1
|
Cao W, Zhu S, Wang W, Wang Y, Yang S, Sun H. Microarc oxidation-PBAT composite coating on EK30 biodegradable magnesium alloys to enhance corrosion resistance and cytocompatibility. Colloids Surf B Biointerfaces 2025; 253:114720. [PMID: 40262305 DOI: 10.1016/j.colsurfb.2025.114720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/13/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025]
Abstract
The rapid degradation rate of biodegradable magnesium alloys restricts their use in medical implants. Therefore, designing a protective coating with a slow degradation rate and good biocompatibility is crucial. For biodegradable magnesium alloy stents, it is equally important to enhance the material's corrosion resistance and ensure the coating's deformation adaptability to the stent. This study, utilized a combination of micro-arc oxidation (MAO) and dip-coating techniques to develop a novel composite coating comprising an MAO base layer and a poly(butylene adipate-co-terephthalate) (PBAT) outer layer on EK30 magnesium alloy. This composite coating was designed to enhance the corrosion resistance and biocompatibility of EK30 magnesium alloy for stent applications. The surface characteristics, corrosion resistance, in vitro cytocompatibility, and deformation adaptability of the composite coating to the stent were evaluated. The MAO-PBAT composite coating demonstrated a low corrosion current density (Icorr = 2.381 ×10-8 A/cm2), three orders of magnitude lower than that of unmodified EK30 magnesium alloy. Live/dead cell staining results confirmed that the composite coating exhibited good cytocompatibility with human aortic endothelial cells (HAECs) and human aortic smooth muscle cells (HASMCs). Observations of the stent treated with the composite coating during crimping and expansion showed that the composite coating possessed excellent deformation adaptability. These results indicate that the MAO-PBAT composite coating has significant potential for vascular stent application.
Collapse
Affiliation(s)
- Weisheng Cao
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Siyu Zhu
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian 116044, China
| | - Weiqiang Wang
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Yahui Wang
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shuaikang Yang
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Haiyang Sun
- Central Hospital of Dalian University of Technology (Dalian Central Hospital), Dalian 116033, China.
| |
Collapse
|
2
|
Sameni HR, Arab S, Doostmohammadi N, Bahraminasab M. Effect of calcium phosphate/bovine serum albumin coated Al 2O 3-Ti biocomposites on osteoblast response. BIOMED ENG-BIOMED TE 2024; 69:367-382. [PMID: 38258440 DOI: 10.1515/bmt-2023-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
OBJECTIVES The biological performance of aluminum oxide-titanium (Al2O3-Ti) composites requires special attention to achieve improved osteoblastic differentiation, and subsequent osseointegration/strong anchorage with the surrounding bone. Therefore, the aim of this study was to improve them by providing calcium phosphate (Ca-P)/bovine serum albumin (BSA) coating on their surfaces. METHODS Ca-P/BSA coatings were prepared on the surfaces of 75vol.%Ti composites (75Ti-BSA) and pure Ti (100Ti-BSA as a control). The surface characteristics, phase analysis, micro-hardness, BSA release profile and biological responses including cytotoxicity, cell viability, differentiation, mineralization, and cell adhesion were evaluated. RESULTS The results showed that lower cytotoxicity% and higher mitochondrial activity or viability % were associated with the samples with Ca-P/BSA coatings (particularly 75Ti-BSA having 21.3% cytotoxicity, 111.4% and 288.6% viability at day 1 and 7, respectively). Furthermore, the Ca-P/BSA coating could highly enhance the differentiation of pre-osteoblast cells into osteoblasts in 75Ti-BSA group (ALP concentration of 4.8 ng/ml). However, its influence on cell differentiation in 100Ti-BSA group was negligible. Similar results were also obtained from mineralization assay. The results on cell adhesion revealed that the Ca-P/BSA coated samples differently interacted with MC3T3-E1 cells; enlarged flat cells on 75Ti-BSA vs more spindle-shaped cells on 100Ti-BSA. CONCLUSIONS Ca-P/BSA coated Al2O3-Ti provided promising biological performance, superior to that of uncoated composites. Therefore, they have the potential to improve implant osseointegration.
Collapse
Affiliation(s)
- Hamid Reza Sameni
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Samaneh Arab
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Nesa Doostmohammadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Marjan Bahraminasab
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
3
|
Wu J, Cheng X, Wu J, Chen J, Pei X. The development of magnesium-based biomaterials in bone tissue engineering: A review. J Biomed Mater Res B Appl Biomater 2024; 112:e35326. [PMID: 37861271 DOI: 10.1002/jbm.b.35326] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/15/2023] [Accepted: 08/23/2023] [Indexed: 10/21/2023]
Abstract
Bone regeneration is a vital clinical challenge in massive or complicated bone defects. Recently, bone tissue engineering has come to the fore to meet the demand for bone repair with various innovative materials. However, the reported materials usually cannot satisfy the requirements, such as ideal mechanical and osteogenic properties, as well as biocompatibility at the same time. Mg-based biomaterials have considerable potential in bone tissue engineering owing to their excellent mechanical strength and biosafety. Moreover, the biocompatibility and osteogenic activity of Mg-based biomaterials have been the research focuses in recent years. The main limitation faced in the applications of Mg-based biomaterials is rapid degradation, which can produce excessive Mg2+ and hydrogen, affecting the healing of the bone defect. In order to overcome the limitations, researchers have explored several ways to improve the properties of Mg-based biomaterials, including alloying, surface modification with coatings, and synthesizing other composite materials to control the degradation rate upon implantation. This article reviewed the osteogenic mechanism and requirement for appropriate degradation rate and focused on current progress in the biomedical use of Mg-based biomaterials to inspire more clinical applications of Mg in bone regeneration in the future.
Collapse
Affiliation(s)
- Jiaxin Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinting Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jicenyuan Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Qian J, Wang J, Zhang W, Mao J, Qin H, Ling X, Zeng H, Hou J, Chen Y, Wan G. Corrosion-tailoring, osteogenic, anti-inflammatory, and antibacterial aspirin-loaded organometallic hydrogel composite coating on biodegradable Zn for orthopedic applications. BIOMATERIALS ADVANCES 2023; 153:213536. [PMID: 37418934 DOI: 10.1016/j.bioadv.2023.213536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 07/09/2023]
Abstract
Zn and its alloys are receiving increasing interest for biodegradable orthopedic implant applications owing to their moderate corrosion rate and the potential functionality of Zn2+. However, their non-uniform corrosion behavior and insufficient osteogenic, anti-inflammatory, and antibacterial properties do not meet the comprehensive requirements of orthopedic implants in clinical use. Herein, an aspirin (an acetylsalicylic acid, ASA, 10, 50, 100, and 500 mg/L)-loaded carboxymethyl chitosan (CMC)/gelatin (Gel)-Zn2+ organometallic hydrogel composite coating (CMC/Gel&Zn2+/ASA) was fabricated on a Zn surface via an alternating dip-coating method, aiming to obtain a material with these comprehensive properties improved. The organometallic hydrogel composite coatings, ca. 12-16 μm in thickness, showed compact, homogeneous, and micro-bulge structured surface morphology. The coatings protected well the Zn substrate from pitting/localized corrosion and contained the release of the bioactive components, Zn2+ and ASA, in a sustained and stable manner in long-term in vitro immersions in Hank's solution. The coated Zn showed greater ability to promote proliferation and osteogenic differentiation for MC3T3-E1 osteoblasts, and better anti-inflammatory capacity when compared with uncoated Zn. Additionally, this coating displayed excellent antibacterial activity against both Escherichia coli (>99 % antibacterial rate) and Staphylococcus aureus (>98 % antibacterial rate). Such appealing properties can be attributed to the compositional nature of the coating, namely the sustained release of Zn2+ and ASA, as well as the surface physiochemical properties because of its unique microstructure. This organometallic hydrogel composite coating can be considered a promising option for the surface modification of biodegradable Zn-based orthopedic implants among others.
