1
|
Guo L, Fu Z, Li H, Wei R, Guo J, Wang H, Qi J. Smart hydrogel: A new platform for cancer therapy. Adv Colloid Interface Sci 2025; 340:103470. [PMID: 40086017 DOI: 10.1016/j.cis.2025.103470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/17/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Cancer is a significant contributor to mortality worldwide, posing a significant threat to human life and health. The unique bioactivity, ability to precisely control drug release, and minimally invasive properties of hydrogels are indispensable attributes that facilitate optimal performance in cancer therapy. However, conventional hydrogels lack the ability to dynamically respond to changes in the surrounding environment, withstand drastic changes in the microenvironment, and trigger drug release on demand. Therefore, this review focuses on smart-responsive hydrogels that are capable of adapting and responding to external stimuli. We comprehensively summarize the raw materials, preparation, and cross-linking mechanisms of smart hydrogels derived from natural and synthetic materials, elucidate the response principles of various smart-responsive hydrogels according to different stimulation sources. Further, we systematically illustrate the important role played by hydrogels in modern cancer therapies within the context of therapeutic principles. Meanwhile, the smart hydrogel that uses machine learning to design precise drug delivery has shown great prospects in cancer therapy. Finally, we present the outlook on future developments and make suggestions for future related work. It is anticipated that this review will promote the practical application of smart hydrogels in cancer therapy and contribute to the advancement of medical treatment.
Collapse
Affiliation(s)
- Li Guo
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Ziming Fu
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Haoran Li
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Ruibo Wei
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Jing Guo
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China.
| | - Haiwang Wang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China.
| | - Jian Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Mostafavi A, Anbia M, Yazdi F. Chitosan and carboxymethyl cellulose coated on NH 2-UiO-66 as green, biocompatible, nontoxic, and pH-stimuli responsive for levofloxacin delivery: A comparative study. Int J Biol Macromol 2025; 308:142501. [PMID: 40154719 DOI: 10.1016/j.ijbiomac.2025.142501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 03/07/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
Recently, developing an efficient and green approach to overcoming bacterial resistance in drug delivery systems has remained a significant challenge. This work is supposed to design and create two novel, green, biocompatible nanocarriers by incorporating levofloxacin-loaded NH2-UiO-66 into the chitosan and carboxymethyl cellulose biopolymers. The structural characteristics and antibacterial activity of the synthesized carriers were analyzed using FT-IR, SEM, BET, XRD, TGA-DTA, zeta potential, DLS, swelling analysis, ZOI, MIC, MBC, and MTT techniques. The in vitro release rate of the levofloxacin at acidic and neutral environments from the NH2-UiO-66/levofloxacin/carboxymethyl cellulose was 78±2.1% and 18±1.9% and from the NH2-UiO-66/levofloxacin/chitosan was 86±3.5% and 69±2.9% respectively, over 72 h. Kinetics studies showed that the Corsmeyer-Peppas and Higuchi models predicted the release mechanisms of NH2-UiO-66/levofloxacin/carboxymethyl cellulose (R2=0.97) and NH2-UiO-66/levofloxacin/chitosan nanocarriers R2=0.97, respectively. Additionally, studies of the antibacterial properties showed that two NH2-UiO-66/levofloxacin/carboxymethyl cellulose and NH2-UiO-66/levofloxacin/chitosan nanocarriers were more effective against Staphylococcus aureus bacteria than Escherichia coli bacteria. The MTT assay showed that after 48 h, the NH2-UiO-66/levofloxacin/carboxymethyl cellulose nanocarrier with a concentration of 8 mg/mL exhibited lower cell viability compared to the NH2-UiO-66/levofloxacin/chitosan nanocarrier. Overall, these developed nanocarriers hold promise as advanced drug delivery systems due to their strong antibacterial properties.
Collapse
Affiliation(s)
- Arezoo Mostafavi
- Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Farjam Street, Narmak, P.O. Box 16846-13114, Tehran, Iran
| | - Mansoor Anbia
- Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Farjam Street, Narmak, P.O. Box 16846-13114, Tehran, Iran.
| | - Fatemeh Yazdi
- Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Farjam Street, Narmak, P.O. Box 16846-13114, Tehran, Iran
| |
Collapse
|
3
|
Tahmasebi S, Farmanbordar H, Mohammadi R. Synthesis of magnetic bio-nanocomposite hydrogel beads based on sodium alginate and β-cyclodextrin: Potential pH-responsive oral delivery anticancer systems for colorectal cancer. Int J Biol Macromol 2025; 305:140748. [PMID: 39952529 DOI: 10.1016/j.ijbiomac.2025.140748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/11/2024] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
Developing an efficient treatment method is crucial in oral delivery systems due to its comfortable drug administration. This work aims to synthesize pH-responsive magnetic bio-nanocomposite hydrogel beads (MHBs) based on sodium alginate and β-cyclodextrin to deliver the doxorubicin (DOX) drug against colorectal cancer. The Fe3O4 NPs were used to increase the efficiency of the drug carriers in the tumor site and modified with green synthesized Ag NPs, which were reduced and stabilized by basil plant extract to increase anti-bacterial and anti-oxidant properties. FTIR, XRD, SEM, VSM, and TGA analysis confirmed the successful synthesis. The prepared MHBs were studied at different simulated digestive system pH values and represented pH-sensitive swelling behavior. The minimal and highest ratio of the drug releases from MHBs was seen at pH 1.2 < 1 % and pH 7.4 > 98 %, respectively. The antibacterial study revealed the highest activity of MHBs versus Staphylococcus aureus > 98.68 % and Escherichia coli > 99.2 %, respectively. The antioxidant study revealed the desired activity. The MTT assay of DOX-loaded MHBs on HT-29 cell lines revealed controlled release properties of MHBs with IC50 about 64 μL/mL, promising the controlled delivery of anticancer agents for colon cancer treatment.
Collapse
Affiliation(s)
- Shabnam Tahmasebi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hassan Farmanbordar
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
4
|
Nawaz A, Taj MB, Tasleem M, Ahmad Z, Ihsan A. Study of factors affecting cellulose derivatives composite in anticancer drug delivery: A comprehensive review. Int J Biol Macromol 2025; 310:143220. [PMID: 40250680 DOI: 10.1016/j.ijbiomac.2025.143220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/22/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
The targeted distribution of therapeutic molecules in cancer cells poses several challenges for biomedical applications. Drug delivery systems (DDS) are primarily designed to target cancer cells effectively to achieve maximum therapeutic effects. Cellulose is a well-known organic molecule owing to its biodegradability, biocompatibility, low toxicity, prolonged stability, and superior loading characteristics. However, cellulose composites have faced numerous drawbacks, such as higher molecular size, non-covalent interactions, poor mechanical strength, and limited water solubility. In contrast, cellulose derivatization has enhanced drug loading and release efficiency, improved mechanical strength, and mitigated drug solubility issues. This review summarized the recent advancement in cellulose-based composites such as DDS for cancer cell treatment and discussed responsive factors. The pH, temperature, magnetic nanoparticles, solubility, porosity, mechanical strength, nanoparticle size, increased time of drug release, crosslinking efficiency, etc., are major responsive assays that influence the therapeutic potential of anticancer drugs. Furthermore, overviewed the cellulose nanoformulations in sustained anticancer drug release and successfully illustrated the synthesizing methodologies as well as challenges in efficient DDS applications. Moreover, a brief overview of the interdisciplinary industrial uses of cellulose composites, including paper, textiles, and nanotechnology, is presented. Finally, cellulose-based composites provide a novel way of producing excellent DDS with enhanced therapeutic properties.
