
- Department of Orthopedics and Traumatology , Antalya Education and Research Hospital , Antalya , Turkey
| |
Collapse
|
23
|
Shang Z, Li D, Chen J, Wang M, Zhang B, Wang X, Ma B. The Role of Biodegradable Magnesium and Its Alloys in Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis Based on Animal Studies. Front Bioeng Biotechnol 2021; 9:789498. [PMID: 34869297 PMCID: PMC8636800 DOI: 10.3389/fbioe.2021.789498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/20/2021] [Indexed: 12/09/2022] Open
Abstract
Objective: The actual efficacy of magnesium and its alloy in anterior cruciate ligament reconstruction (ACLR) was systematically evaluated to reduce the risk of translation from animal experiments to the clinic. Methods: Databases of PubMed, Ovid-Embase, Web of Science, CNKI, Wanfang, VIP, and CBM were searched for literature in July 2021. Screening of search results, data extraction, and literature quality evaluation were undertaken independently by two reviewers. Results and discussion: Seven articles were selected for the meta-analysis. The results showed that the mechanical properties of the femoral-tendon graft–tibia complex fixed with magnesium and its alloys were comparable to those fixed with titanium and its alloys, and magnesium and its alloys were superior to titanium and its alloys in promoting new bone formation. In addition, the unique biodegradability made magnesium and its alloys an orthopedic implant with significant therapeutic potential. However, whether the degradation rate of magnesium and its alloy can match the rate of bone-tendon integration, and whether the bioconjugation of bone-tendon after degradation can meet the exercise load still needs to be explored in further detail. Simultaneously, it is necessary for future research to improve and standardize experimental design, result measurement, etc., so as to minimize the risk of transforming animal experimental results into clinical practice.
Collapse
Affiliation(s)
- Zhizhong Shang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Dongliang Li
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Jinlei Chen
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Mingchuan Wang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Baolin Zhang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Xin Wang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China.,Department of Spine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Bin Ma
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
24
|
Zhang J, Jiang Y, Shang Z, Zhao B, Jiao M, Liu W, Cheng M, Zhai B, Guo Y, Liu B, Shi X, Ma B. Biodegradable metals for bone defect repair: A systematic review and meta-analysis based on animal studies. Bioact Mater 2021; 6:4027-4052. [PMID: 33997491 PMCID: PMC8089787 DOI: 10.1016/j.bioactmat.2021.03.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022] Open
Abstract
Biodegradable metals are promising candidates for bone defect repair. With an evidence-based approach, this study investigated and analyzed the performance and degradation properties of biodegradable metals in animal models for bone defect repair to explore their potential clinical translation. Animal studies on bone defect repair with biodegradable metals in comparison with other traditional biomaterials were reviewed. Data was carefully collected after identification of population, intervention, comparison, outcome, and study design (PICOS), and following the inclusion criteria of biodegradable metals in animal studies. 30 publications on pure Mg, Mg alloys, pure Zn and Zn alloys were finally included after extraction from a collected database of 2543 publications. A qualitative systematic review and a quantitative meta-analysis were performed. Given the heterogeneity in animal model, anatomical site and critical size defect (CSD), biodegradable metals exhibited mixed effects on bone defect repair and degradation in animal studies in comparison with traditional non-degradable metals, biodegradable polymers, bioceramics, and autogenous bone grafts. The results indicated that there were limitations in the experimental design of the included studies, and quality of the evidence presented by the studies was very low. To enhance clinical translation of biodegradable metals, evidence-based research with data validity is needed. Future studies should adopt standardized experimental protocols in investigating the effects of biodegradable metals on bone defect repair with animal models.
Collapse
Affiliation(s)
- Jiazhen Zhang
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, PR China
| | - Yanbiao Jiang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Zhizhong Shang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Bing Zhao
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Mingyue Jiao
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Wenbo Liu
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, PR China
| | - Maobo Cheng
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, PR China
| | - Bao Zhai
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, PR China
| | - Yajuan Guo
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, PR China
| | - Bin Liu
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, PR China
| | - Xinli Shi
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, PR China
| | - Bin Ma
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
- Institute of Health Data Science, Lanzhou University, Lanzhou, 730000, PR China
| |
Collapse
|
25
|
Yan Z, Chen W, Jin W, Sun Y, Cai J, Gu K, Mi R, Chen N, Chen S, Shao Z. An interference screw made using a silk fibroin-based bulk material with high content of hydroxyapatite for anterior cruciate ligament reconstruction in a rabbit model. J Mater Chem B 2021; 9:5352-5364. [PMID: 34152356 DOI: 10.1039/d1tb01006a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Upgradation is still in need for the clinically applied interference screws in anterior cruciate ligament reconstruction for more reliable fixation. Silk fibroin bulk materials offer a promising opportunity for this application except lacking osteoinductivity to some extent. Here we report a novel silk-based bulk material with high content of hydroxyapatite-silk fibroin (HA-SF) hybrid particles, which is prepared via a dual-network hydrogel. This composite bulk material possesses a compression modulus of 3.2 GPa, comparable to that of the natural compact bone, and presents satisfactory cytocompatibility and osteoinductivity in vitro when combined with the HA-SF nanoparticles particularly. This composite bulk material shaped into interference screws exhibits remarkable biomechanical properties and significant new-bone ingrowth in the host bone tunnel in a rabbit anterior cruciate ligament reconstruction (ACLR) model at 4 weeks and 12 weeks post-operatively. Moreover, considering that this "hydrogel method" allows the material to be formed in a mold, avoiding complicated post fabrication, it is a potential candidate for clinical translation.
