1
|
Zhang C, Zhang X, Dai S, Yang W. Exploring prognosis and therapeutic strategies for HBV-HCC patients based on disulfidptosis-related genes. Front Genet 2025; 15:1522484. [PMID: 39882072 PMCID: PMC11774838 DOI: 10.3389/fgene.2024.1522484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
Background Hepatocellular carcinoma (HCC) accounts for over 80% of primary liver cancers and is the third leading cause of cancer-related deaths worldwide. Hepatitis B virus (HBV) infection is the primary etiological factor. Disulfidptosis is a newly discovered form of regulated cell death. This study aims to develop a novel HBV-HCC prognostic signature related to disulfidptosis and explore potential therapeutic approaches through risk stratification based on disulfidptosis. Methods Transcriptomic data from HBV-HCC patients were analyzed to identify BHDRGs. A prognostic model was established and validated using machine learning, with internal datasets and external datasets for verification. We then performed immune cell infiltration analysis, tumor microenvironment (TME) analysis, and immunotherapy-related analysis based on the prognostic signature. Besides, RT-qPCR and immunohistochemistry were conducted. Results A prognostic model was constructed using five genes (DLAT, STC2, POF1B, S100A9, and CPS1). A corresponding prognostic nomogram was developed based on riskScores, age, stage. Stratification by median risk score revealed a significant correlation between the prognostic signature and TME, tumor immune cell infiltration, immunotherapy efficacy, and drug sensitivity. The results of the experiments indicate that DLAT expression is higher in tumor tissues compared to adjacent tissues. DLAT expression is higher in HBV-HCC tumor tissues compared to normal tissues. Conclusion This study stratifies HBV-HCC patients into distinct subgroups based on BHDRGs, establishing a prognostic model with significant implications for prognosis assessment, TME remodeling, and personalized therapy in HBV-HCC patients.
Collapse
Affiliation(s)
| | | | - Shengjie Dai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenjun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Gu Y, Yang R, Zhang Y, Guo M, Takehiro K, Zhan M, Yang L, Wang H. Molecular mechanisms and therapeutic strategies in overcoming chemotherapy resistance in cancer. MOLECULAR BIOMEDICINE 2025; 6:2. [PMID: 39757310 PMCID: PMC11700966 DOI: 10.1186/s43556-024-00239-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Cancer remains a leading cause of mortality globally and a major health burden, with chemotherapy often serving as the primary therapeutic option for patients with advanced-stage disease, partially compensating for the limitations of non-curative treatments. However, the emergence of chemotherapy resistance significantly limits its efficacy, posing a major clinical challenge. Moreover, heterogeneity of resistance mechanisms across cancer types complicates the development of universally effective diagnostic and therapeutic approaches. Understanding the molecular mechanisms of chemoresistance and identifying strategies to overcome it are current research focal points. This review provides a comprehensive analysis of the key molecular mechanisms underlying chemotherapy resistance, including drug efflux, enhanced DNA damage repair (DDR), apoptosis evasion, epigenetic modifications, altered intracellular drug metabolism, and the role of cancer stem cells (CSCs). We also examine specific causes of resistance in major cancer types and highlight various molecular targets involved in resistance. Finally, we discuss current strategies aiming at overcoming chemotherapy resistance, such as combination therapies, targeted treatments, and novel drug delivery systems, while proposing future directions for research in this evolving field. By addressing these molecular barriers, this review lays a foundation for the development of more effective cancer therapies aimed at mitigating chemotherapy resistance.
Collapse
Affiliation(s)
- Yixiang Gu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ruifeng Yang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yang Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Miaomiao Guo
- The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | | | - Ming Zhan
- The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- Department of Systems Biology, Beckman Research Institute, City of Hope, Monrovia, CA, 91016, USA
| | - Linhua Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Hui Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
3
|
Lhaglham P, Jiramonai L, Jia Y, Huang B, Huang Y, Gao X, Zhang J, Liang XJ, Zhu M. Drug nanocrystals: Surface engineering and its applications in targeted delivery. iScience 2024; 27:111185. [PMID: 39555405 PMCID: PMC11564948 DOI: 10.1016/j.isci.2024.111185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Drug nanocrystals have received significant attention in drug development due to their enhanced dissolution rate and improved water solubility, making them effective in overcoming issues related to drug hydrophobicity, thereby improving drug bioavailability and treatment effectiveness. Recent advances in preparation techniques have facilitated research on drug surface properties, leading to valuable surface engineering strategies. Surface modification can stabilize drug nanocrystals, making them suitable for versatile drug delivery platforms. Functionalized ligands further enhance the potential for targeted delivery, enabling precision medicine. This review focuses on the surface engineering of drug nanocrystals, discussing various preparation methods, surface ligand design strategies, and their applications in targeted drug delivery, especially for cancer treatments. Finally, challenges and future directions are also discussed to promote the development of drug nanocrystals. The surface engineering of drug nanocrystals promises new opportunities for treating complex and chronic diseases while broadening the application of drug delivery systems.
Collapse
Affiliation(s)
- Phattalapol Lhaglham
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Sri-ayudhya Road, Bangkok 10400, Thailand
| | - Luksika Jiramonai
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaru Jia
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Baoying Huang
- MHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xueyun Gao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengliang Zhu
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Li D, Xiong Y, Li M, Long L, Zhang Y, Yan H, Xiang H. STC2 knockdown inhibits cell proliferation and glycolysis in hepatocellular carcinoma through promoting autophagy by PI3K/Akt/mTOR pathway. Arch Biochem Biophys 2024; 761:110149. [PMID: 39271096 DOI: 10.1016/j.abb.2024.110149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/02/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND The pathogenesis exploration and timely intervention of hepatocellular carcinoma (HCC) are crucial due to its global impact on human health. As a general tumor biomarker, stanniocalcin 2 (STC2), its role in HCC remains unclear. We aimed to analyze the effect and mechanism of STC2 on HCC. METHODS STC2 expressions in HCC tissues and cell lines were measured. si-STC2 and oe-STC2 transfections were utilized to analyze how STC2 affected cell functions. Functional enrichment analysis of STC2 was performed by Gene Set Enrichment Analysis (GSEA). The regulatory mechanism of STC2 on HCC was investigated using 2-DG, 3-MA, IGF-1, Rap, and LY294002. The impact of STC2 on HCC progression in vivo was evaluated by the tumor formation experiment. RESULTS Higher levels of STC2 expression were observed in HCC tissues and cell lines. Besides, STC2 knockdown reduced proliferation, migration, and invasion, while inducing cell apoptosis. Further analysis indicated a positive correlation between STC2 and glycolysis. STC2 knockdown inhibited glycolysis progression and down-regulated the expressions of PKM2, GLUT1, and HK2 in HCC cells. However, treatment with glycolysis inhibitor (2-DG) prevented oe-STC2 from promoting the growth of HCC cells. Additionally, STC2 knockdown up-regulated the levels of LC3II/LC3I and Beclin1 and reduced the phosphorylation of PI3K, AKT, and mTOR. Treatment with 3-MA, IGF-1, Rap, and LY294002 altered the function of STC2 on proliferation and glycolysis in HCC cells. Tumor formation experiment results revealed that STC2 knockdown inhibited HCC progression. CONCLUSIONS STC2 knockdown inhibited cell proliferation and glycolysis in HCC through the PI3K/Akt/mTOR pathway-mediated autophagy induction.
Collapse
Affiliation(s)
- Ding Li
- Department of Interventional Radiology and Vascular Surgery, Hunan Provincial People's Hospital (the First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan, China
| | - Yuanyuan Xiong
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Muzi Li
- Department of Interventional Radiology and Vascular Surgery, Hunan Provincial People's Hospital (the First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan, China
| | - Lin Long
- Department of Interventional Radiology and Vascular Surgery, Hunan Provincial People's Hospital (the First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan, China
| | - Yongjin Zhang
- Department of Interventional Radiology and Vascular Surgery, Hunan Provincial People's Hospital (the First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan, China
| | - Huifeng Yan
- The Medical Imaging Center, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hua Xiang
- Department of Interventional Radiology and Vascular Surgery, Hunan Provincial People's Hospital (the First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan, China.
| |
Collapse
|
5
|
Aslam A, Masood F, Perveen K, Berger MR, Pervaiz A, Zepp M, Klika KD, Yasin T, Hameed A. Preparation, characterization and evaluation of HPβCD-PTX/PHB nanoparticles for pH-responsive, cytotoxic and apoptotic properties. Int J Biol Macromol 2024; 270:132268. [PMID: 38734336 DOI: 10.1016/j.ijbiomac.2024.132268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 03/13/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Paclitaxel (PTX) is a potent anticancer drug. However, PTX exhibits extremely poor solubility in aqueous solution along with severe side effects. Therefore, in this study, an inclusion complex was prepared between PTX and hydroxypropyl-β-cyclodextrin (HPβCD) by solvent evaporation to enhance the drug's solubility. The HPβCD-PTX inclusion complex was then encapsulated in poly-3-hydroxybutyrate (PHB) to fabricate drug-loaded nanoparticles (HPβCD-PTX/PHB NPs) by nanoprecipitation. The HPβCD-PTX/PHB NPs depicted a higher release of PTX at pH 5.5 thus demonstrating a pH-dependent release profile. The cytotoxic properties of HPβCD-PTX/PHB NPs were tested against MCF-7, MDA-MB-231 and SW-620 cell lines. The cytotoxic potential of HPβCD-PTX/PHB NPs was 2.59-fold improved in MCF-7 cells in comparison to free PTX. Additionally, the HPβCD-PTX/PHB NPs improved the antimitotic (1.68-fold) and apoptotic (8.45-fold) effects of PTX in MCF-7 cells in comparison to PTX alone. In summary, these pH-responsive nanoparticles could be prospective carriers for enhancing the cytotoxic properties of PTX for the treatment of breast cancer.
Collapse
Affiliation(s)
- Aqsa Aslam
- SA Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, Pakistan
| | - Farha Masood
- Department of Biosciences, COMSATS University, Islamabad, Pakistan.
| | - Kousar Perveen
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Asim Pervaiz
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Michael Zepp
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Karel D Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Tariq Yasin
- Department of Chemistry, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Abdul Hameed
- SA Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, Pakistan
| |
Collapse
|
6
|
Jin S, Wang W, Xu X, Yu Z, Feng Z, Xie J, Lv H. miR-34b-3p-mediated regulation of STC2 and FN1 enhances chemosensitivity and inhibits proliferation in cervical cancer. Acta Biochim Biophys Sin (Shanghai) 2024; 56:740-752. [PMID: 38477044 PMCID: PMC11177115 DOI: 10.3724/abbs.2024009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/27/2023] [Indexed: 03/14/2024] Open
Abstract
Dysregulation of microRNA (miRNA) expression in cancer is a significant factor contributing to the progression of chemoresistance. The objective of this study is to explore the underlying mechanisms by which miR-34b-3p regulates chemoresistance in cervical cancer (CC). Previous findings have demonstrated low expression levels of miR-34b-3p in both CC chemoresistant cells and tissues. In this study, we initially characterize the behavior of SiHa/DDP cells which are CC cells resistant to the chemotherapeutic drug cisplatin (DDP). Subsequently, miR-34b-3p mimics are transfected into SiHa/DDP cells. It is observed that overexpression of miR-34b-3p substantially inhibits the proliferation, migration, and invasion abilities of SiHa/DDP cells and also enhances their sensitivity to DDP-induced cell death. Quantitative RT-PCR and western blot analysis further reveal elevated expression levels of STC2 and FN1 in SiHa/DDP cells, contrary to the expression pattern of miR-34b-3p. Moreover, STC2 and FN1 contribute to DDP resistance, proliferation, migration, invasion, and decreased apoptosis in CC cells. Through dual-luciferase assay analysis, we confirm that STC2 and FN1 are direct targets of miR-34b-3p in CC. Finally, rescue experiments demonstrate that overexpression of either STC2 or FN1 can partially reverse the inhibitory effects of miR-34b-3p overexpression on chemoresistance, proliferation, migration and invasion in CC cells. In conclusion, our findings support the role of miR-34b-3p as a tumor suppressor in CC. This study indicates that targeting the miR-34b-3p/STC2 or FN1 axis has potential therapeutic implications for overcoming chemoresistance in CC patients.