Collapse
Affiliation(s)
- Aamir Nawaz
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Babar Taj
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Muhammad Tasleem
- Department of Physics, University of Engineering and Technology, Lahore 54890, Pakistan
| | - Zia Ahmad
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Aaysha Ihsan
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
5
|
Pareek A, Kumar D, Pareek A, Gupta MM. Advancing Cancer Therapy with Quantum Dots and Other Nanostructures: A Review of Drug Delivery Innovations, Applications, and Challenges. Cancers (Basel) 2025; 17:878. [PMID: 40075725 PMCID: PMC11898779 DOI: 10.3390/cancers17050878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/25/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
Nanotechnology, particularly quantum dots (QDs), has ushered in a transformative era in the pharmaceutical and medical industries, offering notable opportunities for nanoscale advancements. These nanoscale particles, known for their exceptional optical properties and quantum confinement, have emerged as indispensable tools in cancer drug delivery and bioimaging. This review delves into various drug conjugation techniques with QDs, including covalent linking, non-covalent conjugation, click chemistry, disulfide linkage, and pH-sensitive linkage. Each method provides distinct advantages, such as enhanced stability, reversibility, specificity, and controlled drug release. Moreover, QDs have demonstrated significant promise in oncology by efficiently delivering drugs to cancerous tissues while minimising systemic toxicity. Investigations into their applications in different cancers, such as blood, brain, cervical, breast cancers, etc., reveal their efficacy in targeted drug delivery, real-time imaging, and improved therapeutic outcomes. However, challenges such as potential toxicity, stability, pharmacokinetics, and targeting specificity must be addressed to fully harness the benefits of QDs in cancer therapy. Future research should focus on developing biocompatible QDs, optimising conjugation techniques, and elucidating their safety profiles and long-term effects in biological systems. Overall, QDs represent a promising frontier in cancer treatment, offering multifaceted capabilities that hold the potential for enhanced therapeutic outcomes and reduced side effects across various cancers.
Collapse
Affiliation(s)
- Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India (A.P.)
| | - Deepanjali Kumar
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India (A.P.)
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India (A.P.)
| | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
- Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur 303121, India
| |
Collapse
|
6
|
Gholamali I, Yadollahi M. Development and characterization of hydrogel beads with carboxymethyl chitosan/graphene quantum dots@Pectin/MIL-88 for targeted doxorubicin delivery: An adaptable nanocomposite approach. Int J Biol Macromol 2025; 290:139044. [PMID: 39716711 DOI: 10.1016/j.ijbiomac.2024.139044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Hydrogels are adaptable substances with a 3D framework able to hold large quantities of water, which is why they are ideal for use in the field of biomedicine. This research project focused on creating a new hydrogel combining carboxymethyl chitosan (CMCS), graphene quantum dots (GQDs), pectin (Pe), and MIL-88 for precise and controlled release of the cancer drug doxorubicin (DOX). The creation of CMCS/GQDs@Pe/MIL-88 hydrogel beads was achieved through an eco-friendly one-step synthesis method. The hydrogel beads were then analyzed using various techniques including FE-SEM, EDX, FT-IR, XRD, BET surface area, DLS, and zeta potential measurements. The hydrogel beads showed great swelling ability and controlled breakdown in different pH environments, mimicking the conditions of the gastrointestinal tract and body. Research on drug loading and release showed that the hydrogel components can be adjusted to control the release of DOX. Cytotoxicity tests in a lab setting using K562 cells demonstrated successful delivery of DOX and the ability to target cancer cells specifically while reducing negative effects. Adding GQDs improved both the imaging abilities and the stability and mechanical characteristics of the hydrogel. This research indicates that the CMCS/GQDs@Pe/MIL-88 combination hydrogel beads show great potential for advanced drug delivery systems, especially in cancer treatment.
Collapse
Affiliation(s)
- Iman Gholamali
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran; Department of Chemistry, North Tehran Branch, Islamic Azad University, P.O. Box 19585/936, Tehran, Iran.
| | - Mehdi Yadollahi
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
| |
Collapse
|
7
|
Thapliyal D, Verros GD, Arya RK. Nanoparticle-Doped Antibacterial and Antifungal Coatings. Polymers (Basel) 2025; 17:247. [PMID: 39861318 PMCID: PMC11768809 DOI: 10.3390/polym17020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs. Copper NPs and silver NPs exhibit antibacterial and antifungal properties. So, when present in coatings, they will release metal ions with the combined effect of having bacteriostatic/bactericidal properties, preventing the growth of pathogens on surfaces covered by these nano-enhanced films. In addition, metal oxide NPs such as titanium dioxide NPs (TiO2 NPs) and zinc oxide NPs (ZnONPs) are used as NPs in antimicrobial polymeric coatings. Under UV irradiation, these NPs show photocatalytic properties that lead to the production of reactive oxygen species (ROS) when exposed to UV radiation. After various forms of nano-carbon materials were successfully developed over the past decade, they and their derivatives from graphite/nanotubes, and composite sheets have been receiving more attention because they share an extremely large surface area, excellent mechanical strength, etc. These NPs not only show the ability to cause oxidative stress but also have the ability to release antimicrobial chemicals under control, resulting in long-lasting antibacterial action. The effectiveness and life spans of the antifouling performance of a variety of polymeric materials have been improved by adding nano-sized particles to those coatings.
Collapse
Affiliation(s)
- Devyani Thapliyal
- Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India;
| | - George D. Verros
- Department of Chemistry, Aristotle University of Thessaloniki, Plagiari Thes., P.O. Box 454, 57500 Epanomi, Greece;
| | - Raj Kumar Arya
- Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India;
| |
Collapse
|
8
|
Alizadeh MH, Namazi H. Core-shell structured magnetite carboxymethyl cellulose for cervical cancer treatment by maintaining methotrexate serum concentration. Int J Biol Macromol 2025; 284:137832. [PMID: 39586447 DOI: 10.1016/j.ijbiomac.2024.137832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 11/27/2024]
Abstract
In this work, we attempted to improve the properties of magnetite carboxymethyl cellulose nanoparticles (Mag CMC NPs) through Ugi multicomponent reaction (MCR) to obtain magnetite carboxymethyl cellulose@functionalized carboxamide nanoparticles (Mag CMC@FCA NPs) as a new nano bio-carrier. Typically, at first Mag CMC NPs prepared by the co-precipitation method. Then by performing the Ugi MCR on Mag CMC NPs, the Mag CMC@FCA NPs achieved better properties in swelling ratio, loading efficiency and loading capacity. The prepared Mag CMC@FCA NPs characterized in detail. Evaluation of the prepared system functionality showed the swelling rate increased from 294 % to 1472 %. Furthermore, for methotrexate (MTX), loading efficiency increased from 24.62 % for Mag CMC NPs to 57.25 % for Mag CMC@FCA NPs, and the drug loading capacity increased from 1.23 % to 2.86 %. The loading of Ampicillin (AMP) and MTX has been observed to have a beneficial effect. When AMP is placed in the metabolic pathway of MTX, it prevents biodegradation of MTX up to 35 %, which results in a longer duration of high MTX concentration in the blood. Consequently, the toxicity of the prepared medication on healthy cells of the body is reduced, and the death rate is decreased to some extent.