Collapse
Affiliation(s)
- Zhuo Yan
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China.
| | - Wenbo Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Wenhe Jin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Jiangyu Cai
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Kai Gu
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China.
| | - Ruixin Mi
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China.
| | - Ni Chen
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China.
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China.
| |
Collapse
|
26
|
Klíma K, Ulmann D, Bartoš M, Španko M, Dušková J, Vrbová R, Pinc J, Kubásek J, Ulmannová T, Foltán R, Brizman E, Drahoš M, Beňo M, Čapek J. Zn-0.8Mg-0.2Sr (wt.%) Absorbable Screws-An In-Vivo Biocompatibility and Degradation Pilot Study on a Rabbit Model. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3271. [PMID: 34199249 PMCID: PMC8231803 DOI: 10.3390/ma14123271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/20/2022]
Abstract
In this pilot study, we investigated the biocompatibility and degradation rate of an extruded Zn-0.8Mg-0.2Sr (wt.%) alloy on a rabbit model. An alloy screw was implanted into one of the tibiae of New Zealand White rabbits. After 120 days, the animals were euthanized. Evaluation included clinical assessment, microCT, histological examination of implants, analyses of the adjacent bone, and assessment of zinc, magnesium, and strontium in vital organs (liver, kidneys, brain). The bone sections with the implanted screw were examined via scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS). This method showed that the implant was covered by a thin layer of phosphate-based solid corrosion products with a thickness ranging between 4 and 5 µm. Only negligible changes of the implant volume and area were observed. The degradation was not connected with gas evolution. The screws were fibrointegrated, partially osseointegrated histologically. We observed no inflammatory reaction or bone resorption. Periosteal apposition and formation of new bone with a regular structure were frequently observed near the implant surface. The histological evaluation of the liver, kidneys, and brain showed no toxic changes. The levels of Zn, Mg, and Sr after 120 days in the liver, kidneys, and brain did not exceed the reference values for these elements. The alloy was safe, biocompatible, and well-tolerated.
Collapse
Affiliation(s)
- Karel Klíma
- Department of Stomatology—Maxillofacial Surgery, General Teaching Hospital and First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic; (K.K.); (D.U.); (M.B.); (M.Š.); (R.V.); (T.U.); (R.F.); (E.B.); (M.D.); (M.B.)
| | - Dan Ulmann
- Department of Stomatology—Maxillofacial Surgery, General Teaching Hospital and First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic; (K.K.); (D.U.); (M.B.); (M.Š.); (R.V.); (T.U.); (R.F.); (E.B.); (M.D.); (M.B.)
| | - Martin Bartoš
- Department of Stomatology—Maxillofacial Surgery, General Teaching Hospital and First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic; (K.K.); (D.U.); (M.B.); (M.Š.); (R.V.); (T.U.); (R.F.); (E.B.); (M.D.); (M.B.)
| | - Michal Španko
- Department of Stomatology—Maxillofacial Surgery, General Teaching Hospital and First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic; (K.K.); (D.U.); (M.B.); (M.Š.); (R.V.); (T.U.); (R.F.); (E.B.); (M.D.); (M.B.)
- Department of Anatomy, First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic
| | - Jaroslava Dušková
- Department of Pathology, First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic;
| | - Radka Vrbová
- Department of Stomatology—Maxillofacial Surgery, General Teaching Hospital and First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic; (K.K.); (D.U.); (M.B.); (M.Š.); (R.V.); (T.U.); (R.F.); (E.B.); (M.D.); (M.B.)
| | - Jan Pinc
- Department of Functional Materials, FZU The Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague, Czech Republic;
| | - Jiří Kubásek
- Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Technická 6, 166 28 Prague, Czech Republic;
| | - Tereza Ulmannová
- Department of Stomatology—Maxillofacial Surgery, General Teaching Hospital and First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic; (K.K.); (D.U.); (M.B.); (M.Š.); (R.V.); (T.U.); (R.F.); (E.B.); (M.D.); (M.B.)
| | - René Foltán
- Department of Stomatology—Maxillofacial Surgery, General Teaching Hospital and First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic; (K.K.); (D.U.); (M.B.); (M.Š.); (R.V.); (T.U.); (R.F.); (E.B.); (M.D.); (M.B.)
| | - Eitan Brizman
- Department of Stomatology—Maxillofacial Surgery, General Teaching Hospital and First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic; (K.K.); (D.U.); (M.B.); (M.Š.); (R.V.); (T.U.); (R.F.); (E.B.); (M.D.); (M.B.)