Collapse
Affiliation(s)
- Junyu Qian
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiale Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wentai Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jinlong Mao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Haotian Qin
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Xuyu Ling
- Department of Applied Physics, College of Electronic and Information, Southwest Minzu University, Chengdu 610041, China
| | - Hui Zeng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jiaming Hou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yingqi Chen
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| | - Guojiang Wan
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
5
|
Keerthiga G, Prasad MJNV, Vijayshankar D, Singh Raman RK. Polymeric Coatings for Magnesium Alloys for Biodegradable Implant Application: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4700. [PMID: 37445014 DOI: 10.3390/ma16134700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Magnesium (Mg) alloys are a very attractive material of construction for biodegradable temporary implants. However, Mg alloys suffer unacceptably rapid corrosion rates in aqueous environments, including physiological fluid, that may cause premature mechanical failure of the implant. This necessitates a biodegradable surface barrier coating that should delay the corrosion of the implant until the fractured/damaged bone has healed. This review takes a brief account of the merits and demerits of various existing coating methodologies for the mitigation of Mg alloy corrosion. Since among the different coating approaches investigated, no single coating recipe seems to address the degradation control and functionality entirely, this review argues the need for polymer-based and biodegradable composite coatings.
Collapse
Affiliation(s)
- G Keerthiga
- IITB-Monash Research Academy, Mumbai 400076, Maharashtra, India
- Microstructural Engineering and Mechanical Performance Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
- Electrochemistry at Interface Lab, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - M J N V Prasad
- Microstructural Engineering and Mechanical Performance Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Dandapani Vijayshankar
- Electrochemistry at Interface Lab, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - R K Singh Raman
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
6
|
Singh N, Batra U, Kumar K, Ahuja N, Mahapatro A. Progress in bioactive surface coatings on biodegradable Mg alloys: A critical review towards clinical translation. Bioact Mater 2023; 19:717-757. [PMID: 35633903 PMCID: PMC9117289 DOI: 10.1016/j.bioactmat.2022.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 02/07/2023] Open
Abstract
Mg and its alloys evince strong candidature for biodegradable bone implants, cardiovascular stents, and wound closing devices. However, their rapid degradation rate causes premature implant failure, constraining clinical applications. Bio-functional surface coatings have emerged as the most competent strategy to fulfill the diverse clinical requirements, besides yielding effective corrosion resistance. This article reviews the progress of biodegradable and advanced surface coatings on Mg alloys investigated in recent years, aiming to build up a comprehensive knowledge framework of coating techniques, processing parameters, performance measures in terms of corrosion resistance, adhesion strength, and biocompatibility. Recently developed conversion and deposition type surface coatings are thoroughly discussed by reporting their essential therapeutic responses like osteogenesis, angiogenesis, cytocompatibility, hemocompatibility, anti-bacterial, and controlled drug release towards in-vitro and in-vivo study models. The challenges associated with metallic, ceramic and polymeric coatings along with merits and demerits of various coatings have been illustrated. The use of multilayered hybrid coating comprising a unique combination of organic and inorganic components has been emphasized with future perspectives to obtain diverse bio-functionalities in a facile single coating system for orthopedic implant applications.
Collapse
Affiliation(s)
- Navdeep Singh
- Department of Metallurgical and Materials Engineering, Punjab Engineering College, Chandigarh, 160012, India
| | - Uma Batra
- Department of Metallurgical and Materials Engineering, Punjab Engineering College, Chandigarh, 160012, India
| | - Kamal Kumar
- Department of Mechanical Engineering, Punjab Engineering College, Chandigarh, 160012, India
| | - Neeraj Ahuja
- Department of Metallurgical and Materials Engineering, Punjab Engineering College, Chandigarh, 160012, India
| | - Anil Mahapatro
- Department of Biomedical Engineering, Wichita State University, Wichita, KS, 67260, United States
| |
Collapse
|
7
|
Shi L, Chen S, Zheng F, Mingming L, Yang H, Zhang B. Corrosion resistance evaluation of biodegradable magnesium alloy vascular stents optimized by mechanical adapted polymer coating strategy. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Asaduzzaman Chowdhury M, Helal Hossain MD, Hossain N, Hossen Z, Arefin Kowser M, Masud Rana M. Advances in coatings on Mg alloys and their anti-microbial activity for implant applications. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
9
|
Wu Y, Zhu B, Zhang X, Li D, Zhang K, Liang J, Cao B. Preparation and characterization of Y-doped microarc oxidation coating on AZ31 magnesium alloys. J Biomater Appl 2022; 37:930-941. [PMID: 35971286 DOI: 10.1177/08853282221121886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The rapid degradation characteristics of magnesium alloys limit its application in the field of orthopedic fracture fixation and cardiovascular stents. This study aimed to improve the corrosion resistance and biocompatibility of AZ31 magnesium alloys and prepare degradable implant materials. Micro-arc oxidation (MAO) was used to change the concentration of yttrium acetate in the electrolyte to prepare coatings with different yttrium content on the surface of AZ31 magnesium alloy. Through characterization, it is proved that the yttrium in the coating mainly exists in the form of Y3+. The polarization potential experiment shows that the micro-arc oxidation coating significantly improves the corrosion resistance of magnesium alloys. With the increase of yttrium acetate concentration in the electrolyte, the corrosion resistance of the coating first increases and then weakens. When the concentration is 0.0035 mol/L, the coating has the highest corrosion resistance. The results of CCK-8 cytotoxicity experiment and cell morphology observation also proved that the cell viability in each group was greater than 140%, and the yttrium-doped coating on the surface of AZ31 magnesium alloy has no cytotoxicity, can promote cell growth, and has good biocompatibility.
Collapse
Affiliation(s)
| | - Bowu Zhu
- 12426Lanzhou University, Lanzhou, China
| | | | - Duhong Li
- 12426Lanzhou University, Lanzhou, China
| | | | - Jun Liang
- 53045Chinese Academy of Sciences Lanzhou Branch, Lanzhou, China
| | | |
Collapse
|
10
|
Bhattacharjee A, Bandyopadhyay A, Bose S. Plasma sprayed fluoride and zinc doped hydroxyapatite coated titanium for load-bearing implants. SURFACE & COATINGS TECHNOLOGY 2022; 440:128464. [PMID: 36311855 PMCID: PMC9603884 DOI: 10.1016/j.surfcoat.2022.128464] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Titanium (Ti) alloys show excellent fatigue and corrosion resistance, high strength to weight ratio, and no toxicity; however, poor osseointegration ability of Ti may lead to implant loosening in vivo. Plasma spraying of hydroxyapatite [HA, Ca10 (PO4)6 (OH)2] coating on Ti surfaces is commercially used to enhance osseointegration and the long-term stability of these implants. The biological properties of HA can be improved with the addition of both cationic and anionic dopants, such as zinc ions (Zn2+) and fluoride (F-). However, the hygroscopic nature of fluoride restricts its utilization in the radiofrequency (RF) plasma spray process. In addition, the amount of doping needs to be optimized to ensure cytocompatibility. We have fabricated zinc and fluoride doped HA-coated Ti6Al4V (Ti64) to mitigate these challenges using compositional and parametric optimizations. The RF induction plasma spraying method is utilized to prepare the coatings. Multiple parametric optimizations with amplitude and frequency during the processing result in coating thicknesses between 80 and 145 μm. No adverse effects on the adhesion properties of the coating are noticed because of doping. The antibacterial efficacy of each composition is tested against S. aureus for 24, 48, and 72 h, and showed that the addition of zinc oxide and calcium fluoride to HA leads to nearly 70 % higher antibacterial efficacy than pure HA-coated samples. The addition of osteogenic Zn2+and F- leads to 1.5 times higher osteoblast viability for the doped samples than pure HA-coated samples after 7-days of cell culture. Zn2+ and F- doped HA-coated Ti64 with simultaneous improvements in anti-bacterial efficacy and in vitro biocompatibility can find application in load-bearing implants, particularly in revision surgeries and immune-compromised patients.