Collapse
Affiliation(s)
- Shanshan Jin
- Department of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationKey Laboratory for Cellular Physiology of Ministry of EducationShanxi Medical UniversityTaiyuan030001China
| | - Wenting Wang
- Department of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationKey Laboratory for Cellular Physiology of Ministry of EducationShanxi Medical UniversityTaiyuan030001China
| | - Xinrui Xu
- Department of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationKey Laboratory for Cellular Physiology of Ministry of EducationShanxi Medical UniversityTaiyuan030001China
| | - Zhaowei Yu
- Department of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationKey Laboratory for Cellular Physiology of Ministry of EducationShanxi Medical UniversityTaiyuan030001China
| | - Zihan Feng
- Department of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationKey Laboratory for Cellular Physiology of Ministry of EducationShanxi Medical UniversityTaiyuan030001China
| | - Jun Xie
- Department of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationKey Laboratory for Cellular Physiology of Ministry of EducationShanxi Medical UniversityTaiyuan030001China
| | - Huimin Lv
- Shanxi Bethune HospitalShanxi Academy of Medical SciencesTongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuan030032China
- Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| |
Collapse
|
7
|
Kang SW, Kang OJ, Lee JY, Kim H, Jung H, Kim H, Lee SW, Kim YM, Choi EK. Evaluation of the anti-cancer efficacy of lipid nanoparticles containing siRNA against HPV16 E6/E7 combined with cisplatin in a xenograft model of cervical cancer. PLoS One 2024; 19:e0298815. [PMID: 38363779 PMCID: PMC10871510 DOI: 10.1371/journal.pone.0298815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/30/2024] [Indexed: 02/18/2024] Open
Abstract
OBJECTIVE To investigate the anti-cancer efficacy of ENB101-LNP, an ionizable lipid nanoparticles (LNPs) encapsulating siRNA against E6/E7 of HPV 16, in combination therapy with cisplatin in cervical cancer in vitro and in vivo. METHODS CaSki cells were treated with ENB101-LNP, cisplatin, or combination. Cell viability assessed the cytotoxicity of the treatment. HPV16 E6/E7 gene knockdown was verified with RT-PCR both in vitro and in vivo. HLA class I and PD-L1 were checked by flow cytometry. A xenograft model was made using CaSki cells in BALB/c nude mice. To evaluate anticancer efficacy, mice were grouped. ENB101-LNP was given three times weekly for 3 weeks intravenously, and cisplatin was given once weekly intraperitoneally. Tumor growth was monitored. On day 25, mice were euthanized; tumors were collected, weighed, and imaged. Tumor samples were analyzed through histopathology, immunostaining, and western blot. RESULTS ENB101-LNP and cisplatin synergistically inhibit CaSki cell growth. The combination reduces HPV 16 E6/E7 mRNA and boosts p21 mRNA, p53, p21, and HLA class I proteins. In mice, the treatment significantly blocked tumor growth and promoted apoptosis. Tumor inhibition rates were 29.7% (1 mpk ENB101-LNP), 29.6% (3 mpk), 34.0% (cisplatin), 47.0% (1 mpk ENB101-LNP-cisplatin), and 68.8% (3 mpk ENB101-LNP-cisplatin). RT-PCR confirmed up to 80% knockdown of HPV16 E6/E7 in the ENB101-LNP groups. Immunohistochemistry revealed increased p53, p21, and HLA-A expression with ENB101-LNP treatments, alone or combined. CONCLUSION The combination of ENB101-LNP, which inhibits E6/E7 of HPV 16, with cisplatin, demonstrated significant anticancer activity in the xenograft mouse model of cervical cancer.
Collapse
Affiliation(s)
- Sung Wan Kang
- Department of Obstetrics & Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer TherapeutiX, Asan Medical Center, Seoul, Republic of Korea
| | - Ok-Ju Kang
- Department of Obstetrics & Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer TherapeutiX, Asan Medical Center, Seoul, Republic of Korea
| | - Ji-young Lee
- Department of Obstetrics & Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer TherapeutiX, Asan Medical Center, Seoul, Republic of Korea
| | | | | | | | - Shin-Wha Lee
- Department of Obstetrics & Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer TherapeutiX, Asan Medical Center, Seoul, Republic of Korea
| | - Yong Man Kim
- Department of Obstetrics & Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer TherapeutiX, Asan Medical Center, Seoul, Republic of Korea
| | - Eun Kyung Choi
- Asan Preclinical Evaluation Center for Cancer TherapeutiX, Asan Medical Center, Seoul, Republic of Korea
- Department of Radiation Oncology, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Zhu C, Ke L, Ao X, Chen Y, Cheng H, Xin H, Xu X, Loh XJ, Li Z, Lyu H, Wang Q, Zhang D, Ping Y, Wu C, Wu YL. Injectable Supramolecular Hydrogels for In Situ Programming of Car-T Cells toward Solid Tumor Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310078. [PMID: 37947048 DOI: 10.1002/adma.202310078] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Chimeric antigen receptor (CAR)-T cell immunotherapy is approved in the treatment of hematological malignancies, but remains far from satisfactory in solid tumor treatment due to inadequate intra-tumor CAR-T cell infiltration. Herein, an injectable supramolecular hydrogel system, based on self-assembly between cationic polymer mPEG-PCL-PEI (PPP) conjugated with T cell targeting anti-CD3e f(ab')2 fragment and α-cyclodextrin (α-CD), is designed to load plasmid CAR (pCAR) with a T cell specific CD2 promoter, which successfully achieves in situ fabrication and effective accumulation of CAR-T cells at the tumor site in humanized mice models. More importantly, due to this tumor microenvironment reprogramming, secretion of cellular inflammatory cytokines (interleukin-2 (IL-2), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ)) or tumor killer protein granzyme B is significantly promoted, which reverses the immunosuppressive microenvironment and significantly enhances the intra-tumor CAR-T cells and cytotoxic T cells infiltration. To the best of the current knowledge, this is a pioneer report of using injectable supramolecular hydrogel for in situ reprogramming CAR-T cells, which might be beneficial for solid tumor CAR-T immunotherapy.
Collapse
Affiliation(s)
- Chunyan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Lingjie Ke
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xiang Ao
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, and Department of Orthopedics, 953 Hospital of PLA Army, Shigatse Branch of Xinqiao Hospital, Army Medical University, Chongqing, 400042, China
| | - Ying Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Huhu Xin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Xiang Xu
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, and Department of Orthopedics, 953 Hospital of PLA Army, Shigatse Branch of Xinqiao Hospital, Army Medical University, Chongqing, 400042, China
| | - Xian-Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Republic of Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
| | - Haiyan Lyu
- Department of Pharmacy, Xiamen Xianyue Hospital, Xiamen, 361012, China
| | - Qi Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Dandan Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
9
|
Jain A, Bhardwaj K, Bansal M. Polymeric Micelles as Drug Delivery System: Recent Advances, Approaches, Applications and Patents. Curr Drug Saf 2024; 19:163-171. [PMID: 37282644 DOI: 10.2174/1574886318666230605120433] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/18/2022] [Accepted: 11/29/2022] [Indexed: 06/08/2023]
Abstract
Administering therapeutics through the oral route is a pervasive and widely approved medication administration approach. However, it has been found that many drugs show low systemic absorption when delivered through this route. Such limitations of oral drug delivery can be overcome by polymeric micelles acting as vehicles. As a result, they improve drug absorption by protecting loaded drug substances from the gastrointestinal system's hostile conditions, allowing controlled drug release at a specific site, extending the time spent in the gut through mucoadhesion, and inhibiting the efflux pump from reducing therapeutic agent accumulation. To promote good oral absorption of a weakly water-soluble medicinal drug, the loaded medicine should be protected from the hostile atmosphere of the GI tract. Polymeric micelles can be stacked with a broad assortment of ineffectively dissolvable medications, improving bioavailability. This review discusses the major mechanism, various types, advantages, and limitations for developing the polymeric micelle system and certain micellar drug delivery system applications. The primary goal of this review is to illustrate how polymeric micelles can be used to deliver poorly water-soluble medications.
Collapse
Affiliation(s)
- Anushka Jain
- Department of Pharmacy, Raj Kumar Goel Institute of Technology (Pharmacy), 5-Km. Stone, Delhi-Meerut Road, Ghaziabad, Uttar Pradesh, 201003, India
| | - Kamini Bhardwaj
- Department of Pharmacy, Raj Kumar Goel Institute of Technology (Pharmacy), 5-Km. Stone, Delhi-Meerut Road, Ghaziabad, Uttar Pradesh, 201003, India
| | - Mukesh Bansal
- Department of Pharmacy, Raj Kumar Goel Institute of Technology (Pharmacy), 5-Km. Stone, Delhi-Meerut Road, Ghaziabad, Uttar Pradesh, 201003, India
| |
Collapse
|
10
|
Xu S, Cai J, Cheng H, Wang W. Sustained release of therapeutic gene by injectable hydrogel for hepatocellular carcinoma. Int J Pharm X 2023; 6:100195. [PMID: 37448985 PMCID: PMC10336675 DOI: 10.1016/j.ijpx.2023.100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/06/2023] [Accepted: 06/24/2023] [Indexed: 07/18/2023] Open
Abstract
Gene therapy has shown remarkable effectiveness in the management of disease like cancer and inflammation as a revolutionary therapeutic. Nonetheless, therapeutic drug target discovery, efficient gene delivery, and gene delivery vehicles continue to be significant obstacles. Due to their effective gene transport capabilities and low immunogenicity, supramolecular polymers have garnered significant interest. Herein, ABHD5 is identified as a potential therapeutic target since it is dysregulated in hepatocellular carcinoma (HCC). Interestingly, the downregulation of ABHD5 could induce programmed death-ligand 1 (PD-L1) expression in liver cancer, which may contribute to the immunosuppression. To overcome the immunosuppression caused by PD-L1, an injectable hydrogel is designed to achieve efficient abhydrolase domain containing 5 (ABHD5) gene delivery via the host-guest interaction with branched polyethyleneimine-g-poly (ethylene glycol), poly (ethylene oxide) and poly (propylene oxide) block copolymers and α-CD (PPA/CD), demonstrating the capability for sustained gene release. The co-assembly hydrogel demonstrates good biocompatibility and enhanced gene transfection efficiency, efficiently triggering tumor cell apoptosis. Overall, the results of this study suggest that ABHD5 is a potential therapeutic target, and that a host-guest-based supramolecular hydrogel could serve as a promising platform for the inhibition of HCC.
