1
|
Tiwari N, Joshi A, Das R, Lall DS, Chary KS, Singh N. Ultrasound stimulated piezoelectric antibacterial silk composite films guiding differentiation of mesenchymal stem cells. BIOMATERIALS ADVANCES 2025; 170:214218. [PMID: 39922137 DOI: 10.1016/j.bioadv.2025.214218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/13/2025] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
Smart materials for tissue engineering have been in extensive use for few decades now. This work delves into the exploration of ultrasound-stimulated piezoelectric and antibacterial silk-based composite films as a pioneering strategy to guide the differentiation of human mesenchymal stem cells into osteogenic lineage without the application of any exogenous growth factors. The study evaluates the biocompatibility and antibacterial attributes of these films, which incorporates Barium Titanate nanoparticles (BTNPs) along with Zinc Oxide nanoparticles for obtaining high piezo modulated stimuli response and antibacterial properties. Further, to enhance the piezoelectric capability, a novel calcium doped Barium Titanate (BCTs) nanoparticles were synthesized and incorporated in silk based films with ZnO. The choice of using calcium as a doping material allows to increase its piezoelectric potential and retain its biocompatibility. The results reveal that, under the influence of ultrasound stimulation, these composite films respond to mechanical cues like low frequency ultrasound stimulations to facilitate lineage-specific differentiation of the seeded human mesenchymal stem cells. Ultrasound stimulations being wireless avoid complicated wired electric circuits and are also known to activate calcium channels in the cells which aids osteogenesis. Significantly, our findings exhibit the profound potential of these films to exploit the piezoelectric properties of BCTs, effectively enhancing the differentiation trajectories of stem cells. Furthermore, their demonstrated antibacterial capacities underscore their pivotal role in infection prevention, an important facet in the domains of tissue engineering and medical implantation. This study strongly suggests the utility of ultrasound-stimulated silk-based composite films in advancing the frontiers of regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Namrata Tiwari
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Akshay Joshi
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ritu Das
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Davinder Singh Lall
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kammari Suresh Chary
- Naval Materials Research Laboratory, DRDO, Shil Badlapur Road, Ambernath, Mumbai 421506, India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India; Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
2
|
Huang H, Wang K, Liu X, Liu X, Wang J, Suo M, Wang H, Chen S, Chen X, Li Z. Piezoelectric biomaterials for providing electrical stimulation in bone tissue engineering: Barium titanate. J Orthop Translat 2025; 51:94-107. [PMID: 39991455 PMCID: PMC11847244 DOI: 10.1016/j.jot.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/30/2024] [Accepted: 12/23/2024] [Indexed: 02/25/2025] Open
Abstract
With the increasing clinical demand for orthopedic implants, bone tissue engineering based on a variety of bioactive materials has shown promising applications in bone repair. And various physiological cues, such as mechanical, electrical, and magnetic stimulation, can influence cell fate and participate in bone regeneration. Natural bone has a piezoelectric effect due to the non-centrosymmetric nature of collagen, which can aid in cell adhesion, proliferation and differentiation, and bone growth by converting mechanical stimuli into electrical stimuli. Piezoelectric materials have the same piezoelectric effect as human bone, and they are able to deform in response to physiological movement, thus providing electrical stimulation to cells or damaged tissue without the need for an external power source. Among them, Barium titanate (BaTiO3) is widely used in tumor therapy, tissue engineering, health detection and drug delivery because of its good biocompatibility, low cytotoxicity and good piezoelectric properties. This review describes the piezoelectric effect of natural bone and the characteristics of various types of piezoelectric materials, from the synthesis and physicochemical characteristics of BaTiO3 and its application in biomedicine. And it highlights the great potential of BaTiO3 as piezoelectric biomaterials in the field of bone tissue engineering in anticipation of providing new ideas and opportunities for researchers. The translational potential of this article: This review systematically discusses barium titanate, a bioactive material that can mimic the piezoelectric effect of natural bone tissue, which can intervene in the regenerative repair of bone by providing a sustained electrical microenvironment for bone repair scaffolds. This may help to solve the current problem of poor osteogenic properties of bioactive materials by utilizing barium titanate.
Collapse
Affiliation(s)
- Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Kaizhong Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangyan Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Moran Suo
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuang Chen
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xin Chen
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, China
| |
Collapse
|
3
|
Vasile VA, Istrate S, Cursaru LM, Piticescu RM, Ghita AM, Popescu DM, Garhöfer G, Catrina AM, Spandole-Dinu S, Haidoiu C, Suhaianu V, Voinea OC, Dragut DV, Popa-Cherecheanu A. A New Approach for Orbital Wall Reconstruction in a Rabbit Animal Model Using a Hybrid Hydroxyapatite-Collagen-Based Implant. Int J Mol Sci 2024; 25:12712. [PMID: 39684423 DOI: 10.3390/ijms252312712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Reconstructing the orbit following complex craniofacial fractures presents significant challenges. Throughout the years, several materials have been used for orbital reconstruction, taking into account factors such as their durability, compatibility with living tissue, cost efficiency, safety, and capacity to be adjusted during surgery. Nevertheless, a consensus has not yet been reached on the optimal material for orbital restoration. This study investigates the potential of a hybrid hydroxyapatite-collagen (HAp-COL) material 3D-printed on Ti mesh to be used as an implant for orbital wall reconstruction. HAp-COL powder was synthesized using a high-pressure hydrothermal technique. The powder was further used to 3D-print HAp-COL structures on titanium mesh, with the latter having potential uses in orbital wall reconstruction. Biocompatibility was assessed by evaluating the effects of the HAp-COL material on the adhesion and proliferation of fibroblasts (3T3) and mesenchymal stem cells (MSCs) in culture. In vitro and in vivo results showed that HAp-COL is highly biocompatible and has a good integration of the implant in the bone. The findings reported in this study offer convincing evidence to support the use of our designed HAp-COL for the restoration of orbital wall fractures, with a high level of safety.
Collapse
Affiliation(s)
- Victor A Vasile
- Department of Ophthalmology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Ophthalmology, Ophtalmopôle, Hôpital Cochin, AP-HP, 75014 Paris, France
| | | | - Laura-Madalina Cursaru
- Nanostructured Materials Laboratory, National R&D Institute for Nonferrous and Rare Metals, 077145 Pantelimon, Romania
| | - Roxana M Piticescu
- Nanostructured Materials Laboratory, National R&D Institute for Nonferrous and Rare Metals, 077145 Pantelimon, Romania
| | - Aurelian M Ghita
- Department of Ophthalmology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Ophthalmology, Emergency University Hospital, 050098 Bucharest, Romania
| | - Diana M Popescu
- Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ana M Catrina
- Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Sonia Spandole-Dinu
- Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Cerasela Haidoiu
- Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Vladimir Suhaianu
- Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Oana C Voinea
- Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania
- Department of Pathology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Dumitru Valentin Dragut
- Nanostructured Materials Laboratory, National R&D Institute for Nonferrous and Rare Metals, 077145 Pantelimon, Romania
| | - Alina Popa-Cherecheanu
- Department of Ophthalmology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Ophthalmology, Emergency University Hospital, 050098 Bucharest, Romania
| |
Collapse
|
4
|
Luo S, Zhang C, Xiong W, Song Y, Wang Q, Zhang H, Guo S, Yang S, Liu H. Advances in electroactive biomaterials: Through the lens of electrical stimulation promoting bone regeneration strategy. J Orthop Translat 2024; 47:191-206. [PMID: 39040489 PMCID: PMC11261049 DOI: 10.1016/j.jot.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024] Open
Abstract
The regenerative capacity of bone is indispensable for growth, given that accidental injury is almost inevitable. Bone regenerative capacity is relevant for the aging population globally and for the repair of large bone defects after osteotomy (e.g., following removal of malignant bone tumours). Among the many therapeutic modalities proposed to bone regeneration, electrical stimulation has attracted significant attention owing to its economic convenience and exceptional curative effects, and various electroactive biomaterials have emerged. This review summarizes the current knowledge and progress regarding electrical stimulation strategies for improving bone repair. Such strategies range from traditional methods of delivering electrical stimulation via electroconductive materials using external power sources to self-powered biomaterials, such as piezoelectric materials and nanogenerators. Electrical stimulation and osteogenesis are related via bone piezoelectricity. This review examines cell behaviour and the potential mechanisms of electrostimulation via electroactive biomaterials in bone healing, aiming to provide new insights regarding the mechanisms of bone regeneration using electroactive biomaterials. The translational potential of this article This review examines the roles of electroactive biomaterials in rehabilitating the electrical microenvironment to facilitate bone regeneration, addressing current progress in electrical biomaterials and the mechanisms whereby electrical cues mediate bone regeneration. Interactions between osteogenesis-related cells and electroactive biomaterials are summarized, leading to proposals regarding the use of electrical stimulation-based therapies to accelerate bone healing.