| | - Milan Drahoš
- Department of Stomatology—Maxillofacial Surgery, General Teaching Hospital and First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic; (K.K.); (D.U.); (M.B.); (M.Š.); (R.V.); (T.U.); (R.F.); (E.B.); (M.D.); (M.B.)
| | - Michal Beňo
- Department of Stomatology—Maxillofacial Surgery, General Teaching Hospital and First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic; (K.K.); (D.U.); (M.B.); (M.Š.); (R.V.); (T.U.); (R.F.); (E.B.); (M.D.); (M.B.)
| | - Jaroslav Čapek
- Department of Functional Materials, FZU The Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague, Czech Republic;
| |
Collapse
|
27
|
Research status of biodegradable metals designed for oral and maxillofacial applications: A review. Bioact Mater 2021; 6:4186-4208. [PMID: 33997502 PMCID: PMC8099919 DOI: 10.1016/j.bioactmat.2021.01.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/10/2021] [Accepted: 01/10/2021] [Indexed: 01/08/2023] Open
Abstract
The oral and maxillofacial regions have complex anatomical structures and different tissue types, which have vital health and aesthetic functions. Biodegradable metals (BMs) is a promising bioactive materials to treat oral and maxillofacial diseases. This review summarizes the research status and future research directions of BMs for oral and maxillofacial applications. Mg-based BMs and Zn-based BMs for bone fracture fixation systems, and guided bone regeneration (GBR) membranes, are discussed in detail. Zn-based BMs with a moderate degradation rate and superior mechanical properties for GBR membranes show great potential for clinical translation. Fe-based BMs have a relatively low degradation rate and insoluble degradation products, which greatly limit their application and clinical translation. Furthermore, we proposed potential future research directions for BMs in the oral and maxillofacial regions, including 3D printed BM bone scaffolds, surface modification for BMs GBR membranes, and BMs containing hydrogels for cartilage regeneration, soft tissue regeneration, and nerve regeneration. Taken together, the progress made in the development of BMs in oral and maxillofacial regions has laid a foundation for further clinical translation.
Collapse
|
28
|
He X, Li Y, Guo J, Xu J, Zu H, Huang L, Tim-Yun Ong M, Shu-Hang Yung P, Qin L. Biomaterials developed for facilitating healing outcome after anterior cruciate ligament reconstruction: Efficacy, surgical protocols, and assessments using preclinical animal models. Biomaterials 2020; 269:120625. [PMID: 33395579 DOI: 10.1016/j.biomaterials.2020.120625] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022]
Abstract
Anterior cruciate ligament (ACL) reconstruction is the recommended treatment for ACL tear in the American Academy of Orthopaedic Surgeons (AAOS) guideline. However, not a small number of cases failed because of the tunnel bone resorption, unsatisfactory bone-tendon integration, and graft degeneration. The biomaterials developed and designed for improving ACL reconstruction have been investigated for decades. According to the Food and Drug Administration (FDA) and the International Organization for Standardization (ISO) regulations, animal studies should be performed to prove the safety and bioeffect of materials before clinical trials. In this review, we first evaluated available biomaterials that can enhance the healing outcome after ACL reconstruction in animals and then discussed the animal models and assessments for testing applied materials. Furthermore, we identified the relevance and knowledge gaps between animal experimental studies and clinical expectations. Critical analyses and suggestions for future research were also provided to design the animal study connecting basic research and requirements for future clinical translation.
Collapse
Affiliation(s)
- Xuan He
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Ye Li
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Jiaxin Guo
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Jiankun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Haiyue Zu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Le Huang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Michael Tim-Yun Ong
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Patrick Shu-Hang Yung
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
29
|
Non-Invasive Luciferase Imaging of Type I Interferon Induction in a Transgenic Mouse Model of Biomaterial Associated Bacterial Infections: Microbial Specificity and Inter-Bacterial Species Interactions. Microorganisms 2020; 8:microorganisms8101624. [PMID: 33096869 PMCID: PMC7589032 DOI: 10.3390/microorganisms8101624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/30/2022] Open
Abstract
The performance of biomaterials is often compromised by bacterial infections and subsequent inflammation. So far, the conventional analysis of inflammatory processes in vivo involves time-consuming histology and biochemical assays. The present study employed a mouse model where interferon beta (IFN-β) is monitored as a marker for non-invasive rapid detection of inflammation in implant-related infections. The mouse model comprises subcutaneous implantation of morphologically modified titanium, followed by experimental infections with four taxonomically diverse oral bacteria: Streptococcus oralis, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Treponema denticola (as mono culture or selected mixed-culture). IFN-β expression increased upon infections depending on the type of pathogen and was prolonged by the presence of the implant. IFN-β expression kinetics reduced with two mixed species infections when compared with the single species. Histological and confocal microscopy confirmed pathogen-specific infiltration of inflammatory cells at the implant-tissue interface. This was observed mainly in the vicinity of infected implants and was, in contrast to interferon expression, higher in infections with dual species. In summary, this non-invasive mouse model can be used to quantify longitudinally host inflammation in real time and suggests that the polymicrobial character of infection, highly relevant to clinical situations, has complex effects on host immunity.
