1
|
Bakir M, Dawalibi A, Mufti MA, Behiery A, Mohammad KS. Nano-Drug Delivery Systems for Bone Metastases: Targeting the Tumor-Bone Microenvironment. Pharmaceutics 2025; 17:603. [PMID: 40430894 PMCID: PMC12115183 DOI: 10.3390/pharmaceutics17050603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/27/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
Bone metastases are a prevalent and debilitating consequence of various cancers, including breast and prostate carcinomas, which significantly compromise patient quality of life due to pain, fractures, and other skeletal-related events (SREs). This review examines the pathophysiology of bone metastases, emphasizing the role of the bone microenvironment in tumor progression through mechanisms such as osteotropism and the dysregulated bone remodeling cycle. The primary focus is on the emerging nano-drug delivery systems (DDS) designed to target the bone microenvironment and improve the therapeutic index of anticancer agents. Current treatments, mainly comprising bisphosphonates and radiotherapy, provide palliative benefits but often have limited efficacy and significant side effects. Innovative strategies, such as bisphosphonate-conjugated nanoparticles and targeted therapies that utilize the unique bone marrow niche, are explored for their potential to enhance drug accumulation at metastatic sites while minimizing systemic toxicity. These approaches include the use of liposomes, polymeric nanoparticles, and inorganic nanoparticles, which can be functionalized to exploit the biological barriers within the bone microenvironment. This review also discusses the challenges and future directions for nano-DDS in clinical settings, emphasizing the need for multidisciplinary research to effectively integrate these technologies into standard care protocols.
Collapse
Affiliation(s)
- Mohamad Bakir
- Department of Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.B.); (M.A.M.)
| | - Ahmad Dawalibi
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.D.); (A.B.)
| | - Mohammad Alaa Mufti
- Department of Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.B.); (M.A.M.)
| | - Ayman Behiery
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.D.); (A.B.)
| | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.D.); (A.B.)
| |
Collapse
|
2
|
Xu M, Liu H, Zhang J, Xu M, Zhao X, Wang J. Functionalized zeolite regulates bone metabolic microenvironment. Mater Today Bio 2025; 31:101558. [PMID: 40034985 PMCID: PMC11874869 DOI: 10.1016/j.mtbio.2025.101558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 03/05/2025] Open
Abstract
The regulation of bone metabolic microenvironment imbalances in diseases such as osteoporosis, bone defects, infections, and tumors remains a significant challenge in orthopedics. Therefore, it has become urgent to develop biomaterials with effective bone metabolic microenvironmental regulatory functions. Zeolites, as advanced biomedical materials, possess distinctive physicochemical properties such as multi-level pore structures, adjustable frameworks, easily modifiable surfaces, and excellent adsorption capabilities. These advantageous characteristics give zeolites broad application prospects in regulating the bone metabolic microenvironment. Therefore, this paper first classifies zeolites used to regulate the bone metabolic microenvironment based on their topological structures and compositional frameworks. Subsequently, it provides a detailed description of modification strategies for zeolite materials aimed at regulating this microenvironment. Next, a comprehensive summary was provided on the preparation strategies for zeolite materials aimed at regulating the bone metabolic microenvironment. Additionally, the paper focuses on the specific applications of zeolite materials in conditions of bone metabolic imbalance, such as osteoporosis, bone defects, orthopedic infections, and bone tumors, highlighting their potential in enhancing osteogenic microenvironments, controlling infections, and treating bone tumors. Finally, it outlines the prospects and challenges associated with the application of zeolites in regulating the bone metabolic microenvironment. This review comprehensively summarizes zeolites used for bone metabolic regulation, aiming to provide guidance for future research and application development.
Collapse
Affiliation(s)
| | | | - Jiaxin Zhang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Meng Xu
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Xin Zhao
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Jincheng Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, China
| |
Collapse
|
3
|
Liu W, Wu J, Jiang Z, Zhang X, Wang Z, Meng F, Liu Z, Zhang T. Application of Ordered Porous Silica Materials in Drug Delivery: A Review. Molecules 2024; 29:5713. [PMID: 39683872 DOI: 10.3390/molecules29235713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Nanotechnology has significantly advanced various fields, including therapeutic delivery, through the use of nanomaterials as drug carriers. The biocompatibility of ordered porous silica materials makes them promising candidates for drug delivery systems, particularly in the treatment of cancer and other diseases. This review summarizes the use of microporous zeolites and mesoporous silica materials in drug delivery, focusing on their physicochemical properties and applications as drug carriers. Special emphasis is placed on strategies for encapsulation and functionalization, highlighting their role in enhancing drug loading and enabling targeted delivery. In conclusion, while ordered porous silica materials hold great potential for drug delivery systems, certain challenges remain.
Collapse
Affiliation(s)
- Wenwen Liu
- Nanjing University of Science and Technology Hospital, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junlin Wu
- School of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Zehao Jiang
- School of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Xinyu Zhang
- School of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Zhenxiang Wang
- School of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Fanjun Meng
- School of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Zidi Liu
- Big Data and Intelligence Engineering School, Chongqing College of International Business and Economics, Chongqing 401520, China
| | - Teng Zhang
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan 250307, China
| |
Collapse
|
4
|
Pan X, Xiao S, Wang B, Cai Y, Chen X, Wang J. Curcumin Nanocapsules based on carbon dots for photodynamic sterilization towards Listeria monocytogenes and Staphylococcus aureus. Food Chem 2024; 458:140295. [PMID: 38981397 DOI: 10.1016/j.foodchem.2024.140295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024]
Abstract
Curcumin (Cur) as a natural food additive and photosensitizer has been widely applied on photodynamic sterilization and preservation for food, but the poor aqueous solubility and light stability restrict its extensive application. In this study, we report a Cur nanocapsules (Cur-CDs) made by carbon dots (CDs). Attributing to the hydrogen bonds formed between Cur and CDs, Cur-CDs exhibits excellent Cur aqueous solubility each to 9286.98 ng/mL (enhanced by 246.27 times) and light stability (enhanced by 1.51 times). The photogenerated electron transmission from Cur to CDs in addition resulted in >1.23 and 1.60 times generation of •O2- and •OH, compared to that of bare Cur. Accordingly, 5.73 × 103 CFU L. monocytogenes, and 5.43 × 103 CFU S. aureus were killed by 0.06 mg/mL Cur-CDs within 20 mins of blue light, showing the promising potential in the development and application of safe and environmentally friendly non-thermal sterilization technology based on Cur-CDs.
Collapse
Affiliation(s)
- Xiaoqin Pan
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, PR China; Dongguan Key Laboratory of Prepared Dishes Innovative Development & Quality Control, Regional Brand Innovation & Development Institute of Dongguan Prepared Dishes, Dongguan 523808, PR China.
| | - Shan Xiao
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, PR China; Dongguan Key Laboratory of Prepared Dishes Innovative Development & Quality Control, Regional Brand Innovation & Development Institute of Dongguan Prepared Dishes, Dongguan 523808, PR China.
| | - Bo Wang
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, PR China; Dongguan Key Laboratory of Prepared Dishes Innovative Development & Quality Control, Regional Brand Innovation & Development Institute of Dongguan Prepared Dishes, Dongguan 523808, PR China.
| | - Yanxue Cai
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, PR China; Dongguan Key Laboratory of Prepared Dishes Innovative Development & Quality Control, Regional Brand Innovation & Development Institute of Dongguan Prepared Dishes, Dongguan 523808, PR China.
| | - Xuan Chen
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, PR China; Dongguan Key Laboratory of Prepared Dishes Innovative Development & Quality Control, Regional Brand Innovation & Development Institute of Dongguan Prepared Dishes, Dongguan 523808, PR China.