Collapse
Affiliation(s)
- Songyang Luo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, 110001, China
| | - Chengshuo Zhang
- Hepatobiliary Surgery Department, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Wei Xiong
- Department of Plastic Surgery, The First Hospital of Shihezi Medical University, Shihezi, 832000, China
| | - Yiping Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, 110001, China
| | - Hangzhou Zhang
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang Sports Medicine Clinical Medical Research Center, Shenyang, 110001, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, 110001, China
| | - Huanye Liu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, 110001, China
| |
Collapse
|
5
|
Zhao X, Zhang Y, Wang P, Guan J, Zhang D. Construction of multileveled and oriented micro/nano channels in Mg doped hydroxyapitite bioceramics and their effect on mimicking mechanical property of cortical bone and biological performance of cancellous bone. BIOMATERIALS ADVANCES 2024; 161:213871. [PMID: 38692181 DOI: 10.1016/j.bioadv.2024.213871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Drawing on the structure and components of natural bone, this study developed Mg-doped hydroxyapatite (Mg-HA) bioceramics, characterized by multileveled and oriented micro/nano channels. These channels play a critical role in ensuring both mechanical and biological properties, making bioceramics suitable for various bone defects, particularly those bearing loads. Bioceramics feature uniformly distributed nanogrooves along the microchannels. The compressive strength or fracture toughness of the Mg-HA bioceramics with micro/nano channels formed by single carbon nanotube/carbon fiber (CNT/CF) (Mg-HA(05-CNT/CF)) are comparable to those of cortical bone, attributed to a combination of strengthened compact walls and microchannels, along with a toughening mechanism involving crack pinning and deflection at nanogroove intersections. The introduction of uniform nanogrooves also enhanced the porosity by 35.4 %, while maintaining high permeability owing to the capillary action in the oriented channels. This leads to superior degradation properties, protein adsorption, and in vivo osteogenesis compared with bioceramics with only microchannels. Mg-HA(05-CNT/CF) exhibited not only high strength and toughness comparable to cortical bone, but also permeability similar to cancellous bone, enhanced cell activity, and excellent osteogenic properties. This study presents a novel approach to address the global challenge of applying HA-based bioceramics to load-bearing bone defects, potentially revolutionizing their application in tissue engineering.
Collapse
Affiliation(s)
- Xueni Zhao
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China.
| | - Yu Zhang
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Pengfei Wang
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Jinxin Guan
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Dexin Zhang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China.
| |
Collapse
|
6
|
Lee KK, Celt N, Ardoña HAM. Looking both ways: Electroactive biomaterials with bidirectional implications for dynamic cell-material crosstalk. BIOPHYSICS REVIEWS 2024; 5:021303. [PMID: 38736681 PMCID: PMC11087870 DOI: 10.1063/5.0181222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/15/2024] [Indexed: 05/14/2024]
Abstract
Cells exist in natural, dynamic microenvironmental niches that facilitate biological responses to external physicochemical cues such as mechanical and electrical stimuli. For excitable cells, exogenous electrical cues are of interest due to their ability to stimulate or regulate cellular behavior via cascade signaling involving ion channels, gap junctions, and integrin receptors across the membrane. In recent years, conductive biomaterials have been demonstrated to influence or record these electrosensitive biological processes whereby the primary design criterion is to achieve seamless cell-material integration. As such, currently available bioelectronic materials are predominantly engineered toward achieving high-performing devices while maintaining the ability to recapitulate the local excitable cell/tissue microenvironment. However, such reports rarely address the dynamic signal coupling or exchange that occurs at the biotic-abiotic interface, as well as the distinction between the ionic transport involved in natural biological process and the electronic (or mixed ionic/electronic) conduction commonly responsible for bioelectronic systems. In this review, we highlight current literature reports that offer platforms capable of bidirectional signal exchange at the biotic-abiotic interface with excitable cell types, along with the design criteria for such biomaterials. Furthermore, insights on current materials not yet explored for biointerfacing or bioelectronics that have potential for bidirectional applications are also provided. Finally, we offer perspectives aimed at bringing attention to the coupling of the signals delivered by synthetic material to natural biological conduction mechanisms, areas of improvement regarding characterizing biotic-abiotic crosstalk, as well as the dynamic nature of this exchange, to be taken into consideration for material/device design consideration for next-generation bioelectronic systems.
Collapse
Affiliation(s)
- Kathryn Kwangja Lee
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, USA
| | - Natalie Celt
- Department of Biomedical Engineering, University of California, Irvine, California 92697, USA
| | | |
Collapse
|
7
|
Ibrahim SW, Hamad TI, Haider J. Biological properties of polycaprolactone and barium titanate composite in biomedical applications. Sci Prog 2023; 106:368504231215942. [PMID: 38031343 PMCID: PMC10687994 DOI: 10.1177/00368504231215942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The ceramic-polymer composite materials are widely known for their exceptional mechanical and biological properties. Polycaprolactone (PCL) is a biodegradable polymer material extensively used in various biomedical applications. At the same time, barium titanate (BT), a ceramic material, exhibits piezoelectric properties similar to bone, which is essential for osseointegration. Furthermore, a composite material that combines the benefits of PCL and BT results in an innovative composite material with enhanced properties for biomedical applications. Thus, this review is organised into three sections. Firstly, it aims to provide an overview of the current research on evaluating biological properties, including antibacterial activity, cytotoxicity and osseointegration, of PCL polymeric matrices in its pure form and reinforced structures with ceramics, polymers and natural extracts. The second section investigates the biological properties of BT, both in its pure form and in combination with other supporting materials. Finally, the third section provides a summary of the biological properties of the PCLBT composite material. Furthermore, the existing challenges of PCL, BT and their composites, along with future research directions, have been presented. Therefore, this review will provide a state-of-the-art understanding of the biological properties of PCL and BT composites as potential futuristic materials in biomedical applications.
Collapse
Affiliation(s)
- Sabreen Waleed Ibrahim
- Prosthodontic Department, College of Dentistry, Al Mustansiriyah University, Baghdad, Iraq
| | - Thekra Ismael Hamad
- Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Julfikar Haider
- Department of Engineering, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
8
|
Vukomanović M, Gazvoda L, Kurtjak M, Maček-Kržmanc M, Spreitzer M, Tang Q, Wu J, Ye H, Chen X, Mattera M, Puigmartí-Luis J, Pane SV. Filler-Enhanced Piezoelectricity of Poly-L-Lactide and Its Use as a Functional Ultrasound-Activated Biomaterial. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301981. [PMID: 37186376 DOI: 10.1002/smll.202301981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/04/2023] [Indexed: 05/17/2023]
Abstract
Poly-L-lactide (PLLA) offers a unique possibility for processing into biocompatible, biodegradable, and implantable piezoelectric structures. With such properties, PLLA has potential to be used as an advanced tool for mimicking biophysical processes that naturally occur during the self-repair of wounds and damaged tissues, including electrostimulated regeneration. The piezoelectricity of PLLA strongly depends on the possibility of controlling its crystallinity and molecular orientation. Here, it is shown that modifying PLLA with a small amount (1 wt%) of crystalline filler particles with a high aspect ratio, which act as nucleating agents during drawing-induced crystallization, promotes the formation of highly crystalline and oriented PLLA structures. This increases their piezoelectricity, and the filler-modified PLLA films provide a 20-fold larger voltage output than nonmodified PLLA during ultrasound (US)-assisted activation. With 99% PLLA content, the ability of the films to produce reactive oxygen species (ROS) and increase the local temperature during interactions with US is shown to be very low. US-assisted piezostimulation of adherent cells directly attach to their surface (such as skin keratinocytes), stimulate cytoskeleton formation, and as a result cells elongate and orient themselves in a specific direction that align with the direction of PLLA film drawing and PLLA dipole orientation.