Collapse
|
30
|
Sukotjo C, Lima-Neto TJ, Santiago Júnior JF, Faverani LP, Miloro M. Is There a Role for Absorbable Metals in Surgery? A Systematic Review and Meta-Analysis of Mg/Mg Alloy Based Implants. MATERIALS 2020; 13:ma13183914. [PMID: 32899725 PMCID: PMC7558106 DOI: 10.3390/ma13183914] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022]
Abstract
Magnesium (Mg) alloys have received attention in the literature as potential biomaterials for use as absorbable implants in oral and maxillofacial and orthopedic surgery applications. This study aimed to evaluate the available clinical studies related to patients who underwent bone fixation (patients), and received conventional fixation (intervention), in comparison to absorbable metals (comparison), in terms of follow-up and complications (outcomes). A systematic review and meta-analysis were performed in accordance with the PRISMA statement and PROSPERO (CRD42020188654), PICO question, ROBINS-I, and ROB scales. The relative risk (RR) of complications and failures were calculated considering a confidence interval (CI) of 95%. Eight studies (three randomized clinical trial (RCT), one retrospective studies, two case-control studies, and two prospective studies) involving 468 patients, including 230 Mg screws and 213 Titanium (Ti) screws, were analyzed. The meta-analysis did not show any significant differences when comparing the use of Mg and Ti screws for complications (p = 0.868). The estimated complication rate was 13.3% (95% CI: 8.3% to 20.6%) for the comparison group who received an absorbable Mg screw. The use of absorbable metals is feasible for clinical applications in bone surgery with equivalent outcomes to standard metal fixation devices.
Collapse
Affiliation(s)
- Cortino Sukotjo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA
- Correspondence: ; Tel.: +1-617-272-5512
| | - Tiburtino J. Lima-Neto
- Oral and Maxillofacial Surgery, Department of Diagnosis and Surgery, Division of Oral and Maxillofacial Surgery, School of Dentistry, São Paulo State University—Unesp, Araçatuba, São Paulo 16015-050, Brazil;
| | - Joel Fereira Santiago Júnior
- Department of Health Sciences, Centro Universitário Sagrado Coração-UNISAGRADO, Bauru, São Paulo 16011-160, Brazil;
| | - Leonardo P. Faverani
- Department of Diagnosis and Surgery, Division of Oral and Maxillofacial Surgery and Implantology, School of Dentistry, São Paulo State University—Unesp, Araçatuba, São Paulo 16015-050, Brazil;
| | - Michael Miloro
- Department of Oral and Maxillofacial Surgery, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
31
|
Wang J, Xu J, Hopkins C, Chow DH, Qin L. Biodegradable Magnesium-Based Implants in Orthopedics-A General Review and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902443. [PMID: 32328412 PMCID: PMC7175270 DOI: 10.1002/advs.201902443] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/06/2020] [Indexed: 05/10/2023]
Abstract
Biodegradable Mg-based metals may be promising orthopedic implants for treating challenging bone diseases, attributed to their desirable mechanical and osteopromotive properties. This Review summarizes the current status and future research trends for Mg-based orthopedic implants. First, the properties between Mg-based implants and traditional orthopedic implants are compared on the following aspects: in vitro and in vivo degradation mechanisms of Mg-based implants, peri-implant bone responses, the fate of the degradation products, and the cellular and molecular mechanisms underlying the beneficial effects of Mg ions on osteogenesis. Then, the preclinical studies conducted at the low weight bearing sites of animals are introduced. The innovative strategies (for example, via designing Mg-containing hybrid systems) are discussed to address the limitations of Mg-based metals prior to their clinical applications at weight-bearing sites. Finally, the available clinical studies are summarized and the challenges and perspectives of Mg-based orthopedic implants are discussed. Taken together, the progress made on the development of Mg-based implants in basic, translational, and clinical research has laid down a foundation for developing a new era in the treatment of challenging and prevalent bone diseases.
Collapse
Affiliation(s)
- Jia‐Li Wang
- School of Biomedical EngineeringSun Yat‐sen UniversityGuangzhou510006P. R. China
- Musculoskeletal Research LaboratoryDepartment of Orthopaedics & TraumatologyThe Chinese University of Hong KongHong Kong SARP. R. China
| | - Jian‐Kun Xu
- Musculoskeletal Research LaboratoryDepartment of Orthopaedics & TraumatologyThe Chinese University of Hong KongHong Kong SARP. R. China
- Innovative Orthopaedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARP. R. China
| | - Chelsea Hopkins
- Musculoskeletal Research LaboratoryDepartment of Orthopaedics & TraumatologyThe Chinese University of Hong KongHong Kong SARP. R. China
| | - Dick Ho‐Kiu Chow
- Musculoskeletal Research LaboratoryDepartment of Orthopaedics & TraumatologyThe Chinese University of Hong KongHong Kong SARP. R. China
- Innovative Orthopaedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARP. R. China
| | - Ling Qin
- Musculoskeletal Research LaboratoryDepartment of Orthopaedics & TraumatologyThe Chinese University of Hong KongHong Kong SARP. R. China
- Innovative Orthopaedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARP. R. China
| |
Collapse
|
32
|
Witte F. Biodegradable Metals. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Magnesium-based bioabsorbable screw fixation for hallux valgus surgery - A suitable alternative to metallic implants. Foot Ankle Surg 2019; 25:727-732. [PMID: 30321917 DOI: 10.1016/j.fas.2018.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/29/2018] [Accepted: 09/04/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND The primary aim of this pilot study was to prospectively evaluate outcomes of the MgYREZr bioabsorbable screw in the setting of hallux valgus corrective surgery. The secondary aim was to compare the outcomes against a control group treated with conventional titanium screws. METHODS A consecutive series of patients with hallux valgus deformity (n=24) underwent forefoot reconstruction surgery with a scarf osteotomy to the first metatarsal using MgYREZr screws. Functional scores, radiological outcomes, and complication profile were recorded over 12 months. Results were compared against a control group of patients (n=69) using titanium alloy screws. RESULTS At 1-year post-operative, both functional and radiological outcomes showed significant improvements. Compared to the control group, there was no significant difference in functional outcomes, yet radiological improvements were significantly better in the control group. CONCLUSIONS The MgYREZr bioabsorbable screw is a suitable alternative to titanium alloy screws for hallux valgus corrective surgery.