Collapse
Affiliation(s)
- Arjak Bhattacharjee
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Amit Bandyopadhyay
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
11
|
Bhattacharjee A, Bose S. Zinc curcumin complex on fluoride doped hydroxyapatite with enhanced biological properties for dental and orthopedic applications. JOURNAL OF MATERIALS RESEARCH 2022; 37:2009-2020. [PMID: 37346089 PMCID: PMC10284581 DOI: 10.1557/s43578-022-00595-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/06/2022] [Indexed: 06/23/2023]
Abstract
Since antiquity, curcumin, from turmeric is utilized in traditional Indian medicine (Ayurveda) to treat bone disorders. However, the hydrophobic nature and poor absorption of curcumin limit its clinical applications. There is a need to develop a novel strategy that can significantly enhance curcumin's biological properties. The current work reports the utilization of Zn2+-curcumin complex from a fluoride doped hydroxyapatite matrix for osteosarcoma inhibition, osteoblast growth, and anti-bacterial properties. The interaction between Zn2+ and curcumin increases curcumin release by ~ 2.5 folds. The fabricated drug delivery system shows up to ~ 1.6 times enhancement in osteoblast cell viability. The presence of curcumin results in ~ 4 times more osteosarcoma inhibition compared to control. The antibacterial efficacy of this system is confirmed against Staphylococcus aureus, due to the presence of antibacterial fluoride, zinc, and curcumin. This multifunctional drug delivery system can be utilized for various bone-tissue engineering and dental applications.
Collapse
Affiliation(s)
- Arjak Bhattacharjee
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
12
|
Elsadek NE, Nagah A, Ibrahim TM, Chopra H, Ghonaim GA, Emam SE, Cavalu S, Attia MS. Electrospun Nanofibers Revisited: An Update on the Emerging Applications in Nanomedicine. MATERIALS 2022; 15:ma15051934. [PMID: 35269165 PMCID: PMC8911671 DOI: 10.3390/ma15051934] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023]
Abstract
Electrospinning (ES) has become a straightforward and customizable drug delivery technique for fabricating drug-loaded nanofibers (NFs) using various biodegradable and non-biodegradable polymers. One of NF's pros is to provide a controlled drug release through managing the NF structure by changing the spinneret type and nature of the used polymer. Electrospun NFs are employed as implants in several applications including, cancer therapy, microbial infections, and regenerative medicine. These implants facilitate a unique local delivery of chemotherapy because of their high loading capability, wide surface area, and cost-effectiveness. Multi-drug combination, magnetic, thermal, and gene therapies are promising strategies for improving chemotherapeutic efficiency. In addition, implants are recognized as an effective antimicrobial drug delivery system overriding drawbacks of traditional antibiotic administration routes such as their bioavailability and dosage levels. Recently, a sophisticated strategy has emerged for wound healing by producing biomimetic nanofibrous materials with clinically relevant properties and desirable loading capability with regenerative agents. Electrospun NFs have proposed unique solutions, including pelvic organ prolapse treatment, viable alternatives to surgical operations, and dental tissue regeneration. Conventional ES setups include difficult-assembled mega-sized equipment producing bulky matrices with inadequate stability and storage. Lately, there has become an increasing need for portable ES devices using completely available off-shelf materials to yield highly-efficient NFs for dressing wounds and rapid hemostasis. This review covers recent updates on electrospun NFs in nanomedicine applications. ES of biopolymers and drugs is discussed regarding their current scope and future outlook.
Collapse
Affiliation(s)
- Nehal E. Elsadek
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan;
| | - Abdalrazeq Nagah
- Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (A.N.); (G.A.G.)
| | - Tarek M. Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (T.M.I.); (S.E.E.)
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Ghada A. Ghonaim
- Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (A.N.); (G.A.G.)
| | - Sherif E. Emam
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (T.M.I.); (S.E.E.)
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
- Correspondence: (S.C.); (M.S.A.)
| | - Mohamed S. Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (T.M.I.); (S.E.E.)
- Correspondence: (S.C.); (M.S.A.)
| |
Collapse
|
13
|
Zhu B, Wang L, Wu Y, Yue W, Liang J, Cao B. Improving corrosion resistance and biocompatibility of AZ31 magnesium alloy by ultrasonic cold forging and micro-arc oxidation. J Biomater Appl 2022; 36:1664-1675. [DOI: 10.1177/08853282211046776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Corrosion resistant and biocompatible AZ31 magnesium alloy surfaces were successfully prepared by ultrasonic cold forging and subsequent micro-arc oxidation. The properties of these ultrasonic cold forging pretreated (UCFT)AZ31 magnesium alloy surfaces containing Sr–Ca–P micro-arc oxide coating (MAO/UCFT/AZ31) were studied. Results showed that surface grain refinement of AZ31 Mg alloy in the depth of 400 μm owing to the ultrasonic cold forging pretreatment was verified, and which provides more discharge channels for subsequent micro-arc oxidation. Comparing with the AZ31 magnesium alloy (AZ31) and ultrasonic cold forging technology treated AZ31 magnesium alloy samples (UCFT/AZ31), the corrosion resistance of MAO/UCFT/AZ31 significantly improved, which is also supported by the immersion experiments and electrochemical tests in simulated body fluid. Meanwhile, the MAO/UCFT/AZ31 samples also had excellent cytocompatibility as well as MAO/AZ31 samples. These results may beneficial to the developing of biodegradable medical materials in future.
Collapse
Affiliation(s)
- Bowu Zhu
- Lanzhou University, Lanzhou, China
| | - Lei Wang
- Lanzhou University, Lanzhou, China
| | | | - Wen Yue
- China University of Geosciences Beijing, Beijing, China
| | - Jun Liang
- Chinese Academy of Sciences Lanzhou Branch, Lanzhou, China
| | | |
Collapse
|
14
|
Zhu Y, Liu W, Ngai T. Polymer coatings on magnesium‐based implants for orthopedic applications. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210578] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yuwei Zhu
- Department of Chemistry The Chinese University of Hong Kong Shatin N. T. Hong Kong
| | - Wei Liu
- Department of Chemistry The Chinese University of Hong Kong Shatin N. T. Hong Kong
| | - To Ngai
- Department of Chemistry The Chinese University of Hong Kong Shatin N. T. Hong Kong
| |
Collapse
|
15
|
Jayamoorthy K, Saravanan P, Rao VS, Rajagopalan NR, Rengarajan S, Nisha P. Carbon nanotubes functionalized with newly synthesized benzimidazole derivative for corrosion inhibition on the nickel alloy surface in a sulfuric acidic medium. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1984534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- K. Jayamoorthy
- Department of Chemistry, St. Joseph’s College of Engineering, Chennai, Tamil Nadu, India
| | - P. Saravanan
- Department of Chemistry, St. Joseph’s College of Engineering, Chennai, Tamil Nadu, India
| | - Vaddi Seshagiri Rao
- Department of Mechanical Engineering, St. Joseph’s College of Engineering, Chennai, Tamil Nadu, India
| | - N. R. Rajagopalan
- Department of Chemistry, St. Joseph’s College of Engineering, Chennai, Tamil Nadu, India
| | - Sathish Rengarajan
- Department of Mechanical Engineering, St. Joseph’s College of Engineering, Chennai, Tamil Nadu, India
| | - P. Nisha
- Department of Electrical and Electronics Engineering, Easwari Engineering College, Chennai, Tamil Nadu, India
| |
Collapse
|
16
|
A Comprehensive Review on Surface Modifications of Biodegradable Magnesium-Based Implant Alloy: Polymer Coatings Opportunities and Challenges. COATINGS 2021. [DOI: 10.3390/coatings11070747] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of biodegradable implants is certainly intriguing, and magnesium and its alloys are considered significant among the various biodegradable materials. Nevertheless, the fast degradation, the generation of a significant amount of hydrogen gas, and the escalation in the pH value of the body solution are significant barriers to their use as an implant material. The appropriate approach is able to solve this issue, resulting in a decrease the rate of Mg degradation, which can be accomplished by alloying, surface adjustment, and mechanical treatment. Surface modification is a practical option because it not only improves corrosion resistance but also prepares a treated surface to improve bone regeneration and cell attachment. Metal coatings, ceramic coatings, and permanent polymers were shown to minimize degradation rates, but inflammation and foreign body responses were also suggested. In contrast to permanent materials, the bioabsorbable polymers normally show the desired biocompatibility. In order to improve the performance of drugs, they are generally encapsulated in biodegradable polymers. This study summarized the most recent advancements in manufacturing polymeric coatings on Mg alloys. The related corrosion resistance enhancement strategies and future potentials are discussed. Ultimately, the major challenges and difficulties are presented with aim of the development of polymer-coated Mg-based implant materials.