| | - Jihui Wang
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, PR China; Dongguan Key Laboratory of Prepared Dishes Innovative Development & Quality Control, Regional Brand Innovation & Development Institute of Dongguan Prepared Dishes, Dongguan 523808, PR China.
| |
Collapse
|
5
|
Guan Y, Zhang W, Mao Y, Li S. Nanoparticles and bone microenvironment: a comprehensive review for malignant bone tumor diagnosis and treatment. Mol Cancer 2024; 23:246. [PMID: 39487487 PMCID: PMC11529338 DOI: 10.1186/s12943-024-02161-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Malignant bone tumors, which are difficult to treat with current clinical strategies, originate from bone tissues and can be classified into primary and secondary types. Due to the specificity of the bone microenvironment, the results of traditional means of treating bone tumors are often unsatisfactory, so there is an urgent need to develop new treatments for malignant bone tumors. Recently, nanoparticle-based approaches have shown great potential in diagnosis and treatment. Nanoparticles (NPs) have gained significant attention due to their versatility, making them highly suitable for applications in bone tissue engineering, advanced imaging techniques, and targeted drug delivery. For diagnosis, NPs enhance imaging contrast and sensitivity by integrating targeting ligands, which significantly improve the specific recognition and localization of tumor cells for early detection. For treatment, NPs enable targeted drug delivery, increasing drug accumulation at tumor sites while reducing systemic toxicity. In conclusion, understanding bone microenvironment and using the unique properties of NPs holds great promise in improving disease management, enhancing treatment outcomes, and ultimately improving the quality of life for patients with malignant bone tumors. Further research and development will undoubtedly contribute to the advancement of personalized medicine in the field of bone oncology.
Collapse
Affiliation(s)
- Yujing Guan
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Wei Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, P.R. China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, P.R. China.
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China.
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China.
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| |
Collapse
|
6
|
Pandya T, Patel S, Kulkarni M, Singh YR, Khodakiya A, Bhattacharya S, Prajapati BG. Zeolite-based nanoparticles drug delivery systems in modern pharmaceutical research and environmental remediation. Heliyon 2024; 10:e36417. [PMID: 39262951 PMCID: PMC11388657 DOI: 10.1016/j.heliyon.2024.e36417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024] Open
Abstract
This review explores the potential of zeolite-based nanoparticles in modern pharmaceutical research, focusing on their role in advanced drug delivery systems. Zeolites, integrated into polymeric materials, offer precise drug delivery capabilities due to their unique structural features, biocompatibility, and controllable properties. Additionally, zeolites demonstrate environmental remediation potential through ion exchange processes. Synthetic zeolites, with modified release mechanisms, possess distinctive optical and electronic properties, expanding their applications in various fields. The study details zeolites' significance across industrial and scientific domains, outlining synthesis methods and size control techniques. The review emphasizes successful encapsulation and functionalization strategies for drug delivery, highlighting their role in enhancing drug stability and enabling targeted delivery. Advanced characterization techniques contribute to a comprehensive understanding of zeolite-based drug delivery systems. Addressing potential carcinogenicity, the review discusses environmental impact and risk assessment, stressing the importance of safety considerations in nanoparticle research. In biomedical applications, zeolites play vital roles in antidiarrheal, antitumor, antibacterial, and MRI contrast agents. Clinical trials featuring zeolite-based interventions underscore zeolite's potential in addressing diverse medical challenges. In conclusion, zeolite-based nanoparticles emerge as promising tools for targeted drug delivery, showcasing diverse applications and therapeutic potentials. Despite challenges, their unique advantages position zeolites at the forefront of innovative drug delivery systems.
Collapse
Affiliation(s)
- Tosha Pandya
- L. J. Institute of Pharmacy, L J University, Ahmedabad, Sanand, Sarkhej-Gandhinagar Highway, 382 210, Gujarat, India
| | - Shruti Patel
- Parul Institute of Pharmacy, Parul University, Lambda, Vadodara, 391760, India
| | - Mangesh Kulkarni
- L. J. Institute of Pharmacy, L J University, Ahmedabad, Sanand, Sarkhej-Gandhinagar Highway, 382 210, Gujarat, India
- Gandhinagar Institute of Pharmacy, Gandhinagar University, Khatraj-Kalol Road, Moti Bhoyan, Kalol, Gandhinagar, 382721, Gujarat, India
| | - Yash Raj Singh
- L. J. Institute of Pharmacy, L J University, Ahmedabad, Sanand, Sarkhej-Gandhinagar Highway, 382 210, Gujarat, India
| | - Akruti Khodakiya
- C.U. Shah College of Pharmacy and Research, C.U. Shah University, Surendranagar-Ahmedabad State Highway, 363030, Gujarat, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Bhupendra G Prajapati
- Shree S.K. Patel College of Pharmaceutical Education & Research, Ganpat University, Gujarat, India
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| |
Collapse
|
7
|
Ding S, Xiong S, Wang X, Zhang C, Chen S, Sun M, Wu C, Zhang X, Wang M, Wang J, Shang X. Effects of Doxorubicin, Epirubicin, and Liposomal Doxorubicin (Anthracycline) on cardiac function in patients with osteosarcoma and their influencing factors. Clin Transl Oncol 2024; 26:1459-1466. [PMID: 38329609 DOI: 10.1007/s12094-023-03372-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/06/2023] [Indexed: 02/09/2024]
Abstract
OBJECTIVE The objective of this study was to investigate the impact of Doxorubicin, Epirubicin, and Liposomal Doxorubicin (Anthracycline) on cardiac function in osteosarcoma patients and analyze the factors influencing this effect. METHODS A retrospective study was conducted on 165 osteosarcoma patients admitted to our hospital from January 2020 to December 2022. Based on the chemotherapy regimen, the patients were divided into two groups: the control group (n = 62) treated with Cisplatin and cyclophosphamide, and the observation group (n = 103) treated with Doxorubicin, Epirubicin, and Liposomal Doxorubicin (Anthracycline). The general records of both groups were analyzed, and left ventricular ejection fraction (LVEF) was evaluated through echocardiography before and after chemotherapy. Blood cTnT and CK-MB levels were measured using immunoluminescence. The incidence of adverse reactions during chemotherapy was also analyzed. Univariate analysis was performed to identify patients with cardiotoxic events, and multiple logistic regression analysis was done to study the effects of Doxorubicin, Epirubicin, Liposomal Doxorubicin, and their dosages on cardiotoxicity in patients. RESULTS The general records between the two groups showed no significant differences (P > 0.05). However, at the fourth cycle of chemotherapy, the observation group exhibited a lower LVEF (P < 0.05), and a higher percentage of LVEF decrease compared to the control group (P < 0.05). Moreover, the observation group had higher levels of blood cTnT and CK-MB (P < 0.05). The incidence of cardiotoxicity in the observation group was also higher (P < 0.05), but no significant differences were seen in other adverse reaction rates (P > 0.05). The occurrence of cardiotoxicity was found to be related to the choice and dosage of chemotherapy drugs (P < 0.05), but not significantly correlated with age, sex, and mediastinal irradiation in patients (P > 0.05). Furthermore, the use of Doxorubicin, Epirubicin, and Liposomal Doxorubicin in chemotherapy, as well as an increase in their dosages, was found to elevate the risk of cardiotoxicity in osteosarcoma patients (P < 0.05). However, age, sex, and mediastinal radiation were not significantly associated with cardiotoxicity in osteosarcoma patients (P > 0.05). CONCLUSION We demonstrated that Doxorubicin, Epirubicin, Liposomal Doxorubicin (Anthracycline), and other drugs adversely affected cardiac function in osteosarcoma patients, increasing the risk of cardiac toxicity. Therefore, close monitoring of cardiac function during chemotherapy is crucial, and timely adjustments to the chemotherapy regimen are necessary. In addition, rational control of drug selection and dosage is essential to minimize the occurrence of cardiac toxicity.