Collapse
Affiliation(s)
- Mohammad Hossein Alizadeh
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
9
|
Dar MS, Rosaiah P, Bhagyalakshmi J, Ahirwar S, Khan A, Tamizhselvi R, Reddy VRM, Palaniappan A, Sahu NK. Graphene quantum dots as nanotherapeutic agents for triple-negative breast cancer: Insights from 3D tumor models. Coord Chem Rev 2025; 523:216247. [DOI: 10.1016/j.ccr.2024.216247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Mormile C, Opriș O, Bellucci S, Lung I, Kacso I, Turza A, Stegarescu A, Tripon S, Soran ML, Bâldea I. Natrium Alginate and Graphene Nanoplatelets-Based Efficient Material for Resveratrol Delivery. Gels 2024; 11:15. [PMID: 39851987 PMCID: PMC11765397 DOI: 10.3390/gels11010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/26/2025] Open
Abstract
In this study, alginate-based composite beads were developed for the delivery of resveratrol, a compound with therapeutic potential. Two formulations were prepared: one with sodium alginate and resveratrol (AR) and another incorporating graphene nanoplatelets (AGR) to improve drug release control. The beads were formed by exploiting alginate's ability to gel via ionic cross-linking. For the AGR formulation, sodium alginate was dissolved in water, and graphene was dispersed in isopropyl alcohol to achieve smaller flakes. Resveratrol was dissolved in an ethanol/water mixture and added to the graphene dispersion; the resulting solution was mixed with the alginate one. For the AR formulation, the resveratrol solution was mixed directly with the alginate solution. Both formulations were introduced into a calcium chloride solution to form the beads. The release of resveratrol was studied in phosphate-buffered saline at different pH values. Results showed that the presence of graphene in the AGR sample increased drug release, particularly at pH 6.8, indicating a pH-driven release mechanism. Kinetic analysis revealed that the Higuchi model best describes the release mechanism. Finally, cytotoxicity tests showed the biocompatibility of the system in normal human cells. These findings suggest that graphene-enhanced alginate matrices have significant potential for controlled drug delivery applications.
Collapse
Affiliation(s)
- Cristina Mormile
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.L.); (I.K.); (A.T.); (A.S.); (S.T.)
- R.A.I.T. 88 S.R.L, Via Pieve Torina 64/66, 00156 Rome, Italy;
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Ocsana Opriș
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.L.); (I.K.); (A.T.); (A.S.); (S.T.)
| | - Stefano Bellucci
- R.A.I.T. 88 S.R.L, Via Pieve Torina 64/66, 00156 Rome, Italy;
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy
| | - Ildiko Lung
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.L.); (I.K.); (A.T.); (A.S.); (S.T.)
| | - Irina Kacso
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.L.); (I.K.); (A.T.); (A.S.); (S.T.)
| | - Alexandru Turza
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.L.); (I.K.); (A.T.); (A.S.); (S.T.)
| | - Adina Stegarescu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.L.); (I.K.); (A.T.); (A.S.); (S.T.)
| | - Septimiu Tripon
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.L.); (I.K.); (A.T.); (A.S.); (S.T.)
- Electron Microscopy Center, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Maria-Loredana Soran
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.L.); (I.K.); (A.T.); (A.S.); (S.T.)
| | - Ioana Bâldea
- Department of Physiology, Iuliu Haţieganu University of Medicine and Pharmacy, Clinicilor 1, 400006 Cluj-Napoca, Romania;
| |
Collapse
|
11
|
Hryniewicka A, Siemiaszko G, Plonska-Brzezinska ME. Mesoporous Carbon Composites Containing Carbon Nanostructures: Recent Advances in Synthesis and Applications in Electrochemistry. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6195. [PMID: 39769795 PMCID: PMC11678663 DOI: 10.3390/ma17246195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Carbon nanostructures (CNs) are various low-dimensional allotropes of carbon that have attracted much scientific attention due to their interesting physicochemical properties. It was quickly discovered that the properties of CNs can be significantly improved by modifying their surface or synthesizing composites containing CNs. Composites combine two or more materials to create a final material with enhanced properties compared with their initial components. In this review, we focused on one group of carbon materials-composites containing CNs (carbon/CN composites), characterized by high mesoporosity. Particular attention was paid to the type of synthesis used, divided into hard- and soft-templating methods, the type of polymer matrix precursors and their preparation method, heteroatom doping, pore formation methods, and correlations between the applied experimental conditions of synthesis and the structural properties of the composite materials obtained. In the last part, we present an updated summary of the applications of mesoporous composites in energy storage systems, supercapacitors, electrocatalysis, etc. The correlations among porous structures of materials, heteroatom doping, and electrochemical or catalytic efficiency, including activity, selectivity, and stability, were also emphasized. To our knowledge, a single review has never summarized pyrolyzed mesoporous composites of polymer-CNs, their properties and applications in electrochemistry.
Collapse
Affiliation(s)
- Agnieszka Hryniewicka
- Department of Organic Chemistry, Medical University of Bialystok, Mickiewicza 2a, 15-222 Bialystok, Poland;
| | | | | |
Collapse
|
12
|
Omer AM, Elmeligy MA, Abd El-Monaem EM, Naiel BH, Barlog M, Heydari A. pH-sensitive aminated chitosan/carboxymethyl cellulose/aminated graphene oxide coated composite microbeads for efficient encapsulation and sustained release of 5-fluorouracil. Int J Biol Macromol 2024; 283:137250. [PMID: 39522920 DOI: 10.1016/j.ijbiomac.2024.137250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
The application of smart pH-sensitive carriers has become an ideal choice for administering drugs with desired release profiles. Although pH-sensitive microbeads offer distinct benefits for delivering anticancer drugs orally, they encounter drawbacks, including low encapsulation efficiency, weak mechanical stability, biocompatibility concerns, and the risk of abrupt release. This study focuses on developing pH-sensitive coated composite microbeads for effective encapsulation and sustained release of 5-fluorouracil (5-FU). Aminated graphene oxide (AmGO) was integrated into carboxymethyl cellulose (CMC) microbeads, which were subsequently coated with an aminated chitosan (AmCs) derivative. Various analysis techniques, including Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analyzer (TGA), zeta potential (ZP), and mechanical testing, were utilized to characterize the microbeads. The AmCs@CMC@AmGO composite microbeads demonstrated a compact structure with enhanced mechanical properties, achieving a maximum Young's modulus value of 35.99 N/mm2 compared to 25.95 N/mm2 for pure CMC microbeads. Moreover, pH-sensitivity and water uptake studies (at pH 1.2 and pH 7.4) revealed significant tunability of the composite microbeads by altering the AmGO and AmCs ratios. The coated composite microbeads encapsulated approximately 86.4 % of 5-FU compared to 47 % for CMC microbeads. The burst release of 5-FU at pH 7.4 was significantly reduced, with sustained release reaching 51 % over 24 h. The predominant release mechanism was Fickian diffusion, which well-described by the Peppas-Sahlin kinetic model. The developed microbeads exposed improved biodegradability and non-toxicity toward normal colon cells, while exhibiting notable toxicity against cancerous cells, emphasizing its potential for anticancer drug delivery.