Collapse
|
17
|
Preparation and Characterization of a Sol–Gel AHEC Pore-Sealing Film Prepared on Micro Arc Oxidized AZ31 Magnesium Alloy. METALS 2021. [DOI: 10.3390/met11050784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to improve the cellular compatibility and corrosion resistance of AZ31 magnesium alloy and to prepare a biodegradable medical material. An aminated hydroxyethyl cellulose (AHEC) coating was successfully prepared on the surface of a micro-arc oxide +AZ31 magnesium alloy by sol–gel spinning. The pores of the micro-arc oxide coating were sealed. A polarization potential test analysis showed that compared to the single micro-arc oxidation coating, the coating after sealing with AHEC significantly improved the corrosion resistance of the AZ31 magnesium alloy and reduced its degradation rate in simulated body fluid (SBF). The CCK-8 method and cell morphology experiments showed that the AHEC + MAO coating prepared on the AZ31 magnesium alloy had good cytocompatibility and bioactivity.
Collapse
|
18
|
Li W, Yuan F, Bai J, Cheng J, Li H, Zheng J, Bai W, Lyu P. In vivo evaluation of bending strengths and degradation rates of different magnesium pin designs for oral stapler. J Appl Biomater Funct Mater 2020; 18:2280800019836400. [PMID: 33372827 DOI: 10.1177/2280800019836400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Magnesium alloys have been potential biodegradable implants in the areas of bone, cardiovascular system, gastrointestinal tract, and so on. The purpose of this study is to evaluate Mg-2Zn alloy degradation as a potential suture material. The study included Sprague-Dawley (SD) rats in vivo. In 24 male SD rats, tests in the leg muscle were conducted using traditional surgical incision and insertion of magnesium alloys of different designs into the tissue. The material degradation topography, elemental composition, and strength of the pins were analyzed. This paper explores magnesium pins with different cross-sectional shapes and diameters to establish a suitable pin diameter and shape for use as an oral stapler, which must have a good balance of degradation rate and strength. The results showed there were good bending strengths over different degradation periods in groups with diameters of 0.8 mm and 0.5 mm, and no significantly different bending strength between the groups of triangle and round cross-section shapes with same diameter of 0.3 mm, although the degradation rate still needs to be improved.
Collapse
Affiliation(s)
- Wenjun Li
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, China.,Research Center of Engineering and Technology for Digital Dentistry, Ministry of Health, Beijing, China
| | - Fusong Yuan
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, China.,Research Center of Engineering and Technology for Digital Dentistry, Ministry of Health, Beijing, China
| | - Jing Bai
- School of Materials Science and Engineering, Southeast University, Nanjing, China
| | - Junyao Cheng
- School of Materials Science and Engineering, Southeast University, Nanjing, China
| | - Hongxiang Li
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, China
| | - Jianqiao Zheng
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, China.,Research Center of Engineering and Technology for Digital Dentistry, Ministry of Health, Beijing, China
| | - Wei Bai
- Dental Medical Devices Testing Center, Peking University School of Stomatology, Beijing, China
| | - Peijun Lyu
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, China.,Research Center of Engineering and Technology for Digital Dentistry, Ministry of Health, Beijing, China
| |
Collapse
|
19
|
Nathanael AJ, Oh TH. Biopolymer Coatings for Biomedical Applications. Polymers (Basel) 2020; 12:E3061. [PMID: 33371349 PMCID: PMC7767366 DOI: 10.3390/polym12123061] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023] Open
Abstract
Biopolymer coatings exhibit outstanding potential in various biomedical applications, due to their flexible functionalization. In this review, we have discussed the latest developments in biopolymer coatings on various substrates and nanoparticles for improved tissue engineering and drug delivery applications, and summarized the latest research advancements. Polymer coatings are used to modify surface properties to satisfy certain requirements or include additional functionalities for different biomedical applications. Additionally, polymer coatings with different inorganic ions may facilitate different functionalities, such as cell proliferation, tissue growth, repair, and delivery of biomolecules, such as growth factors, active molecules, antimicrobial agents, and drugs. This review primarily focuses on specific polymers for coating applications and different polymer coatings for increased functionalization. We aim to provide broad overview of latest developments in the various kind of biopolymer coatings for biomedical applications, in order to highlight the most important results in the literatures, and to offer a potential outline for impending progress and perspective. Some key polymer coatings were discussed in detail. Further, the use of polymer coatings on nanomaterials for biomedical applications has also been discussed, and the latest research results have been reported.
Collapse
Affiliation(s)
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
20
|
Guo P, Zhu X, Yang L, Deng L, Zhang Q, Li BQ, Cho K, Sun W, Ren T, Song Z. Ultrafine- and uniform-grained biodegradable Zn-0.5Mn alloy: Grain refinement mechanism, corrosion behavior, and biocompatibility in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111391. [PMID: 33254997 DOI: 10.1016/j.msec.2020.111391] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
An ultrafine- and uniform-grained Zn-0.5Mn alloy (D3 alloy, stands for deformation rate of 99.5%) is fabricated via multi-pass drawing. The alloy features excellent ductility and elongation properties (up to 245.0% ± 9.0% at room temperature). Zn-0.5Mn alloys are composed of two phases, namely, Zn and MnZn13. The MnZn13 phase confers multiple effects during refinement by inducing and pinning low-angle boundaries within grains. Meanwhile, the presence of these phases along grain boundaries prevents the growth of new refined grains. D3 shows uniform corrosion behaviors in c-SBF solution on account of the even distribution of the MnZn13 phase in its microstructure. Animal implantation experiments indicate that D3 has good biocompatibility; it does not cause damage to bone tissue or other organs. Taking the results together, D3 may be developed into a new type of biodegradable material with remarkable elongation and corrosion properties and satisfactory biocompatibility for medical applications.
Collapse
Affiliation(s)
- Pushan Guo
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinglong Zhu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Lijing Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Long Deng
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Qingke Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | | | | | - Wensheng Sun
- Ningbo Powerway Alloy Material Co., LTD, Ningbo 315135, China
| | - Tiantian Ren
- Ningbo First Hospital, Ningbo 315010, China; The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zhenlun Song
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
21
|
Peng T, Xiao R, Rong Z, Liu H, Hu Q, Wang S, Li X, Zhang J. Polymer Nanocomposite-based Coatings for Corrosion Protection. Chem Asian J 2020; 15:3915-3941. [PMID: 32979034 DOI: 10.1002/asia.202000943] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/22/2020] [Indexed: 11/07/2022]
Abstract
Corrosion of metals induces enormous loss of material performance and increase of cost, which has been a common and intractable issue that needs to be addressed urgently. Coating technology has been acknowledged to be the most economic and efficient approach to retard the metal corrosion. For several decades, polymers have been recognized as an effective anticorrosion coating material in both industries and scientific communities, as they demonstrate good barrier properties, ease of altering properties and massive production. Nanomaterials show distinctively different physical and chemical properties compared with their bulk counterparts, which have been considered as highly promising functional materials in various applications, impacting virtually all the fields of science and technologies. Recently, the introduction of nanomaterials with various properties into polymer matrix to form a polymer nanocomposite has been devoted to improve anticorrosive ability of polymer coatings. In this review article, we highlight the recent advances and synopsis of these high-performance polymer nanocomposites as anticorrosive coating materials. We expect that this work could be helpful for the researchers who are interested in the development of functional nanomaterials and advanced corrosion protection technology.