Collapse
Affiliation(s)
- Marija Vukomanović
- Advanced Materials Department, Jozef Stefan Institute, Jamova 39, Ljubljana, 1000, Slovenia
| | - Lea Gazvoda
- Advanced Materials Department, Jozef Stefan Institute, Jamova 39, Ljubljana, 1000, Slovenia
- Jozef Stefan International Postgraduate School, Ljubljana, 1000, Slovenia
| | - Mario Kurtjak
- Advanced Materials Department, Jozef Stefan Institute, Jamova 39, Ljubljana, 1000, Slovenia
| | - Marjeta Maček-Kržmanc
- Advanced Materials Department, Jozef Stefan Institute, Jamova 39, Ljubljana, 1000, Slovenia
| | - Matjaž Spreitzer
- Advanced Materials Department, Jozef Stefan Institute, Jamova 39, Ljubljana, 1000, Slovenia
| | - Qiao Tang
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| | - Jiang Wu
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| | - Hao Ye
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| | - Xiangzhong Chen
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| | - Michele Mattera
- Department of Physical Chemistry, University of Barcelona, Martí i Franquès 1, Barcelona, 08028, Spain
| | - Josep Puigmartí-Luis
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, University of Barcelona (UB), Barcelona, 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Salvador Vidal Pane
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| |
Collapse
|
9
|
Weng Y, Jian Y, Huang W, Xie Z, Zhou Y, Pei X. Alkaline earth metals for osteogenic scaffolds: From mechanisms to applications. J Biomed Mater Res B Appl Biomater 2023; 111:1447-1474. [PMID: 36883838 DOI: 10.1002/jbm.b.35246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023]
Abstract
Regeneration of bone defects is a significant challenge today. As alternative approaches to the autologous bone, scaffold materials have remarkable features in treating bone defects; however, the various properties of current scaffold materials still fall short of expectations. Due to the osteogenic capability of alkaline earth metals, their application in scaffold materials has become an effective approach to improving their properties. Furthermore, numerous studies have shown that combining alkaline earth metals leads to better osteogenic properties than applying them alone. In this review, the physicochemical and physiological characteristics of alkaline earth metals are introduced, mainly focusing on their mechanisms and applications in osteogenesis, especially magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba). Furthermore, this review highlights the possible cross-talk between pathways when alkaline earth metals are combined. Finally, some of the current drawbacks of scaffold materials are enumerated, such as the high corrosion rate of Mg scaffolds and defects in the mechanical properties of Ca scaffolds. Moreover, a brief perspective is also provided regarding future directions in this field. It is worth exploring that whether the levels of alkaline earth metals in newly regenerated bone differs from those in normal bone. The ideal ratio of each element in the bone tissue engineering scaffolds or the optimal concentration of each elemental ion in the created osteogenic environment still needs further exploration. The review not only summarizes the research developments in osteogenesis but also offers a direction for developing new scaffold materials.
Collapse
Affiliation(s)
- Yihang Weng
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Yujia Jian
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Wenlong Huang
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhuojun Xie
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Ying Zhou
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Xibo Pei
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
10
|
Sood A, Desseigne M, Dev A, Maurizi L, Kumar A, Millot N, Han SS. A Comprehensive Review on Barium Titanate Nanoparticles as a Persuasive Piezoelectric Material for Biomedical Applications: Prospects and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206401. [PMID: 36585372 DOI: 10.1002/smll.202206401] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Stimulation of cells with electrical cues is an imperative approach to interact with biological systems and has been exploited in clinical practices over a wide range of pathological ailments. This bioelectric interface has been extensively explored with the help of piezoelectric materials, leading to remarkable advancement in the past two decades. Among other members of this fraternity, colloidal perovskite barium titanate (BaTiO3 ) has gained substantial interest due to its noteworthy properties which includes high dielectric constant and excellent ferroelectric properties along with acceptable biocompatibility. Significant progression is witnessed for BaTiO3 nanoparticles (BaTiO3 NPs) as potent candidates for biomedical applications and in wearable bioelectronics, making them a promising personal healthcare platform. The current review highlights the nanostructured piezoelectric bio interface of BaTiO3 NPs in applications comprising drug delivery, tissue engineering, bioimaging, bioelectronics, and wearable devices. Particular attention has been dedicated toward the fabrication routes of BaTiO3 NPs along with different approaches for its surface modifications. This review offers a comprehensive discussion on the utility of BaTiO3 NPs as active devices rather than passive structural unit behaving as carriers for biomolecules. The employment of BaTiO3 NPs presents new scenarios and opportunity in the vast field of nanomedicines for biomedical applications.
Collapse
Affiliation(s)
- Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, South Korea
| | - Margaux Desseigne
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, Dijon, 21078, France
| | - Atul Dev
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, 2921 Stockton Boulevard, Sacramento, CA, 95817, USA
| | - Lionel Maurizi
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, Dijon, 21078, France
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, South Korea
- Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, South Korea
| | - Nadine Millot
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, Dijon, 21078, France
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, South Korea
- Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, South Korea
| |
Collapse
|
11
|
An artificial bone filling material of poly l-lactic acid/collagen/nano-hydroxyapatite microspheres: Preparation and collagen regulation on the property. Int J Biol Macromol 2023; 229:35-50. [PMID: 36565831 DOI: 10.1016/j.ijbiomac.2022.12.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Artificial bone materials are in great need due to a lot of bone injuries. Herein, collagen/nano-hydroxyapatite (Col/nHA, C-H) composite nanospheres were obtained by in-situ mineralization, and poly L-lactic acid/collagen/nano-hydroxyapatite (PLLA/Col/nHA, P-C-H) was further prepared by high-speed shear emulsification method. The interfacial properties and structure between PLLA and nHA are regulated by the adhesive property of Col. The morphology, structure and properties of P-C-H microsphere were characterized in detail by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) and simulated degradation of PBS in vitro. The results show that C-H is uniformly distributed in P-C-H microspheres, and a mesoporous material with a "pomegranate" structure and a particle size of 5-30 μm is self-assembled based on C-H multiple composite microspheres. It is beneficial to the sustained-release degradation of P-C-H and the retention/release of Ca2+. The 60-day PBS degradation shows that PLLA delays the degradation of nHA, making the degradation rate of P-C-H basically consist with the human bone healing cycle. The co-culture of P-C-H with MC3T3-E1 cells shows that P-C-H has high biocompatibility and no cytotoxicity. The cell viability is higher than 100 % in 72 h, indicating P-C-H has a proliferation effect on cell growth. Alkaline phosphatase and quantitative real-time PCR test show a positive promotion of P-C-H in cell proliferation and differentiation. The multi-layered P-C-H microspheres have an application potential in bone tissue engineering.
Collapse
|
12
|
Swain S, Bhaskar R, Narayanan KB, Gupta MK, Sharma S, Dasgupta S, Han SS, Kumar P. Physicochemical, mechanical, dielectric, and biological properties of sintered hydroxyapatite/barium titanate nanocomposites for bone regeneration. Biomed Mater 2023; 18:025016. [PMID: 36735970 DOI: 10.1088/1748-605x/acb8f1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/03/2023] [Indexed: 02/05/2023]
Abstract
Bone implants fabricated using nanocomposites containing hydroxyapatite (HA) and barium titanate (BT) show osteoconductive, osteoinductive, osteointegration, and piezoelectricity properties for bone regeneration applications. In our present study, HA and BT nanopowders were synthesized using high-energy ball-milling-assisted solid-state reaction with precursors of calcium carbonate and ammonium dihydrogen phosphate, and barium carbonate and titanium oxide powder mixtures, respectively. Hexagonal HA and tetragonal BT phases were formed after calcination at 700 and 1000 °C, respectively. Subsequently, hydroxyapatite/barium titanate (HA/BT) nanocomposites with different weight percentages of HA and BT were prepared by ball-milling, then compacted and sintered at two different temperatures to endow these bioceramics with better mechanical, dielectric, and biological properties for bone regeneration. Microstructure, crystal phases, and molecular structure characterizations of these sintered HA/BT nanocomposite compacts (SHBNCs) were performed using field-emission scanning electron microscopy, x-ray diffraction, and Fourier-transform infrared spectroscopy, respectively. Bulk density was evaluated using the Archimedes method. HA/BT nanocomposites with increased BT content showed enhanced dielectric properties, and the dielectric constant (ϵr) value for 5HA/95BT was ∼182 at 100 Hz. Mechanical properties such as Vicker's hardness, fracture toughness, yield strength, and diametral tensile strength were also investigated. The hemolysis assay of SHBNCs exhibited hemocompatibility. The effect of these SHBNCs as implants on thein vitrocytocompatibility and cell viability of MG-63 osteoblast-like cells was assessed by MTT assay and live/dead staining, respectively. 15HA/85BT showed increased metabolic activity with a higher number of live cells than BT after the culture period. Overall, the SHBNCs can be used as orthopedic implants for bone regeneration applications.