Collapse
Affiliation(s)
- Ahmed M Omer
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia; Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), P. O. Box: 21934, New Borg El-Arab City, Alexandria, Egypt.
| | - Mahmoud A Elmeligy
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia; Genomic Signature Cancer Center, Global Teaching Hospital, University of Tanta, Tanta 31527, Egypt
| | | | - Basma H Naiel
- Chemistry Department, Faculty of Science, Alexandria University, 21321, Alexandria, Egypt
| | - Martin Barlog
- Institute of Inorganic Chemistry of Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 84536, Slovakia
| | - Abolfazl Heydari
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia.
| |
Collapse
|
13
|
Ghotbi M, Pourmadadi M, Yazdian F, Hallajsani A. Fabrication and characterization of starch/agarose biopolymers containing graphene oxide towards the release of 5-fluorouracil in cancer treatment. INORG CHEM COMMUN 2024; 170:113119. [DOI: 10.1016/j.inoche.2024.113119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
14
|
Poursadegh H, Bakhshi V, Amini-Fazl MS, Adibag Z, Kazeminava F, Javanbakht S. Incorporating mannose-functionalized hydroxyapatite/metal-organic framework into the hyaluronic acid hydrogel film: A potential dual-targeted oral anticancer delivery system. Int J Biol Macromol 2024; 274:133516. [PMID: 38944078 DOI: 10.1016/j.ijbiomac.2024.133516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
The recent challenge in enhancing the targeted delivery of anticancer drugs to cancer cells is improving the bioavailability and therapeutic efficacy of drug delivery systems while minimizing their systemic side effects. In this study, the MIL-88(Fe) metal-organic framework was synthesized using the in situ method in the presence of hydroxyapatite nanoparticles (HAP) toward the HAP/MIL-88(Fe) (HM) nanocomposite preparation. It was then functionalized with mannose (M) as an anticancer receptor through the Steglich esterification method. Various analyses confirmed the successful synthesis of MHM. For drug release investigation, 5-Fu was loaded into the MHM, which was then coated with a hyaluronic acid (HA) hydrogel film. Characterization analyses verified the structure of the resulting HA/5-Fu-MHM hydrogel film. In vitro drug release experiments showed that the release of 5-Fu drug from HA/5-Fu-MHM could be controlled with pH, reducing its release rate in the acidic environment of the stomach while increasing it in the intestinal environment. Cytotoxicity results of the HA/5-Fu-MHM hydrogel film against HT29 cancer cells showed enhanced cytotoxicity due to the mannose and hyaluronic acid in its structure, which triggers a dual-targeted drug delivery system. The obtained results indicate that the prepared hydrogel films can be a promising bio-platform for colon cancer treatment.
Collapse
Affiliation(s)
- Hossein Poursadegh
- Advanced Polymer Material Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Vahid Bakhshi
- Advanced Polymer Material Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mohammad Sadegh Amini-Fazl
- Advanced Polymer Material Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Zahra Adibag
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fahimeh Kazeminava
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siamak Javanbakht
- Advanced Polymer Material Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
15
|
Semenov KN, Shemchuk OS, Ageev SV, Andoskin PA, Iurev GO, Murin IV, Kozhukhov PK, Maystrenko DN, Molchanov OE, Kholmurodova DK, Rizaev JA, Sharoyko VV. Development of Graphene-Based Materials with the Targeted Action for Cancer Theranostics. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1362-1391. [PMID: 39245451 DOI: 10.1134/s0006297924080029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 09/10/2024]
Abstract
The review summarises the prospects in the application of graphene and graphene-based nanomaterials (GBNs) in nanomedicine, including drug delivery, photothermal and photodynamic therapy, and theranostics in cancer treatment. The application of GBNs in various areas of science and medicine is due to the unique properties of graphene allowing the development of novel ground-breaking biomedical applications. The review describes current approaches to the production of new targeting graphene-based biomedical agents for the chemotherapy, photothermal therapy, and photodynamic therapy of tumors. Analysis of publications and FDA databases showed that despite numerous clinical studies of graphene-based materials conducted worldwide, there is a lack of information on the clinical trials on the use of graphene-based conjugates for the targeted drug delivery and diagnostics. The review will be helpful for researchers working in development of carbon nanostructures, material science, medicinal chemistry, and nanobiomedicine.
Collapse
Affiliation(s)
- Konstantin N Semenov
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia.
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, 197758, Russia
| | - Olga S Shemchuk
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Sergei V Ageev
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Pavel A Andoskin
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
| | - Gleb O Iurev
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
| | - Igor V Murin
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | | | - Dmitriy N Maystrenko
- Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, 197758, Russia
| | - Oleg E Molchanov
- Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, 197758, Russia
| | | | - Jasur A Rizaev
- Samarkand Medical University, Samarkand, 100400, Uzbekistan
| | - Vladimir V Sharoyko
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia.
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, 197758, Russia
| |
Collapse
|
16
|
Shirazian S, Alzhrani RM, Zare MH. Design and synthesis of drug hydrogels containing carboxymethylcellulose with honeycomb structure and pH-sensitivity as drug delivery systems for adriamycin, metformin, and naproxen. Int J Biol Macromol 2024; 271:132568. [PMID: 38782329 DOI: 10.1016/j.ijbiomac.2024.132568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
The aim of this research is to prepare and identify functionalized carboxymethylcellulose/mesoporous silica nanohydrogels (CMC/NH2-MCM-41) for obtaining a pH-sensitive system for the controlled release of drugs. The beads of CMC/NH2-MCM-41 nanocomposites were prepared by dispersing NH2-MCM-41 in a CMC polymer matrix and crosslinking with ferric ions (Fe3+). The SEM analysis of samples revealed enhancement in surface porosity of the functionalized nanohydrogel beads compared to the conventional beads. Swelling of the prepared functionalized nanohydrogels was evaluated at various pH values including pH = 7.35-7.45 (simulated body fluid or healthy cells), pH = 6 (simulated intestinal fluid), and pH = 1.5-3.5 (simulated gastric fluid). The swelling of CMC/MCM-41 and CMC/NH2-MCM-41 nanohydrogels at the pH values of simulated body fluid and simulated intestinal fluid is much higher than that of simulated gastric fluid, indicating successful synthesis of pH-sensitive nanohydrogels for drug delivery. The drug loading results showed that drug release in the CMC/NH2-MCM-41 system is much slower than that in the CMC/MCM-41 system. The results of the survival studies for the manufactured systems showed a very good biocompatibility of the designed drug delivery systems for biological applications. By coating the surface of functionalized mesopores with CMC hydrogel, we were able to develop a pH-sensitive intelligent drug delivery system.