Collapse
Affiliation(s)
- Tingyu Peng
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Ruihou Xiao
- JUHUA Group Corporation Technology Centre, Quzhou, 324004, P. R. China
| | - Zhenyang Rong
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Haibo Liu
- JUHUA Group Corporation Technology Centre, Quzhou, 324004, P. R. China
| | - Qunyi Hu
- Zhejiang JUHUA Novel Materials Research Institute Co., Ltd, Lin'an, 311305, P. R. China
| | - Shuhua Wang
- Zhejiang JUHUA Novel Materials Research Institute Co., Ltd, Lin'an, 311305, P. R. China
| | - Xu Li
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 138634, Singapore.,Department of Food Science and Technology, Faculty of Science, National University of Singapore, 117543, Singapore
| | - Jianming Zhang
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| |
Collapse
|
22
|
Sun J, Cai S, Li Q, Li Z, Xu G. UV-irradiation induced biological activity and antibacterial activity of ZnO coated magnesium alloy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:110997. [PMID: 32994024 DOI: 10.1016/j.msec.2020.110997] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/26/2020] [Accepted: 04/20/2020] [Indexed: 11/19/2022]
Abstract
In order to improve the biological activity and antibacterial activity of magnesium alloy, the single zinc oxide (ZnO) coating was prepared on magnesium alloys using microwave aqueous synthesis method and followed heat treatment. Then, the coated magnesium alloys were irradiated with ultraviolet (UV) light for different time and subsequently immersed in simulated body fluids (SBF). The influences of UV-irradiated time on the morphology, composition, in vitro biological activity and antibacterial activity were investigated. The results indicated that the ability of the apatite formation on the ZnO coated magnesium alloys surface was significantly enhanced as UV irradiation time prolonged, and the bone-like apatite was formed after UV irradiation for 24 h and then immersing into SBF for 2 weeks, the newly formed apatite was dense and integrate, implying that UV irradiation could activate ZnO coating to improve the biological activity. Moreover, after immersing in SBF for 2 weeks, the antibacterial experiment results demonstrated that ZnO coated magnesium alloys with UV irradiation time of 24 h exhibited more effective antibacterial activity than those of naked magnesium alloys and ZnO coated magnesium alloys which were not irradiated by ultraviolet (UV) light. This work afforded a surface strategy for designing magnesium alloy implant with desirable osseointegration ability and antibacterial property simultaneously for orthopedic and dental applications.
Collapse
Affiliation(s)
- Jin'e Sun
- Tianjin College, Beijing University of Science and Technology, Tianjin 301800, China
| | - Shu Cai
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.
| | - Qianqian Li
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Zhaoyang Li
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Guohua Xu
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
23
|
Mamidi N, Zuníga AE, Villela-Castrejón J. Engineering and evaluation of forcespun functionalized carbon nano-onions reinforced poly (ε-caprolactone) composite nanofibers for pH-responsive drug release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110928. [PMID: 32409077 DOI: 10.1016/j.msec.2020.110928] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/22/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
Nanofibers and smart polymers are potentially fascinating biomaterials for the sustained release of therapeutic agents and tissue engineering applications. The current study describes a new class of pH-controlled polycaprolactone/mercaptophenyl methacrylate functionalized carbon nano-onions (PCL/f-CNOs) composite nanofibers by Forcespinning® (FS) with a sustained drug release profile. The morphology and structural characteristics of PCL/f-CNOs nanofibers were scrutinized by Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. The morphological results revealed that FS provided homogeneous and bead free nanofibers with average diameters from approximately 215 nm to 596 nm. PCL/f-CNOs composite fibers exhibited pH-responsive release of DOX over 15 days; pH 6.5 showed 87%, and pH 5.0 presented around 99% of DOX release. Drug release measurements showed that the π-π stacking interactions between DOX and f-CNOs have led to a controlled DOX release from forcespun PCL/f-CNOs fibers. Owing to the f-CNOs amalgamation, PCL/f-CNOs fibers unveiled enhanced tensile strength (3.16 MPa) as compared to pristine PCL fibers. It reveals the magnitude of colloidal stability and physisorption of f-CNOs within the PCL matrix. Besides, the in-vitro cell viability was measured with human fibroblast cells, and good viability was observed. Nevertheless, DOX embedded pH-responsive PCL/f-CNOs composite nanofibers may show potential applications in the biomedical research area.
Collapse
Affiliation(s)
- Narsimha Mamidi
- Tecnologico de Monterrey, Department of Chemistry and Nanotechnology, School of Engineering and Science, Eugenio Garza Sada 2501 Sur, Col. Tecnologico, C.P. 64849 Monterrey, Nuevo León, Mexico.
| | - Alex Elías Zuníga
- Tecnologico de Monterrey, Department of Chemistry and Nanotechnology, School of Engineering and Science, Eugenio Garza Sada 2501 Sur, Col. Tecnologico, C.P. 64849 Monterrey, Nuevo León, Mexico
| | - Javier Villela-Castrejón
- Tecnologico de Monterrey, Department of Chemistry and Nanotechnology, School of Engineering and Science, Eugenio Garza Sada 2501 Sur, Col. Tecnologico, C.P. 64849 Monterrey, Nuevo León, Mexico
| |
Collapse
|
24
|
Bakhsheshi-Rad HR, Ismail AF, Aziz M, Akbari M, Hadisi Z, Khoshnava SM, Pagan E, Chen X. Co-incorporation of graphene oxide/silver nanoparticle into poly-L-lactic acid fibrous: A route toward the development of cytocompatible and antibacterial coating layer on magnesium implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110812. [PMID: 32279830 DOI: 10.1016/j.msec.2020.110812] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 12/15/2022]
Abstract
Magnesium (Mg) alloys present great potential for the development of orthopedic implants, whereas, their high degradation rate and poor antibacterial performance have restricted orthopedic applications. In this work, PLLA/GO-AgNP (poly-L-lactic acid/graphene oxide- silver nanoparticle) with different concentration of GO-AgNPs were deposited on Mg alloy via electrospinning method for enhancement of corrosion resistance and antibacterial performance. The result revealed that incorporation of GO into PLLA fibrous considerably slowed down the degradation rate of Mg alloy substrate and reduced the H2 release rate from the substrate. Also, co-incorporation of GO and AgNPs into PLLA fibrous resulted in substantial escalate in compressive strength after immersion in simulated body fluid (SBF). Antibacterial activity test exhibited that Mg alloy and neat PLLA fibrous presented minimal inhibition area toward Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). In contrast, using PLLA/GO-AgNPs fibrous improved antibacterial performance against both bacteria. Cytocompatibility results indicated that PLLA/GO-AgNPs fibrous with a low amount of GO-AgNPs enhanced cell proliferation and growth while high co-incorporation of GO-AgNPs showed a negative effect on cell proliferation. Taken together, PLLA/1GO-AgNPs fibrous coating shows suitable corrosion resistance, cytocompatibility, and antibacterial function for use in orthopedic applications.
Collapse
Affiliation(s)
- Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Johor, Malaysia
| | - Madzlan Aziz
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Johor, Malaysia
| | - Mohsen Akbari
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Zhina Hadisi
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Seyed Meysam Khoshnava
- Faculty of Civil Engineering, Universiti Teknologi of Malaysia (UTM), 81310 Skudai, Johor, Malaysia
| | - Erik Pagan
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Xiongbiao Chen
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
25
|
Preparation and Characterization of Fluoride-Incorporated Plasma Electrolytic Oxidation Coatings on the AZ31 Magnesium Alloy. COATINGS 2019. [DOI: 10.3390/coatings9120826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, films with different fluorine contents were prepared on an AZ31 magnesium alloy by using plasma electrolytic oxidation to study the corrosion resistance and cytocompatibility of the alloy. The morphology of the coating surface, phase, and chemical elements were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectrometry (EDS). The changes in the corrosion resistance with different fluorine contents were investigated by electrochemical experiments, hydrogen evolution, and long-term immersion tests. In addition, murine fibroblast L-929 cells were adopted for in vitro cytotoxicity tests using the cell counting kit (CCK)-8 assay, and the morphology of the cells was observed simultaneously by inverted microscopy. The results showed that the main form of the fluorine ions in the plasma electrolytic oxidation coatings was magnesium fluoride (MgF2). In addition, the corrosion resistance and cytocompatibilities of the coatings were improved by the addition of fluoride ions. When the content of potassium fluoride reached 10 g/L, the cell compatibility and corrosion resistance were the best, a finding which provides a basis for the clinical applications of the AZ31 magnesium alloy in the biomedical field.