Collapse
Affiliation(s)
- Sujata Swain
- Department of Physics and Astronomy, National Institute of Technology Rourkela, Odisha 769008, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Sonia Sharma
- Department of Chemistry, Government. Autonomous College Rourkela, Odisha 769004, India
| | - Sudip Dasgupta
- Department of Ceramic Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Pawan Kumar
- Department of Physics and Astronomy, National Institute of Technology Rourkela, Odisha 769008, India
| |
Collapse
|
13
|
Cai K, Jiao Y, Quan Q, Hao Y, Liu J, Wu L. Improved activity of MC3T3-E1 cells by the exciting piezoelectric BaTiO 3/TC4 using low-intensity pulsed ultrasound. Bioact Mater 2021; 6:4073-4082. [PMID: 33997494 PMCID: PMC8090998 DOI: 10.1016/j.bioactmat.2021.04.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/29/2021] [Accepted: 04/11/2021] [Indexed: 12/25/2022] Open
Abstract
Developing bioactive materials for bone implants to enhance bone healing and bone growth has for years been the focus of clinical research. Barium titanate (BT) is an electroactive material that can generate electrical signals in response to applied mechanical forces. In this study, a BT piezoelectric ceramic coating was synthesized on the surface of a TC4 titanium alloy, forming a BT/TC4 material, and low-intensity pulsed ultrasound (LIPUS) was then applied as a mechanical stimulus. The combined effects on the biological responses of MC3T3-E1 cells were investigated. Results of scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction showed that an uniform nanospheres -shaped BT coating was formed on TC4 substrate. Piezoelectric behaviors were observed using piezoelectric force microscopy with the piezoelectric coefficient d33 of 0.42 pC/N. Electrochemical measures indicated that LIPUS-stimulated BT/TC4 materials could produce a microcurrent of approximately 10 μA/cm2. In vitro, the greatest osteogenesis (cell adhesion, proliferation, and osteogenic differentiation) was found in MC3T3-E1 cells when BT/TC4 was stimulated using LIPUS. Furthermore, the intracellular calcium ion concentration increased in these cells, possibly because opening of the L-type calcium ion channels was promoted and expression of the CaV1.2 protein was increased. Therefore, the piezoelectric BT/TC4 material with LIPUS loading synergistically promoted osteogenesis, rending it a potential treatment for early stage formation of reliable bone-implant contact.
Collapse
Affiliation(s)
- Kunzhan Cai
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110001, China
| | - Yilai Jiao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Quan Quan
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110001, China
| | - Yulin Hao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Jie Liu
- Department of Science Experiment Center, China Medical University, Shenyang, 110122, China
| | - Lin Wu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110001, China
| |
Collapse
|
14
|
Kopyl S, Surmenev R, Surmeneva M, Fetisov Y, Kholkin A. Magnetoelectric effect: principles and applications in biology and medicine- a review. Mater Today Bio 2021; 12:100149. [PMID: 34746734 PMCID: PMC8554634 DOI: 10.1016/j.mtbio.2021.100149] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/26/2022] Open
Abstract
Magnetoelectric (ME) effect experimentally discovered about 60 years ago remains one of the promising research fields with the main applications in microelectronics and sensors. However, its applications to biology and medicine are still in their infancy. For the diagnosis and treatment of diseases at the intracellular level, it is necessary to develop a maximally non-invasive way of local stimulation of individual neurons, navigation, and distribution of biomolecules in damaged cells with relatively high efficiency and adequate spatial and temporal resolution. Recently developed ME materials (composites), which combine elastically coupled piezoelectric (PE) and magnetostrictive (MS) phases, have been shown to yield very strong ME effects even at room temperature. This makes them a promising toolbox for solving many problems of modern medicine. The main ME materials, processing technologies, as well as most prospective biomedical applications will be overviewed, and modern trends in using ME materials for future therapies, wireless power transfer, and optogenetics will be considered.
Collapse
Affiliation(s)
- S. Kopyl
- Department of Physics & CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - R. Surmenev
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - M. Surmeneva
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Y. Fetisov
- Research & Education Centre ‘Magnetoelectric Materials and Devices’, MIREA – Russian Technological University, Moscow, Russia
| | - A. Kholkin
- Department of Physics & CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
- School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
15
|
Anita Lett J, Sagadevan S, Fatimah I, Hoque ME, Lokanathan Y, Léonard E, Alshahateet SF, Schirhagl R, Oh WC. Recent advances in natural polymer-based hydroxyapatite scaffolds: Properties and applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110360] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Enhanced compressive strengths and induced cell growth of 1-3-type BaTiO 3/PMMA bio-piezoelectric composites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111699. [PMID: 33545858 DOI: 10.1016/j.msec.2020.111699] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/24/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022]
Abstract
Barium titanate (BaTiO3) has been used as a bone implant material because of its piezoelectric properties and the ability to promote cell growth when combined with hydroxyapatite. However, the brittleness of BaTiO3 inhibits its use as a bone replacement material at load-bearing sites, and the reduction of BaTiO3 content in the composite reduces its piezoelectric effect on bone growth. In this study, we explored a preparation method, which included directional freeze casting and self-solidification of bone cement, to obtain 1-3-type BaTiO3/PMMA bio-piezoelectric composites with a lamellar structure. The lamellar BaTiO3 layer through the composite from the bottom to the top significantly improved the piezoelectric properties of the composite. In addition, the dendritic ceramic bridges on the BaTiO3 pore walls can improve the compressive strength and elastic modulus of BaTiO3/PMMA bio-piezoelectric composites with a lamellar structure. More importantly, it was found that polarized lamellar BaTiO3 could induce osteoblasts to grow in the direction of the BaTiO3 layers. When the width of the BaTiO3 layer was in the range of 8-21 μm, osteoblasts along the BaTiO3 layer showed well growth, which can be of great value for the production of biomimetic bone units.
Collapse
|
17
|
Liu L, Mu H, Pang Y. Caffeic acid treatment augments the cell proliferation, differentiation, and calcium mineralization in the human osteoblast-like MG-63 cells. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_186_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
18
|
Qin K, Parisi C, Fernandes FM. Recent advances in ice templating: from biomimetic composites to cell culture scaffolds and tissue engineering. J Mater Chem B 2021; 9:889-907. [DOI: 10.1039/d0tb02506b] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We review the evolution of ice-templating process from initial inorganic materials to recent developments in shaping increasingly labile biological matter.
Collapse
Affiliation(s)
- Kankan Qin
- Laboratoire de Chimie de la Matière Condensée de Paris
- Sorbonne Université
- 75005 Paris
- France
| | - Cleo Parisi
- Laboratoire de Chimie de la Matière Condensée de Paris
- Sorbonne Université
- 75005 Paris
- France
| | - Francisco M. Fernandes
- Laboratoire de Chimie de la Matière Condensée de Paris
- Sorbonne Université
- 75005 Paris
- France
| |
Collapse
|
19
|
|
20
|
Liu W, Li X, Jiao Y, Wu C, Guo S, Xiao X, Wei X, Wu J, Gao P, Wang N, Lu Y, Tang Z, Zhao Q, Zhang J, Tang Y, Shi L, Guo Z. Biological Effects of a Three-Dimensionally Printed Ti6Al4V Scaffold Coated with Piezoelectric BaTiO 3 Nanoparticles on Bone Formation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51885-51903. [PMID: 33166458 DOI: 10.1021/acsami.0c10957] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bone defect repair at load-bearing sites is a challenging clinical problem for orthopedists. Defect reconstruction with implants is the most common treatment; however, it requires the implant to have good mechanical properties and the capacity to promote bone formation. In recent years, the piezoelectric effect, in which electrical activity can be generated due to mechanical deformation, of native bone, which promotes bone formation, has been increasingly valued. Therefore, implants with piezoelectric effects have also attracted great attention from orthopedists. In this study, we developed a bioactive composite scaffold consisting of BaTiO3, a piezoelectric ceramic material, coated on porous Ti6Al4V. This composite scaffold showed not only appropriate mechanical properties, sufficient bone and blood vessel ingrowth space, and a suitable material surface topography but also a reconstructed electromagnetic microenvironment. The osteoconductive and osteoinductive properties of the scaffold were reflected by the proliferation, migration, and osteogenic differentiation of mesenchymal stem cells. The ability of the scaffold to support vascularization was reflected by the proliferation and migration of human umbilical vein endothelial cells and their secretion of VEGF and PDGF-BB. A well-established sheep spinal fusion model was used to evaluate bony fusion in vivo. Sheep underwent implantation with different scaffolds, and X-ray, micro-computed tomography, van Gieson staining, and elemental energy-dispersive spectroscopy were used to analyze bone formation. Isolated cervical angiography and visualization analysis were used to assess angiogenesis at 4 and 8 months after transplantation. The results of cellular and animal studies showed that the piezoelectric effect could significantly reinforce osteogenesis and angiogenesis. Furthermore, we also discuss the molecular mechanism by which the piezoelectric effect promotes osteogenic differentiation and vascularization. In summary, Ti6Al4V scaffold coated with BaTiO3 is a promising composite biomaterial for repairing bone defects, especially at load-bearing sites, that may have great clinical translation potential.