Collapse
Affiliation(s)
- Shanshan Ding
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shasha Xiong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xueli Wang
- Laboratory of Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Changdong Zhang
- Laboratory of Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Song Chen
- Laboratory of Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Sun
- Laboratory of Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunlin Wu
- Laboratory of Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiong Zhang
- Laboratory of Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meiying Wang
- Laboratory of Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jia Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, Research Center for Brain-Inspired Intelligence, School of Life Science and Technology, The Key Laboratory of Neuro-Informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Xiaoke Shang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Road, Wuhan, 430022, Hubei, China.
| |
Collapse
|
8
|
Al-Sahlawi F, Al-Ani I, El-Tanani M, Farooq HA. Preparation and evaluation of biological activity of ZSM-5 nanoparticles loaded with gefitinib for the treatment of non-small cell lung carcinoma. PHARMACIA 2024; 71:1-12. [DOI: 10.3897/pharmacia.71.e112449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Background: Gefitinib (GEF) is a tyrosine kinase inhibitor that has proven good efficacy against Non-small cell Lung Carcinoma (NSCLC). It has low solubility and dissolution rate and low oral bioavailability. This work aimed to improve efficacy by loading on ZSM-5 silica nanoparticles and testing the prepared delivery system on A-549 lung cancer cells.
Methods: ZSM-5 was synthesized in the laboratory and different methods of loading GEF on the nanoparticles were used, then the system was characterized by X-ray diffraction, Fourier Transport Infra-Red (FTIR), and drug release and dissolution.
Results and conclusion: GEF-loaded nanoparticles (NPs) showed prolonged release of GEF over 12 hours with an improved biological efficacy expressed by the decrease in IC50 compared to free GEF (P < 0.001) using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. Also, there was a significant decrease in migration and colony formation ability of the GEF-loaded NPs on A-549 lung cancer cells. In conclusion, loading GEF onto ZSM-5 NPs resulted in a lower IC50 and improved biological action toward A-549 cells.
Collapse
|
9
|
Yu T, Cai Z, Chang X, Xing C, White S, Guo X, Jin J. Research Progress of Nanomaterials in Chemotherapy of Osteosarcoma. Orthop Surg 2023; 15:2244-2259. [PMID: 37403654 PMCID: PMC10475694 DOI: 10.1111/os.13806] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 05/05/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
Osteosarcoma (OS) is a common malignant bone tumor that occurs mostly in children and adolescents. At present, surgery after chemotherapy or postoperative adjuvant chemotherapy is the main treatment plan. However, the efficacy of chemotherapeutic drugs is limited by the occurrence of chemotherapeutic resistance, toxicity to normal cells, poor pharmacokinetic performance, and drug delivery failure. The delivery of chemotherapy drugs to the bone to treat OS may fail for a variety of reasons, such as a lack of selectivity for OS cells, initial sudden release, short-term release, and the presence of biological barriers (such as the blood-bone marrow barrier). Nanomaterials are new materials with at least one dimension on the nanometer scale (1-100 nm) in three-dimensional space. These materials have the ability to penetrate biological barriers and can accumulate preferentially in tumor cells. Studies have shown that the effective combination of nanomaterials and traditional chemotherapy can significantly improve the therapeutic effect. Therefore, this article reviews the latest research progress on the use of nanomaterials in OS chemotherapy.
Collapse
Affiliation(s)
- Tianci Yu
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Zongyan Cai
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Xingyu Chang
- The First Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Chengwei Xing
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Sylvia White
- Pathology DepartmentYale School of MedicineNew HavenCTUSA
| | - Xiaoxue Guo
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Jiaxin Jin
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouChina
- Department of OrthopaedicsThe Second Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|
10
|
Zhang H, Luo P, Huang X. Engineered nanomaterials enhance drug delivery strategies for the treatment of osteosarcoma. Front Pharmacol 2023; 14:1269224. [PMID: 37670948 PMCID: PMC10475588 DOI: 10.3389/fphar.2023.1269224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 09/07/2023] Open
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor in adolescents, and the clinical treatment of OS mainly includes surgery, radiotherapy, and chemotherapy. However, the side effects of chemotherapy drugs are an issue that clinicians cannot ignore. Nanomedicine and drug delivery technologies play an important role in modern medicine. The development of nanomedicine has ushered in a new turning point in tumor treatment. With the emergence and development of nanoparticles, nanoparticle energy surfaces can be designed with different targeting effects. Not only that, nanoparticles have unique advantages in drug delivery. Nanoparticle delivery drugs can not only reduce the toxic side effects of chemotherapy drugs, but due to the enhanced permeability retention (EPR) properties of tumor cells, nanoparticles can survive longer in the tumor microenvironment and continuously release carriers to tumor cells. Preclinical studies have confirmed that nanoparticles can effectively delay tumor growth and improve the survival rate of OS patients. In this manuscript, we present the role of nanoparticles with different functions in the treatment of OS and look forward to the future treatment of improved nanoparticles in OS.
Collapse
Affiliation(s)
- Haorui Zhang
- Department of Spine, Trauma Surgery, The First People’s Hospital of Guangyuan, Guangyuan, China
| | - Ping Luo
- Science and Technology Education Section, The First People’s Hospital of Guangyuan, Guangyuan, China
| | - Xiaojun Huang
- Department of Spine, Trauma Surgery, The First People’s Hospital of Guangyuan, Guangyuan, China
| |
Collapse
|
11
|
Amiryaghoubi N, Fathi M, Barar J, Omidian H, Omidi Y. Advanced nanoscale drug delivery systems for bone cancer therapy. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166739. [PMID: 37146918 DOI: 10.1016/j.bbadis.2023.166739] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Bone tumors are relatively rare, which are complex cancers and mostly involve the long bones and pelvis. Bone cancer is mainly categorized into osteosarcoma (OS), chondrosarcoma, and Ewing sarcoma. Of these, OS is the most intimidating cancer of the bone tissue, which is mostly found in the log bones in young children and older adults. Conspicuously, the current chemotherapy modalities used for the treatment of OS often fail mainly due to (i) the non-specific detrimental effects on normal healthy cells/tissues, (ii) the possible emergence of drug resistance mechanisms by cancer cells, and (iii) difficulty in the efficient delivery of anticancer drugs to the target cells. To impose the maximal therapeutic impacts on cancerous cells, it is of paramount necessity to specifically deliver chemotherapeutic agents to the tumor site and target the diseased cells using advanced nanoscale multifunctional drug delivery systems (DDSs) developed using organic and inorganic nanosystems. In this review, we provide deep insights into the development of various DDSs applied in targeting and eradicating OS. We elaborate on different DDSs developed using biomaterials, including chitosan, collagen, poly(lactic acid), poly(lactic-co-glycolic acid), polycaprolactone, poly(ethylene glycol), polyvinyl alcohol, polyethyleneimine, quantum dots, polypeptide, lipid NPs, and exosomes. We also discuss DDSs established using inorganic nanoscale materials such as magnetic NPs, gold, zinc, titanium NPs, ceramic materials, silica, silver NPs, and platinum NPs. We further highlight anticancer drugs' role in bone cancer therapy and the biocompatibility of nanocarriers for OS treatment.