Collapse
|
34
|
|
35
|
Riaz U, Shabib I, Haider W. The current trends of Mg alloys in biomedical applications-A review. J Biomed Mater Res B Appl Biomater 2018; 107:1970-1996. [PMID: 30536973 DOI: 10.1002/jbm.b.34290] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/10/2018] [Accepted: 11/15/2018] [Indexed: 01/25/2023]
Abstract
Magnesium (Mg) has emerged as an ideal alternative to the permanent implant materials owing to its enhanced properties such as biodegradation, better mechanical strengths than polymeric biodegradable materials and biocompatibility. It has been under investigation as an implant material both in cardiovascular and orthopedic applications. The use of Mg as an implant material reduces the risk of long-term incompatible interaction of implant with tissues and eliminates the second surgical procedure to remove the implant, thus minimizes the complications. The hurdle in the extensive use of Mg implants is its fast degradation rate, which consequently reduces the mechanical strength to support the implant site. Alloy development, surface treatment, and design modification of implants are the routes that can lead to the improved corrosion resistance of Mg implants and extensive research is going on in all three directions. In this review, the recent trends in the alloying and surface treatment of Mg have been discussed in detail. Additionally, the recent progress in the use of computational models to analyze Mg bioimplants has been given special consideration. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1970-1996, 2019.
Collapse
Affiliation(s)
- Usman Riaz
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, Michigan, 48859
| | - Ishraq Shabib
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, Michigan, 48859.,Science of Advanced Materials, Central Michigan University, Mount Pleasant, Michigan, 48859
| | - Waseem Haider
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, Michigan, 48859.,Science of Advanced Materials, Central Michigan University, Mount Pleasant, Michigan, 48859
| |
Collapse
|
36
|
Mao GW, Gong HB, Wang Y, Li X, Lv R, Sun J, Bian WG. Special Biodegradable Fixation Device for Anterior Cruciate Ligament Reconstruction-Safety and Efficacy in a Beagle Model. ACS Biomater Sci Eng 2018; 4:3600-3609. [PMID: 33450798 DOI: 10.1021/acsbiomaterials.8b00426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study aimed to evaluate the safety and efficacy of the special WE43 magnesium alloy stretch plates (SPs) used as fixation device for anterior cruciate ligament (ACL) reconstruction in a beagle model. Eleven beagle dogs underwent ACL reconstruction using WE43 SPs to fix the ligament grafts with the femoral ends, whereas titanium interferences were employed in the tibia ends. Load-to-failure tests were conducted to evaluate the mechanical properties. A comprehensive set of histological observations was performed to observe the local tissue response and assess the status of the attachment between the bone tissue and ligament grafts. Microcomputed tomography and scanning electron microscopy in conjunction with energy spectrum analysis were conducted to evaluate the degradation rate in vivo and investigate the morphology of the cross-section of the SPs and the element distribution in vivo. Immersion tests were employed to investigate the corrosion properties in vitro. The special WE43 SPs showed not only good mechanical strength but also a suitable degradation rate in vivo. The results indicated the special WE43 SP could be considered as a novel fixation device for ACL reconstruction.