Collapse
|
26
|
Sun J, Cai S, Sun J, Shen K, Liu J, Xu G. Ultrasonic aqueous synthesis of corrosion resistant hydroxyapatite coating on magnesium alloys for the application of long-term implant. ULTRASONICS SONOCHEMISTRY 2019; 58:104677. [PMID: 31450295 DOI: 10.1016/j.ultsonch.2019.104677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 06/10/2023]
Abstract
For the orthopedic application, the promising biodegradable magnesium alloys gained increasing attention. In order to improve the interface bonding strength and corrosion resistance of magnesium alloys, a novel ultrasonic aqueous synthesis approach was performed to produce hydroxyapatite coating on biodegradable magnesium alloys. The effect of ultrasonic time on the composition, microstructure, interface bonding strength and corrosion resistance of HA coated magnesium alloys were investigated. A dense and crack-free HA coating was synthesized by only ultrasonic cavitation for 1 h in the aqueous solution containing Ca2+ and PO43- ions and the coating was constituted of bamboo leaf-like HA staggered irregularly, which endowed magnesium alloy with a sufficient interface bonding strength of 18.1 ± 2.2 MPa. The electrochemical performance and mineralization ability of the coated magnesium alloys were carried out in the simulated body fluids. Compared with bare magnesium samples, the coated samples presented excellent corrosion resistance and could rapidly induce apatite formation after only three days of immersion in the simulated body fluid (SBF). Moreover, in the immersion test of 90 days, HA coatings could provide a long-term protection for magnesium alloy substrate, indicating that ultrasonic aqueous synthesized HA coating could be acted as a promising modified biomaterial on magnesium alloys for the orthopedic application.
Collapse
Affiliation(s)
- Jin'e Sun
- Tianjin College, Beijing University of Science and Technology, Tianjin 301800, People's Republic of China; Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, People's Republic of China
| | - Shu Cai
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, People's Republic of China.
| | - Jiayue Sun
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, People's Republic of China
| | - Kai'er Shen
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jie Liu
- Fourth Municipal Administration Co. LTD, Tianjin 300000, People's Republic of China
| | - Guohua Xu
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, People's Republic of China.
| |
Collapse
|
27
|
Effect of Black Paste on the Property of Fluorine Resin/Aluminum Infrared Coating. COATINGS 2019. [DOI: 10.3390/coatings9100597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A fluorine resin/aluminum infrared coating was prepared with aluminum using black paste as filler and fluorine resin as binder. The effect of the black paste content on the performance of gloss, color difference, infrared emissivity, hardness, adhesion, impact resistance, roughness, optical testing, and corrosion resistance of the fluorine resin/aluminum infrared coating were examined. When the content of black paste was increased from 1.0% to 9.0%, the gloss of the coating surface decreased; the ΔE* value of the coating decreased; the infrared emissivity of the coating surface increased gradually; the hardness of the coating was 6H; the adhesion grade of the coating was 0; the infrared absorption peak increased gradually. When the content of black paste was 0%–3.0%, the impact resistance was more than 50 kg∙cm, and the impact resistance was higher. When the content of black paste was 0%–5.0%, the surface roughness of the coating was relatively low. When the content of black paste was 1.0%, the corrosion resistance of the coating was the best. The results showed that when the content of black paste was 1.0%, the performance of the whole fluorine resin coating was the best. Through the preparation and characterization of fluorine resin infrared low-emissivity coatings, the possibility of applying fluorine resin to infrared low-emissivity anticorrosive coatings was discussed, which laid a foundation for the subsequent engineering application of coatings.
Collapse
|
28
|
Dayaghi E, Bakhsheshi-Rad H, Hamzah E, Akhavan-Farid A, Ismail A, Aziz M, Abdolahi E. Magnesium-zinc scaffold loaded with tetracycline for tissue engineering application: In vitro cell biology and antibacterial activity assessment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:53-65. [DOI: 10.1016/j.msec.2019.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 05/25/2018] [Accepted: 04/03/2019] [Indexed: 11/16/2022]
|
29
|
Touny AH, Saleh MM, Abd El-Lateef HM, Saleh MM. Electrochemical methods for fabrication of polymers/calcium phosphates nanocomposites as hard tissue implants. APPLIED PHYSICS REVIEWS 2019; 6. [DOI: 10.1063/1.5045339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Developing and manipulating new biomaterials is an ongoing topic for their needs in medical uses. The evolution and development of new biomaterials, in both the academic and industrial sectors, have been encouraged due to the dramatic improvement in medicine and medical-related technologies. Due to the drawbacks associated with natural biomaterials, the use of synthetic biomaterials is preferential due to basic and applied aspects. Various techniques are involved in fabricating biomaterials. Among them are the electrochemical-based methods, which include electrodeposition and electrophoretic methods. Although electrospinning and electrospraying are not typical electrochemical methods, they are also reviewed in this article due to their importance. Many remarkable features can be acquired from this technique. Electrodeposition and electrophoretic deposition are exceptional and valuable processes for fabricating thin or thick coated films on a surface of metallic implants. Electrodeposition and electrophoretic deposition have some common positive features. They can be used at low temperatures, do not affect the structure of the implant, and can be applied to complex shapes, and they can produce superior properties, such as quick and uniform coating. Furthermore, they can possibly control the thickness and chemical composition of the coatings. Electrospinning is a potentially emerging and efficient process for producing materials with nanofibrous structures, which have exceptional characteristics such as mechanical properties, pore size, and superior surface area. These specialized characteristics induce these nanostructured materials to be used in different technologies.
Collapse
Affiliation(s)
- Ahmed H. Touny
- Department of Chemistry, Faculty of Science, King Faisal University 1 , Al-Hassa, Saudi Arabia
- Department of Chemistry, Faculty of Science, Helwan University 2 , Helwan, Egypt
| | - Mohamed M. Saleh
- Wake Forest Institute for Regenerative Medicine 3 , Winston Salem, North Carolina 27103, USA
| | - Hany M. Abd El-Lateef
- Department of Chemistry, Faculty of Science, King Faisal University 1 , Al-Hassa, Saudi Arabia
- Chemistry Department, College of Science, Sohag University 4 , Sohag, Egypt
| | - Mahmoud M. Saleh
- Department of Chemistry, Faculty of Science, Cairo University 5 , Cairo, Egypt
| |
Collapse
|
30
|
Ji XJ, Gao L, Liu JC, Wang J, Cheng Q, Li JP, Li SQ, Zhi KQ, Zeng RC, Wang ZL. Corrosion resistance and antibacterial properties of hydroxyapatite coating induced by gentamicin-loaded polymeric multilayers on magnesium alloys. Colloids Surf B Biointerfaces 2019; 179:429-436. [PMID: 31005002 DOI: 10.1016/j.colsurfb.2019.04.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 01/07/2023]
Abstract
As a result of their good biocompatibility, bioactivity, and mechanical properties, magnesium (Mg) alloys have received considerable attention as next generation biodegradable implants. Herein, in order to achieve a proper degradation rate and good antibacterial ability, we reported a novel hydroxyapatite coating induced by gentamicin (GS)-loaded polymeric multilayers for the surface treatment of the Mg alloy. The coating was characterized by X-ray diffraction, fourier transform infrared spectroscopy and scanning electron microscopy. The as-prepared hydroxyapatite coating showed the compact morphology and a well-crystallized apatite structure. This coating could improve the adhesion strength and reduce the corrosion rate of the substrate in simulated body fluid solution. Meanwhile, the drug release and antibacterial experiments demonstrated that the GS loaded specimen revealed a significant antimicrobial performance toward Staphylococcus aureus and had a prolonged release profile of GS, which would be helpful to the long-term bactericidal activity of the Mg implant. This coating showed acceptable biocompatibility via MTT assay and Live/dead staining. Thus, the multilayers-hydroxyapatite coated Mg alloy could improve the corrosion resistance and biocompatibility while delivering vital drugs to the site of implantation.