Collapse
Affiliation(s)
- Shuangta Xu
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Jianya Cai
- Department of Surgery, Quanzhou Medical College, Quanzhou 362000, China
| | - Hongwei Cheng
- Center of molecular imaging and translational medicine, School of Public Health, Xiamen University, Xiamen 361002, China
| | - Wei Wang
- Department of Hepatic-biliary-pancreatic-Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| |
Collapse
|
11
|
Luo H, Chen J, Jiang Q, Yu Y, Yang M, Luo Y, Wang X. Comprehensive DNA methylation profiling of COVID-19 and hepatocellular carcinoma to identify common pathogenesis and potential therapeutic targets. Clin Epigenetics 2023; 15:100. [PMID: 37309005 DOI: 10.1186/s13148-023-01515-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND & AIMS The effects of SARS-CoV-2 infection can be more complex and severe in patients with hepatocellular carcinoma (HCC) as compared to other cancers. This is due to several factors, including pre-existing conditions such as viral hepatitis and cirrhosis, which are commonly associated with HCC. METHODS We conducted an analysis of epigenomics in SARS-CoV-2 infection and HCC patients, and identified common pathogenic mechanisms using weighted gene co-expression network analysis (WGCNA) and other analyses. Hub genes were identified and analyzed using LASSO regression. Additionally, drug candidates and their binding modes to key macromolecular targets of COVID-19 were identified using molecular docking. RESULTS The epigenomic analysis of the relationship between SARS-CoV-2 infection and HCC patients revealed that the co-pathogenesis was closely linked to immune response, particularly T cell differentiation, regulation of T cell activation and monocyte differentiation. Further analysis indicated that CD4+ T cells and monocytes play essential roles in the immunoreaction triggered by both conditions. The expression levels of hub genes MYLK2, FAM83D, STC2, CCDC112, EPHX4 and MMP1 were strongly correlated with SARS-CoV-2 infection and the prognosis of HCC patients. In our study, mefloquine and thioridazine were identified as potential therapeutic agents for COVID-19 in combined with HCC. CONCLUSIONS In this research, we conducted an epigenomics analysis to identify common pathogenetic processes between SARS-CoV-2 infection and HCC patients, providing new insights into the pathogenesis and treatment of HCC patients infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Huiyan Luo
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jixin Chen
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiyin Jiang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifan Yu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Miaolun Yang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuehua Luo
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiongwen Wang
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
12
|
Zhou S, Xu H, Wei T. Inhibition of stress proteins TRIB3 and STC2 potentiates sorafenib sensitivity in hepatocellular carcinoma. Heliyon 2023; 9:e17295. [PMID: 37389061 PMCID: PMC10300369 DOI: 10.1016/j.heliyon.2023.e17295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
Sorafenib resistance is one of the main obstacles to the treatment of advanced hepatocellular carcinoma (HCC). Stress proteins TRIB3 and STC2 confer cell resistance to a variety of stresses, including hypoxia, nutritional deprivation, and other perturbations, which induce endoplasmic reticulum stress. However, the role of TRIB3 and STC2 in sorafenib sensitivity to HCC remains unclear. In this study, our results indicated that the common differentially expressed genes (DEGs) in sorafenib-treated HCC cells obtained from the NCBI-GEO database (Huh7 and Hep3B cells; GSE96796) included TRIB3, STC2, HOXD1, C2orf82, ADM2, RRM2, and UNC93A. The most significantly upregulated DEGs were TRIB3 and STC2, which were both stress protein genes. Bioinformatic analysis in NCBI public databases indicated that TRIB3 and STC2 were highly expressed in HCC tissues and closely associated with poor prognoses in HCC patients. Further investigation showed that inhibition of TRIB3 or STC2 with siRNA could enhance the anti-cancer effect of sorafenib in HCC cell lines. In conclusion, our study showed that stress proteins TRIB3 and STC2 are closely associated with sorafenib resistance in HCC. The combination of TRIB3 or STC2 inhibition and sorafenib may be a promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Sheng Zhou
- Department of Ultrasound, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000, China
| | - Huanji Xu
- Department of Abdominal Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Tianhong Wei
- Department of Ultrasound, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000, China
| |
Collapse
|
13
|
Chen J, Wang R, Liu Z, Fan J, Liu S, Tan S, Li X, Li B, Yang X. Unbalanced Glutamine Partitioning between CD8T Cells and Cancer Cells Accompanied by Immune Cell Dysfunction in Hepatocellular Carcinoma. Cells 2022; 11:3924. [PMID: 36497182 PMCID: PMC9739589 DOI: 10.3390/cells11233924] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Glutamine metabolism is critical both for the proliferation of cancer cells and the activation of CD8T cells to kill cancer cells. We aim to explore the relationship between the glutamine metabolism of CD8T cells and cancer cells and tumor immunity in the tumor microenvironment. In a TCGA cohort, we found that patients with high scores of glutamine-metabolism-related genes showed poor prognoses, and that a high score of glutamine-metabolism-related genes was an independent risk factor for HCC patients. In single-cell RNA-seq data, we found that, in some patients, the glutamine metabolism gene scores of tumor cells were significantly higher than those of CD8T cells, while decreased ratios of CD8-Tef-GZMA and suppressed tumor-killing activity of CD8-Tef-APOC2 were observed. A further genetic dynamics pseudotime analysis suggested that immune remodeling of these two subpopulations was accompanied by metabolic reprogramming. CD8-Tef-APOC2 in the dominant group tended to metabolize exogenous lipids, while the metabolic program of CD8-Tef-GZMA in the nondominant group was characterized by amino acid and endogenous lipid synthesis. In addition, we found that the glutamine metabolism inhibitor JHU083 promoted the proliferation of CD8T cells and improved the efficacy of PD-1 blockers. We proposed a new tool to quantify the glutamine partitioning between tumor cells and CD8T cells, through which the unique immune microenvironment could be identified at the transcriptome level. Furthermore, the simultaneous destruction of the glutamine metabolism in tumor cells and CD8T cells facilitated the enrichment of tumor-infiltrating CD8T cells and enhanced the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Jianfei Chen
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China
| | - Rui Wang
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China
| | - Zhongliang Liu
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China
| | - Jun Fan
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China
| | - Shenglu Liu
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China
| | - Shunde Tan
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China
| | - Xinkai Li
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China
| | - Bo Li
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, China
| | - Xiaoli Yang
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, China
| |
Collapse
|
14
|
Luo F, Yu Y, Li M, Chen Y, Zhang P, Xiao C, Lv G. Polymeric nanomedicines for the treatment of hepatic diseases. J Nanobiotechnology 2022; 20:488. [PMCID: PMC9675156 DOI: 10.1186/s12951-022-01708-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
Abstract
The liver is an important organ in the human body and performs many functions, such as digestion, detoxification, metabolism, immune responses, and vitamin and mineral storage. Therefore, disorders of liver functions triggered by various hepatic diseases, including hepatitis B virus infection, nonalcoholic steatohepatitis, hepatic fibrosis, hepatocellular carcinoma, and transplant rejection, significantly threaten human health worldwide. Polymer-based nanomedicines, which can be easily engineered with ideal physicochemical characteristics and functions, have considerable merits, including contributions to improved therapeutic outcomes and reduced adverse effects of drugs, in the treatment of hepatic diseases compared to traditional therapeutic agents. This review describes liver anatomy and function, and liver targeting strategies, hepatic disease treatment applications and intrahepatic fates of polymeric nanomedicines. The challenges and outlooks of hepatic disease treatment with polymeric nanomedicines are also discussed.
Collapse
Affiliation(s)
- Feixiang Luo
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Ying Yu
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Mingqian Li
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Yuguo Chen
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Peng Zhang
- grid.9227.e0000000119573309Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 People’s Republic of China
| | - Chunsheng Xiao
- grid.9227.e0000000119573309Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 People’s Republic of China
| | - Guoyue Lv
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| |
Collapse
|
15
|
Li Y, Fang H, Zhang T, Wang Y, Qi T, Li B, Jiao H. Lipid-mRNA nanoparticles landscape for cancer therapy. Front Bioeng Biotechnol 2022; 10:1053197. [PMID: 36394007 PMCID: PMC9659646 DOI: 10.3389/fbioe.2022.1053197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/18/2022] [Indexed: 09/19/2023] Open
Abstract
Intracellular delivery of message RNA (mRNA) technique has ushered in a hopeful era with the successive authorization of two mRNA vaccines for the Coronavirus disease-19 (COVID-19) pandemic. A wide range of clinical studies are proceeding and will be initiated in the foreseeable future to treat and prevent cancers. However, efficient and non-toxic delivery of therapeutic mRNAs maintains the key limited step for their widespread applications in human beings. mRNA delivery systems are in urgent demand to resolve this difficulty. Recently lipid nanoparticles (LNPs) vehicles have prospered as powerful mRNA delivery tools, enabling their potential applications in malignant tumors via cancer immunotherapy and CRISPR/Cas9-based gene editing technique. This review discusses formulation components of mRNA-LNPs, summarizes the latest findings of mRNA cancer therapy, highlights challenges, and offers directions for more effective nanotherapeutics for cancer patients.
Collapse
Affiliation(s)
- Yin Li
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Hengtong Fang
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Tao Zhang
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Yu Wang
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Tingting Qi
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Bai Li
- Department of Colorectal and Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Huping Jiao
- College of Animal Science, Jilin University, Changchun, Jilin, China
| |
Collapse
|
16
|
Mohamed MA, Yan L, Shahini A, Rajabian N, Jafari A, Andreadis ST, Wu Y, Cheng C. Well-Defined pH-Responsive Self-Assembled Block Copolymers for the Effective Codelivery of Doxorubicin and Antisense Oligonucleotide to Breast Cancer Cells. ACS APPLIED BIO MATERIALS 2022; 5:4779-4792. [PMID: 36170623 DOI: 10.1021/acsabm.2c00464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The worldwide steady increase in the number of cancer patients motivates the development of innovative drug delivery systems for combination therapy as an effective clinical modality for cancer treatment. Here, we explored a design concept based on poly(ethylene glycol)-b-poly(2-(dimethylamino)ethyl methacrylate)-b-poly(2-hydroxyethyl methacrylate-formylbenzoic acid) [PEG-b-PDMAEMA-b-P(HEMA-FBA)] for the dual delivery of doxorubicin (DOX) and GTI2040 (an antisense oligonucleotide for ribonucleotide reductase inhibition) to MCF-7 breast cancer cells. PEG-b-PDMAEMA-b-PHEMA, the precursor copolymer, was prepared through chain extensions from a PEG-based macroinitiator via two consecutive atom transfer radical polymerization (ATRP) steps. Then, it was modified at the PHEMA block with 4-formylbenzoic acid (FBA) to install reactive aldehyde moieties. A pH-responsive polymer-drug conjugate (PDC) was obtained by conjugating DOX to the polymer structure via acid-labile imine linkages, and subsequently self-assembled in an aqueous solution to form DOX-loaded self-assembled nanoparticles (DOX-SAN) with a positively charged shell. DOX-SAN condensed readily with negatively charged GTI2040 to form GTI2040/DOX-SAN nanocomplexes. Gel-retardation assay confirmed the affinity between GTI2040 and DOX-SAN. The GTI2040/DOX-SAN nanocomplex at N/P ratio of 30 exhibited a volume-average hydrodynamic size of 136.4 nm and a zeta potential of 21.0 mV. The pH-sensitivity of DOX-SAN was confirmed by the DOX release study based on the significant cumulative DOX release at pH 5.5 relative to pH 7.4. Cellular uptake study demonstrated favorable accumulation of GTI2040/DOX-SAN inside MCF-7 cells compared with free GTI2040/DOX. In vitro cytotoxicity study indicated higher therapeutic efficacy of GTI2040/DOX-SAN relative to DOX-SAN alone because of the downregulation of the R2 protein of ribonucleotide reductase. These outcomes suggest that the self-assembled pH-responsive triblock copolymer is a promising platform for combination therapy, which may be more effective in combating cancer than individual therapies.
Collapse
Affiliation(s)
- Mohamed Alaa Mohamed
- Department of Chemical and Biological Engineering, University at Buffalo, the State University of New York, Buffalo, New York 14260, United States.,Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Lingyue Yan
- Department of Biomedical Engineering, University at Buffalo, the State University of New York, Buffalo, New York 14260, United States
| | - Aref Shahini
- Department of Chemical and Biological Engineering, University at Buffalo, the State University of New York, Buffalo, New York 14260, United States
| | - Nika Rajabian
- Department of Chemical and Biological Engineering, University at Buffalo, the State University of New York, Buffalo, New York 14260, United States
| | - Amin Jafari
- Department of Chemical and Biological Engineering, University at Buffalo, the State University of New York, Buffalo, New York 14260, United States
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, the State University of New York, Buffalo, New York 14260, United States.,Department of Biomedical Engineering, University at Buffalo, the State University of New York, Buffalo, New York 14260, United States.,Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York 14263, United States.,Cell, Gene and Tissue Engineering (CGTE) Center, Buffalo, New York 14263, United States
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, the State University of New York, Buffalo, New York 14260, United States.,Cell, Gene and Tissue Engineering (CGTE) Center, Buffalo, New York 14263, United States
| | - Chong Cheng
- Department of Chemical and Biological Engineering, University at Buffalo, the State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
17
|
Pereira PA, Serra MES, Serra AC, Coelho JFJ. Application of vinyl polymer-based materials as nucleic acids carriers in cancer therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1820. [PMID: 35637638 DOI: 10.1002/wnan.1820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/13/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Nucleic acid-based therapies have changed the paradigm of cancer treatment, where conventional treatment modalities still have several limitations in terms of efficacy and severe side effects. However, these biomolecules have a short half-life in vivo, requiring multiple administrations, resulting in severe suffering, discomfort, and poor patient compliance. In the early days of (nano)biotechnology, these problems caused concern in the medical community, but recently it has been recognized that these challenges can be overcome by developing innovative formulations. This review focuses on the use of vinyl polymer-based materials for the protection and delivery of nucleic acids in cancer. First, an overview of the properties of nucleic acids and their versatility as drugs is provided. Then, key information on the achievements to date, the most effective delivery methods, and the evaluation of functionalization approaches (stimulatory strategies) are critically discussed to highlight the importance of vinyl polymers in the new cancer treatment approaches. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
Collapse
Affiliation(s)
- Patrícia Alexandra Pereira
- Department of Chemical Engineering, CEMMPRE, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, Coimbra, Portugal
| | | | - Arménio C Serra
- Department of Chemical Engineering, CEMMPRE, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, Portugal
| | - Jorge F J Coelho
- Department of Chemical Engineering, CEMMPRE, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, Portugal
| |
Collapse
|
18
|
Naki T, Aderibigbe BA. Efficacy of Polymer-Based Nanomedicine for the Treatment of Brain Cancer. Pharmaceutics 2022; 14:1048. [PMID: 35631634 PMCID: PMC9145018 DOI: 10.3390/pharmaceutics14051048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022] Open
Abstract
Malignant brain tumor is a life-threatening disease with a low survival rate. The therapies available for the treatment of brain tumor is limited by poor uptake via the blood-brain barrier. The challenges with the chemotherapeutics used for the treatment of brain tumors are poor distribution, drug toxicity, and their inability to pass via the blood-brain barrier, etc. Several researchers have investigated the potential of nanomedicines for the treatment of brain cancer. Nanomedicines are designed with nanosize particle sizes with a large surface area and are loaded with bioactive agents via encapsulation, immersion, conjugation, etc. Some nanomedicines have been approved for clinical use. The most crucial part of nanomedicine is that they promote drug delivery across the blood-brain barrier, display excellent specificity, reduce drug toxicity, enhance drug bioavailability, and promote targeted drug release mechanisms. The aforementioned features make them promising therapeutics for brain targeting. This review reports the in vitro and in vivo results of nanomedicines designed for the treatment of brain cancers.