Collapse
Affiliation(s)
- Wenwen Liu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiaokang Li
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yilai Jiao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research Chinese Academy of Sciences, Shenyang 110016, China
| | - Cong Wu
- Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Shuo Guo
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xin Xiao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xinghui Wei
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jie Wu
- Department of Orthopaedics, the 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Peng Gao
- Department of Joint Surgery and Sports Medicine, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, 410016, China
| | - Ning Wang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yajie Lu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhen Tang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Quanming Zhao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jinsong Zhang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yufei Tang
- Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Lei Shi
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zheng Guo
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
21
|
A facile surface modification of poly(dimethylsiloxane) with amino acid conjugated self-assembled monolayers for enhanced osteoblast cell behavior. Colloids Surf B Biointerfaces 2020; 196:111343. [PMID: 32896827 DOI: 10.1016/j.colsurfb.2020.111343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 01/09/2023]
Abstract
Polydimethylsiloxane (PDMS) is a biocompatible synthetic polymer and used in various applications due to its low toxicity and tunable surface properties. However, PDMS does not have any chemical cues for cell binding. Plasma treatment, protein coating or surface modification with various molecules have been used to improve its surface characteristics. Still, these techniques are either last for a very limited time or have very complicated experimental procedures. In the present study, simple and one-step surface modification of PDMS is successfully accomplished by the preparation of hydrophilic and hydrophobic amino acid conjugated self-assembled monolayers (SAMs) for enhanced interactions at the cell-substrate interface. Synthesis of histidine and leucine conjugated (3-aminopropyl)-triethoxysilane (His-APTES and Leu-APTES) were confirmed with proton nuclear magnetic resonance spectroscopy (1H NMR) and optimum conditions for the modification of PDMS with SAMs were investigated by X-ray photoelectron spectroscopy (XPS) analysis, combined with water contact angle (WCA) measurements. Results indicated that both SAMs enhanced cellular behavior in vitro. Furthermore, hydrophilic His-APTES modification provides a superior environment for the osteoblast maturation with higher alkaline phosphatase activity and mineralization. As histidine, leucine, and functional groups of these SAMs are naturally found in biological systems, modification of PDMS with them increases its cell-substrate surface biomimetic properties. This study establishes a successful modification of PDMS for in vitro cell studies, offering a biomimetic and easy procedure for potential applications in microfluidics, cell-based therapies, or drug investigations.
Collapse
|
22
|
Lyons JG, Plantz MA, Hsu WK, Hsu EL, Minardi S. Nanostructured Biomaterials for Bone Regeneration. Front Bioeng Biotechnol 2020; 8:922. [PMID: 32974298 PMCID: PMC7471872 DOI: 10.3389/fbioe.2020.00922] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
This review article addresses the various aspects of nano-biomaterials used in or being pursued for the purpose of promoting bone regeneration. In the last decade, significant growth in the fields of polymer sciences, nanotechnology, and biotechnology has resulted in the development of new nano-biomaterials. These are extensively explored as drug delivery carriers and as implantable devices. At the interface of nanomaterials and biological systems, the organic and synthetic worlds have merged over the past two decades, forming a new scientific field incorporating nano-material design for biological applications. For this field to evolve, there is a need to understand the dynamic forces and molecular components that shape these interactions and influence function, while also considering safety. While there is still much to learn about the bio-physicochemical interactions at the interface, we are at a point where pockets of accumulated knowledge can provide a conceptual framework to guide further exploration and inform future product development. This review is intended as a resource for academics, scientists, and physicians working in the field of orthopedics and bone repair.
Collapse
Affiliation(s)
- Joseph G. Lyons
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Mark A. Plantz
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Wellington K. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Erin L. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Silvia Minardi
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| |
Collapse
|
23
|
Prokhorov E, Bárcenas GL, España Sánchez BL, Franco B, Padilla-Vaca F, Hernández Landaverde MA, Yáñez Limón JM, López RA. Chitosan-BaTiO 3 nanostructured piezopolymer for tissue engineering. Colloids Surf B Biointerfaces 2020; 196:111296. [PMID: 32771819 DOI: 10.1016/j.colsurfb.2020.111296] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
Herein we report the synthesis of a piezopolymer composed of chitosan (CS)/hydroxylated BaTiO3 (OH-BTO) nanoparticles with enhanced biocompatibility, non-toxicity, and piezoelectric behavior that can be advantageously used in biomedical applications. Our CS/OH-BTO nanocomposites exhibit piezoelectric coefficient (d33 = 11.29 pC/N) between those of dry skin (0.05-0.19 pC/N) and bone (4-11 pC/N), demonstrating biocompatibility in contact with human fibroblasts (HF) cells after 24 h. SEM, XRD, FTIR and Raman measurements were performed to assess the mechanism of interaction between CS matrix and OH-BTO NPs and their correlation with the biological responses. Cytotoxicity assays with HF cells reveal that hydroxylation of BTO NPs does not affect the cell viability of CS/OH-BTO films with NPs concentration from 1 to 30 wt.%. In contrast, non-hydroxylated BTO NPs showed significant cell damage, which could be traced to uncontrollable NPs agglomeration. This behavior suggests that CS/OH-BTO nanocomposites can act as active material that promotes cell growth and can be used for biomedical purposes.
Collapse
Affiliation(s)
- Evgen Prokhorov
- CINVESTAV del IPN Unidad Querétaro, Libramiento Norponiente No. 2000 Fracc, Real de Juriquilla, C.P. 76230, Querétaro, Mexico.
| | - Gabriel Luna Bárcenas
- CINVESTAV del IPN Unidad Querétaro, Libramiento Norponiente No. 2000 Fracc, Real de Juriquilla, C.P. 76230, Querétaro, Mexico.
| | - Beatriz Liliana España Sánchez
- CONACYT_Centro de Investigación y Desarrollo Tecnológico en Electroquímica CIDETEQ S.C., Parque Tecnológico Querétaro s/n, Sanfandila, Pedro Escobedo, C.P. 76703, Querétaro, Mexico.
| | - Bernardo Franco
- Departamento de Biología, División de Ciencias Naturales y Exactas. Universidad de Guanajuato. Noria Alta s/n Guanajuato, C.P. 36050, Guanajuato, Mexico.
| | - Felipe Padilla-Vaca
- Departamento de Biología, División de Ciencias Naturales y Exactas. Universidad de Guanajuato. Noria Alta s/n Guanajuato, C.P. 36050, Guanajuato, Mexico.
| | | | - José Martín Yáñez Limón
- CINVESTAV del IPN Unidad Querétaro, Libramiento Norponiente No. 2000 Fracc, Real de Juriquilla, C.P. 76230, Querétaro, Mexico.
| | - René Antaño López
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica CIDETEQ S.C., Parque Tecnológico Querétaro s/n, Sanfandila, Pedro Escobedo C.P. 76703, Querétaro Mexico.
| |
Collapse
|
24
|
Kudłacik-Kramarczyk S, Drabczyk A, Głąb M, Dulian P, Bogucki R, Miernik K, Sobczak-Kupiec A, Tyliszczak B. Mechanochemical Synthesis of BaTiO 3 Powders and Evaluation of Their Acrylic Dispersions. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3275. [PMID: 32717931 PMCID: PMC7435694 DOI: 10.3390/ma13153275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 11/17/2022]
Abstract
Barium titanate is a ferroelectric perovskite with unique electric properties; therefore, it is widely applied in the fabrication of inorganic coatings or thin films, capacitors, or in the production of devices for energy storage and conversion. This paper describes the mechanochemical synthesis of BaTiO3 from BaO and TiO2 using a ball mill. XRD analysis allowed concluding that barium titanate was formed after 90 min of mechanochemical grinding. It was also proved by spectroscopic analysis and the band corresponding to Ti-O vibrations on obtained Fourier Transform Infrared (FT-IR) spectra. The specific surface area of obtained powder was 25.275 m2/g. Next, formed perovskite was dispersed in an acrylic poly(ethylene glycol) (superabsorbent polymer suspension, SAP) suspension prepared using microwave radiation. Final suspensions differed in the concentration of SAP applied. It was proven that the increase of SAP concentration does not affect the acidity of the suspension, but it does increase its dynamic viscosity. A sample with 83 wt.% of SAP reached a value of approximately 140 mPa∙s. Dispersions with higher values of SAP mass fraction exhibited lower sedimentation rates. Molecules such as SAP may adsorb to the surface of particles and thus prevent their agglomeration and make them well monodispersed. Based on the performed experiments, it can be concluded that acrylic poly(ethylene glycol) suspension is a suitable fluid that may stabilize barium titanate dispersions.