Collapse
Affiliation(s)
- Xiao-Jing Ji
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Ling Gao
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China; Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Jia-Cheng Liu
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China; Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China; School of Stomatology, Qingdao University, Qingdao, Shandong, 266071, China
| | - Jing Wang
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Qiang Cheng
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Jian-Peng Li
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Shuo-Qi Li
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Ke-Qian Zhi
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China; Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| | - Rong-Chang Zeng
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Zhen-Lin Wang
- College of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400065, China
| |
Collapse
|
31
|
Bakhsheshi‐Rad HR, Chen X, Ismail AF, Aziz M, Abdolahi E, Mahmoodiyan F. Improved antibacterial properties of an Mg‐Zn‐Ca alloy coated with chitosan nanofibers incorporating silver sulfadiazine multiwall carbon nanotubes for bone implants. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4563] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Hamid Reza Bakhsheshi‐Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad BranchIslamic Azad University Najafabad Iran
- Advanced Membrane Technology Research Center (AMTEC)Universiti Teknologi Malaysia Skudai Johor Malaysia
| | - Xiongbiao Chen
- Department of Mechanical Engineering, College of EngineeringUniversity of Saskatchewan Saskatoon SK Canada
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Center (AMTEC)Universiti Teknologi Malaysia Skudai Johor Malaysia
| | - Madzlan Aziz
- Advanced Membrane Technology Research Center (AMTEC)Universiti Teknologi Malaysia Skudai Johor Malaysia
| | - Elaheh Abdolahi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad BranchIslamic Azad University Najafabad Iran
| | - Fereshteh Mahmoodiyan
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad BranchIslamic Azad University Najafabad Iran
| |
Collapse
|
32
|
Jiang S, Cai S, Zhang F, Xu P, Ling R, Li Y, Jiang Y, Xu G. Synthesis and characterization of magnesium phytic acid/apatite composite coating on AZ31 Mg alloy by microwave assisted treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:218-227. [DOI: 10.1016/j.msec.2018.05.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 05/01/2018] [Accepted: 05/10/2018] [Indexed: 01/20/2023]
|
33
|
Li LY, Cui LY, Zeng RC, Li SQ, Chen XB, Zheng Y, Kannan MB. Advances in functionalized polymer coatings on biodegradable magnesium alloys - A review. Acta Biomater 2018; 79:23-36. [PMID: 30149212 DOI: 10.1016/j.actbio.2018.08.030] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 01/20/2023]
Abstract
Magnesium (Mg) and its alloys have become a research frontier in biodegradable materials owing to their superior biocompatibility and excellent biomechanical compatibility. However, their high degradation rate in the physiological environment should be well tackled prior to clinical applications. This review summarizes the latest progress in the development of polymeric coatings on biodegradable Mg alloys over the last decade, regarding preparation strategies for polylactic acid (PLA), poly (latic-co-glycolic) acid (PLGA), polycaprolactone (PCL), polydopamine (PDA), chitosan (CS), collagen (Col) and their composite, and their performance in terms of corrosion resistance and biocompatibility. Feasible perspectives and developing directions of next generation of polymeric coatings with respect to biomedical Mg alloys are briefly discussed. STATEMENT OF SIGNIFICANCE Magnesium (Mg) and its alloys have become a research frontier in biodegradable materials owing to their superior biocompatibility and suitable biomechanical compatibility. However, the principal drawback of Mg-based implants is their poor corrosion resistance in physiological environments. Hence, it is vital to mitigate the degradation/corrosion behavior of Mg alloys for safe biomedical deployments. This review summarizes the latest progress in development of polymeric coatings on biomedical Mg alloys regarding preparation strategy, corrosion resistance and biocompatibility, including polylactic acid (PLA), poly (latic-co-glycolic) acid (PLGA), polycaprolactone (PCL), chitosan (CS), polydopamine (PDA), collagen (Col) and their composite. In addition, functionalized polymer coatings with Mg alloys exhibits a promising prospect owing to their ability of degradation along with biocompatibility, self-healing, drug-delivery and osteoinduction.
Collapse
Affiliation(s)
- Ling-Yu Li
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Lan-Yue Cui
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Rong-Chang Zeng
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Shuo-Qi Li
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiao-Bo Chen
- School of Engineering, RMIT University, Carlton, VIC 3053, Australia
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - M Bobby Kannan
- Biomaterials and Engineering Materials (BEM) Laboratory, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
34
|
Karimi S, Salahinejad E, Sharifi E, Nourian A, Tayebi L. Bioperformance of chitosan/fluoride-doped diopside nanocomposite coatings deposited on medical stainless steel. Carbohydr Polym 2018; 202:600-610. [PMID: 30287041 DOI: 10.1016/j.carbpol.2018.09.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/27/2022]
Abstract
This work focuses on the structure, bioactivity, corrosion, and biocompatibility characteristics of chitosan-matrix composites reinforced with various amounts of fluoride-doped diopside nanoparticles (at 20, 40, 60, and 80 wt%) deposited on stainless steel 316 L. Bioactivity studies reveal that the presence of the nanoparticles in the coatings induces apatite-forming ability to the surfaces. Based on electrochemical impedance spectroscopy and polarization experiments, the in vitro corrosion resistance of the substrate was enhanced by increasing the level of the nanoparticles in the coating. The sample containing 60% of the nanoparticles presented the highest osteoblast-like MG63 cell viability, in comparison to the other prepared and even control samples. Also, the cell attachment on the surfaces was improved with increasing the amount of the nanoparticles in the coatings. It is eventually concluded that the application of chitosan/fluoride-doped diopside nanocomposite coatings improves the bioperformance of metallic implants.
Collapse
Affiliation(s)
- S Karimi
- Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - E Salahinejad
- Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| | - E Sharifi
- Department of Tissue Engineering and Biomaterials, School of Science and Advanced Technologies In Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - A Nourian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - L Tayebi
- Department of Developmental Sciences, Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| |
Collapse
|
35
|
Corrosion Behavior of Fe/Zr Composite Coating on ZK60 Mg Alloy by Ion Implantation and Deposition. COATINGS 2018. [DOI: 10.3390/coatings8080261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Fe/Zr composite coating was prepared by duplex Fe/Zr ion implantation and deposition to modify the microstructure and corrosion behavior of Mg-5.5 Zn-0.6 Zr (in wt.%, ZK60) alloy. The surface and interface characteristics were investigated using X-ray diffraction (XRD), atomic force microscope (AFM) and scanning electron microscopy (SEM). The results showed that the Fe/Zr composite coating exhibited a bi-layer microstructure of outer Fe-rich layer and inner Zr-rich layer. Multi-phases of α-Fe, ZrO0.35 and Zr6Fe3O were formed on the modified surface. The electrochemical measurements and immersion tests revealed an improvement of corrosion behavior for the surface-modified sample due to the protective effect of Fe/Zr composite coating.
Collapse
|
36
|
Amin A, Samy M, Abd El-Alim SH, Rabia AEG, Ayoub MMH. Assessment of formulation parameters needed for successful vitamin C entrapped polycaprolactone nanoparticles. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1393816] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Amal Amin
- Polymers and Pigments Department, National Research Centre, Giza, Egypt
| | - Moshera Samy
- Polymers and Pigments Department, National Research Centre, Giza, Egypt
| | | | - Abd El Gawad Rabia
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Magdy M. H. Ayoub
- Polymers and Pigments Department, National Research Centre, Giza, Egypt
| |
Collapse
|
37
|
Gardin C, Ferroni L, Piattelli A, SIvolella S, Zavan B, Mijiritsky E. Non-Washed Resorbable Blasting Media (NWRBM) on Titanium Surfaces could Enhance Osteogenic Properties of MSCs through Increase of miRNA-196a And VCAM1. Stem Cell Rev Rep 2017; 12:543-552. [PMID: 27318850 DOI: 10.1007/s12015-016-9669-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Surface topography of Titanium (Ti) dental implants strongly influences osseointegration. In the present work, we have analyzed the influence of two Ti implant surfaces characterized by similar microtopography but different nanotopography and chemistry on the osteoblastic phenotype of Dental Pulp Stem Cells (DPSCs). The effect on osteogenic differentiation, extracellular matrix (ECM) and cell adhesion molecules production have been evaluated by means of molecular biology analyses. The morphology of the cells grown onto these surfaces has been analyzed with SEM and immunofluorescence (IF), and the safety of the surfaces has been tested by using karyotype analysis, Ames test and hemocompatibility assay. Results showed that starting from 15 days of DPSCs culture, a substantial expression of osteoblast specific markers and a strong increase of cell adhesion molecules can be detected. In particular, when DPSCs are seeded on the Ti implants expression of microRNA (miRNA)-196a, which is involved in osteoblastic commitment of stem cells, and of Vascular Cell Adhesion Molecule 1 (VCAM1), a factor involved in angiogenesis, is strongly enhanced.