Collapse
Affiliation(s)
- Tobeka Naki
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape 5700, South Africa;
| | | |
Collapse
|
19
|
Stanniocalcin 2 (STC2): a universal tumour biomarker and a potential therapeutical target. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:161. [PMID: 35501821 PMCID: PMC9063168 DOI: 10.1186/s13046-022-02370-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022]
Abstract
Stanniocalcin 2 (STC2) is a glycoprotein which is expressed in a broad spectrum of tumour cells and tumour tissues derived from human breast, colorectum, stomach, esophagus, prostate, kidney, liver, bone, ovary, lung and so forth. The expression of STC2 is regulated at both transcriptional and post-transcriptional levels; particularly, STC2 is significantly stimulated under various stress conditions like ER stress, hypoxia and nutrient deprivation. Biologically, STC2 facilitates cells dealing with stress conditions and prevents apoptosis. Importantly, STC2 also promotes the development of acquired resistance to chemo- and radio- therapies. In addition, multiple groups have reported that STC2 overexpression promotes cell proliferation, migration and immune response. Therefore, the overexpression of STC2 is positively correlated with tumour growth, invasion, metastasis and patients' prognosis, highlighting its potential as a biomarker and a therapeutic target. This review focuses on discussing the regulation, biological functions and clinical importance of STC2 in human cancers. Future perspectives in this field will also be discussed.
Collapse
|
20
|
Glass Transition Temperature of PLGA Particles and the Influence on Drug Delivery Applications. Polymers (Basel) 2022; 14:polym14050993. [PMID: 35267816 PMCID: PMC8912735 DOI: 10.3390/polym14050993] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 12/31/2022] Open
Abstract
Over recent decades, poly(lactic-co-glycolic acid) (PLGA) based nano- and micro- drug delivery vehicles have been rapidly developed since PLGA was approved by the Food and Drug Administration (FDA). Common factors that influence PLGA particle properties have been extensively studied by researchers, such as particle size, polydispersity index (PDI), surface morphology, zeta potential, and drug loading efficiency. These properties have all been found to be key factors for determining the drug release kinetics of the drug delivery particles. For drug delivery applications the drug release behavior is a critical property, and PLGA drug delivery systems are still plagued with the issue of burst release when a large portion of the drug is suddenly released from the particle rather than the controlled release the particles are designed for. Other properties of the particles can play a role in the drug release behavior, such as the glass transition temperature (Tg). The Tg, however, is an underreported property of current PLGA based drug delivery systems. This review summarizes the basic knowledge of the glass transition temperature in PLGA particles, the factors that influence the Tg, the effect of Tg on drug release behavior, and presents the recent awareness of the influence of Tg on drug delivery applications.
Collapse
|
21
|
Kong J, Yu G, Si W, Li G, Chai J, Liu Y, Liu J. Identification of a glycolysis-related gene signature for predicting prognosis in patients with hepatocellular carcinoma. BMC Cancer 2022; 22:142. [PMID: 35123420 PMCID: PMC8817563 DOI: 10.1186/s12885-022-09209-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 01/06/2022] [Indexed: 12/24/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common primary liver cancer in the world. Although great advances in HCC diagnosis and treatment have been achieved, due to the complicated mechanisms in tumor development and progression, the prognosis of HCC is still dismal. Recent studies have revealed that the Warburg effect is related to the development, progression and treatment of various cancers; however, there have been a few explorations of the relationship between glycolysis and HCC prognosis. Methods mRNA expression profiling was downloaded from public databases. Gene set enrichment analysis (GSEA) was used to explore glycolysis-related genes (GRGs), and the LASSO method and Cox regression analysis were used to identify GRGs related to HCC prognosis and to construct predictive models associated with overall survival (OS) and disease-free survival (DFS). The relationship between the predictive model and the tumor mutation burden (TMB) and tumor immune microenvironment (TIME) was explored. Finally, real-time PCR was used to validate the expression levels of the GRGs in clinical samples and different cell lines. Results Five GRGs (ABCB6, ANKZF1, B3GAT3, KIF20A and STC2) were identified and used to construct gene signatures to predict HCC OS and DFS. Using the median value, HCC patients were divided into low- and high-risk groups. Patients in the high-risk group had worse OS/DFS than those in the low-risk group, were related to higher TMB and were associated with a higher rate of CD4+ memory T cells resting and CD4+ memory T cells activated. Finally, real-time PCR suggested that the five GRGs were all dysregulated in HCC samples compared to adjacent normal samples. Conclusions We identified five GRGs associated with HCC prognosis and constructed two GRGs-related gene signatures to predict HCC OS and DFS. The findings in this study may contribute to the prediction of prognosis and promote HCC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09209-9.
Collapse
|
22
|
Shen W, Ge S, Liu X, Yu Q, Jiang X, Wu Q, Tian Y, Gao Y, Liu Y, Wu C. Folate-functionalized SMMC-7721 liver cancer cell membrane-cloaked paclitaxel nanocrystals for targeted chemotherapy of hepatoma. Drug Deliv 2021; 29:31-42. [PMID: 34962215 PMCID: PMC8725828 DOI: 10.1080/10717544.2021.2015481] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In this study, we prepared a folic acid-functionalized SMMC-7721 liver cancer cell membrane (CM)-encapsulated paclitaxel nanocrystals system (FCPN) for hepatoma treatment. Transmission electron microscopy (TEM) characterization showed that FCPN was irregular spherical shapes with a particle size larger than 200 nm and a coated thickness of approximately 20 nm. In an in vitro release experiment, FCPN indicated a slowly release effect of paclitaxel (PTX). Cell experiments demonstrated that FCPN was taken up by SMMC-7721 cells and significantly inhibited the proliferation of SMMC-7721 cells, which illustrated that FCPN had good targeting ability compared with PN and CPN. According to the results of in vivo animal experiments, FCPN significantly inhibited tumor growth. Tissue distribution experiments proved that FCPN could accumulate significantly in tumor tissues, which further explained why FCPN had good targeting ability. These results clearly suggested that folate-functionalized homotypic CM bionic nanosystems might represent a very valuable method for liver cancer treatment in the future.
Collapse
Affiliation(s)
- Wenwen Shen
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| | - Shuke Ge
- Department of Emergency Management, Liaoning Provincial Center for Disease Control and Prevention, Shenyang, China
| | - Xiaoyao Liu
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| | - Qi Yu
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| | - Xue Jiang
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| | - Qian Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| | - YuChen Tian
- Department of Medical Oncology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yu Gao
- Department of Medical Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Ying Liu
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| | - Chao Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
23
|
Xia X, Tang P, Liu H, Li Y. Identification and Validation of an Immune-related Prognostic Signature for Hepatocellular Carcinoma. J Clin Transl Hepatol 2021; 9:798-808. [PMID: 34966643 PMCID: PMC8666365 DOI: 10.14218/jcth.2021.00017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/01/2021] [Accepted: 07/17/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND AIMS The immune system plays vital roles in hepatocellular carcinoma (HCC) initiation and progression. The present study aimed to construct an immune-gene related prognostic signature (IRPS) for predicting the prognosis of HCC patients. METHODS Gene expression data were retrieved from The Cancer Genome Atlas database. The IRPS was established via least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis. The prognostic values of the IRPS were further validated using the International Cancer Genome Consortium (ICGC) dataset. RESULTS A total of 62 genes were identified as candidate immune-related prognostic genes. According to the results of Lasso and multivariate Cox regression analysis, we established an IRPS and confirmed its stability and reliability in the ICGC dataset. The IRPS was significantly associated with advanced clinicopathological characteristics. Both Cox regression analyses revealed that the IRPS could be independent risk factors influencing prognosis of HCC patients. The relationships between the IRPS and infiltration of immune cells demonstrated that the IRPS was associated with immune cell infiltration. Furthermore, a nomogram was constructed to estimate the survival probability of HCC patients. CONCLUSIONS The IRPS was effective for predicting prognosis of HCC patients, which might serve as novel prognostic and therapeutic biomarkers for HCC.
Collapse
Affiliation(s)
- Xinxin Xia
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ping Tang
- Department of Oncology, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
- Department of Oncology, The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou, Hunan, China
| | - Hui Liu
- Department of Breast Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Correspondence to: Hui Liu, Department of Breast Surgery, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Yuhua District, Changsha, Hunan 410007, China. ORCID: https://orcid.org/0000-0001-6559-1380. Tel: +86-731-89669124, Fax: +86-731-85600709, E-mail: ; Yuejun Li, Department of Oncology, The Third Affiliated Hospital of Hunan University of Chinese Medicine, No. 571 Renmin Road, Lusong District, Zhuzhou, Hunan 412000, China. ORCID: https://orcid.org/0000-0001-5714-2323. Tel: +86-731-28290191, Fax: +86-731-28222092, E-mail:
| | - Yuejun Li
- Department of Oncology, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
- Department of Oncology, The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou, Hunan, China
- Correspondence to: Hui Liu, Department of Breast Surgery, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Yuhua District, Changsha, Hunan 410007, China. ORCID: https://orcid.org/0000-0001-6559-1380. Tel: +86-731-89669124, Fax: +86-731-85600709, E-mail: ; Yuejun Li, Department of Oncology, The Third Affiliated Hospital of Hunan University of Chinese Medicine, No. 571 Renmin Road, Lusong District, Zhuzhou, Hunan 412000, China. ORCID: https://orcid.org/0000-0001-5714-2323. Tel: +86-731-28290191, Fax: +86-731-28222092, E-mail:
| |
Collapse
|
24
|
Ding Y, Wen G, Chrysostomou V, Pispas S, Jiang K, Sun Z, Li H. Aggregation behavior of the strong amphiphilic cationic diblock polyelectrolytes at the air/water interface. J Appl Polym Sci 2021. [DOI: 10.1002/app.52079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yanping Ding
- Department of Polymer Materials and Engineering School of Material Science and Chemical Engineering, Harbin University of Science and Technology Harbin China
| | - Gangyao Wen
- Department of Polymer Materials and Engineering School of Material Science and Chemical Engineering, Harbin University of Science and Technology Harbin China
| | - Varvara Chrysostomou
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| | - Kun Jiang
- Department of Polymer Materials and Engineering School of Material Science and Chemical Engineering, Harbin University of Science and Technology Harbin China
| | - Zhaoyan Sun
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
| | - Hongfei Li
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
| |
Collapse
|
25
|
Cao L, Zhu Y, Wang W, Wang G, Zhang S, Cheng H. Emerging Nano-Based Strategies Against Drug Resistance in Tumor Chemotherapy. Front Bioeng Biotechnol 2021; 9:798882. [PMID: 34950650 PMCID: PMC8688801 DOI: 10.3389/fbioe.2021.798882] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/19/2021] [Indexed: 02/05/2023] Open
Abstract
Drug resistance is the most significant causes of cancer chemotherapy failure. Various mechanisms of drug resistance include tumor heterogeneity, tumor microenvironment, changes at cellular levels, genetic factors, and other mechanisms. In recent years, more attention has been paid to tumor resistance mechanisms and countermeasures. Nanomedicine is an emerging treatment platform, focusing on alternative drug delivery and improved therapeutic effectiveness while reducing side effects on normal tissues. Here, we reviewed the principal forms of drug resistance and the new possibilities that nanomaterials offer for overcoming these therapeutic barriers. Novel nanomaterials based on tumor types are an excellent modality to equalize drug resistance that enables gain more rational and flexible drug selectivity for individual patient treatment. With the emergence of advanced designs and alternative drug delivery strategies with different nanomaterials, overcome of multidrug resistance shows promising and opens new horizons for cancer therapy. This review discussed different mechanisms of drug resistance and recent advances in nanotechnology-based therapeutic strategies to improve the sensitivity and effectiveness of chemotherapeutic drugs, aiming to show the advantages of nanomaterials in overcoming of drug resistance for tumor chemotherapy, which could accelerate the development of personalized medicine.