Collapse
Affiliation(s)
- Sonia Kudłacik-Kramarczyk
- Institute of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31–864 Krakow, Poland; (M.G.); (R.B.); (K.M.); (A.S.-K.)
| | - Anna Drabczyk
- Institute of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31–864 Krakow, Poland; (M.G.); (R.B.); (K.M.); (A.S.-K.)
| | - Magdalena Głąb
- Institute of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31–864 Krakow, Poland; (M.G.); (R.B.); (K.M.); (A.S.-K.)
| | - Piotr Dulian
- Institute of Inorganic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31–155 Krakow, Poland;
| | - Rafał Bogucki
- Institute of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31–864 Krakow, Poland; (M.G.); (R.B.); (K.M.); (A.S.-K.)
| | - Krzysztof Miernik
- Institute of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31–864 Krakow, Poland; (M.G.); (R.B.); (K.M.); (A.S.-K.)
| | - Agnieszka Sobczak-Kupiec
- Institute of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31–864 Krakow, Poland; (M.G.); (R.B.); (K.M.); (A.S.-K.)
| | - Bożena Tyliszczak
- Institute of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31–864 Krakow, Poland; (M.G.); (R.B.); (K.M.); (A.S.-K.)
| |
Collapse
|
25
|
Motahareh Sinaei, Heidari F, Hayati R. Investigation of Corrosion Properties of Nano-Composite Coatings of Hydroxyapatite/Barium Titanate/Chitosan Produced by Electrophoretic Deposition on 316L Stainless Steel. SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY 2020. [DOI: 10.3103/s1068375520030175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
3D Printing of Piezoelectric Barium Titanate-Hydroxyapatite Scaffolds with Interconnected Porosity for Bone Tissue Engineering. MATERIALS 2020; 13:ma13071773. [PMID: 32283869 PMCID: PMC7179021 DOI: 10.3390/ma13071773] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 11/16/2022]
Abstract
The prevalence of large bone defects is still a major problem in surgical clinics. It is, thus, not a surprise that bone-related research, especially in the field of bone tissue engineering, is a major issue in medical research. Researchers worldwide are searching for the missing link in engineering bone graft materials that mimic bones, and foster osteogenesis and bone remodeling. One approach is the combination of additive manufacturing technology with smart and additionally electrically active biomaterials. In this study, we performed a three-dimensional (3D) printing process to fabricate piezoelectric, porous barium titanate (BaTiO3) and hydroxyapatite (HA) composite scaffolds. The printed scaffolds indicate good cytocompatibility and cell attachment as well as bone mimicking piezoelectric properties with a piezoelectric constant of 3 pC/N. This work represents a promising first approach to creating an implant material with improved bone regenerating potential, in combination with an interconnected porous network and a microporosity, known to enhance bone growth and vascularization.
Collapse
|
27
|
Metwally S, Stachewicz U. Surface potential and charges impact on cell responses on biomaterials interfaces for medical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109883. [DOI: 10.1016/j.msec.2019.109883] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/02/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022]
|
28
|
Amaral DL, Zanette RS, Almeida CG, Almeida LB, Oliveira LFD, Marcomini RF, Nogueira BV, Santos MO, Brandão HM, Mc Maranduba C, Munk M. In vitro evaluation of barium titanate nanoparticle/alginate 3D scaffold for osteogenic human stem cell differentiation. ACTA ACUST UNITED AC 2019; 14:035011. [PMID: 30802890 DOI: 10.1088/1748-605x/ab0a52] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanomaterials can mimic properties of extracellular matrix molecules, promising great potential for scaffold composition in tissue engineering. In the present study, we investigated whether barium titanate nanoparticles (BT NP) combined with alginate polymer would provide a new cytocompatible three-dimensional (3D) scaffold to induce osteogenic stem cell differentiation. In vitro cytocompatibility and osteogenic differentiation potential were investigated using human mesenchymal stem cells (MSC). Firstly, we studied the cell viability and oxidative stress by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) thiazolyl blue tetrazolium bromide (MTT) and superoxide dismutase (SOD) assays. Overall, neither pure BT NP or BT NP/alginate 3D scaffold induced cytotoxicity. The scanning electron and atomic force microscopy revealed that BT NP/alginate 3D scaffold produced exhibited highly interconnected pores and surface nanotopography that were favorable for MSC differentiation. Von Kossa staining showed mineralization nodules and MSCs morphology changed from spindle to cuboid shape after 21 d. Finally, BMP-2 and ALP mRNA were significantly upregulated on cells grown into the BT NP/alginate 3D scaffold. Thus, the BT NP/alginate 3D scaffold showed an osteogenic differentiation induction potential, without the addition of osteogenic supplements. These results indicate that the BT NP/alginate 3D scaffold provides a cytocompatible and bioactive microenvironment for osteogenic human MSC differentiation.
Collapse
Affiliation(s)
- Danielle Las Amaral
- Department of Biology, Federal University of Juiz de Fora, 36036-330, Juiz de Fora, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
An R, Fan PP, Zhou MJ, Wang Y, Goel S, Zhou XF, Li W, Wang JT. Nanolamellar Tantalum Interfaces in the Osteoblast Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2480-2489. [PMID: 30673289 DOI: 10.1021/acs.langmuir.8b02796] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The design of topographically patterned surfaces is considered to be a preferable approach for influencing cellular behavior in a controllable manner, in particular to improve the osteogenic ability of bone regeneration. In this study, we fabricated nanolamellar tantalum (Ta) surfaces with lamellar wall thicknesses of 40 and 70 nm. The cells attached to nanolamellar Ta surfaces exhibited higher protein adsorption and expression of β1 integrin, as compared to the nonstructured bulk Ta, which facilitated the initial cell attachment and spreading. We thus, as expected, observed significantly enhanced osteoblast adhesion, growth, and alkaline phosphatase activity on nanolamellar Ta surfaces. However, the beneficial effects of nanolamellar structures on osteogenesis became weaker as the lamellar wall thickness increased. The interaction between cells and Ta surfaces was examined through adhesion forces using atomic force microscopy. Our findings indicated that the Ta surface with a lamellar wall thickness of 40 nm exhibited the strongest stimulatory effect. The observed strongest adhesion force between the cell-attached tip and the Ta surface with a 40 nm thick lamellar wall encouraged the much stronger binding of cells with the surface and thus well-attached, -stretched, and -grown cells. We attributed this to the increase in the available contact area of cells with the thinner nanolamellar Ta surface. The increased contact area allowed the enhancement of the cell surface interaction strength and, thus, improved osteoblast adhesion. This study suggests that the thin nanolamellar topography shows immense potential in improving the clinical performance of dental and orthopedic implants.
Collapse
Affiliation(s)
- Rong An
- Herbert Gleiter Institute of Nanoscience , Nanjing University of Science and Technology , Nanjing 210094 , P. R. China
| | - Peng Peng Fan
- Herbert Gleiter Institute of Nanoscience , Nanjing University of Science and Technology , Nanjing 210094 , P. R. China
| | - Ming Jun Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , P. R. China
| | - Yue Wang
- Herbert Gleiter Institute of Nanoscience , Nanjing University of Science and Technology , Nanjing 210094 , P. R. China
- Xiamen Golden Egret Special Alloy Company, Ltd. , Xiamen 361021 , P. R. China
| | - Sunkulp Goel
- Herbert Gleiter Institute of Nanoscience , Nanjing University of Science and Technology , Nanjing 210094 , P. R. China
| | - Xue Feng Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , P. R. China
| | - Wei Li
- European Bioenergy Research Institute, Aston Institute of Materials Research , Aston University , Birmingham B4 7ET , U.K
| | - Jing Tao Wang
- Herbert Gleiter Institute of Nanoscience , Nanjing University of Science and Technology , Nanjing 210094 , P. R. China
| |
Collapse
|
30
|
Przekora A. Current Trends in Fabrication of Biomaterials for Bone and Cartilage Regeneration: Materials Modifications and Biophysical Stimulations. Int J Mol Sci 2019; 20:E435. [PMID: 30669519 PMCID: PMC6359292 DOI: 10.3390/ijms20020435] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 12/22/2022] Open
Abstract
The aim of engineering of biomaterials is to fabricate implantable biocompatible scaffold that would accelerate regeneration of the tissue and ideally protect the wound against biodevice-related infections, which may cause prolonged inflammation and biomaterial failure. To obtain antimicrobial and highly biocompatible scaffolds promoting cell adhesion and growth, materials scientists are still searching for novel modifications of biomaterials. This review presents current trends in the field of engineering of biomaterials concerning application of various modifications and biophysical stimulation of scaffolds to obtain implants allowing for fast regeneration process of bone and cartilage as well as providing long-lasting antimicrobial protection at the site of injury. The article describes metal ion and plasma modifications of biomaterials as well as post-surgery external stimulations of implants with ultrasound and magnetic field, providing accelerated regeneration process. Finally, the review summarizes recent findings concerning the use of piezoelectric biomaterials in regenerative medicine.