Collapse
Affiliation(s)
- Chiara Gardin
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| | - Letizia Ferroni
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| | - Adriano Piattelli
- Department of Stomatology and Biotechnologies, University of Chieti-Pescara, Chieti, Italy
| | - Stefano SIvolella
- Department of Neurological Sciences, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| | - Barbara Zavan
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy.
| | - Eitan Mijiritsky
- Department of Oral Rehabilitation, School of Dental Medicine, Tel-Aviv University, Ramat Aviv, Israel
| |
Collapse
|
38
|
Biodegradable Mg/HA/TiO2 Nanocomposites Coated with MgO and Si/MgO for Orthopedic Applications: A Study on the Corrosion, Surface Characterization, and Biocompatability. COATINGS 2017. [DOI: 10.3390/coatings7100154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the field of orthopedics, magnesium (Mg) and magnesium-based composites as biodegradable materials have attracted fundamental research. However, the medical applications of magnesium implants have been restricted owing to their poor corrosion resistance, especially in the physiological environment. To improve the corrosion resistance of Mg/HA/TiO2 nanocomposites, monolayer MgO and double-layer Si/MgO coatings were fabricated layer-by-layer on the surface of a nanocomposite using a powder metallurgy route. Then, coating thickness, surface morphology, and chemical composition were determined, and the corrosion behavior of the uncoated and coated samples was evaluated. Field-emission scanning electron microscopy (FE-SEM) micrographs show that an inner MgO layer with a porous microstructure and thickness of around 34 μm is generated on the Mg/HA/TiO2 nanocomposite substrate, and that the outer Si layer thickness is obtained at around 23 μm for the double-layered coated sample. Electrochemical corrosion tests and immersion corrosion tests were carried out on the uncoated and coated samples and the Si/MgO-coated nanocomposite showed significantly improved corrosion resistance compared with uncoated Mg/HA/TiO2 in simulated body fluid (SBF). Corrosion products comprising Mg(OH)2, HA, Ca3(PO4)2, and amorphous CaP components were precipitated on the immersed samples. Improved cytocompatibility was observed with coating as the cell viability ranged from 73% in uncoated to 88% for Si/MgO-coated Mg/HA/TiO2 nanocomposite after nine days of incubation.
Collapse
|
39
|
Preparation of Hydroxyapatite/Tannic Acid Coating to Enhance the Corrosion Resistance and Cytocompatibility of AZ31 Magnesium Alloys. COATINGS 2017. [DOI: 10.3390/coatings7070105] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
40
|
Preparation and Characterization of Aminated Hydroxyethyl Cellulose-Induced Biomimetic Hydroxyapatite Coatings on the AZ31 Magnesium Alloy. METALS 2017. [DOI: 10.3390/met7060214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
41
|
Zomorodian A, Ribeiro IA, Fernandes JCS, Matos AC, Santos C, Bettencourt AF, Montemor MF. Biopolymeric coatings for delivery of antibiotic and controlled degradation of bioresorbable Mg AZ31 alloys. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2016.1252347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- A. Zomorodian
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - I. A. Ribeiro
- Research Institute for Medicine (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - J. C. S. Fernandes
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - A. C. Matos
- Research Institute for Medicine (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - C. Santos
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Instituto Politécnico de Setúbal, Mechanical Engineering Department, ESTSetúbal, Setúbal, Portugal
| | - A. F. Bettencourt
- Research Institute for Medicine (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - M. F. Montemor
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
42
|
Bakhsheshi-Rad HR, Hamzah E, Low HT, Kasiri-Asgarani M, Farahany S, Akbari E, Cho MH. Fabrication of biodegradable Zn-Al-Mg alloy: Mechanical properties, corrosion behavior, cytotoxicity and antibacterial activities. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 73:215-219. [PMID: 28183601 DOI: 10.1016/j.msec.2016.11.138] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 10/07/2016] [Accepted: 11/29/2016] [Indexed: 11/17/2022]
Abstract
In this work, binary Zn-0.5Al and ternary Zn-0.5Al-xMg alloys with various Mg contents were investigated as biodegradable materials for implant applications. Compared with Zn-0.5Al (single phase), Zn-0.5Al-xMg alloys consisted of the α-Zn and Mg2(Zn, Al)11 with a fine lamellar structure. The results also revealed that ternary Zn-Al-Mg alloys presented higher micro-hardness value, tensile strength and corrosion resistance compared to the binary Zn-Al alloy. In addition, the tensile strength and corrosion resistance increased with increasing the Mg content in ternary alloys. The immersion tests also indicated that the corrosion rates in the following order Zn-0.5Al-0.5Mg<Zn-0.5Al-0.3Mg<Zn-0.5Al-0.1Mg<Zn-0.5Al. The cytotoxicity tests exhibited that the Zn-0.5Al-0.5Mg alloy presents higher viability of MC3T3-E1 cell compared to the Zn-0.5Al alloy, which suggested good biocompatibility. The antibacterial activity result of both Zn-0.5Al and Zn-0.5Al-Mg alloys against Escherichia coli presented some antibacterial activity, while the Zn-0.5Al-0.5Mg significantly prohibited the growth of Escherichia coli. Thus, Zn-0.5Al-0.5Mg alloy with appropriate mechanical properties, low corrosion rate, good biocompatibility and antibacterial activities was believed to be a good candidate as a biodegradable implant material.
Collapse
Affiliation(s)
- H R Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - E Hamzah
- Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
| | - H T Low
- Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
| | - M Kasiri-Asgarani
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - S Farahany
- Department of Materials and Mechanical Engineering, Buein Zahra Technical University, Qazvin 3451745346, Iran
| | - E Akbari
- Department of Microbiology, Faculty of Biological Sciences, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - M H Cho
- KISWIRE Sdn. Bhd, Research and Development Centre, Johor, Malaysia
| |
Collapse
|
43
|
Bakhsheshi-Rad HR, Abdellahi M, Hamzah E, Daroonparvar M, Rafiei M. Introducing a composite coating containing CNTs with good corrosion properties: characterization and simulation. RSC Adv 2016. [DOI: 10.1039/c6ra24222g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A duplex composite coating containing carbon nanotubes (CNTs) was successfully deposited on a Mg–Zn–Ca alloy by an atmospheric plasma spraying (APS) technique.
Collapse
Affiliation(s)
- H. R. Bakhsheshi-Rad
- Advanced Materials Research Center
- Department of Materials Engineering
- Najafabad Branch
- Islamic Azad University
- Najafabad
| | - M. Abdellahi
- Advanced Materials Research Center
- Department of Materials Engineering
- Najafabad Branch
- Islamic Azad University
- Najafabad
| | - E. Hamzah
- Department of Materials
- Manufacturing and Industrial Engineering
- Faculty of Mechanical Engineering
- Universiti Teknologi Malaysia (UTM)
- 81310 Johor Bahru
| | - M. Daroonparvar
- Department of Materials
- Manufacturing and Industrial Engineering
- Faculty of Mechanical Engineering
- Universiti Teknologi Malaysia (UTM)
- 81310 Johor Bahru
| | - M. Rafiei
- Advanced Materials Research Center
- Department of Materials Engineering
- Najafabad Branch
- Islamic Azad University
- Najafabad
| |
Collapse
|