Collapse
Affiliation(s)
- Gen-Wen Mao
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Hai-Bo Gong
- The State Key Laboratory of Mechanical Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China
| | - Ying Wang
- The State Key Laboratory of Mechanical Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China
| | - Xiang Li
- Department of Health Sciences and Technology, ETH Zurich, Zurich, 78092, Switzerland.,Department of Orthopedics, The Hospital of Balgrist University, Zurich, 78092, Switzerland
| | - Rong Lv
- Department of Orthopedics, The First Affiliated Hospital of The Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Juan Sun
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Wei-Guo Bian
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| |
Collapse
|
37
|
Tsai PI, Chen CY, Huang SW, Yang KY, Lin TH, Chen SY, Sun JS. Improvement of bone-tendon fixation by porous titanium interference screw: A rabbit animal model. J Orthop Res 2018; 36:2633-2640. [PMID: 29727018 DOI: 10.1002/jor.24037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/27/2018] [Indexed: 02/04/2023]
Abstract
The interference screw is a widely used fixation device in the anterior cruciate ligament (ACL) reconstruction surgeries. Despite the generally satisfactory results, problems of using interference screws were reported. By using additive manufacturing (AM) technology, we developed an innovative titanium alloy (Ti6 Al4 V) interference screw with rough surface and inter-connected porous structure designs to improve the bone-tendon fixation. An innovative Ti6 Al4 V interference screws were manufactured by AM technology. In vitro mechanical tests were performed to validate its mechanical properties. Twenty-seven New Zealand white rabbits were randomly divided into control and AM screw groups for biomechanical analyses and histological analysis at 4, 8, and 12 weeks postoperatively; while micro-CT analysis was performed at 12 weeks postoperatively. The biomechanical tests showed that the ultimate failure load in the AM interference screw group was significantly higher than that in the control group at all tested periods. These results were also compatible with the findings of micro-CT and histological analyses. In micro-CT analysis, the bone-screw gap was larger in the control group; while for the additive manufactured screw, the screw and bone growth was in close contact. In histological study, the bone-screw gaps were wider in the control group and were almost invisible in the AM screw group. The innovative AM interference screws with surface roughness and inter-connected porous architectures demonstrated better bone-tendon-implant integration, and resulted in stronger biomechanical characteristics when compared to traditional screws. These advantages can be transferred to future interference screw designs to improve their clinical performance. The AM interference screw could improve graft fixation and eventually result in better biomechanical performance of the bone-tendon-screw construct. The innovative AM interference screws can be transferred to future interference screw designs to improve the performance of implants. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2633-2640, 2018.
Collapse
Affiliation(s)
- Pei-I Tsai
- Department of Materials Science and Engineering, National Chiao-Tung University, Hsinchu City, Taiwan.,Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu County, Taiwan
| | - Chih-Yu Chen
- Department of Orthopedics, Shuang-Ho Hospital, College of Medicine, Taipei Medical University, New Taipei City, Taiwan
| | - Shu-Wei Huang
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Kuo-Yi Yang
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu County, Taiwan
| | - Tzu-Hung Lin
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu County, Taiwan
| | - San-Yuan Chen
- Department of Materials Science and Engineering, National Chiao-Tung University, Hsinchu City, Taiwan
| | - Jui-Sheng Sun
- Department of Orthopedic Surgery, College of Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| |
Collapse
|
38
|
Examination of Biodegradable Magnesium Screw Processed by Equal Channel Angular Pressing: A Novel <i>In Vivo</i> Study in Rabbits. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2018. [DOI: 10.4028/www.scientific.net/jbbbe.38.31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnesium alloys have shown potential as biodegradable metallic materials for oral and maxillofacial surgery applications due to their degradability. Biodegradable magnesium are advantageous over existing biodegradable materials such as polymers, ceramics and bioactive glasses in load-bearing applications where sufficient strength and Young’s modulus close to that of the bone are required.
Collapse
|
39
|
Plaass C, von Falck C, Ettinger S, Sonnow L, Calderone F, Weizbauer A, Reifenrath J, Claassen L, Waizy H, Daniilidis K, Stukenborg-Colsman C, Windhagen H. Bioabsorbable magnesium versus standard titanium compression screws for fixation of distal metatarsal osteotomies - 3 year results of a randomized clinical trial. J Orthop Sci 2018; 23:321-327. [PMID: 29174422 DOI: 10.1016/j.jos.2017.11.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 10/05/2017] [Accepted: 11/07/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND For the treatment of hallux valgus commonly distal metatarsal osteotomies are performed. Persistent problems due to the hardware and the necessity of hardware removal has led to the development of absorbable implants. To overcome the limitations of formerly used materials for biodegradable implants, recently magnesium has been introduced as a novel implant material. This is the first study showing mid-term clinical and radiological (MRI) data after using magnesium implants for fixation of distal metatarsal osteotomies. MATERIAL AND METHODS 26 patients with symptomatic hallux valgus were included in the study. They were randomly selected to be treated with a magnesium or standard titanium screw for fixation of a modified distal metatarsal osteotomy. The patients had a standardized clinical follow up and MRI investigation 3 years' post-surgery. The clinical tests included the range of motion of the MTP 1, the AOFAS, FAAM and SF-36 scores. Further on the pain was evaluated on a VAS. RESULTS Eight patients of the magnesium group and 6 of the titanium group had a full clinical and MRI follow up 3 years postoperatively. One patient was lost to follow-up. All other patients could be interviewed, but denied full study participation. There was a significant improvement for all tested clinical scores (AOFAS, SF-36, FAAM, Pain-NRS) from pre-to postoperative investigation, but no statistically relevant difference between the groups. Magnesium implants showed significantly less artifacts in the MRI, no implant related cysts were found and the implant was under degradation three years postoperatively. CONCLUSION In this study, bioabsorbable magnesium implants showed comparable clinical results to titanium standard implants 3 years after distal modified metatarsal osteotomy and were more suitable for radiologic analysis. LEVEL OF EVIDENCE 2.