Collapse
Affiliation(s)
- Agata Przekora
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, W. Chodzki 1 Street, 20-093 Lublin, Poland.
| |
Collapse
|
31
|
Osteoblast responses to injectable bone substitutes of kappa-carrageenan and nano hydroxyapatite. Acta Biomater 2019; 83:425-434. [PMID: 30342285 DOI: 10.1016/j.actbio.2018.10.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 01/22/2023]
Abstract
The combination of kappa-carrageenan (κ-CG) and hydroxyapatite (HA) to generate a bone substitute material has been underexplored to date. Carrageenans (CGs) have remarkable characteristics such as biocompatibility, hydrophilicity, and structural similarities with natural glycosaminoglycans (GAGs), and they have demonstrated the ability to stimulate cellular adhesion and proliferation. Hydroxyapatite nanoparticles have been one of the most investigated materials for bone regeneration due to their excellent biocompatibility, bioactivity and osteoconductivity. In particular, this study presents an approach for the preparation of new bioactive composites of κ-CG/nHA for numerous bone regeneration applications. We performed a set of in vitro experiments to evaluate the influence of the bone substitutes on human osteoblasts. Cell culture studies indicated that all samples tested were cytocompatible. Relative to control substrates, cellular attachment and proliferation were better on all the scaffold surfaces that were tested. The S2 and S3 samples, those permeated by 1.5 and 2.5 wt% of CG, respectively, exhibited an enhancement in cell spreading capacity compared to the S1 test materials which were comprised of 1 wt% of CG. Excellent osteoblast viability and adhesion were observed for each of the tested materials. Additionally, the bone substitutes developed for this study presented a distinct osteoconductive environment. Data supporting this claim were derived from alkaline phosphatase (ALP) and calcium deposition analyses, which indicated that, compared to the control species, ALP expression and calcium deposition were both improved on test κ-CG/nHA surfaces. In summary, the injectable bone substitute developed here demonstrated great potential for numerous bone regeneration applications, and thus, should be studied further. STATEMENT OF SIGNIFICANCE: The novelty of this work lies in the determination of the in vitro cytocompatibility behavior of carrageenan and hydroxyapatite composite materials used as injectable bone substitutes. This injectable biomaterial can fill in geometric complex defects, and it displays bioactivity as well as high bone regeneration capacity. In this study, we evaluated the behaviors of osteoblast cells in contact with the scaffolds, including cellular adhesion and proliferation, cellular metabolism, and mineralization on the fabricated injectable bone substitutes. The results show than the carrageenan and hydroxyapatite substitutes provided a biomaterial with a great capacity for promoting cellular growth, adhesion, and proliferation, as well as contributing an osteoinductive environment for osteoblast differentiation and osteogenesis.
Collapse
|
32
|
Kao FC, Chiu PY, Tsai TT, Lin ZH. The application of nanogenerators and piezoelectricity in osteogenesis. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2019; 20:1103-1117. [PMID: 32002085 PMCID: PMC6968561 DOI: 10.1080/14686996.2019.1693880] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/29/2019] [Accepted: 11/13/2019] [Indexed: 05/13/2023]
Abstract
Bone is a complex organ possessing both physicomechanical and bioelectrochemical properties. In the view of Wolff's Law, bone can respond to mechanical loading and is subsequently reinforced in the areas of stress. Piezoelectricity is one of several mechanical responses of the bone matrix that allows osteocytes, osteoblasts, osteoclasts, and osteoprogenitors to react to changes in their environment. The present review details how osteocytes convert external mechanical stimuli into internal bioelectrical signals and the induction of intercellular cytokines from the standpoint of piezoelectricity. In addition, this review introduces piezoelectric and triboelectric materials used as self-powered electrical generators to promote osteogenic proliferation and differentiation due to their electromechanical properties, which could promote the development of promising applications in tissue engineering and bone regeneration.
Collapse
Affiliation(s)
- Fu-Cheng Kao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan
- Department of Orthopaedic Surgery, Spine Section, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ping-Yeh Chiu
- Department of Orthopaedic Surgery, Spine Section, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tsung-Ting Tsai
- Department of Orthopaedic Surgery, Spine Section, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Zong-Hong Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan
- CONTACT Zong-Hong Lin Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
33
|
Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair. Acta Biomater 2018; 73:1-20. [PMID: 29673838 DOI: 10.1016/j.actbio.2018.04.026] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/19/2018] [Accepted: 04/15/2018] [Indexed: 12/14/2022]
Abstract
The process of bone repair and regeneration requires multiple physiological cues including biochemical, electrical and mechanical - that act together to ensure functional recovery. Myriad materials have been explored as bioactive scaffolds to deliver these cues locally to the damage site, amongst these piezoelectric materials have demonstrated significant potential for tissue engineering and regeneration, especially for bone repair. Piezoelectric materials have been widely explored for power generation and harvesting, structural health monitoring, and use in biomedical devices. They have the ability to deform with physiological movements and consequently deliver electrical stimulation to cells or damaged tissue without the need of an external power source. Bone itself is piezoelectric and the charges/potentials it generates in response to mechanical activity are capable of enhancing bone growth. Piezoelectric materials are capable of stimulating the physiological electrical microenvironment, and can play a vital role to stimulate regeneration and repair. This review gives an overview of the association of piezoelectric effect with bone repair, and focuses on state-of-the-art piezoelectric materials (polymers, ceramics and their composites), the fabrication routes to produce piezoelectric scaffolds, and their application in bone repair. Important characteristics of these materials from the perspective of bone tissue engineering are highlighted. Promising upcoming strategies and new piezoelectric materials for this application are presented. STATEMENT OF SIGNIFICANCE Electrical stimulation/electrical microenvironment are known effect the process of bone regeneration by altering the cellular response and are crucial in maintaining tissue functionality. Piezoelectric materials, owing to their capability of generating charges/potentials in response to mechanical deformations, have displayed great potential for fabricating smart stimulatory scaffolds for bone tissue engineering. The growing interest of the scientific community and compelling results of the published research articles has been the motivation of this review article. This article summarizes the significant progress in the field with a focus on the fabrication aspects of piezoelectric materials. The review of both material and cellular aspects on this topic ensures that this paper appeals to both material scientists and tissue engineers.
Collapse
|
34
|
Tandon B, Magaz A, Balint R, Blaker JJ, Cartmell SH. Electroactive biomaterials: Vehicles for controlled delivery of therapeutic agents for drug delivery and tissue regeneration. Adv Drug Deliv Rev 2018; 129:148-168. [PMID: 29262296 DOI: 10.1016/j.addr.2017.12.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/24/2017] [Accepted: 12/16/2017] [Indexed: 01/09/2023]
Abstract
Electrical stimulation for delivery of biochemical agents such as genes, proteins and RNA molecules amongst others, holds great potential for controlled therapeutic delivery and in promoting tissue regeneration. Electroactive biomaterials have the capability of delivering these agents in a localized, controlled, responsive and efficient manner. These systems have also been combined for the delivery of both physical and biochemical cues and can be programmed to achieve enhanced effects on healing by establishing control over the microenvironment. This review focuses on current state-of-the-art research in electroactive-based materials towards the delivery of drugs and other therapeutic signalling agents for wound care treatment. Future directions and current challenges for developing effective electroactive approach based therapies for wound care are discussed.