Collapse
Affiliation(s)
- Lei Cao
- Department of Pathology, Quanzhou Women’s and Children’s Hospital, Quanzhou, China
| | - Yuqin Zhu
- Department of Pathology, Quanzhou Women’s and Children’s Hospital, Quanzhou, China
| | - Weiju Wang
- Department of Pathology, Qingyuan Maternal and Child Health Hospital, Qingyuan, China
| | - Gaoxiong Wang
- Department of Pathology, Quanzhou Women’s and Children’s Hospital, Quanzhou, China
| | - Shuaishuai Zhang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
26
|
Gavas S, Quazi S, Karpiński TM. Nanoparticles for Cancer Therapy: Current Progress and Challenges. NANOSCALE RESEARCH LETTERS 2021; 16:173. [PMID: 34866166 PMCID: PMC8645667 DOI: 10.1186/s11671-021-03628-6] [Citation(s) in RCA: 404] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/19/2021] [Indexed: 05/04/2023]
Abstract
Cancer is one of the leading causes of death and morbidity with a complex pathophysiology. Traditional cancer therapies include chemotherapy, radiation therapy, targeted therapy, and immunotherapy. However, limitations such as lack of specificity, cytotoxicity, and multi-drug resistance pose a substantial challenge for favorable cancer treatment. The advent of nanotechnology has revolutionized the arena of cancer diagnosis and treatment. Nanoparticles (1-100 nm) can be used to treat cancer due to their specific advantages such as biocompatibility, reduced toxicity, more excellent stability, enhanced permeability and retention effect, and precise targeting. Nanoparticles are classified into several main categories. The nanoparticle drug delivery system is particular and utilizes tumor and tumor environment characteristics. Nanoparticles not only solve the limitations of conventional cancer treatment but also overcome multidrug resistance. Additionally, as new multidrug resistance mechanisms are unraveled and studied, nanoparticles are being investigated more vigorously. Various therapeutic implications of nanoformulations have created brand new perspectives for cancer treatment. However, most of the research is limited to in vivo and in vitro studies, and the number of approved nanodrugs has not much amplified over the years. This review discusses numerous types of nanoparticles, targeting mechanisms, and approved nanotherapeutics for oncological implications in cancer treatment. Further, we also summarize the current perspective, advantages, and challenges in clinical translation.
Collapse
Affiliation(s)
- Shreelaxmi Gavas
- Department of Life Sciences, GenLab Biosolutions Private Limited, Bangalore, Karnataka 560043 India
| | - Sameer Quazi
- GenLab Biosolutions Private Limited, Bangalore, Karnataka 560043 India
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland
| |
Collapse
|
27
|
Jiang X, Zhang W, Li L, Xie S. Integrated Transcriptomic Analysis Revealed Hub Genes and Pathways Involved in Sorafenib Resistance in Hepatocellular Carcinoma. Pathol Oncol Res 2021; 27:1609985. [PMID: 34737677 PMCID: PMC8560649 DOI: 10.3389/pore.2021.1609985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/28/2021] [Indexed: 12/31/2022]
Abstract
Hepatocellular carcinoma (HCC), a high mortality malignancy, has become a worldwide public health concern. Acquired resistance to the multikinase inhibitor sorafenib challenges its clinical efficacy and the survival benefits it provides to patients with advanced HCC. This study aimed to identify critical genes and pathways associated with sorafenib resistance in HCC using integrated bioinformatics analysis. Differentially expressed genes (DEGs) were identified using four HCC gene expression profiles (including 34 sorafenib-resistant and 29 sorafenib-sensitive samples) based on the robust rank aggregation method and R software. Gene ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tool. A protein–protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes (STRING), and small molecules reversing sorafenib resistance were searched for using the connectivity map (CMAP) database. Pearson correlation and survival analyses of hub genes were performed using cBioPortal and Gene Expression Profiling and Interactive Analysis (GEPIA). Finally, the expression levels of hub genes in sorafenib-resistant HCC cells were verified using quantitative polymerase chain reaction (q-PCR). A total of 165 integrated DEGs (66 upregulated and 99 downregulated in sorafenib resistant samples compared sorafenib sensitive ones) primarily enriched in negative regulation of endopeptidase activity, extracellular exosome, and protease binding were identified. Some pathways were commonly shared between the integrated DEGs. Seven promising therapeutic agents and 13 hub genes were identified. These findings provide a strategy and theoretical basis for overcoming sorafenib resistance in HCC patients.
Collapse
Affiliation(s)
- Xili Jiang
- Department of Radiology, The Second People's Hospital of Hunan Province/Brain Hospital of Hunan Province, Changsha, China
| | - Wei Zhang
- Department of Radiology, The Second People's Hospital of Hunan Province/Brain Hospital of Hunan Province, Changsha, China
| | - Lifeng Li
- Department of Radiology, Changsha Central Hospital, Changsha, China
| | - Shucai Xie
- Department of Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
28
|
Cao L, Zhu YQ, Wu ZX, Wang GX, Cheng HW. Engineering nanotheranostic strategies for liver cancer. World J Gastrointest Oncol 2021; 13:1213-1228. [PMID: 34721763 PMCID: PMC8529922 DOI: 10.4251/wjgo.v13.i10.1213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/28/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
The incidence and mortality of hepatocellular carcinoma have continued to increase over the last few years, and the medicine-based outlook of patients is poor. Given great ideas from the development of nanotechnology in medicine, especially the advantages in the treatments of liver cancer. Some engineering nanoparticles with active targeting, ligand modification, and passive targeting capacity achieve efficient drug delivery to tumor cells. In addition, the behavior of drug release is also applied to the drug loading nanosystem based on the tumor microenvironment. Considering clinical use of local treatment of liver cancer, in situ drug delivery of nanogels is also fully studied in orthotopic chemotherapy, radiotherapy, and ablation therapy. Furthermore, novel therapies including gene therapy, phototherapy, and immunotherapy are also applied as combined therapy for liver cancer. Engineering nonviral polymers to function as gene delivery vectors with increased efficiency and specificity, and strategies of co-delivery of therapeutic genes and drugs show great therapeutic effect against liver tumors, including drug-resistant tumors. Phototherapy is also applied in surgical procedures, chemotherapy, and immunotherapy. Combination strategies significantly enhance therapeutic effects and decrease side effects. Overall, the application of nanotechnology could bring a revolutionary change to the current treatment of liver cancer.
Collapse
Affiliation(s)
- Lei Cao
- Department of Pathology, Quanzhou Women's and Children's Hospital, Quanzhou 362000, Fujian Province, China
| | - Yu-Qin Zhu
- Department of Pathology, Quanzhou Women's and Children's Hospital, Quanzhou 362000, Fujian Province, China
| | - Zhi-Xian Wu
- Department of Hepatobiliary Disease, The 900th Hospital of the People’s Liberation Army Joint Service Support Force, Fuzhou 350025, Fujian Province, China
| | - Gao-Xiong Wang
- Department of Pathology, Quanzhou Women's and Children's Hospital, Quanzhou 362000, Fujian Province, China
| | - Hong-Wei Cheng
- School of Public Health, Xiamen University, Xiamen 361002, Fujian Province, China
| |
Collapse
|
29
|
Lv H, Jin S, Zou B, Liang Y, Xie J, Wu S. Analyzing the whole-transcriptome profiles of ncRNAs and predicting the competing endogenous RNA networks in cervical cancer cell lines with cisplatin resistance. Cancer Cell Int 2021; 21:532. [PMID: 34641878 PMCID: PMC8513283 DOI: 10.1186/s12935-021-02239-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/30/2021] [Indexed: 01/07/2023] Open
Abstract
Background Cervical cancer (CC) is one of the most common malignant tumors in women. In order to identify the functional roles and the interaction between mRNA and non-coding RNA (ncRNA, including lncRNA, circRNA and miRNA) in CC cisplatin (DDP) resistance, the transcription profile analysis was performed and a RNA regulatory model of CC DDP resistance was proposed. Methods In this study, whole-transcriptome sequencing analysis was conducted to study the ncRNA and mRNA profiles of parental SiHa cells and DDP resistant SiHa/DDP cells. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed for pathway analysis based on the selected genes with significant differences in expression. Subsequently, ceRNA network analyses were conducted using the drug resistance-related genes and signal-transduction pathways by Cytoscape software. Furthermore, a ceRNA regulatory pathway, namely lncRNA-AC010198.2/hsa-miR-34b-3p/STC2, was selected by RT-qPCR validation and literature searching. Further validation was done by both dual-luciferase reporter gene assays and RNA pull-down assays. Besides that, the changes in gene expression and biological function were further studied by performing si-AC010198.2 transfection and DDP resistance analyses in the SiHa and SiHa/DDP cells, respectively. Results Using bioinformatics and dual-luciferase reporter gene analyses, we found that AC010198.2/miR-34b-3p/STC2 may be a key pathway for DDP resistance in CC cells. Significant differences in both downstream gene expression and the biological function assays including colony formation, migration efficiency and cell apoptosis were identified in AC010198.2 knockdown cells. Conclusions Our study will not only provide new markers and potential mechanism models for CC DDP resistance, but also discover novel targets for attenuating it. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02239-6.
Collapse
Affiliation(s)
- Huimin Lv
- Department of Obstetrics and Gynecology, Third Hospital of Shanxi Medical University (Shanxi Bethune Hospital), Shanxi Academy of Medical Sciences, TaiYuan, 030032, China
| | - Shanshan Jin
- Department of Obstetrics and Gynecology, Third Hospital of Shanxi Medical University (Shanxi Bethune Hospital), Shanxi Academy of Medical Sciences, TaiYuan, 030032, China.,Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, TaiYuan, 030001, China
| | - Binbin Zou
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, Taiyuan, 030001, China
| | - Yuxiang Liang
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, TaiYuan, 030001, China
| | - Jun Xie
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, TaiYuan, 030001, China.,Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, TaiYuan, 030001, China
| | - Suhui Wu
- Department of Obstetrics and Gynecology, Third Hospital of Shanxi Medical University (Shanxi Bethune Hospital), Shanxi Academy of Medical Sciences, TaiYuan, 030032, China.
| |
Collapse
|
30
|
Li Z, Liu M, Ke L, Wang LJ, Wu C, Li C, Li Z, Wu YL. Flexible polymeric nanosized micelles for ophthalmic drug delivery: research progress in the last three years. NANOSCALE ADVANCES 2021; 3:5240-5254. [PMID: 36132623 PMCID: PMC9417891 DOI: 10.1039/d1na00596k] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/08/2021] [Indexed: 05/17/2023]
Abstract
The eye is a complex structure with a variety of anatomical barriers and clearance mechanisms, so the provision of safe and effective ophthalmic drug delivery technology is a major challenge. In the past few decades, a number of reports have shown that nano-delivery platforms based on polymeric micelles are of great interest, because of their hydrophobic core that encapsulates lipid-soluble drugs and small size with high penetration, allowing long-term drug retention and posterior penetration in the eye. Furthermore, as an ocular delivery platform, polymeric micelles not only cover the single micellar drug delivery system formed by poloxamer, chitosan or other polymers, but also include composite drug delivery systems like micelle-encapsulated hydrogels and micelle-embedded contact lenses. In this review, a number of ophthalmic micelles that have emerged in the last three years will be systematically reviewed, with a summary of and discussion on their unique advantages or unique drug delivery performance. Last but not least, the current challenges of polymeric micelle formulations in potential clinical ophthalmic therapeutic applications will also be proposed, which might be helpful for future design of ocular drug delivery formulations.
Collapse
Affiliation(s)
- Zhiguo Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Minting Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Lingjie Ke
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Li-Juan Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Cheng Li
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University Xiamen 361102 China
| | - Zibiao Li
- Department of Materials Science and Engineering, National University of Singapore 9 Engineering Drive 1 Singapore 117576 Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| |
Collapse
|
31
|
Brahma MK, Gilglioni EH, Zhou L, Trépo E, Chen P, Gurzov EN. Oxidative stress in obesity-associated hepatocellular carcinoma: sources, signaling and therapeutic challenges. Oncogene 2021; 40:5155-5167. [PMID: 34290399 PMCID: PMC9277657 DOI: 10.1038/s41388-021-01950-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023]
Abstract
Obesity affects more than 650 million individuals worldwide and is a well-established risk factor for the development of hepatocellular carcinoma (HCC). Oxidative stress can be considered as a bona fide tumor promoter, contributing to the initiation and progression of liver cancer. Indeed, one of the key events involved in HCC progression is excessive levels of reactive oxygen species (ROS) resulting from the fatty acid influx and chronic inflammation. This review provides insights into the different intracellular sources of obesity-induced ROS and molecular mechanisms responsible for hepatic tumorigenesis. In addition, we highlight recent findings pointing to the role of the dysregulated activity of BCL-2 proteins and protein tyrosine phosphatases (PTPs) in the generation of hepatic oxidative stress and ROS-mediated dysfunctional signaling, respectively. Finally, we discuss the potential and challenges of novel nanotechnology strategies to prevent ROS formation in obesity-associated HCC.