Collapse
Affiliation(s)
- Christian Plaass
- Orthopedic Clinic in Diakovere Annastift, Hannover Medical School, Anna-von-Borries Strasse 1-7, 30625 Hannover, Germany.
| | - Christian von Falck
- Institute for Radiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Sarah Ettinger
- Orthopedic Clinic in Diakovere Annastift, Hannover Medical School, Anna-von-Borries Strasse 1-7, 30625 Hannover, Germany
| | - Lena Sonnow
- Institute for Radiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Franco Calderone
- Radiological Practice, Schwarzer Baer, Anna-von-Borries Strasse 1-7, 30625 Hannover, Germany
| | - Andreas Weizbauer
- CrossBIT, Centre for Biocompatibility and Implant-Immunology, Department of Orthopedic Surgery, Hannover Medical School, Feodor-Lynen-Straße 31, 30625, Hannover, Germany
| | - Janin Reifenrath
- CrossBIT, Centre for Biocompatibility and Implant-Immunology, Department of Orthopedic Surgery, Hannover Medical School, Feodor-Lynen-Straße 31, 30625, Hannover, Germany
| | - Leif Claassen
- Orthopedic Clinic in Diakovere Annastift, Hannover Medical School, Anna-von-Borries Strasse 1-7, 30625 Hannover, Germany
| | - Hazibullah Waizy
- Clinic for Foot and Ankle Surgery, Hessing Foundation, Augsburg, Germany
| | - Kiriakos Daniilidis
- Orthopedic Clinic in Diakovere Annastift, Hannover Medical School, Anna-von-Borries Strasse 1-7, 30625 Hannover, Germany
| | - Christina Stukenborg-Colsman
- Orthopedic Clinic in Diakovere Annastift, Hannover Medical School, Anna-von-Borries Strasse 1-7, 30625 Hannover, Germany
| | - Henning Windhagen
- Orthopedic Clinic in Diakovere Annastift, Hannover Medical School, Anna-von-Borries Strasse 1-7, 30625 Hannover, Germany
| |
Collapse
|
40
|
Accelerating Corrosion of Pure Magnesium Co-implanted with Titanium in Vivo. Sci Rep 2017; 7:41924. [PMID: 28167822 PMCID: PMC5294646 DOI: 10.1038/srep41924] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
Magnesium is a type of reactive metal, and is susceptible to galvanic corrosion. In the present study, the impact of coexistence of Ti on the corrosion behavior of high purity Mg (HP Mg) was investigated both in vitro and in vivo. Increased corrosion rate of HP Mg was demonstrated when Mg and Ti discs were not in contact. The in vivo experiments further confirmed accelerating corrosion of HP Mg screws when they were co-implanted with Ti screws into Sprague-Dawley rats’ femur, spacing 5 and 10 mm. Micro CT scan and 3D reconstruction revealed severe corrosion morphology of HP Mg screws. The calculated volume loss was much higher for the HP Mg screw co-implanted with Ti screw as compared to that co-implanted with another Mg screw. Consequently, less new bone tissue ingrowth and lower pullout force were found in the former group. It is hypothesized that the abundant blood vessels on the periosteum act as wires to connect the Mg and Ti screws and form a galvanic-like cell, accelerating the corrosion of Mg. Therefore, a certain distance is critical to maintain the mechanical and biological property of Mg when it is co-implanted with Ti.
Collapse
|
41
|
Ibrahim H, Esfahani SN, Poorganji B, Dean D, Elahinia M. Resorbable bone fixation alloys, forming, and post-fabrication treatments. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:870-888. [DOI: 10.1016/j.msec.2016.09.069] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/31/2016] [Accepted: 09/28/2016] [Indexed: 12/13/2022]
|
42
|
Willbold E, Weizbauer A, Loos A, Seitz JM, Angrisani N, Windhagen H, Reifenrath J. Magnesium alloys: A stony pathway from intensive research to clinical reality. Different test methods and approval-related considerations. J Biomed Mater Res A 2016; 105:329-347. [PMID: 27596336 DOI: 10.1002/jbm.a.35893] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/29/2016] [Accepted: 09/02/2016] [Indexed: 12/21/2022]
Abstract
The first degradable implant made of a magnesium alloy, a compression screw, was launched to the clinical market in March 2013. Many different complex considerations are required for the marketing authorization of degradable implant materials. This review gives an overview of existing and proposed standards for implant testing for marketing approval. Furthermore, different common in vitro and in vivo testing methods are discussed. In some cases, animal tests are inevitable to investigate the biological safety of a novel medical material. The choice of an appropriate animal model is as important as subsequent histological examination. Furthermore, this review focuses on the results of various mechanical tests to investigate the stability of implants for temporary use. All the above aspects are examined in the context of development and testing of magnesium-based biomaterials and their progress them from bench to bedside. A brief history of the first market launch of a magnesium-based degradable implant is given. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 329-347, 2017.