Collapse
|
35
|
Ehterami A, Kazemi M, Nazari B, Saraeian P, Azami M. Fabrication and characterization of highly porous barium titanate based scaffold coated by Gel/HA nanocomposite with high piezoelectric coefficient for bone tissue engineering applications. J Mech Behav Biomed Mater 2018; 79:195-202. [DOI: 10.1016/j.jmbbm.2017.12.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/25/2017] [Accepted: 12/29/2017] [Indexed: 12/18/2022]
|
36
|
Tolde Z, Starý V, Cvrček L, Vandrovcová M, Remsa J, Daniš S, Krčil J, Bačáková L, Špatenka P. Growth of a TiNb adhesion interlayer for bioactive coatings. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:652-658. [PMID: 28866212 DOI: 10.1016/j.msec.2017.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 06/06/2017] [Accepted: 07/10/2017] [Indexed: 11/19/2022]
Abstract
Surface bioactivity has been under intensive study with reference to its use in medical implants. Our study is focused on coatings prepared from an electroactive material which can support bone cell adhesion. Until now, hydroxyapatite films have usually been utilized as a chemically-active surface agent. However, electrically-active films could set a new direction in hard tissue replacement. As a base for these films, it is necessary to prepare an intermediate film, which can serve as a suitable barrier against the possible diffusion of some allergens and toxic elements from the substrate. The intermediate film also improves the adaptation of the mechanical properties of the basic material to an electroactive film. The aim of our work was to select an implantable and biocompatible material for this intermediate film that is suitable for coating several widely-used materials, to check the possibility of preparing an electroactive film for use on a material of this type, and to characterize the structure and several mechanical properties of this intermediate film. TiNb was selected as the material for the intermediate film, because of its excellent chemical and mechanical properties. TiNb coatings were deposited by magnetron sputtering on various substrates, namely Ti, Ti6Al4V, stainless steel, and bulk TiNb (as standard), and important properties of the layers, e.g. surface morphology and surface roughness, crystalline structure, etc., were characterized by several methods (SEM, EBSD, X-ray diffraction, nanoindentation and roughness measurement). It was found that the structure and the mechanical properties of the TiNb layer depended significantly on the type of substrate. TiNb was then used as a substrate for depositing a ferroelectrically active material, e.g., BaTiO3, and the adhesion, viability and proliferation of human osteoblast-like Saos-2 cells on this system were studied. We found that the electroactive BaTiO3 film was not only non-cytotoxic (i.e. it did not affect the cell viability). It also enhanced the growth of Saos-2 cells in comparison with pure TiNb and with standard tissue culture polystyrene wells, and also in comparison with BaTiO3 films deposited on Ti, i.e. a material clinically used for implantation into the bone.
Collapse
Affiliation(s)
- Zdeněk Tolde
- Dept. of Materials Engineering, Faculty of Mechanical Engineering, Czech Technical University in Prague, Karlovo Sq. 13, 121 35 Prague 2, Czech Republic
| | - Vladimír Starý
- Dept. of Materials Engineering, Faculty of Mechanical Engineering, Czech Technical University in Prague, Karlovo Sq. 13, 121 35 Prague 2, Czech Republic.
| | - Ladislav Cvrček
- Dept. of Materials Engineering, Faculty of Mechanical Engineering, Czech Technical University in Prague, Karlovo Sq. 13, 121 35 Prague 2, Czech Republic
| | - Marta Vandrovcová
- Dept. of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4-Krc, Czech Republic
| | - Jan Remsa
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna Sq. 3108, 21201 Kladno, Czech Republic
| | - Stanislav Daniš
- Dept. of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| | - Jan Krčil
- Dept. of Materials Engineering, Faculty of Mechanical Engineering, Czech Technical University in Prague, Karlovo Sq. 13, 121 35 Prague 2, Czech Republic
| | - Lucie Bačáková
- Dept. of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4-Krc, Czech Republic
| | - Petr Špatenka
- Dept. of Materials Engineering, Faculty of Mechanical Engineering, Czech Technical University in Prague, Karlovo Sq. 13, 121 35 Prague 2, Czech Republic
| |
Collapse
|
37
|
Osteoinductive composite coatings for flexible intramedullary nails. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:207-220. [DOI: 10.1016/j.msec.2017.02.073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/31/2016] [Accepted: 02/14/2017] [Indexed: 01/22/2023]
|
38
|
Li Y, Dai X, Bai Y, Liu Y, Wang Y, Liu O, Yan F, Tang Z, Zhang X, Deng X. Electroactive BaTiO 3 nanoparticle-functionalized fibrous scaffolds enhance osteogenic differentiation of mesenchymal stem cells. Int J Nanomedicine 2017; 12:4007-4018. [PMID: 28603415 PMCID: PMC5457183 DOI: 10.2147/ijn.s135605] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
It has been proven that the surface topographic cues of fiber arrangement can induce osteogenic differentiation of mesenchymal stem cells. However, this effect alone is weak and insufficient to meet the needs of regenerative medicine. In this work, electroactivity concept was introduced to enhance the osteoinductivity of fibrous scaffolds. The randomly oriented and aligned electroactive fibrous scaffolds of poly-(l-lactic acid) (PLLA) with incorporation of ferroelectric ceramic BaTiO3 (BTO) nanoparticles (NPs) were fabricated by electrospinning. Physicochemical properties, including fiber morphology, microstructure, composition, thermal stability, surface roughness, and surface wettability, of these fibrous scaffolds were studied. The dielectric properties of the scaffolds were evaluated. The results showed that the randomly oriented BTO/PLLA composite fibrous scaffolds had the highest dielectric permittivity of 1.19, which is of the same order of magnitude as the natural bone. The combined effects of fiber orientation and electrical activity on the osteogenic responses of bone marrow mesenchymal stem cells (BM-MSCs) were specifically investigated. Randomly oriented composite fibrous scaffolds significantly promoted polygonal spreading and encouraged early osteogenic differentiation in BM-MSCs, whereas aligned composite fibrous scaffolds promoted cell elongation and discouraged osteogenic differentiation. These results evidenced that randomly fiber orientation and biomimetic electric activity have combining effects on osteogenic differentiation of BM-MSCs. Our findings indicate that coupling effects of multi-physical properties should be paid more attention to mimic the microenvironment for enhancing osteogenic differentiation of BM-MSCs.
Collapse
Affiliation(s)
- Yiping Li
- Department of Prosthodontics, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha.,Department of Geriatric Dentistry
| | - Xiaohan Dai
- Department of Prosthodontics, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha
| | | | - Yun Liu
- Department of Geriatric Dentistry
| | - Yuehong Wang
- Department of Prosthodontics, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha
| | - Ousheng Liu
- Department of Prosthodontics, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha
| | - Fei Yan
- Department of Prosthodontics, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha
| | - Zhangui Tang
- Department of Prosthodontics, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology.,National Engineering Laboratory for Digital and Material Technology of Stomatology.,Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Xuliang Deng
- Department of Geriatric Dentistry.,National Engineering Laboratory for Digital and Material Technology of Stomatology.,Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| |
Collapse
|
39
|
Tang Y, Wu C, Wu Z, Hu L, Zhang W, Zhao K. Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration. Sci Rep 2017; 7:43360. [PMID: 28240268 PMCID: PMC5327417 DOI: 10.1038/srep43360] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/23/2017] [Indexed: 01/27/2023] Open
Abstract
The piezoelectric effect of biological piezoelectric materials promotes bone growth. However, the material should be subjected to stress before it can produce an electric charge that promotes bone repair and reconstruction conducive to fracture healing. A novel method for in vitro experimentation of biological piezoelectric materials with physiological load is presented. A dynamic loading device that can simulate the force of human motion and provide periodic load to piezoelectric materials when co-cultured with cells was designed to obtain a realistic expression of piezoelectric effect on bone repair. Hydroxyapatite (HA)/barium titanate (BaTiO3) composite materials were fabricated by slip casting, and their piezoelectric properties were obtained by polarization. The d33 of HA/BaTiO3 piezoelectric ceramics after polarization was 1.3 pC/N to 6.8 pC/N with BaTiO3 content ranging from 80% to 100%. The in vitro biological properties of piezoelectric bioceramics with and without cycle loading were investigated. When HA/BaTiO3 piezoelectric bioceramics were affected by cycle loading, the piezoelectric effect of BaTiO3 promoted the growth of osteoblasts and interaction with HA, which was better than the effect of HA alone. The best biocompatibility and bone-inducing activity were demonstrated by the 10%HA/90%BaTiO3 piezoelectric ceramics.
Collapse
Affiliation(s)
- Yufei Tang
- Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Cong Wu
- Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Zixiang Wu
- Institute of Orthopaedics, Xi'jing Hospital, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Long Hu
- Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Wei Zhang
- Institute of Orthopaedics, Xi'jing Hospital, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Kang Zhao
- Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| |
Collapse
|
40
|
Feng J, Zhang D, Zhu M, Gao C. Poly(l-lactide) melt spun fiber-aligned scaffolds coated with collagen or chitosan for guiding the directional migration of osteoblasts in vitro. J Mater Chem B 2017; 5:5176-5188. [DOI: 10.1039/c7tb00601b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PLLA melt spun fiber-aligned scaffolds coated with collagen or chitosan enhance the viability, spreading, alignment and mobility of osteoblasts.
Collapse
Affiliation(s)
- Jianyong Feng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Deteng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Meifang Zhu
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
41
|
New Coll–HA/BT composite materials for hard tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:795-805. [DOI: 10.1016/j.msec.2016.02.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/07/2016] [Accepted: 02/13/2016] [Indexed: 11/24/2022]
|