Collapse
Affiliation(s)
- Saeed Shirazian
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam.
| | - Rami M Alzhrani
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Masoud Habibi Zare
- Isfahan University of Technology, Department of Chemical Engineering, 84156-83111 Isfahan, Iran
| |
Collapse
|
17
|
Akmal MH, Kalashgrani MY, Mousavi SM, Rahmanian V, Sharma N, Gholami A, Althomali RH, Rahman MM, Chiang WH. Recent advances in synergistic use of GQD-based hydrogels for bioimaging and drug delivery in cancer treatment. J Mater Chem B 2024; 12:5039-5060. [PMID: 38716622 DOI: 10.1039/d4tb00024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Graphene quantum dot (GQD) integration into hydrogel matrices has become a viable approach for improving drug delivery and bioimaging in cancer treatment in recent years. Due to their distinct physicochemical characteristics, graphene quantum dots (GQDs) have attracted interest as adaptable nanomaterials for use in biomedicine. When incorporated into hydrogel frameworks, these nanomaterials exhibit enhanced stability, biocompatibility, and responsiveness to external stimuli. The synergistic pairing of hydrogels with GQDs has created new opportunities to tackle the problems related to drug delivery and bioimaging in cancer treatment. Bioimaging plays a pivotal role in the early detection and monitoring of cancer. GQD-based hydrogels, with their excellent photoluminescence properties, offer a superior platform for high-resolution imaging. The tunable fluorescence characteristics of GQDs enable real-time visualization of biological processes, facilitating the precise diagnosis and monitoring of cancer progression. Moreover, the drug delivery landscape has been significantly transformed by GQD-based hydrogels. Because hydrogels are porous, therapeutic compounds may be placed into them and released in a controlled environment. The large surface area and distinct interactions of graphene quantum dots (GQDs) with medicinal molecules boost loading capacity and release dynamics, ultimately improving therapeutic efficacy. Moreover, GQD-based hydrogels' stimulus-responsiveness allows for on-demand medication release, which minimizes adverse effects and improves therapeutic outcomes. The ability of GQD-based hydrogels to specifically target certain cancer cells makes them notable. Functionalizing GQDs with targeting ligands minimizes off-target effects and delivers therapeutic payloads to cancer cells selectively. Combined with imaging capabilities, this tailored drug delivery creates a theranostic platform for customized cancer treatment. In this study, the most recent advancements in the synergistic use of GQD-based hydrogels are reviewed, with particular attention to the potential revolution these materials might bring to the area of cancer theranostics.
Collapse
Affiliation(s)
- Muhammad Hussnain Akmal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| | | | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| | - Vahid Rahmanian
- Department of Mechanical Engineering, Université du Québec à Trois-Rivières, Drummondville, QC, Canada
| | - Neha Sharma
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir 11991, Al Kharj, Saudi Arabia
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, P.O. Box 80203, Saudi Arabia.
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| |
Collapse
|
18
|
Uzdrowska K, Knap N, Gulczynski J, Kuban-Jankowska A, Struck-Lewicka W, Markuszewski MJ, Bączek T, Izycka-Swieszewska E, Gorska-Ponikowska M. Chasing Graphene-Based Anticancer Drugs: Where are We Now on the Biomedical Graphene Roadmap? Int J Nanomedicine 2024; 19:3973-3989. [PMID: 38711615 PMCID: PMC11073537 DOI: 10.2147/ijn.s447397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/28/2024] [Indexed: 05/08/2024] Open
Abstract
Graphene and graphene-based materials have attracted growing interest for potential applications in medicine because of their good biocompatibility, cargo capability and possible surface functionalizations. In parallel, prototypic graphene-based devices have been developed to diagnose, imaging and track tumor growth in cancer patients. There is a growing number of reports on the use of graphene and its functionalized derivatives in the design of innovative drugs delivery systems, photothermal and photodynamic cancer therapy, and as a platform to combine multiple therapies. The aim of this review is to introduce the latest scientific achievements in the field of innovative composite graphene materials as potentially applied in cancer therapy. The "Technology and Innovation Roadmap" published in the Graphene Flagship indicates, that the first anti-cancer drugs using graphene and graphene-derived materials will have appeared on the market by 2030. However, it is necessary to broaden understanding of graphene-based material interactions with cellular metabolism and signaling at the functional level, as well as toxicity. The main aspects of further research should elucidate how treatment methods (e.g., photothermal therapy, photodynamic therapy, combination therapy) and the physicochemical properties of graphene materials influence their ability to modulate autophagy and kill cancer cells. Interestingly, recent scientific reports also prove that graphene nanocomposites modulate cancer cell death by inducing precise autophagy dysfunctions caused by lysosome damage. It turns out as well that developing photothermal oncological treatments, it should be taken into account that near-infrared-II radiation (1000-1500 nm) is a better option than NIR-I (750-1000 nm) because it can penetrate deeper into tissues due to less scattering at longer wavelengths radiation.
Collapse
Affiliation(s)
- Katarzyna Uzdrowska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, 80-211, Poland
| | - Narcyz Knap
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, 80-211, Poland
| | - Jacek Gulczynski
- Faculty of Health Sciences with the Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, 80-211, Poland
| | | | | | | | - Tomasz Bączek
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, 80-416, Poland
| | - Ewa Izycka-Swieszewska
- Faculty of Health Sciences with the Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, 80-211, Poland
| | | |
Collapse
|
19
|
Semenov KN, Ageev SV, Kukaliia ON, Murin IV, Petrov AV, Iurev GO, Andoskin PA, Panova GG, Molchanov OE, Maistrenko DN, Sharoyko VV. Application of carbon nanostructures in biomedicine: realities, difficulties, prospects. Nanotoxicology 2024; 18:181-213. [PMID: 38487921 DOI: 10.1080/17435390.2024.2327053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/02/2024] [Indexed: 05/02/2024]
Abstract
The review systematizes data on the wide possibilities of practical application of carbon nanostructures. Much attention is paid to the use of carbon nanomaterials in medicine for the visualization of tumors during surgical interventions, in the creation of cosmetics, as well as in agriculture in the creation of fertilizers. Additionally, we demonstrate trends in research in the field of carbon nanomaterials with a view to elaborating targeted drug delivery systems. We also show the creation of nanosized medicinal substances and diagnostic systems, and the production of new biomaterials. A separate section is devoted to the difficulties in studying carbon nanomaterials. The review is intended for a wide range of readers, as well as for experts in the field of nanotechnology and nanomedicine.
Collapse
Affiliation(s)
- Konstantin N Semenov
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
- Department of Basic Research, A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, Russia
| | - Sergei V Ageev
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Olegi N Kukaliia
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Igor V Murin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Andrey V Petrov
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Gleb O Iurev
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Pavel A Andoskin
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Gaiane G Panova
- Light Physiology of Plants, Agrophysical Research Institute, Saint Petersburg, Russia
| | - Oleg E Molchanov
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Department of Basic Research, A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, Russia
| | - Dmitrii N Maistrenko
- Department of Basic Research, A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, Russia
| | - Vladimir V Sharoyko
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
20
|
Ni F, Chen Y, Wang Z, Zhang X, Gao F, Shao Z, Wang H. Graphene derivative based hydrogels in biomedical applications. J Tissue Eng 2024; 15:20417314241282131. [PMID: 39430737 PMCID: PMC11490963 DOI: 10.1177/20417314241282131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/24/2024] [Indexed: 10/22/2024] Open
Abstract
Graphene and its derivatives are widely used in tissue-engineering scaffolds, especially in the form of hydrogels. This is due to their biocompatibility, electrical conductivity, high surface area, and physicochemical versatility. They are also used in tissue engineering. Tissue engineering is suitable for 3D printing applications, and 3D printing makes it possible to construct 3D structures from 2D graphene, which is a revolutionary technology with promising applications in tissue and organ engineering. In this review, the recent literature in which graphene and its derivatives have been used as the major components of hydrogels is summarized. The application of graphene and its derivative-based hydrogels in tissue engineering is described in detail from different perspectives.