Collapse
Affiliation(s)
- Manoja K Brahma
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Eduardo H Gilglioni
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Lang Zhou
- Materials Research and Education Center, Auburn University, Auburn, AL, 36849, United States
| | - Eric Trépo
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, C.U.B. Hôpital Erasme, Université libre de Bruxelles, Brussels, Belgium
- Laboratory of Experimental Gastroenterology, Université libre de Bruxelles, Brussels, Belgium
| | - Pengyu Chen
- Materials Research and Education Center, Auburn University, Auburn, AL, 36849, United States
| | - Esteban N Gurzov
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
32
|
Arampatzis AS, Giannakoula K, Kontogiannopoulos KN, Theodoridis K, Aggelidou E, Rat A, Kampasakali E, Willems A, Christofilos D, Kritis A, Papageorgiou VP, Tsivintzelis I, Assimopoulou AN. Novel electrospun poly-hydroxybutyrate scaffolds as carriers for the wound healing agents alkannins and shikonins. Regen Biomater 2021; 8:rbab011. [PMID: 34211727 PMCID: PMC8240617 DOI: 10.1093/rb/rbab011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to investigate the potential of novel electrospun fiber mats loaded with alkannin and shikonin (A/S) derivatives, using as carrier a highly biocompatible, bio-derived, eco-friendly polymer such as poly[(R)-3-hydroxybutyric acid] (PHB). PHB fibers containing a mixture of A/S derivatives at different ratios were successfully fabricated via electrospinning. Αs evidenced by scanning electron microscopy, the fibers formed a bead-free mesh with average diameters from 1.25 to 1.47 μm. Spectroscopic measurements suggest that electrospinning marginally increases the amorphous content of the predominantly crystalline PHB in the fibers, while a significant drug amount lies near the fiber surface for samples of high total A/S content. All scaffolds displayed satisfactory characteristics, with the lower concentrations of A/S mixture-loaded PHB fiber mats achieving higher porosity, water uptake ratios, and entrapment efficiencies. The in vitro dissolution studies revealed that all samples released more than 70% of the encapsulated drug after 72 h. All PHB scaffolds tested by cell viability assay were proven non-toxic for Hs27 fibroblasts, with the 0.15 wt.% sample favoring cell attachment, spreading onto the scaffold surface, as well as cell proliferation. Finally, the antimicrobial activity of PHB meshes loaded with A/S mixture was documented for Staphylococcus epidermidis and S. aureus.
Collapse
Affiliation(s)
- Athanasios S Arampatzis
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki (AUTh), Thessaloniki 54124, Greece
- Natural Products Research Centre of Excellence (NatPro-AUTh), Center of Interdisciplinary Research and Innovation of Aristotle University of Thessaloniki (CIRI-AUTh), Thessaloniki 57001, Greece
| | - Konstantina Giannakoula
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki (AUTh), Thessaloniki 54124, Greece
| | - Konstantinos N Kontogiannopoulos
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki (AUTh), Thessaloniki 54124, Greece
- Natural Products Research Centre of Excellence (NatPro-AUTh), Center of Interdisciplinary Research and Innovation of Aristotle University of Thessaloniki (CIRI-AUTh), Thessaloniki 57001, Greece
| | - Konstantinos Theodoridis
- Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTh), Thessaloniki, Greece
| | - Eleni Aggelidou
- Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTh), Thessaloniki, Greece
| | - Angélique Rat
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, Ghent 9000, Belgium
| | - Elli Kampasakali
- Faculty of Engineering, School of Chemical Engineering and Physics Laboratory, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Anne Willems
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, Ghent 9000, Belgium
| | - Dimitrios Christofilos
- Faculty of Engineering, School of Chemical Engineering and Physics Laboratory, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Aristeidis Kritis
- Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTh), Thessaloniki, Greece
| | - Vassilios P Papageorgiou
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki (AUTh), Thessaloniki 54124, Greece
- Natural Products Research Centre of Excellence (NatPro-AUTh), Center of Interdisciplinary Research and Innovation of Aristotle University of Thessaloniki (CIRI-AUTh), Thessaloniki 57001, Greece
| | - Ioannis Tsivintzelis
- Physical Chemistry Laboratory, School of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Andreana N Assimopoulou
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki (AUTh), Thessaloniki 54124, Greece
- Natural Products Research Centre of Excellence (NatPro-AUTh), Center of Interdisciplinary Research and Innovation of Aristotle University of Thessaloniki (CIRI-AUTh), Thessaloniki 57001, Greece
| |
Collapse
|
33
|
Recent trends in biodegradable polyester nanomaterials for cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112198. [PMID: 34225851 DOI: 10.1016/j.msec.2021.112198] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022]
Abstract
Biodegradable polyester nanomaterials-based drug delivery vehicles (DDVs) have been largely used in most of the cancer treatments due to its high biological performance and wider applications. In several previous studies, various biodegradable and biocompatible polyester backbones were used which are poly(lactic acid) (PLA), poly(ε-caprolactone) (PCL), poly(propylene fumarate) (PPF), poly(lactic-co-glycolic acid) (PLGA), poly(propylene carbonate) (PPC), polyhydroxyalkanoates (PHA), and poly(butylene succinate) (PBS). These polyesters were fabricated into therapeutic nanoparticles that carry drug molecules to the target site during the cancer disease treatment. In this review, we elaborately discussed the chemical synthesis of different synthetic polyesters and their use as nanodrug carriers (NCs) in cancer treatment. Further, we highlighted in brief the recent developments of metal-free semi-aromatic polyester nanomaterials along with its role as cancer drug delivery vehicles.
Collapse
|
34
|
Yan Q, Zheng W, Wang B, Ye B, Luo H, Yang X, Zhang P, Wang X. A prognostic model based on seven immune-related genes predicts the overall survival of patients with hepatocellular carcinoma. BioData Min 2021; 14:29. [PMID: 33962640 PMCID: PMC8106157 DOI: 10.1186/s13040-021-00261-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a disease with a high incidence and a poor prognosis. Growing amounts of evidence have shown that the immune system plays a critical role in the biological processes of HCC such as progression, recurrence, and metastasis, and some have discussed using it as a weapon against a variety of cancers. However, the impact of immune-related genes (IRGs) on the prognosis of HCC remains unclear. METHODS Based on The Cancer Gene Atlas (TCGA) and Immunology Database and Analysis Portal (ImmPort) datasets, we integrated the ribonucleic acid (RNA) sequencing profiles of 424 HCC patients with IRGs to calculate immune-related differentially expressed genes (DEGs). Survival analysis was used to establish a prognostic model of survival- and immune-related DEGs. Based on genomic and clinicopathological data, we constructed a nomogram to predict the prognosis of HCC patients. Gene set enrichment analysis further clarified the signalling pathways of the high-risk and low-risk groups constructed based on the IRGs in HCC. Next, we evaluated the correlation between the risk score and the infiltration of immune cells, and finally, we validated the prognostic performance of this model in the GSE14520 dataset. RESULTS A total of 100 immune-related DEGs were significantly associated with the clinical outcomes of patients with HCC. We performed univariate and multivariate least absolute shrinkage and selection operator (Lasso) regression analyses on these genes to construct a prognostic model of seven IRGs (Fatty Acid Binding Protein 6 (FABP6), Microtubule-Associated Protein Tau (MAPT), Baculoviral IAP Repeat Containing 5 (BIRC5), Plexin-A1 (PLXNA1), Secreted Phosphoprotein 1 (SPP1), Stanniocalcin 2 (STC2) and Chondroitin Sulfate Proteoglycan 5 (CSPG5)), which showed better prognostic performance than the tumour/node/metastasis (TNM) staging system. Moreover, we constructed a regulatory network related to transcription factors (TFs) that further unravelled the regulatory mechanisms of these genes. According to the median value of the risk score, the entire TCGA cohort was divided into high-risk and low-risk groups, and the low-risk group had a better overall survival (OS) rate. To predict the OS rate of HCC, we established a gene- and clinical factor-related nomogram. The receiver operating characteristic (ROC) curve, concordance index (C-index) and calibration curve showed that this model had moderate accuracy. The correlation analysis between the risk score and the infiltration of six common types of immune cells showed that the model could reflect the state of the immune microenvironment in HCC tumours. CONCLUSION Our IRG prognostic model was shown to have value in the monitoring, treatment, and prognostic assessment of HCC patients and could be used as a survival prediction tool in the near future.
Collapse
Affiliation(s)
- Qian Yan
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjiang Zheng
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Boqing Wang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baoqian Ye
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiyan Luo
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinqian Yang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ping Zhang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiongwen Wang
- Department of Oncology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
35
|
Ansari S, Sami N, Yasin D, Ahmad N, Fatma T. Biomedical applications of environmental friendly poly-hydroxyalkanoates. Int J Biol Macromol 2021; 183:549-563. [PMID: 33932421 DOI: 10.1016/j.ijbiomac.2021.04.171] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Biological polyesters of hydroxyacids are known as polyhydroxyalkanoates (PHA). They have proved to be an alternative, environmentally friendly and attractive candidate for the replacement of petroleum-based plastics in many applications. Many bacteria synthesize these compounds as an intracellular carbon and energy compound usually under unbalanced growth conditions. Biodegradability and biocompatibility of different PHA has been studied in cell culture systems or in an animal host during the last few decades. Such investigations have proposed that PHA can be used as biomaterials for applications in conventional medical devices such as sutures, patches, meshes, implants, and tissue engineering scaffolds as well. Moreover, findings related to encapsulation capability and degradation kinetics of some PHA polymers has paved their way for development of controlled drug delivery systems. The present review discusses about bio-plastics, their characteristics, examines the key findings and recent advances highlighting the usage of bio-plastics in different medical devices. The patents concerning to PHA application in biomedical field have been also enlisted that will provide a brief overview of the status of research in bio-plastic. This would help medical researchers and practitioners to replace the synthetic plastics aids that are currently being used. Simultaneously, it could also prove to be a strong step in reducing the plastic pollution that surged abruptly due to the COVID-19 medical waste.
Collapse
Affiliation(s)
- Sabbir Ansari
- Cyanobacterial Biotechnology Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Neha Sami
- Cyanobacterial Biotechnology Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Durdana Yasin
- Cyanobacterial Biotechnology Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Nazia Ahmad
- Cyanobacterial Biotechnology Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Tasneem Fatma
- Cyanobacterial Biotechnology Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India.
| |
Collapse
|
36
|
Exploration of prognostic index based on immune-related genes in patients with liver hepatocellular carcinoma. Biosci Rep 2021; 40:225490. [PMID: 32579175 PMCID: PMC7327182 DOI: 10.1042/bsr20194240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 02/08/2023] Open
Abstract
The present study aimed to screen the immune-related genes (IRGs) in patients with liver hepatocellular carcinoma (LIHC) and construct a synthetic index for indicating the prognostic outcomes. The bioinformatic analysis was performed on the data of 374 cancer tissues and 50 normal tissues, which were downloaded from TCGA database. We observed that 17 differentially expressed IRGs were significantly associated with survival in LIHC patients. These LIHC-specific IRGs were validated with function analysis and molecular characteristics. Cox analysis was applied for constructing a RiskScore for predicting the survival. The RiskScore involved six IRGs and corresponding coefficients, which was calculated with the following formula: RiskScore = [Expression level of FABP5 *(0.064)] + [Expression level of TRAF3 * (0.198)] + [Expression level of CSPG5 * (0.416)] + [Expression level of IL17D * (0.197)] + [Expression level of STC2 * (0.036)] + [Expression level of BRD8 * (0.140)]. The RiskScore was positively associated with the poor survival, which was verified with the dataset from ICGC database. Further analysis revealed that the RiskScore was independent of any other clinical feature, while it was linked with the infiltration levels of six types of immune cells. Our study reported the survival-associated IRGs in LIHC and then constructed IRGs-based RiskScore as prognostic indicator for screening patients with high risk of short survival. Both the screened IRGs and IRGs-based RiskScore were clinically significant, which may be informative for promoting the individualized immunotherapy against LIHC.
Collapse
|
37
|
Torres-Vanegas JD, Cruz JC, Reyes LH. Delivery Systems for Nucleic Acids and Proteins: Barriers, Cell Capture Pathways and Nanocarriers. Pharmaceutics 2021; 13:428. [PMID: 33809969 PMCID: PMC8004853 DOI: 10.3390/pharmaceutics13030428] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/27/2022] Open
Abstract
Gene therapy has been used as a potential approach to address the diagnosis and treatment of genetic diseases and inherited disorders. In this line, non-viral systems have been exploited as promising alternatives for delivering therapeutic transgenes and proteins. In this review, we explored how biological barriers are effectively overcome by non-viral systems, usually nanoparticles, to reach an efficient delivery of cargoes. Furthermore, this review contributes to the understanding of several mechanisms of cellular internalization taken by nanoparticles. Because a critical factor for nanoparticles to do this relies on the ability to escape endosomes, researchers have dedicated much effort to address this issue using different nanocarriers. Here, we present an overview of the diversity of nanovehicles explored to reach an efficient and effective delivery of both nucleic acids and proteins. Finally, we introduced recent advances in the development of successful strategies to deliver cargoes.