Collapse
Affiliation(s)
- Nazanin Amiryaghoubi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Hossein Omidian
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
12
|
T. M. Kadja G, T. U. Culsum N, Putri RM. Recent advances in the utilization of zeolite-based materials for controlled drug delivery. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
13
|
Tian H, Cao J, Li B, Nice EC, Mao H, Zhang Y, Huang C. Managing the immune microenvironment of osteosarcoma: the outlook for osteosarcoma treatment. Bone Res 2023; 11:11. [PMID: 36849442 PMCID: PMC9971189 DOI: 10.1038/s41413-023-00246-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/17/2022] [Accepted: 12/29/2022] [Indexed: 03/01/2023] Open
Abstract
Osteosarcoma, with poor survival after metastasis, is considered the most common primary bone cancer in adolescents. Notwithstanding the efforts of researchers, its five-year survival rate has only shown limited improvement, suggesting that existing therapeutic strategies are insufficient to meet clinical needs. Notably, immunotherapy has shown certain advantages over traditional tumor treatments in inhibiting metastasis. Therefore, managing the immune microenvironment in osteosarcoma can provide novel and valuable insight into the multifaceted mechanisms underlying the heterogeneity and progression of the disease. Additionally, given the advances in nanomedicine, there exist many advanced nanoplatforms for enhanced osteosarcoma immunotherapy with satisfactory physiochemical characteristics. Here, we review the classification, characteristics, and functions of the key components of the immune microenvironment in osteosarcoma. This review also emphasizes the application, progress, and prospects of osteosarcoma immunotherapy and discusses several nanomedicine-based options to enhance the efficiency of osteosarcoma treatment. Furthermore, we examine the disadvantages of standard treatments and present future perspectives for osteosarcoma immunotherapy.
Collapse
Affiliation(s)
- Hailong Tian
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Jiangjun Cao
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Bowen Li
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Edouard C. Nice
- grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800 Australia
| | - Haijiao Mao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315020, People's Republic of China.
| | - Yi Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
14
|
Mijailović NR, Nedić Vasiljević B, Ranković M, Milanović V, Uskoković-Marković S. Environmental and Pharmacokinetic Aspects of Zeolite/Pharmaceuticals Systems—Two Facets of Adsorption Ability. Catalysts 2022; 12:837. [DOI: 10.3390/catal12080837] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Zeolites belong to aluminosilicate microporous solids, with strong and diverse catalytic activity, which makes them applicable in almost every kind of industrial process, particularly thanks to their eco-friendly profile. Another crucial characteristic of zeolites is their tremendous adsorption capability. Therefore, it is self-evident that the widespread use of zeolites is in environmental protection, based primarily on the adsorption capacity of substances potentially harmful to the environment, such as pharmaceuticals, pesticides, or other industry pollutants. On the other hand, zeolites are also recognized as drug delivery systems (DDS) carriers for numerous pharmacologically active agents. The enhanced bioactive ability of DDS zeolite as a drug carrying nanoplatform is confirmed, making this system more specific and efficient, compared to the drug itself. These two applications of zeolite, in fact, illustrate the importance of (ir)reversibility of the adsorption process. This review gives deep insight into the balance and dynamics that are established during that process, i.e., the interaction between zeolites and pharmaceuticals, helping scientists to expand their knowledge necessarily for a more effective application of the adsorption phenomenon of zeolites.
Collapse
Affiliation(s)
- Nataša R. Mijailović
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Bojana Nedić Vasiljević
- Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia
| | - Maja Ranković
- Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia
| | | | | |
Collapse
|
15
|
Chitosan-based biomaterials for the treatment of bone disorders. Int J Biol Macromol 2022; 215:346-367. [PMID: 35718150 DOI: 10.1016/j.ijbiomac.2022.06.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 12/22/2022]
Abstract
Bone is an alive and dynamic organ that is well-differentiated and originated from mesenchymal tissues. Bone undergoes continuous remodeling during the lifetime of an individual. Although knowledge regarding bones and their disorders has been constantly growing, much attention has been devoted to effective treatments that can be used, both from materials and medical performance points of view. Polymers derived from natural sources, for example polysaccharides, are generally biocompatible and are therefore considered excellent candidates for various biomedical applications. This review outlines the development of chitosan-based biomaterials for the treatment of bone disorders including bone fracture, osteoporosis, osteoarthritis, arthritis rheumatoid, and osteosarcoma. Different examples of chitosan-based formulations in the form of gels, micro/nanoparticles, and films are discussed herein. The work also reviews recent patents and important developments related to the use of chitosan in the treatment of bone disorders. Although most of the cited research was accomplished before reaching the clinical application level, this manuscript summarizes the latest achievements within chitosan-based biomaterials used for the treatment of bone disorders and provides perspectives for future scientific activities.
Collapse
|
16
|
Wu K, Yu B, Li D, Tian Y, Liu Y, Jiang J. Recent Advances in Nanoplatforms for the Treatment of Osteosarcoma. Front Oncol 2022; 12:805978. [PMID: 35242707 PMCID: PMC8885548 DOI: 10.3389/fonc.2022.805978] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor in children and young people. Traditional surgical excision combined with chemotherapy presents many limitations, such as resistance and systemic side effects of chemotherapy drugs, postoperative recurrence, and bone defects. Given these limitations, novel therapeutic modalities for OS treatment using nanometer-sized platform-based chemotherapeutic delivery have emerged as a promising alternative therapy. This form of therapy offers multiple advantages, such as accurate delivery of the drug to the tumor site and repair of limited bone defects after tumor resection. In this review, we briefly summarize nanoplatforms, including liposomes, polymeric nanoparticles, inorganic nanoparticles, nanomicelles, dendrimers, nanocapsules, and exosomes. The essential shortcomings involved in these nanoplatforms, such as poor stability, immunogenicity, insufficient circulation, and drug leakage are also discussed, and related solutions are briefly proposed. Finally, the application prospects of nanoplatforms in the treatment of OS are discussed.
Collapse
Affiliation(s)
- Kunzhe Wu
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Beibei Yu
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Di Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yangyang Tian
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yan Liu
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinlan Jiang
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Sumer E, Hamitoglu M, Cumbul A, Ercan S, Bac N, Aydin A. Determination of In Vivo efficacy and safety of zeolite as a new pleurodesis agent. Toxicol Rep 2022; 9:1754-1765. [DOI: 10.1016/j.toxrep.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022] Open
|
18
|
Serati-Nouri H, Mahmoudnezhad A, Bayrami M, Sanajou D, Tozihi M, Roshangar L, Pilehvar Y, Zarghami N. Sustained delivery efficiency of curcumin through ZSM-5 nanozeolites/electrospun nanofibers for counteracting senescence of human adipose-derived stem cells. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Hao J, Stavljenić Milašin I, Batu Eken Z, Mravak-Stipetic M, Pavelić K, Ozer F. Effects of Zeolite as a Drug Delivery System on Cancer Therapy: A Systematic Review. Molecules 2021; 26:6196. [PMID: 34684777 PMCID: PMC8540241 DOI: 10.3390/molecules26206196] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/26/2022] Open
Abstract
Zeolites and zeolitic imidazolate frameworks (ZIFs) are widely studied as drug carrying nanoplatforms to enhance the specificity and efficacy of traditional anticancer drugs. At present, there is no other systematic review that assesses the potency of zeolites/ZIFs as anticancer drug carriers. Due to the porous nature and inherent pH-sensitive properties of zeolites/ZIFs, the compounds can entrap and selectively release anticancer drugs into the acidic tumor microenvironment. Therefore, it is valuable to provide a comprehensive overview of available evidence on the topic to identify the benefits of the compound as well as potential gaps in knowledge. The purpose of this study was to evaluate the potential therapeutic applications of zeolites/ZIFs as drug delivery systems delivering doxorubicin (DOX), 5-fluorouracil (5-FU), curcumin, cisplatin, and miR-34a. Following PRISMA guidelines, an exhaustive search of PubMed, Scopus, Embase, and Web of Science was conducted. No language or time limitations were used up to 25th August 2021. Only full text articles were selected that pertained to the usage of zeolites/ZIFs in delivering anticancer drugs. Initially, 1279 studies were identified, of which 572 duplicate records were excluded. After screening for the title, abstract, and full texts, 53 articles remained and were included in the qualitative synthesis. An Inter-Rater Reliability (IRR) test, which included a percent user agreement and reliability percent, was conducted for the 53 articles. The included studies suggest that anticancer drug-incorporated zeolites/ZIFs can be used as alternative treatment options to enhance the efficacy of cancer treatment by mitigating the drawbacks of drugs under conventional treatment.