Collapse
Affiliation(s)
- Feifei Ni
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangyang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Khairunnisa-Atiqah MK, Salleh KM, Hair AHA, Mazlan NSN, Mostapha M, Zakaria S. Crosslinked carboxymethyl cellulose colloidal solution for cotton thread coating in wound dressing: A rheological study. Int J Biol Macromol 2023; 253:127518. [PMID: 37865379 DOI: 10.1016/j.ijbiomac.2023.127518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 10/23/2023]
Abstract
Cotton thread therapeutic properties as a wound dressing can be enhanced by utilising carboxymethyl cellulose-nanoparticles (CMC/NPs) colloidal solution as a coating solution. Nanoparticles such as graphene oxide (GO), graphene quantum dots (GQD), and silver nanoparticles (AgNP) stability in CMC was investigated through the rheological analysis and UV-Vis spectroscopy of the colloidal solutions. Citric acid (CA) acted as a crosslinker and was utilised to crosslink the colloidal solution with cotton thread. These CMC/NPs coated threads were subjected to mechanical properties and antibacterial activity analysis. Results obtained indicate less nanoparticle agglomeration and were stable in the CMC-based nanofluid. CMC/NPs rheological study suggested that colloidal solutions exhibited shear thinning behaviour and behaved as non-Newtonian fluids with n < 1. Crosslinked CMC/NPs appeared in a gel-like state as the viscoelasticity of the solution increased. Among the colloidal solutions, CMC/AgNP showed the highest enhancement with a significant difference at p < 0.05 in terms of mechanical and antibacterial properties. Consequently, the rheological properties and stability of CMC/NPs might influence the coating solution's appearance and refine the cotton thread's microstructure for a functional wound dressing to be further utilised as a coating solution for antibacterial cotton thread wound dressing material.
Collapse
Affiliation(s)
- Mohamad Khalid Khairunnisa-Atiqah
- Bioresources and Biorefinery Laboratory, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Kushairi Mohd Salleh
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Ainul Hafiza Abd Hair
- Bioresources and Biorefinery Laboratory, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; Centre of Foundation Studies, Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil, Dengkil 43800, Selangor, Malaysia
| | - Nyak Syazwani Nyak Mazlan
- Bioresources and Biorefinery Laboratory, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Marhaini Mostapha
- Centre for Health Economic Research, Institute for Health System Research, National Institute of Health Malaysia, Shah Alam 40170, Malaysia
| | - Sarani Zakaria
- Bioresources and Biorefinery Laboratory, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia.
| |
Collapse
|
22
|
Salimbahrami SN, Ghorbani-HasanSaraei A, Tahermansouri H, Shahidi SA. Synthesis, optimization via response surface methodology, and structural properties of carboxymethylcellulose/curcumin/graphene oxide biocomposite films/coatings for the shelf-life extension of shrimp. Int J Biol Macromol 2023; 253:126724. [PMID: 37673155 DOI: 10.1016/j.ijbiomac.2023.126724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/20/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
In this study, carboxymethylcellulose (CMC), curcumin (Cur), and graphene oxide (GO) were used to prepare a novel biocomposite film (CMC-Cur-GO). A central composite design under response surface methodology was employed to optimize the films in terms of water vapor permeability (WVP) and swelling percentage (SP). Under the optimum conditions, which the rates of CMC, GO and curcumin were found to be 1350 mg, 29.99 mg, and 0.302 g, respectively, WVP and SP of CMC-Cur-GO were obtained 0.902 × 10-8 (g/m·h·Pa) and 13.62 %, respectively. The biocomposite films (CMC, CMC-Cur, CMC-GO and CMC-Cur-GO) were characterized by Fourier transform infrared spectroscopy, field-emission scanning electron microscope, thermal gravimetric analysis, X-ray diffraction analysis, ultraviolet-vis light transmittance, moisture content, and mechanical properties. Compared with pure CMC film, the tensile strength, elongation at break and Young's modulus of CMC-Cur-GO were significantly improved by up to 75 %, 41 % and 23 %, respectively (p < 0.05). Then, CMC-Cur-GO was applied as a coating solution for the shrimps. The coated shrimps with the CMC-Cur-GO significantly (p < 0.05) showed a noteworthy improvement in microbial quality (total and psychrotrophic bacterial count), chemical deterioration and lipid oxidation (pH and total volatile basic nitrogen, peroxide value and thiobarbituric acid) and physical characteristic (weight loss) as compared to other samples. The CMC-Cur-GO coating could increase the shelf life of shrimp under refrigerated storage.
Collapse
Affiliation(s)
| | | | - Hasan Tahermansouri
- Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
| | - Seyed-Ahmad Shahidi
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| |
Collapse
|
23
|
Mormile C, Opriș O, Bellucci S, Lung I, Kacso I, Turza A, La Pietra M, Vacacela Gomez C, Stegarescu A, Soran ML. Enhanced Stability of Dopamine Delivery via Hydrogel with Integrated Graphene. J Funct Biomater 2023; 14:558. [PMID: 38132812 PMCID: PMC10744308 DOI: 10.3390/jfb14120558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The synthesis of graphene-based materials for drug delivery represents an area of active research, and the use of graphene in drug delivery systems is promising due to its unique properties. Thus, in the present work, we discuss the potential of few-layer graphene in a hydrogel system for dopamine release. The hydrogels are frequently used for these systems for their special physico-chemical properties, which can ensure that the drug is effectively released in time. However, the release from such structures is mostly determined by diffusion alone, and to overcome this restriction, the hydrogel can be "improved" with nanoscale fillers like graphene. The release kinetics of the composite obtained were analyzed to better understand how the use of graphene, instead of the more common graphene oxide (GO) and reduced graphene oxide (rGO), affects the characteristics of the system. Thus, the systems developed in this study consist of three main components: biopolymer, graphene, and dopamine. The hydrogels with graphene were prepared by combining two different solutions, one with polyacrylic acid and agarose and one with graphene prepared by the exfoliation method with microwave irradiation. The drug delivery systems were developed by adding dopamine to the obtained hydrogels. After 24 h of release, the presence of dopamine was observed, demonstrating that the system developed can slow down the drug's degradation because of the interactions with the graphene nanoplates and the polymer matrix.
Collapse
Affiliation(s)
- Cristina Mormile
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.K.); (A.T.); (A.S.); (M.-L.S.)
- Faculty of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
- INFN—National Laboratories of Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy; (M.L.P.); (C.V.G.)
| | - Ocsana Opriș
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.K.); (A.T.); (A.S.); (M.-L.S.)
| | - Stefano Bellucci
- INFN—National Laboratories of Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy; (M.L.P.); (C.V.G.)
| | - Ildiko Lung
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.K.); (A.T.); (A.S.); (M.-L.S.)
| | - Irina Kacso
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.K.); (A.T.); (A.S.); (M.-L.S.)
| | - Alexandru Turza
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.K.); (A.T.); (A.S.); (M.-L.S.)
| | - Matteo La Pietra
- INFN—National Laboratories of Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy; (M.L.P.); (C.V.G.)