Collapse
Affiliation(s)
- Julian D. Torres-Vanegas
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| |
Collapse
|
38
|
Wang C, Liu G, Dou G, Yang Y, Chen L, Ma H, Jiang Z, Ma H, Li C, Li L, Jiang M, Lu Q, Li P, Qi H. Z-Ligustilide Selectively Targets AML by Restoring Nuclear Receptors Nur77 and NOR-1-mediated Apoptosis and Differentiation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 82:153448. [PMID: 33421904 DOI: 10.1016/j.phymed.2020.153448] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 11/12/2020] [Accepted: 12/22/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a devastating hematologic malignancy with a high mortality. The nuclear receptors Nur77 and NOR-1 are commonly downregulated in human AML blasts and have emerged as key therapeutic targets for AML. METHODS This study aimed to identify Z-ligustilide (Z-LIG), the main phthalide of Rhizoma Chuanxiong, as a potential agent that can selectively target AML. The anti-AML activity of Z-LIG was evaluated in vitro and in vivo, and the effect and underlying mechanisms of Z-LIG on the restoration of Nur77 and NOR-1 was determined. Moreover, the role of Nur77 and NOR-1 in the regulation of Z-LIG-induced apoptosis and differentiation of AML cells was explored. RESULTS Z-LIG preferentially inhibited the viability of human AML cells, as well as suppressed the proliferation and colony formation ability. Notably, a concentration-dependent dual effect of Z-LIG was observed in AML cells: inducing apoptosis at relatively high concentrations (25 μM to 100 μM) and promoting differentiation at relatively low concentrations (10 μM and 25 μM). Importantly, Z-LIG restored Nur77 and NOR-1 expression in AML cells by increasing Ace-H3 (lys9/14) enrichment in their promoters. Meanwhile, Z-LIG enhanced the recruitment of p300 and reduced the recruitment of HDAC1, HDAC4/5/7, and MTA1 in the Nur77 promoter and enhanced the recruitment of p-CREB and reduced HDAC1 and HDAC3 in the NOR-1 promoter. Furthermore, Z-LIG-induced apoptosis was shown to be correlated with the mitochondria localization of Nur77/NOR-1 and subsequent Bcl-2 conformational change, converting Bcl-2 from a cyto-protective phenotype into a cyto-destructive phenotype. Z-LIG-promoted differentiation was found to be related to Nur77/NOR-1-mediated myeloid differentiation-associated transcription factors Jun B, c-Jun, and C/EBPβ. Finally, silencing of Nur77 and NOR-1 attenuated anti-AML activity of Z-LIG in NOD/SCID mice. CONCLUSIONS Our study suggests that Z-LIG may serve as a novel bifunctional agent for AML by restoring Nur77/NOR-1-mediated apoptosis and differentiation.
Collapse
Affiliation(s)
- Chengqiang Wang
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing 400715, China
| | - Gen Liu
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing 400715, China
| | - Guojun Dou
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing 400715, China
| | - Yi Yang
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing 400715, China
| | - Lu Chen
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing 400715, China
| | - Hui Ma
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing 400715, China
| | - Zhuyun Jiang
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing 400715, China
| | - Haoyue Ma
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing 400715, China
| | - Chenglong Li
- Department of Hematology, Sichuan Provincial People's Hospital, Chengdu 610212, Sichuan, China
| | - Li Li
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing 400715, China
| | - Mingdong Jiang
- Department of Oncology and Hematology, Chongqing Ninth People's Hospital, Jialing Village 69, Beibei District, Chongqing 400700, China
| | - Qianwei Lu
- Department of Oncology and Hematology, Chongqing Ninth People's Hospital, Jialing Village 69, Beibei District, Chongqing 400700, China
| | - Pan Li
- Department of Oncology and Hematology, Chongqing Ninth People's Hospital, Jialing Village 69, Beibei District, Chongqing 400700, China
| | - Hongyi Qi
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing 400715, China.
| |
Collapse
|
39
|
Khan MM, Filipczak N, Torchilin VP. Cell penetrating peptides: A versatile vector for co-delivery of drug and genes in cancer. J Control Release 2020; 330:1220-1228. [PMID: 33248708 DOI: 10.1016/j.jconrel.2020.11.028] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/09/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022]
Abstract
Biological barriers hamper the efficient delivery of drugs and genes to targeted sites. Cell penetrating peptides (CPP) have the ability to rapidly internalize across biological membranes. CPP have been effective for delivery of various chemotherapeutic agents used to combat cancer. CPP can enhance delivery of drugs to a targeted site when combined with tumor targeting peptides. CPP can be linked with various cargos like nanoparticles, micelles and liposomes to deliver drugs and genes to the cancer cell. Here, we focus on CPP mediated delivery of drugs to the tumor sites, delivery of genes (siRNA,pDNA) and co-delivery of drugs and genes to combat drug resistance.
Collapse
Affiliation(s)
- Muhammad Muzamil Khan
- Center for Pharmaceutical Biotechnology and Nanomedicines, Northeastern University, Boston, MA 02115, USA; Department of Pharmacy, The Islamia University of Bahawalpur, Pakistan.
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicines, Northeastern University, Boston, MA 02115, USA; Departments of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicines, Northeastern University, Boston, MA 02115, USA; Department of Oncology, Radiotherapy and Plastic Surgery I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| |
Collapse
|
40
|
Drug Delivery Systems of Natural Products in Oncology. Molecules 2020; 25:molecules25194560. [PMID: 33036240 PMCID: PMC7582809 DOI: 10.3390/molecules25194560] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023] Open
Abstract
In recent decades, increasing interest in the use of natural products in anticancer therapy field has been observed, mainly due to unsolved drug-resistance problems. The antitumoral effect of natural compounds involving different signaling pathways and cellular mechanisms has been largely demonstrated in in vitro and in vivo studies. The encapsulation of natural products into different delivery systems may lead to a significant enhancement of their anticancer efficacy by increasing in vivo stability and bioavailability, reducing side adverse effects and improving target-specific activity. This review will focus on research studies related to nanostructured systems containing natural compounds for new drug delivery tools in anticancer therapies.
Collapse
|
41
|
Cai Y, Zheng Q, Yao DJ. Phosphatidylinositol-3,4,5-trisphosphate dependent Rac exchange factor 1 is a diagnostic and prognostic biomarker for hepatocellular carcinoma. World J Clin Cases 2020; 8:3774-3785. [PMID: 32953853 PMCID: PMC7479560 DOI: 10.12998/wjcc.v8.i17.3774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/15/2020] [Accepted: 08/03/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Phosphatidylinositol-3,4,5-trisphosphate dependent Rac exchange factor 1 (P-Rex1) was reported to be a risk factor in several cancers, including breast cancer, lung cancer, and melanoma, but its expression and role in hepatocellular carcinoma (HCC) have not yet been fully studied.
AIM To explore the expression of P-Rex1 in HCC, and further evaluate its potential application in the diagnosis and prognosis of HCC, especially in hepatitis B virus (HBV)-related patients.
METHODS P-Rex1 expression in HCC was evaluated by real-time-quantitative polymerase chain reaction. The expression of P-Rex1 was subjected to correlation analysis with clinical features, such as lymph node invasion, distant metastasis, HBV infection, patient's age and gender. Receiver operating characteristic analysis was used to examine the potential role of P-Rex1 as a diagnostic biomarker in HCC. Kaplan-Meier analysis was used to determine the association between P-Rex1 expression and overall survival, progression-free survival and relapse-free survival. Bioinformatic analysis was used to validate the clinical findings.
RESULTS P-Rex1 expression was significantly increased in HCC tumors than adjacent tissues. The expression of P-Rex1 was higher in HCC patients with lymph node invasion, distant metastasis, HBV infection and positive alpha-fetoprotein, respectively. The receiver operating characteristic analysis showed that P-Rex1 was a diagnostic biomarker with a higher area under the curve value, especially in patients with HBV infection. Survival analysis showed that patients with higher P-Rex1 expression had a favorable survival rate, even in early-stage patients.
CONCLUSION P-Rex1 expression was highly increased in HCC, and the expression level of P-Rex1 was positively correlated with tumor progression. P-Rex1 has a higher efficiency in the diagnosis of HBV-related HCC, and could also be used as a favorable prognostic factor for HCC patients.
Collapse
Affiliation(s)
- Yi Cai
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610000, Sichuan Province, China
| | - Qiao Zheng
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610000, Sichuan Province, China
| | - De-Jiao Yao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610000, Sichuan Province, China
| |
Collapse
|
42
|
Wang SG, Zhang B, Li CG, Zhu JQ, Sun BS, Wang CL. Sorting and gene mutation verification of circulating tumor cells of lung cancer with epidermal growth factor receptor peptide lipid magnetic spheres. Thorac Cancer 2020; 11:2887-2895. [PMID: 32856417 PMCID: PMC7529546 DOI: 10.1111/1759-7714.13625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/26/2022] Open
Abstract
Background This study aimed to identify an efficient, simple, and specific method of detecting mutations in the epidermal growth factor receptor (EGFR) gene in isolated lung cancer circulating tumor cells (CTCs) and to improve the ability to obtain tumor tissue clinically. Methods EGFR peptide lipid magnetic spheres (EG‐P‐LMB) were prepared by reverse evaporation, and characterization and cell capture efficiency assessed. The peripheral blood samples of 30 lung cancer patients were isolated and identified with the EG‐P‐LMB using 20 healthy volunteers as controls. Finally, the isolated CTCs were tested for EGFR gene mutations, and the tissue samples selected for comparison. Results The prepared magnetic spheres had a smaller particle size and higher stability according to the particle size potential test. Their morphology was homogeneous by atomic force observation, and the UV test showed that there were peptides on the surface. The separation efficiency of EG‐P‐LMB was greater than 90% in PBS and greater than 80% in the blood simulation system. Compared with the tissue sample results, the positive rate of EGFR gene mutations was 94%. The CTC test results of 27 patients were consistent with the tissue test results of the corresponding patients, and the consistency with the tissue comparison test results was 90% (27/30). Conclusions EG‐P‐LMB can effectively capture CTCs in the peripheral blood of patients with lung cancer. CTC detection can accurately identify mutations in the EGFR gene and improve the ability to obtain tumor tissue in clinical practice. Key points Significant findings of the study EG‐P‐LMB can effectively capture CTCs in the peripheral blood of patients with lung cancer. CTC detection can accurately identify mutations in the EGFR gene and improve the ability to obtain tumor tissue in clinical practice. What this study adds This study added EGFR peptide lipid magnetic spheres to capture CTCs in the blood. Genetic testing was performed and compared with tissues. It solves the problem of clinically difficult tumor tissue sampling.
Collapse
Affiliation(s)
- Sheng-Guang Wang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Bin Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Chen-Guang Li
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Jian-Quan Zhu
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Bing-Sheng Sun
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Chang-Li Wang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| |
Collapse
|
43
|
Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front Mol Biosci 2020; 7:193. [PMID: 32974385 DOI: 10.3389/fmolb.2020.00193/bibtex] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/21/2020] [Indexed: 05/26/2023] Open
Abstract
Nanotechnology has been extensively studied and exploited for cancer treatment as nanoparticles can play a significant role as a drug delivery system. Compared to conventional drugs, nanoparticle-based drug delivery has specific advantages, such as improved stability and biocompatibility, enhanced permeability and retention effect, and precise targeting. The application and development of hybrid nanoparticles, which incorporates the combined properties of different nanoparticles, has led this type of drug-carrier system to the next level. In addition, nanoparticle-based drug delivery systems have been shown to play a role in overcoming cancer-related drug resistance. The mechanisms of cancer drug resistance include overexpression of drug efflux transporters, defective apoptotic pathways, and hypoxic environment. Nanoparticles targeting these mechanisms can lead to an improvement in the reversal of multidrug resistance. Furthermore, as more tumor drug resistance mechanisms are revealed, nanoparticles are increasingly being developed to target these mechanisms. Moreover, scientists have recently started to investigate the role of nanoparticles in immunotherapy, which plays a more important role in cancer treatment. In this review, we discuss the roles of nanoparticles and hybrid nanoparticles for drug delivery in chemotherapy, targeted therapy, and immunotherapy and describe the targeting mechanism of nanoparticle-based drug delivery as well as its function on reversing drug resistance.