Collapse
Affiliation(s)
- Jessica Hao
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | | | - Zeynep Batu Eken
- Department of Restorative Dentistry, Yeditepe University, 34728 Istanbul, Turkey;
| | - Marinka Mravak-Stipetic
- Clinical Department of Oral Medicine, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Krešimir Pavelić
- Faculty of Medicine, Juraj Dobrila University of Pula, HR-52100 Pula, Croatia;
| | - Fusun Ozer
- Department of Preventative and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Pan X, Dong W, Zhang J, Xie Z, Li W, Zhang H, Zhang X, Chen P, Zhou W, Lei B. TiO 2/Chlorophyll S-Scheme Composite Photocatalyst with Improved Photocatalytic Bactericidal Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39446-39457. [PMID: 34387085 DOI: 10.1021/acsami.1c10892] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Step-scheme (S-scheme) photocatalysts have been proposed for highly efficient charge separation and strong redox activity in the photocatalysis field. Here, we reported a facile strategy to obtain the S-scheme heterojunction composite TiO2/chlorophyll (Chl). The S-scheme heterojunction enables the significant improvement of electron transfer efficiency at the interfacial heterojunction of TiO2/Chl. Also, the lifted conduction band and valence band of TiO2/Chl resulted in more than 1.61 times generation of reactive oxidizing species, compared to that of bare TiO2. In addition, TiO2/Chl was applied as a photocatalytic bactericidal material to fabricate commercial masks for prolonged life span of the mask. The TiO2/Chl-coated mask filter exhibited excellent bactericidal effect on Escherichia coli under light illumination (2.94 × 107 cfu E. coli were killed by 1 cm-2 coated mask filters within illumination of 3 h), while commercial mask filters showed no bactericidal effect. After three circulation-sterilization tests, the TiO2/Chl-made mask filter maintained the initial bactericidal effect, which greatly extended the life span of the mask that presents a promising strategy to alleviate the supply stress of masks.
Collapse
Affiliation(s)
- Xiaoqin Pan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Wenya Dong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Jingsong Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Zhenxi Xie
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Wei Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Haoran Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xuejie Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Pinhong Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Wuyi Zhou
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, Maoming 525100, P. R. China
| |
Collapse
|
21
|
Ambrosio L, Raucci MG, Vadalà G, Ambrosio L, Papalia R, Denaro V. Innovative Biomaterials for the Treatment of Bone Cancer. Int J Mol Sci 2021; 22:8214. [PMID: 34360979 PMCID: PMC8347125 DOI: 10.3390/ijms22158214] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/18/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
Bone cancer is a demanding challenge for contemporary medicine due to its high frequency of presentation and significant heterogeneity of malignant lesions developing within the bone. To date, available treatments are rarely curative and are primarily aimed at prolonging patients' survival and ameliorating their quality of life. Furthermore, both pharmacological and surgical therapies are aggravated by a consistent burden of adverse events and subsequent disability due to the loss of healthy bone structural and functional properties. Therefore, great research efforts are being made to develop innovative biomaterials able to selectively inhibit bone cancer progression while reducing the loss of bone structural properties secondary to local tissue invasion. In this review, we describe the state of the art of innovative biomaterials for the treatment of bone cancer. Along with physiological bone remodeling, the development of bone metastasis and osteosarcoma will be depicted. Subsequently, recent advances on nanocarrier-based drug delivery systems, as well as the application of novel, multifunctional biomaterials for the treatment of bone cancer will be discussed. Eventually, actual limitations and promising future perspectives regarding the employment of such approaches in the clinical scenario will be debated.
Collapse
Affiliation(s)
- Luca Ambrosio
- Laboratory of Regenerative Orthopaedics, Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico, University of Rome, Via Alvaro del Portillo 200, 00128 Rome, Italy; (G.V.); (R.P.); (V.D.)
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54, Mostra d’Oltremare Pad. 20, 80125 Naples, Italy; (M.G.R.); (L.A.)
| | - Gianluca Vadalà
- Laboratory of Regenerative Orthopaedics, Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico, University of Rome, Via Alvaro del Portillo 200, 00128 Rome, Italy; (G.V.); (R.P.); (V.D.)
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54, Mostra d’Oltremare Pad. 20, 80125 Naples, Italy; (M.G.R.); (L.A.)
| | - Rocco Papalia
- Laboratory of Regenerative Orthopaedics, Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico, University of Rome, Via Alvaro del Portillo 200, 00128 Rome, Italy; (G.V.); (R.P.); (V.D.)
| | - Vincenzo Denaro
- Laboratory of Regenerative Orthopaedics, Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico, University of Rome, Via Alvaro del Portillo 200, 00128 Rome, Italy; (G.V.); (R.P.); (V.D.)
| |
Collapse
|
22
|
Murugesan S, Scheibel T. Chitosan‐based
nanocomposites for medical applications. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210251] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Selvakumar Murugesan
- Lehrstuhl Biomaterialien Universität Bayreuth Bayreuth Germany
- Department of Metallurgical and Materials Engineering National Institute of Technology Karnataka Mangalore India
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien Universität Bayreuth Bayreuth Germany
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Bayreuther Materialzentrum (BayMAT), Bayerisches Polymerinstitut (BPI) University Bayreuth Bayreuth Germany
| |
Collapse
|
23
|
Zeolite A enhanced chitosan films with high water absorption ability and antimicrobial activity. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.08.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Maleki M, Golchin A, Alemi F, Younesi S, Asemi Z, Javadi S, Khiavi PA, Soleinmapour J, Yousefi B. Cytotoxicity and apoptosis of nanoparticles on osteosarcoma cells using doxorubicin and methotrexate: A systematic review. Eur J Pharmacol 2021; 904:174131. [PMID: 33933464 DOI: 10.1016/j.ejphar.2021.174131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 01/02/2023]
Abstract
The safe development of nanotechnology and usage of nanoparticles (NPs) require the cellular toxicity examination of these NPs. Systematic studies are necessary to collect related data and comparison of the physicochemical features of NPs and their effects on cellular viability on model systems. In the present study, we systematically reviewed original studies, which investigated the cytotoxic effects and apoptosis of free NPs (loaded with doxorubicin (Dox)/or methotrexate (MTX)) via in vitro models. Articles were systematically collected by screening the literature published online in the following databases; PUBMED and SCOPUS and Web of Science and EMBASE. 23 in vitro cytotoxicity studies with 8 apoptosis examinations were found on osteosarcoma (OS) cell lines (mostly on MG-63). 43.47% of the synthesized NPs (10 studies) showed no cytotoxicity to OS cells. 39.13% of the synthesized NPs (9 studies) showed time and/or concentration related-cytotoxicity. Potent cytotoxic synthesized NP did not state. Significance difference between the half-maximal inhibitory concentration (IC50) of drug and drug/NP reported in all studies. Involved NPs in this systematic review for delivery of Dox/or MTX to OS cells have higher safety index and biocompatibility, although small and positively charged NPs acted more toxic in comparison to larger and negative ones, apoptosis rate like cytotoxicity index was notable in drug/NP group, to apply them in clinical works. Future studies are required to address the mechanisms involved in cytotoxicity and apoptosis with a special focus on in vivo investigations.