- Department of Information Engineering, Polytechnic University of Marche, Via Brecce Bianche 12, 60131 Ancona, Italy
| | - Cristian Vacacela Gomez
- INFN—National Laboratories of Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy; (M.L.P.); (C.V.G.)
| | - Adina Stegarescu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.K.); (A.T.); (A.S.); (M.-L.S.)
| | - Maria-Loredana Soran
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.K.); (A.T.); (A.S.); (M.-L.S.)
| |
Collapse
|
24
|
Zhao L, Zhou Y, Zhang J, Liang H, Chen X, Tan H. Natural Polymer-Based Hydrogels: From Polymer to Biomedical Applications. Pharmaceutics 2023; 15:2514. [PMID: 37896274 PMCID: PMC10610124 DOI: 10.3390/pharmaceutics15102514] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Hydrogels prepared from natural polymer have attracted extensive attention in biomedical fields such as drug delivery, wound healing, and regenerative medicine due to their good biocompatibility, degradability, and flexibility. This review outlines the commonly used natural polymer in hydrogel preparation, including cellulose, chitosan, collagen/gelatin, alginate, hyaluronic acid, starch, guar gum, agarose, and dextran. The polymeric structure and process/synthesis of natural polymers are illustrated, and natural polymer-based hydrogels including the hydrogel formation and properties are elaborated. Subsequently, the biomedical applications of hydrogels based on natural polymer in drug delivery, tissue regeneration, wound healing, and other biomedical fields are summarized. Finally, the future perspectives of natural polymers and hydrogels based on them are discussed. For natural polymers, novel technologies such as enzymatic and biological methods have been developed to improve their structural properties, and the development of new natural-based polymers or natural polymer derivatives with high performance is still very important and challenging. For natural polymer-based hydrogels, novel hydrogel materials, like double-network hydrogel, multifunctional composite hydrogels, and hydrogel microrobots have been designed to meet the advanced requirements in biomedical applications, and new strategies such as dual-cross-linking, microfluidic chip, micropatterning, and 3D/4D bioprinting have been explored to fabricate advanced hydrogel materials with designed properties for biomedical applications. Overall, natural polymeric hydrogels have attracted increasing interest in biomedical applications, and the development of novel natural polymer-based materials and new strategies/methods for hydrogel fabrication are highly desirable and still challenging.
Collapse
Affiliation(s)
- Lingling Zhao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yifan Zhou
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Jiaying Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children’s Hospital, Shenzhen 518038, China
| | - Hongze Liang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Xianwu Chen
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315211, China
| | - Hui Tan
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children’s Hospital, Shenzhen 518038, China
| |
Collapse
|
25
|
Yin L, Zhang K, Sun W, Zhang Y, Wang Y, Qin J. Carboxymethylcellulose based self-healing hydrogel with coupled DOX as Camptothecin loading carrier for synergetic colon cancer treatment. Int J Biol Macromol 2023; 249:126012. [PMID: 37517758 DOI: 10.1016/j.ijbiomac.2023.126012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/13/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
The self-healing hydrogels have important applications in biomedication as drug release carrier. In this research, the Doxorubicin (DOX) was coupled onto oxidized carboxymethylcellulose (CMC) (CMC-Ald) to fabricate self-healing hydrogel with intrinsic antitumor property and loaded with Camptothecin (CPT) for synergetic antitumor treatment. The DOX coupled CMC-Ald (CMC-AD) was reacted with poly(aspartic hydrazide) (PAH) to fabricate injectable self-healing hydrogel. The coupled DOX avoided the burst release of the drug and the 100 % CPT loaded hydrogel could take the advantages of both drugs to enhance the synergetic antitumor therapeutic effect. The in vitro and in vivo results revealed the CPT loaded CMC-AD/PAH hydrogel showed enhanced antitumor property and reduced biotoxicity of the drugs. These properties demonstrate that the CMC-AD/PAH hydrogel has great application prospects in biomedication.
Collapse
Affiliation(s)
- Liping Yin
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Kaiyue Zhang
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Weichen Sun
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Yu Zhang
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Yong Wang
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China
| | - Jianglei Qin
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China.
| |
Collapse
|
26
|
Kumar Shukla M, Parihar A, Karthikeyan C, Kumar D, Khan R. Multifunctional GQDs for receptor targeting, drug delivery, and bioimaging in pancreatic cancer. NANOSCALE 2023; 15:14698-14716. [PMID: 37655476 DOI: 10.1039/d3nr03161f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Pancreatic cancer is a devastating disease with a low survival rate and limited treatment options. Graphene quantum dots (GQDs) have recently become popular as a promising platform for cancer diagnosis and treatment due to their exceptional physicochemical properties, such as biocompatibility, stability, and fluorescence. This review discusses the potential of multifunctional GQDs as a platform for receptor targeting, drug delivery, and bioimaging in pancreatic cancer. The current studies emphasized the ability of GQDs to selectively target pancreatic cancer cells by overexpressing binding receptors on the cell surface. Additionally, this review discussed the uses of GQDs as drug delivery vehicles for the controlled and targeted release of therapeutics for pancreatic cancer cells. Finally, the potential of GQDs as imaging agents for pancreatic cancer detection and monitoring has been discussed. Overall, multifunctional GQDs showed great promise as a versatile platform for the diagnosis and treatment of pancreatic cancer. Further investigation of multifunctional GQDs in terms of their potential and optimization in the context of pancreatic cancer therapy is needed.
Collapse
Affiliation(s)
- Monu Kumar Shukla
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India
| | - Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, Madhya Pradesh, India.
| | | | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India
| | - Raju Khan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, Madhya Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
27
|
Hamidu A, Pitt WG, Husseini GA. Recent Breakthroughs in Using Quantum Dots for Cancer Imaging and Drug Delivery Purposes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2566. [PMID: 37764594 PMCID: PMC10535728 DOI: 10.3390/nano13182566] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Cancer is one of the leading causes of death worldwide. Because each person's cancer may be unique, diagnosing and treating cancer is challenging. Advances in nanomedicine have made it possible to detect tumors and quickly investigate tumor cells at a cellular level in contrast to prior diagnostic techniques. Quantum dots (QDs) are functional nanoparticles reported to be useful for diagnosis. QDs are semiconducting tiny nanocrystals, 2-10 nm in diameter, with exceptional and useful optoelectronic properties that can be tailored to sensitively report on their environment. This review highlights these exceptional semiconducting QDs and their properties and synthesis methods when used in cancer diagnostics. The conjugation of reporting or binding molecules to the QD surface is discussed. This review summarizes the most recent advances in using QDs for in vitro imaging, in vivo imaging, and targeted drug delivery platforms in cancer applications.
Collapse
Affiliation(s)
- Aisha Hamidu
- Biomedical Engineering Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
| | - William G. Pitt
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA;
| | - Ghaleb A. Husseini
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
28
|
Chatterjee S, Mahmood S, Hilles AR, Thomas S, Roy S, Provaznik V, Romero EL, Ghosal K. Cationic starch: A functionalized polysaccharide based polymer for advancement of drug delivery and health care system - A review. Int J Biol Macromol 2023; 248:125757. [PMID: 37429342 DOI: 10.1016/j.ijbiomac.2023.125757] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/17/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Research and development in health care industry is in persistence progression. To make it more patient-friendly or to get maximum benefits from it, special attention to different advanced drug delivery system (ADDS) is employed that delivers the drug at the target site and will be able to sustain/control release of drugs. ADDS should be non-toxic, biodegradable, biocompatible along with desirable showing physicochemical and functional properties. These drug delivery systems can be totally based on polymers, either with natural or synthetic polymers. The molecular weight of polymer can be tuned and different groups of polymers can be modified or substituted with other functional groups. Degree of substitution is also tailored. Cationic starch in recent years is exploited in drug delivery, tissue engineering and biomedicine. Due to their abundant availability, low cost, easy chemical modification, low toxicity, biodegradability and biocompatibility, extensive research is now being carried out. Our present discussion will shed light on the usage of cationic starch in health care system.