Collapse
Affiliation(s)
- Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lihong Liu
- Department of Radiation Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanyan Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Qiang Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yali Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shijie Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
44
|
Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front Mol Biosci 2020; 7:193. [PMID: 32974385 PMCID: PMC7468194 DOI: 10.3389/fmolb.2020.00193] [Citation(s) in RCA: 593] [Impact Index Per Article: 118.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Nanotechnology has been extensively studied and exploited for cancer treatment as nanoparticles can play a significant role as a drug delivery system. Compared to conventional drugs, nanoparticle-based drug delivery has specific advantages, such as improved stability and biocompatibility, enhanced permeability and retention effect, and precise targeting. The application and development of hybrid nanoparticles, which incorporates the combined properties of different nanoparticles, has led this type of drug-carrier system to the next level. In addition, nanoparticle-based drug delivery systems have been shown to play a role in overcoming cancer-related drug resistance. The mechanisms of cancer drug resistance include overexpression of drug efflux transporters, defective apoptotic pathways, and hypoxic environment. Nanoparticles targeting these mechanisms can lead to an improvement in the reversal of multidrug resistance. Furthermore, as more tumor drug resistance mechanisms are revealed, nanoparticles are increasingly being developed to target these mechanisms. Moreover, scientists have recently started to investigate the role of nanoparticles in immunotherapy, which plays a more important role in cancer treatment. In this review, we discuss the roles of nanoparticles and hybrid nanoparticles for drug delivery in chemotherapy, targeted therapy, and immunotherapy and describe the targeting mechanism of nanoparticle-based drug delivery as well as its function on reversing drug resistance.
Collapse
Affiliation(s)
- Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lihong Liu
- Department of Radiation Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanyan Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Qiang Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yali Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shijie Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
45
|
Ferreira do Carmo A, Dourado MR, Ervolino de Oliveira C, Bastos DC, Domingueti CB, Ribeiro Paranaíba LM, Sawazaki-Calone Í, Borges GÁ, Silva Guerra EN, Casarin RC, Graner E, Salo TA, de Almeida Freitas R, Galvão HC, Coletta RD. Stanniocalcin 2 contributes to aggressiveness and is a prognostic marker for oral squamous cell carcinoma. Exp Cell Res 2020; 393:112092. [PMID: 32445747 DOI: 10.1016/j.yexcr.2020.112092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/09/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
Stanniocalcin 2 (STC2), a glycoprotein that regulates calcium and phosphate homeostasis during mineral metabolism, appears to display multiple roles in tumorigenesis and cancer progression. This study aimed to access the prognostic value of STC2 in oral squamous cell carcinoma (OSCC) and its implications in oral tumorigenesis. STC2 expression was examined in 2 independent cohorts of OSCC tissues by immunohistochemistry. A loss-of-function strategy using shRNA targeting STC2 was employed to investigate STC2 in vitro effects on proliferation, apoptosis, migration, invasion, epithelial-mesenchymal transition (EMT) and possible activation of signaling pathways. Moreover, STC2 effects were assessed in vivo in a xenograft mouse cancer model. High expression of STC2 was significantly associated with poor disease-specific survival (HR: 2.67, 95% CI: 1.37-5.21, p = 0.001) and high rate of recurrence with a hazard ratio of 2.80 (95% CI: 1.07-5.71, p = 0.03). In vitro downregulation of STC2 expression in OSCC cells attenuated proliferation, migration and invasiveness while increased apoptotic rates. In addition, the STC2 downregulation controlled EMT phenotype of OSCC cells, with regulation on E-cadherin, vimentin, Snail1, Twist and Zeb2. The reactivation of STC2 was observed in the STC2 knockdown cells in the in vivo xenograft model, and no influence on tumor growth was observed. Modulation of STC2 expression levels did not alter consistently the phosphorylation status of CREB, ERK, JNK, p38, p70 S6K, STAT3, STAT5A/B and AKT. Our findings suggest that STC2 overexpression is an independent marker of OSCC outcome and may contribute to tumor progression via regulation of proliferation, survival and invasiveness of OSCC cells.
Collapse
Affiliation(s)
- Andreia Ferreira do Carmo
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, SP, Brazil; Department of Dentistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Mauricio Rocha Dourado
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, SP, Brazil
| | - Carine Ervolino de Oliveira
- Department of Pathology and Parasitology, Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | - Débora Campanella Bastos
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, SP, Brazil
| | - Catherine Bueno Domingueti
- Department of Pathology and Parasitology, Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | - Lívia Máris Ribeiro Paranaíba
- Department of Pathology and Parasitology, Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | - Íris Sawazaki-Calone
- Oral Pathology and Oral Medicine, Dentistry School, Western Paraná; State University, Cascavel, Paraná, Brazil
| | - Gabriel Álvares Borges
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasilia, Brasilia, Brazil
| | - Eliete Neves Silva Guerra
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasilia, Brasilia, Brazil
| | - Renato C Casarin
- Department of Prosthodontics and Periodontics, School of Dentistry, University of Campinas, Piracicaba, SP, Brazil
| | - Edgard Graner
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, SP, Brazil
| | - Tuula A Salo
- Cancer and Translational Medicine Research Unit, Faculty of Medicine and Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland; Institute of Oral and Maxillofacial Disease, University of Helsinki, and HUSLAB, Department of Pathology, Helsinki University Hospital, Helsinki, Finland
| | | | - Hébel Cavalcanti Galvão
- Department of Dentistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Ricardo D Coletta
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, SP, Brazil.
| |
Collapse
|
46
|
Gong S, Xu M, Zhang Y, Shan Y, Zhang H. The Prognostic Signature and Potential Target Genes of Six Long Non-coding RNA in Laryngeal Squamous Cell Carcinoma. Front Genet 2020; 11:413. [PMID: 32411183 PMCID: PMC7198905 DOI: 10.3389/fgene.2020.00413] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Studies have shown that long non-coding RNA (lncRNA) may act as the carcinogenic factor or tumor suppressor of laryngeal squamous cell carcinoma (LSCC). This study aims to identify the prognostic value and potential target protein-coding genes (PCGs) of lncRNAs in LSCC. The LSCC datasets were collected from The Cancer Genome Atlas (TCGA). Statistical and bioinformatic methods were used to establish and evaluate the prognostic model, identify the correlation between lncRNAs and clinical characteristics, and screen for PCGs co-expressed with lncRNAs. Weighted gene co-expression network analysis (WGCNA) identified PCG modules associated with clinical characteristics. The expression of lncRNAs and PCGs was analyzed using our LSCC patients by RT-qPCR. LINC02154, LINC00528, SPRY4-AS1, TTTY14, LNCSRLR, and KLHL7-DT were selected to establish the prognostic model. The overall survival (OS) of low-risk patients forecasted by the model was significantly better than high-risk patients. Receiver operating characteristic (ROC) curve and concordance index (C-index) validated the accuracy of the prognostic model. Chi-square test showed that six lncRNAs were associated with one of the clinical characteristics, i.e., gender, clinical stage, T and N stage, respectively. WGCNA identified PCG modules associated with gender, clinical stage, T and N stage. We took the intersection of the PCG modules of WGCNA, the differentially expressed PCGs between LSCC and normal samples, and the PCGs co-expressed with six lncRNAs. The intersection PCGs survival analysis showed that four PCGs, i.e., STC2, TSPAN9, SMS, and TCEA3 affected the OS of LSCC. More importantly, the differential expression of six lncRNAs and four PCGs between LSCC and normal samples was verified by our LSCC patients. In conclusion, we successfully established a prognostic model based on six-lncRNA RiskScore and initially screened the potential target PCGs of six lncRNAs for further basic and clinical research.
Collapse
Affiliation(s)
- Shiqi Gong
- Department of Otolaryngology-Head and Neck Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Xu
- Department of Radiation Oncology, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Yiyun Zhang
- Department of Otolaryngology-Head and Neck Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yamin Shan
- Department of Otolaryngology-Head and Neck Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Zhang
- Department of Otolaryngology-Head and Neck Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
47
|
Cao L, Cheng H, Jiang Q, Li H, Wu Z. APEX1 is a novel diagnostic and prognostic biomarker for hepatocellular carcinoma. Aging (Albany NY) 2020; 12:4573-4591. [PMID: 32167932 PMCID: PMC7093175 DOI: 10.18632/aging.102913] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/02/2020] [Indexed: 02/05/2023]
Abstract
In this study, we analyzed the expression and clinical significance of apyrimidinic endodeoxyribonuclease 1 (APEX1) in hepatocellular carcinoma (HCC). The APEX1 mRNA and protein levels were significantly higher in HCC than adjacent normal liver tissues in multiple datasets from the Oncomine, GEO and TCGA databases. APEX1 levels were significantly higher in early-stage HCC patients with low alpha-fetoprotein expression. The positive predictive value (PPV) for APEX1 was significantly higher than the PPV for alpha-fetoprotein (67.91% vs. 55.22%) in HCC patients. High APEX1 expression correlated with resistance to sorafenib and anti-programmed death 1 (PD-1) therapies in HCC patients, and it associated with poorer overall survival, disease-specific survival, progression-free survival, and relapse-free survival in early- and advanced-stage HCC patients. High APEX1 expression also associated with poor prognosis in non-alcoholic, vascular invasion-negative, and hepatitis virus-negative HCC patients. These data suggest that APEX1 is a better diagnostic and prognostic biomarker than alpha-fetoprotein in HCC. Gene set enrichment analysis (GSEA) showed that APEX1 expression correlated with the DNA damage repair pathway in HCC tissues. These findings demonstrate that APEX1 is a potential diagnostic and prognostic biomarker in HCC.
Collapse
Affiliation(s)
- Lei Cao
- Department of Hepatobiliary Disease, Dongfang Hospital, Xiamen University, Fuzhou, China
- The 900th Hospital of the People’s Liberation Army Joint Service Support Force, Fuzhou, China
- Department of Pathology, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Hongwei Cheng
- Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Qiuxia Jiang
- Department of Ultrasound, Quanzhou Women’s and Children’s Hospital, Quanzhou, China
| | - Hui Li
- Department of Pathology, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Zhixian Wu
- Department of Hepatobiliary Disease, Dongfang Hospital, Xiamen University, Fuzhou, China
- The 900th Hospital of the People’s Liberation Army Joint Service Support Force, Fuzhou, China
| |
Collapse
|
48
|
Weng Y, Huang Q, Li C, Yang Y, Wang X, Yu J, Huang Y, Liang XJ. Improved Nucleic Acid Therapy with Advanced Nanoscale Biotechnology. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:581-601. [PMID: 31927331 PMCID: PMC6957827 DOI: 10.1016/j.omtn.2019.12.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/23/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022]
Abstract
Due to a series of systemic and intracellular obstacles in nucleic acid (NA) therapy, including fast degradation in blood, renal clearance, poor cellular uptake, and inefficient endosomal escape, NAs may need delivery methods to transport to the cell nucleus or cytosol to be effective. Advanced nanoscale biotechnology-associated strategies, such as controlling the particle size, charge, drug loading, response to environmental signals, or other physical/chemical properties of delivery carriers, have provided great help for the in vivo and in vitro delivery of NA therapeutics. In this review, we introduce the characteristics of different NA modalities and illustrate how advanced nanoscale biotechnology assists NA therapy. The specific features and challenges of various nanocarriers in clinical and preclinical studies are summarized and discussed. With the help of advanced nanoscale biotechnology, some of the major barriers to the development of NA therapy will eventually be overcome in the near future.
Collapse
Affiliation(s)
- Yuhua Weng
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Qianqian Huang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chunhui Li
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Yongfeng Yang
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiaoxia Wang
- Institute of Molecular Medicine, Peking University, Beijing 100871, P.R. China
| | - Jie Yu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, P.R. China.
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China.
| |
Collapse
|
49
|
Li W, Xu C, Li S, Chen X, Fan X, Hu Z, Wu YL, Li Z. Cyclodextrin based unimolecular micelles with targeting and biocleavable abilities as chemotherapeutic carrier to overcome drug resistance. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110047. [DOI: 10.1016/j.msec.2019.110047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 12/28/2022]
|
50
|
Luo Z, Wu YL, Li Z, Loh XJ. Recent Progress in Polyhydroxyalkanoates-Based Copolymers for Biomedical Applications. Biotechnol J 2019; 14:e1900283. [PMID: 31469496 DOI: 10.1002/biot.201900283] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/20/2019] [Indexed: 12/16/2022]
Abstract
In recent years, naturally biodegradable polyhydroxyalkanoate (PHA) monopolymers have become focus of public attentions due to their good biocompatibility. However, due to its poor mechanical properties, high production costs, and limited functionality, its applications in materials, energy, and biomedical applications are greatly limited. In recent years, researchers have found that PHA copolymers have better thermal properties, mechanical processability, and physicochemical properties relative to their homopolymers. This review summarizes the synthesis of PHA copolymers by the latest biosynthetic and chemical modification methods. The modified PHA copolymer could greatly reduce the production cost with elevated mechanical or physicochemical properties, which can further meet the practical needs of various fields. This review further summarizes the broad applications of modified PHA copolymers in biomedical applications, which might shred lights on their commercial applications.
Collapse
Affiliation(s)
- Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key, Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key, Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Zibiao Li
- Institute of Materials Science and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Xian Jun Loh
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore.,Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Singapore
| |
Collapse
|