Collapse
Affiliation(s)
- Masomeh Maleki
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asal Golchin
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Forough Alemi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Younesi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Samira Javadi
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Payam Ali Khiavi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleinmapour
- Department of Orthopedics Surgery, Shohada Teaching Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Maleki Dana P, Hallajzadeh J, Asemi Z, Mansournia MA, Yousefi B. Chitosan applications in studying and managing osteosarcoma. Int J Biol Macromol 2020; 169:321-329. [PMID: 33310094 DOI: 10.1016/j.ijbiomac.2020.12.058] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/22/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Osteosarcoma has a high prevalence among children and adolescents. Common treatments of this disease are not promising enough. Molecular processes involved in the pathogenesis of osteosarcoma are not fully understood. Besides, the remnants of tumor cells after surgery can cause bone destruction and recurrence of the disease. Thus, there is a need to develop novel drugs or enhancing the currently-used drugs as well as identifying bone-repairing methods. Chitosan is a natural compound produced by the deacetylation of chitin. Research has shown that chitosan can be used in various fields due to its beneficial effects, such as biodegradability and biocompatibility. Regarding cancer, chitosan exerts several anti-tumor activities. Moreover, it can be used in diagnostic techniques, drug delivery systems, and cell culture methods. Herein, we aim to discuss the potential roles of chitosan in studying and treating osteosarcoma. We review the literature on chitosan's applications as a drug delivery system and how it can be combined with other substances to improve its ability of local drug delivery. We take a look into the studies concerning the possible benefits of chitosan in the field of bone tissue engineering and 3D culturing. Furthermore, anti-cancer activities of different compounds of chitosan are reviewed.
Collapse
Affiliation(s)
- Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Synthesis of PLGA/chitosan/zeolites and PLGA/chitosan/metal organic frameworks nanofibers for targeted delivery of Paclitaxel toward prostate cancer cells death. Int J Biol Macromol 2020; 164:1461-1474. [DOI: 10.1016/j.ijbiomac.2020.07.228] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022]
|
27
|
DOX-conjugated CQD-based nanosponges for tumor intracellular pH-triggered DOX release and imaging. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125258] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
28
|
Khodadadi Yazdi M, Zarrintaj P, Hosseiniamoli H, Mashhadzadeh AH, Saeb MR, Ramsey JD, Ganjali MR, Mozafari M. Zeolites for theranostic applications. J Mater Chem B 2020; 8:5992-6012. [PMID: 32602516 DOI: 10.1039/d0tb00719f] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Theranostic platforms bring about a revolution in disease management. During recent years, theranostic nanoparticles have been utilized for imaging and therapy simultaneously. Zeolites, because of their porous structure and tunable properties, which can be modified with various materials, can be used as a delivery agent. The porous structure of a zeolite enables it to be loaded and unloaded with various molecules such as therapeutic agents, photosensitizers, biological macromolecules, MRI contrast agents, radiopharmaceuticals, near-infrared (NIR) fluorophores, and microbubbles. Furthermore, theranostic zeolite nanocarriers can be further modified with targeting ligands, which is highly interesting for targeted cancer therapies.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Yin M, Song Y, Guo S, Zhang X, Sun K, Li Y, Shi Y. Intelligent Escape System for the Oral Delivery of Liraglutide: A Perfect Match for Gastrointestinal Barriers. Mol Pharm 2020; 17:1899-1909. [PMID: 32267705 DOI: 10.1021/acs.molpharmaceut.9b01307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epithelial cells are known to impede the oral delivery of polypeptides, and the accumulation of mucus and regular dynamic renewal also significantly impede drug absorption. In this work, we prepared a core-shell (COS) nanosystem using poly-N-(2-hydroxypropyl)methacrylamide (pHPMA)/chitosan (CTS). Liraglutide (NN2211) was isolated from the gastrointestinal environment and smoothly passes through the mucous layer. CSKSSDYQC (CSK) peptide and hemagglutinin-2 (HA2) were introduced into the COS nanosystem to establish a complete path from the oral cavity to the epithelial basal side. The fate of nanocapsules in vivo was studied by fluorescence detection. The results showed that the nanocapsules escaped smoothly from the mucus. Taking into account the characteristics of CSK targeting goblet cells, we conducted cell-level studies, and the results showed that after the modification of CSK and pHPMA, more nanocapsules entered the cells. In vitro and in vivo evaluation results showed that the system successfully established a complete path from mucus to epithelial cells by responding to the gastrointestinal environment multiple times.
Collapse
Affiliation(s)
- Miaomiao Yin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P. R. China
| | - Yina Song
- State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Luye Pharmaceutical Co., Ltd., Yantai 264003, P. R. China
| | - Shiqi Guo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P. R. China
| | - Xuemei Zhang
- State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Luye Pharmaceutical Co., Ltd., Yantai 264003, P. R. China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P. R. China.,State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Luye Pharmaceutical Co., Ltd., Yantai 264003, P. R. China
| | - Youxin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P. R. China.,State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Luye Pharmaceutical Co., Ltd., Yantai 264003, P. R. China
| | - Yanan Shi
- School of Life Science, Yantai University, Yantai 264005, P. R. China
| |
Collapse
|
30
|
Wang C, Ye X, Zhao Y, Bai L, He Z, Tong Q, Xie X, Zhu H, Cai D, Zhou Y, Lu B, Wei Y, Mei L, Xie D, Wang M. Cryogenic 3D printing of porous scaffolds for in situ delivery of 2D black phosphorus nanosheets, doxorubicin hydrochloride and osteogenic peptide for treating tumor resection-induced bone defects. Biofabrication 2020; 12:035004. [PMID: 31952065 DOI: 10.1088/1758-5090/ab6d35] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tumor resection is widely used to prevent tumor growth. However, the defected tissue at the original tumor site also causes tissue or organ dysfunction which lowers the patient's life quality. Therefore, regenerating the tissue and preventing tumor recurrence are highly important. Herein, according to the concept of 'first kill and then regenerate', a versatile scaffold-based tissue engineering strategy based on cryogenic 3D printing of water-in-oil polyester emulsion inks, containing multiple functional agents, was developed, in order to realize the elimination of tumor cells with recurrence suppression and improved tissue regeneration sequentially. To illustrate our strategy, water/poly(lactic-co-glycolic acid)/dichloromethane emulsions containing β-tricalcium phosphate (β-TCP), 2D black phosphorus (BP) nanosheets, low-dose doxorubicin hydrochloride (DOX) and high-dose osteogenic peptide were cryogenically 3D printed into hierarchically porous and mechanically strong nanocomposite scaffolds, with multiple functions to treat bone tumor, resection-induced tissue defects. Prompt tumor ablation and long-term suppression of tumor recurrence could be achieved due to the synergistic effects of photothermotherapy and chemotherapy, and improved bone regeneration was obtained eventually due to the presence of bony environment and sustained peptide release. Notably, BP nanosheets in scaffolds significantly reduced the long-term toxicity phenomenon of released DOX during in vivo bone regeneration. Our study also provides insights for the design of multi-functional tissue engineering scaffolds for treating other tumor resection-induced tissue defects.
Collapse
Affiliation(s)
- Chong Wang
- College of Mechanical Engineering, Dongguan University of Technology, Dongguan, Guangdong, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Melim C, Jarak I, Veiga F, Figueiras A. The potential of micelleplexes as a therapeutic strategy for osteosarcoma disease. 3 Biotech 2020; 10:147. [PMID: 32181109 PMCID: PMC7052088 DOI: 10.1007/s13205-020-2142-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/16/2020] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma (OS) is a rare aggressive bone, presenting low patient survival rate, high metastasis and relapse occurrence, mostly due to multi-drug resistant cells. To surpass that, the use of nanomedicine for the targeted delivery of genetic material, drugs or both have been extensively researched. In this review, we address the current situation of the disorder and some gene therapy options in the nanomedicine field that have been investigated. Among them, polymeric micelles (PM) are an advantageous therapeutic alternative highly explored for OS, as they allow for the targeted transportation of poorly water-soluble drugs to cancer cells. In addition, micelleplexes are PMs with cationic properties with promising features, such as the possibility for a dual therapy, which have made them an attractive research subject. The aim of this review article is to elucidate the application of a micelleplex formulation encapsulating the underexpressed miRNA145 to achieve an active targeting to OS cells and overcome multi-drug resistance, as a new and viable therapeutic strategy.