Collapse
Affiliation(s)
- Elmar Willbold
- Department of Orthopedic Surgery, Hannover Medical School, NIFE, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Andreas Weizbauer
- Department of Orthopedic Surgery, Hannover Medical School, NIFE, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Anneke Loos
- Biocompatibility Laboratory BioMedimplant, Stadtfelddamm 34, 30625, Hannover, Germany
| | | | - Nina Angrisani
- Department of Orthopedic Surgery, Hannover Medical School, NIFE, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Henning Windhagen
- Department of Orthopedic Surgery, Hannover Medical School, NIFE, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Janin Reifenrath
- Department of Orthopedic Surgery, Hannover Medical School, NIFE, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625, Hannover, Germany
| |
Collapse
|
43
|
Angrisani N, Reifenrath J, Zimmermann F, Eifler R, Meyer-Lindenberg A, Vano-Herrera K, Vogt C. Biocompatibility and degradation of LAE442-based magnesium alloys after implantation of up to 3.5years in a rabbit model. Acta Biomater 2016; 44:355-65. [PMID: 27497845 DOI: 10.1016/j.actbio.2016.08.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/14/2016] [Accepted: 08/02/2016] [Indexed: 11/26/2022]
Abstract
UNLABELLED Magnesium as basic implant material has long been the center of orthopedic research. Latest progress is achieved with a European certification and clinical use of a magnesium based compression screw. However, long term studies with implantation duration that exceed one year considerably do not exist. The present examinations analyzed the degradation progress from nine months to 3.5year after implantation of cylindrical pins into the medullary cavity of New Zealand White rabbits. Evaluation included clinical assessment, in vivo μ-computed tomography, analysis of the implants by three-point-bending and examination of the adjacent tissue by means of histology and of inner organs by mass- and optical emission spectrometry using inductively coupled plasma. Clinical acceptance was without objections in all animals. Immoderate reaction of the surrounding bone could be found in neither of the applied techniques. While in vivo μ-computed tomography showed a very slow degradation rate up to 72weeks, three-point-bending revealed a percentage loss of F(max) of 41.1% for implants after 9months implantation and 88.47% for the implant after 3.5years implantation. Although the total amounts of RE detected in the inner organs were very low, the organs of rabbits with LAE442 cylinders showed 10-20-fold increased concentrations of the alloying elements lanthanum, cerium, neodymium and praseodymium compared to animals without any implanted material. STATEMENT OF SIGNIFICANCE This is the first animal study investigating the degradation process of a magnesium alloy in vivo for up to 3.5years. Currently available data from different other in vivo studies cover only implantation durations up to one year. Therefore, the analysis of these long-time effects in the present study is highly significant and of great interest. Comprehensive outcome achieved by different techniques was assessed. The degradation process was slow and homogenous. Maximum applied force (F(max)) reduced by 41.1% for implants after 9months and by 88.47% for the implant after 3.5years implantation. Total amounts of RE detected in the inner organs were very low; the organs of rabbits with LAE442 cylinders showed 10-20-fold increased concentrations.
Collapse
|
44
|
A Case of Implant Failure in Partial Wrist Fusion Applying Magnesium-Based Headless Bone Screws. Case Rep Orthop 2016; 2016:7049130. [PMID: 27800201 PMCID: PMC5069367 DOI: 10.1155/2016/7049130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/14/2016] [Indexed: 11/18/2022] Open
Abstract
This article presents a case of implant failure resulting in mechanical instability of a scaphotrapezotrapezoideal arthrodesis using magnesium-based headless bone screws. During revision surgery osteolysis surrounding the screws was observed as well as degraded screw threads already in existence at 6 weeks after implantation. The supposed osseous integration attributed to magnesium-based screws could not be reproduced in this particular case. Thus, it can be reasoned that the use of magnesium-based screws for partial wrist arthrodesis cannot be encouraged, at least not in dual use.
Collapse
|
45
|
Biomechanical comparison of pure magnesium interference screw and polylactic acid polymer interference screw in anterior cruciate ligament reconstruction-A cadaveric experimental study. J Orthop Translat 2016; 8:32-39. [PMID: 30035092 PMCID: PMC5987054 DOI: 10.1016/j.jot.2016.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/23/2016] [Accepted: 09/09/2016] [Indexed: 01/13/2023] Open
Abstract
Background Polylactic acid polymer interference screws are commonly used in anterior cruciate ligament (ACL) reconstructions, especially in proximal tibia fixation. However, several concerns have been raised, including the acid products during its degradation in vivo. In recent years, biodegradable magnesium (Mg)-based implants have become attractive because of their favourable mechanical properties, which are more similar to those of natural bone when compared with other degradable materials, such as polymers, apart from their alkaline nature during degradation. Methods We developed a pure Mg interference screw for ACL reconstruction. In the present study, 24 fresh cadaver knees were used to compare the mechanical properties of pure Mg interference screws and polylactic acid polymer interference screws for ACL reconstruction via their application on the proximal tibia tested using specific robotics. Results Results showed that the pure Mg interference screw group showed similar mechanical stability to the polylactic acid polymer interference screw group, implying comparable postoperative fixation effects. Conclusion As there are no commercially available Mg-based interference screws for ACL reconstruction clinically and the in vivo degradation of pure Mg promotes bone formation, our cadaveric study supports its clinical tests for ACL reconstruction.
Collapse
|