Collapse
Affiliation(s)
- Catarina Melim
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Ivana Jarak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Ana Figueiras
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
32
|
Servatan M, Zarrintaj P, Mahmodi G, Kim SJ, Ganjali MR, Saeb MR, Mozafari M. Zeolites in drug delivery: Progress, challenges and opportunities. Drug Discov Today 2020; 25:642-656. [PMID: 32062009 DOI: 10.1016/j.drudis.2020.02.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/12/2020] [Accepted: 02/07/2020] [Indexed: 12/11/2022]
Abstract
There are continuing attempts to achieve appropriate controlled-release therapeutic systems by designing innovative functional drug delivery systems (DDS). Although various types of delivery system have been developed, strategies that have successfully made it to the clinic are rare. Given their diverse structures, zeolites have attracted significant research attention for controlled and targeted drug delivery purposes. The structure of zeolites can be microporous, mesoporous or macroporous, which can be exploited to deliver a variety of therapeutic agents to the target site in a controlled manner. In this review, we introduce the different types of zeolite, and discuss the challenges and opportunities associated with their usage as drug delivery systems.
Collapse
Affiliation(s)
- Morteza Servatan
- Polymer Engineering Department, Faculty of Engineering, Urmia University, Urmia, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Ghader Mahmodi
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Seok-Jhin Kim
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran; Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Saeb
- Departments of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran.
| | - Masoud Mozafari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
33
|
Gao Y, Zhang J. Chitosan Modified Zeolite Molecular Sieve Particles as a Filter for Ammonium Nitrogen Removal from Water. Int J Mol Sci 2020; 21:ijms21072383. [PMID: 32235573 PMCID: PMC7178198 DOI: 10.3390/ijms21072383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Drinking water containing a high amount of ammonium-nitrogen (NH4+-N) is not effectively removed by conventional treatment processes and can cause eutrophication. In this research, a composite adsorbent based on chitosan crosslink with zeolite molecular sieve (CTS-ZMS) was prepared for NH4+-N removal through dynamic adsorption filter experiments. Effect of bed depth (30, 50 and 70 cm), flow rate (32, 49 and 65 mL/min), initial pH value (4.5, 6.5 and 8.5) and influent NH4+-N concentration (3, 5 and 7 mg/L) was examined by using a filter column packed with CTS-ZMS particles. The Thomas model was applied to study the breakthrough curves and adsorption capacity. The optimal process parameters of the aforementioned factors were obtained at bed depth of 70 cm, flow rate of 32 mL/min, pH of 6.5 and initial NH4+-N concentration of 7 mg/L. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and Fourier Transform Infrared Spectroscopy (FTIR) were investigated to analyze the structure and morphology of the CTS-ZMS adsorbents before and after 3 months running. The EDS and FTIR results showed Na+ and the active functional groups of -OH, -NH2 and -COO− on CTS-ZMS adsorbent particles reacted with ammonium nitrogen. The results of this study supported the use of CTS-ZMS to improve drinking water filtration processes by increasing ammonium nitrogen reductions.
Collapse
Affiliation(s)
- Yunan Gao
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China;
- Institute for Frontier Materials, Deakin University Geelong, Waurn Ponds, VIC 3216, Australia
- Correspondence: or ; Tel.: +86-24-24690709
| | - Jiayu Zhang
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China;
| |
Collapse
|
34
|
Zhang CJ, Hu M, Ke QF, Guo CX, Guo YJ, Guo YP. Nacre-inspired hydroxyapatite/chitosan layered composites effectively remove lead ions in continuous-flow wastewater. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121999. [PMID: 31901547 DOI: 10.1016/j.jhazmat.2019.121999] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/23/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
Design and fabrication of novel adsorbents to remove heavy metal ions in continuous-flow wastewater remained a great challenge. Inspired by the hierarchical architecture and biomineralization process of nacre, we firstly constructed hydroxyapatite/chitosan (HA/CH) layered composites. The brick-and-mortar characteristics of HA/CH layered composites improved their flexure strengths up to 3.08 MPa so that the hierarchical architectures could not be destroyed even under high-pressure drop. HA/CH layered composites had the hierarchical microstructures analogous to plate towers, facilitating the separation of adsorbents from water. The interlaminar macropores in the layered composites contributed to the transfer of continuous-flow wastewater. The Pb(II), Cd(II) and Hg(II) ions in wastewater showed similar adsorption trends, and their adsorption amounts arrived at 295.96, 192.37 and 127.38 mg g-1 after 6 days, respectively. Among the above heavy metal ions, the HA/CH layered composites possessed the best Pb(II) adsorption ability due to forming lead hydroxyapatite rods and CH-Pb complexes. The Pb(II) adsorption performances of HA/CH layered composites matched well with Elovich equation, pseudo-first-order and pseudo-second-order kinetics models, revealing the heterogeneous chemisorption mechanism at adsorbent/wastewater interfaces. Therefore, the nacre-like HA/CH layered composites with appropriate mechanical property and excellent adsorption capacity are a novel platform for heavy metal removal in continuous-flow wastewater.
Collapse
Affiliation(s)
- Chuan-Jian Zhang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
| | - Min Hu
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
| | - Qin-Fei Ke
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Cui-Xiang Guo
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
| | - Ya-Jun Guo
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
| | - Ya-Ping Guo
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
35
|
Mahmodi G, Zarrintaj P, Taghizadeh A, Taghizadeh M, Manouchehri S, Dangwal S, Ronte A, Ganjali MR, Ramsey JD, Kim SJ, Saeb MR. From microporous to mesoporous mineral frameworks: An alliance between zeolite and chitosan. Carbohydr Res 2020; 489:107930. [PMID: 32044533 DOI: 10.1016/j.carres.2020.107930] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/29/2022]
Abstract
Microporous and mesoporous minerals are key elements of advanced technological cycles nowadays. Nature-driven microporous materials are known for biocompatibility and renewability. Zeolite is known as an eminent microporous hydrated aluminosilicate mineral containing alkali metals. It is commercially available as adsorbent and catalyst. However, the large quantity of water uptake occupies active sites of zeolite making it less efficient. The widely-used chitosan polysaccharide has also been used in miscellaneous applications, particularly in medicine. However, inferior mechanical properties hampered its usage. Chitosan-modified zeolite composites exhibit superior properties compared to parent materials for innumerable requests. The alliance between a microporous and a biocompatible material with the accompaniment of negative and positive charges, micro/nanopores and proper mechanical properties proposes promising platforms for different uses. In this review, chitosan-modified zeolite composites and their applications have been overviewed.
Collapse
Affiliation(s)
- Ghader Mahmodi
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, Ok, 74078, USA
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, Ok, 74078, USA
| | - Ali Taghizadeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mohsen Taghizadeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Saeed Manouchehri
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, Ok, 74078, USA
| | - Shailesh Dangwal
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, Ok, 74078, USA
| | - Anil Ronte
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, Ok, 74078, USA
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran; Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Joshua D Ramsey
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, Ok, 74078, USA
| | - Seok-Jhin Kim
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, Ok, 74078, USA.
| | - Mohammad Reza Saeb
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
36
|
Wang SY, Hu HZ, Qing XC, Zhang ZC, Shao ZW. Recent advances of drug delivery nanocarriers in osteosarcoma treatment. J Cancer 2020; 11:69-82. [PMID: 31892974 PMCID: PMC6930408 DOI: 10.7150/jca.36588] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor mainly occurred in children and adolescence, and chemotherapy is limited for the side effects and development of drug resistance. Advances in nanotechnology and knowledge of cancer biology have led to significant improvements in developing tumor-targeted drug delivery nanocarriers, and some have even entered clinically application. Delivery of chemotherapeutic agents by functionalized smart nanocarriers could protect the drugs from rapid clearance, prolong the circulating time, and increase the drug concentration at tumor sites, thus enhancing the therapeutic efficacy and reducing side effects. Various drug delivery nanocarriers have been designed and tested for osteosarcoma treatment, but most of them are still at experimental stage, and more further studies are needed before clinical application. In this present review, we briefly describe the types of commonly used nanocarriers in osteosarcoma treatment, and discuss the strategies for osteosarcoma-targeted delivery and controlled release of drugs. The application of nanoparticles in the management of metastatic osteosarcoma is also briefly discussed. The purpose of this article is to present an overview of recent progress of nanoscale drug delivery platforms in osteosarcoma, and inspire new ideas to develop more effective therapeutic options.
Collapse
Affiliation(s)
- Shang-Yu Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hong-Zhi Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiang-Cheng Qing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhi-Cai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zeng-Wu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
37
|
Kontogiannidou E, Karavasili C, Kouskoura MG, Filippousi M, Van Tendeloo G, Andreadis II, Eleftheriadis GK, Kontopoulou I, Markopoulou CK, Bouropoulos N, Fatouros DG. In vitro and ex vivo assessment of microporous Faujasite zeolite (NaX-FAU) as a carrier for the oral delivery of danazol. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.02.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
Cohen E, Merzendorfer H. Chitin/Chitosan: Versatile Ecological, Industrial, and Biomedical Applications. EXTRACELLULAR SUGAR-BASED BIOPOLYMERS MATRICES 2019; 12. [PMCID: PMC7115017 DOI: 10.1007/978-3-030-12919-4_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chitin is a linear polysaccharide of N-acetylglucosamine, which is highly abundant in nature and mainly produced by marine crustaceans. Chitosan is obtained by hydrolytic deacetylation. Both polysaccharides are renewable resources, simply and cost-effectively extracted from waste material of fish industry, mainly crab and shrimp shells. Research over the past five decades has revealed that chitosan, in particular, possesses unique and useful characteristics such as chemical versatility, polyelectrolyte properties, gel- and film-forming ability, high adsorption capacity, antimicrobial and antioxidative properties, low toxicity, and biocompatibility and biodegradability features. A plethora of chemical chitosan derivatives have been synthesized yielding improved materials with suggested or effective applications in water treatment, biosensor engineering, agriculture, food processing and storage, textile additives, cosmetics fabrication, and in veterinary and human medicine. The number of studies in this research field has exploded particularly during the last two decades. Here, we review recent advances in utilizing chitosan and chitosan derivatives in different technical, agricultural, and biomedical fields.
Collapse
Affiliation(s)
- Ephraim Cohen
- Department of Entomology, The Robert H. Smith Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hans Merzendorfer
- School of Science and Technology, Institute of Biology – Molecular Biology, University of Siegen, Siegen, Germany
| |
Collapse
|
39
|
Merzendorfer H. Chitosan Derivatives and Grafted Adjuncts with Unique Properties. BIOLOGICALLY-INSPIRED SYSTEMS 2019. [DOI: 10.1007/978-3-030-12919-4_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Hu H, Zhao P, Liu J, Ke Q, Zhang C, Guo Y, Ding H. Lanthanum phosphate/chitosan scaffolds enhance cytocompatibility and osteogenic efficiency via the Wnt/β-catenin pathway. J Nanobiotechnology 2018; 16:98. [PMID: 30497456 PMCID: PMC6263548 DOI: 10.1186/s12951-018-0411-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/10/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Fabrication of porous scaffolds with great biocompatibility and osteoinductivity to promote bone defect healing has attracted extensive attention. METHODS In a previous study, novel lanthanum phosphate (LaPO4)/chitosan (CS) scaffolds were prepared by distributing 40- to 60-nm LaPO4 nanoparticles throughout plate-like CS films. RESULTS Interconnected three dimensional (3D) macropores within the scaffolds increased the scaffold osteoconductivity, thereby promoting cell adhesion and bone tissue in-growth. The LaPO4/CS scaffolds showed no obvious toxicity and accelerated bone generation in a rat cranial defect model. Notably, the element La in the scaffolds was found to promote osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) through the Wnt/β-catenin signalling pathway and induced high expression of the osteogenesis-related genes alkaline phosphatase, osteocalcin and Collagen I (Col-I). Moreover, the LaPO4/CS scaffolds enhanced bone regeneration and collagen fibre deposition in rat critical-sized calvarial defect sites. CONCLUSION The novel LaPO4/CS scaffolds provide an admirable and promising platform for the repair of bone defects.
Collapse
Affiliation(s)
- Haoran Hu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Peipei Zhao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Jiayu Liu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Qinfei Ke
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Yaping Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China.
| | - Hao Ding
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China.
| |
Collapse
|
41
|
Kong T, Hao L, Wei Y, Cai X, Zhu B. Doxorubicin conjugated carbon dots as a drug delivery system for human breast cancer therapy. Cell Prolif 2018; 51:e12488. [PMID: 30039515 PMCID: PMC6528846 DOI: 10.1111/cpr.12488] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/23/2018] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Carbon dots (CDs) are one of the most promising carbon-based materials in bioimaging and drug/gene delivery applications. In this study, we have attempted to study the drug carrying capacity of highly fluorescent CDs for delivery of doxorubicin (DOX) and investigate the therapeutic activity of the CDs-DOX drug delivery system. MATERIALS AND METHODS Carbon dots were synthesized by means of a hydrothermal approach with mixing citric acid and ethylenediamine. The properties of CDs were characterized in respects of spectral property, zeta potential, particle morphology and chemical composition. The drug loading efficiency (DLE) and release profile of CDs-DOX were determined by a fluorescence spectrophotometer. We investigated the cellular toxicity and pharmaceutical activity of CDs and CDs-DOX in L929 cells and MCF-7 cells by the CCK-8 assay. We also studied the cellular uptake of CDs-DOX with the methods of confocal microscopy and flow cytometry. In addition, the effect of CDs-DOX on cell apoptosis was assessed by flow cytometry. RESULTS The obtained CDs possessed good biocompatibility and showed a potential capacity of promoting proliferation. DOX was successfully conjugated to CDs through electrostatic interaction, and the results of the DLE and loading content (DLC) suggested a relatively high drug loading capacity of CDs. Compared with free DOX, the CDs-DOX complex had a higher cellular uptake and better anti-tumour efficacy on MCF-7 cells. CONCLUSIONS The results of this study indicated that the CDs-DOX drug delivery system had a potential value in cancer chemotherapeutic application.
Collapse
Affiliation(s)
- Tingting Kong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong UniversityXi'anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of StomatologyXi'an Jiaotong UniversityXi'anChina
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Liying Hao
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yuanyuan Wei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong UniversityXi'anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of StomatologyXi'an Jiaotong UniversityXi'anChina
| | - Xiaoxiao Cai
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Bofeng Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong UniversityXi'anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of StomatologyXi'an Jiaotong UniversityXi'anChina
- Department of Forensic GeneticsSchool of Forensic MedicineSouthern Medical UniversityGuangzhouChina
| |
Collapse
|