Collapse
Affiliation(s)
- Shreya Chatterjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ayah Rebhi Hilles
- INHART, International Islamic University Malaysia, Jalan Gombak, 53100, Selangor, Malaysia
| | - Sabu Thomas
- IIUCNN, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Sudeep Roy
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology Technická 12, 61200 Brno, Czech Republic
| | - Valentine Provaznik
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology Technická 12, 61200 Brno, Czech Republic
| | - Eder Lilia Romero
- Department of Science and Technology, Nanomedicines Research and Development Center, Quilmes National University, Buenos Aires, Argentina
| | - Kajal Ghosal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
29
|
Gandla K, Kumar KP, Rajasulochana P, Charde MS, Rana R, Singh LP, Haque MA, Bakshi V, Siddiqui FA, Khan SL, Ganguly S. Fluorescent-Nanoparticle-Impregnated Nanocomposite Polymeric Gels for Biosensing and Drug Delivery Applications. Gels 2023; 9:669. [PMID: 37623124 PMCID: PMC10453855 DOI: 10.3390/gels9080669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/05/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Nanocomposite polymeric gels infused with fluorescent nanoparticles have surfaced as a propitious category of substances for biomedical purposes owing to their exceptional characteristics. The aforementioned materials possess a blend of desirable characteristics, including biocompatibility, biodegradability, drug encapsulation, controlled release capabilities, and optical properties that are conducive to imaging and tracking. This paper presents a comprehensive analysis of the synthesis and characterization of fluorescent-nanoparticle-impregnated nanocomposite polymeric gels, as well as their biomedical applications, such as drug delivery, imaging, and tissue engineering. In this discourse, we deliberate upon the merits and obstacles linked to these substances, encompassing biocompatibility, drug encapsulation, optical characteristics, and scalability. The present study aims to provide an overall evaluation of the potential of fluorescent-nanoparticle-impregnated nanocomposite polymeric gels for biomedical applications. Additionally, emerging trends and future directions for research in this area are highlighted.
Collapse
Affiliation(s)
- Kumaraswamy Gandla
- Department of Pharmaceutical Analysis, Chaitanya (Deemed to be University), Hyderabad 500075, India
| | - K. Praveen Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Government of NCT of Delhi, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - P. Rajasulochana
- Department of Microbiology, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Kanchipuram 602105, India
| | - Manoj Shrawan Charde
- Department of Pharmaceutical Chemistry, Government College of Pharmacy, Karad 415124, India
| | - Ritesh Rana
- Department of Pharmaceutics, Himachal Institute of Pharmaceutical Education and Research (HIPER), Hamirpur 177033, India
| | - Laliteshwar Pratap Singh
- Department of Pharmaceutical Chemistry, Narayan Institute of Pharmacy, Gopal Narayan Singh University, Rohtas 821305, India
| | - M. Akiful Haque
- Department of Pharmaceutical Analysis, School of Pharmacy, Anurag University, Hyderabad 500088, India
| | - Vasudha Bakshi
- Department of Pharmaceutics, School of Pharmacy, Anurag University, Hyderabad 500088, India
| | - Falak A. Siddiqui
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, India
- Department of Pharmaceutical Chemistry, School of Pharmacy, Anurag University, Hyderabad 500088, India
| | - Sharuk L. Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, India
- Department of Pharmaceutical Chemistry, School of Pharmacy, Anurag University, Hyderabad 500088, India
| | - S. Ganguly
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Ramat Gan 5290002, Israel
| |
Collapse
|
30
|
Sina A, Sarrafi Y, Tajbakhsh M, Fallah Z. An arrangement of β-cyclodextrin chitosan supported on magnetic graphene oxide and its application for in-vitro drug delivery. Int J Biol Macromol 2023; 246:125696. [PMID: 37406915 DOI: 10.1016/j.ijbiomac.2023.125696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/14/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Affiliation(s)
- Amirhossein Sina
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Yaghoub Sarrafi
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| | - Mahmood Tajbakhsh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Zari Fallah
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
31
|
Fathi R, Mohammadi R. Preparation of pH-responsive magnetic nanocomposite hydrogels based on k-carrageenan/chitosan/silver nanoparticles: Antibacterial carrier for potential targeted anticancer drug delivery. Int J Biol Macromol 2023; 246:125546. [PMID: 37355059 DOI: 10.1016/j.ijbiomac.2023.125546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/21/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
This study reports the development of new pH-responsive drug delivery systems that are important for the treatment of cancer. The Mentha plant extract was obtained and then used for the biosynthesis of magnetic Ag bio nanoparticles (M-Ag bio-NPs). They were added in the formulation of hybrid hydrogel of k-carrageenan (k-Cr) and chitosan (CS) toward the synthesis of magnetic nanocomposite hydrogels. Their chemical structure and morphology were characterized by different analyses. Doxorubicin (DOX) was used as a model anticancer drug to study the targeted drug release behavior of the synthesized nanocomposite hydrogels (loading capacity: about 98 %). In vitro drug release studies showed that the release profile was noticeably controlled in a pH-dependent manner (higher drug release at pH 5). The antibacterial assessment confirmed the high antibacterial activity for the synthesized hydrogel against S. aureus (MIC values 39.06 μg/mL) and E. coli (MIC values > 19.53). In-vitro cytotoxicity results (MTT assay) demonstrated good biocompatibility (higher than 88 %) for the blank nanocomposite hydrogels, while DOX-loaded nanocomposite hydrogels showed high toxicity (about 22 % in the concentration of 20 μg/mL) against HeLa cells. The results showed that the present nanocomposite hydrogels can be suggested for potential application as an antibacterial and anticancer carrier.
Collapse
Affiliation(s)
- Roghayeh Fathi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
32
|
Zhang X, Ning L, Wu H, Yang S, Hu Z, Wang W, Cao Y, Xin H, You C, Lin F. Targeting CDK4/6 in glioblastoma via in situ injection of a cellulose-based hydrogel. NANOSCALE 2023; 15:12518-12529. [PMID: 37278298 DOI: 10.1039/d3nr00378g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Despite aggressive treatments, including surgery, chemotherapy and radiotherapy, the prognosis of glioblastoma (GBM) remains poor, and tumor recurrence is inevitable. The FDA-approved CDK4/6 inhibitor palbociclib (PB) showed interesting anti-GBM effects, but its brain penetration is limited by the blood-brain barrier. The aim of this project is to find whether the cellulose-based hydrogel via in situ injection could provide an alternative route to PB brain delivery and generate sufficient drug exposure in orthotopic GBM. In brief, PB was encapsulated in a cellulose nanocrystal network structure crosslinked by polydopamine via divalent Cu2+ and hexadecylamine. The formed hydrogel (PB@PH/Cu-CNCs) exhibited sustained drug retention and acid-responsive network de-polymerization for controlled release in vivo. Specifically, the released Cu2+ catalyzed a Fenton-like reaction to generate reactive oxygen species (ROS), which was further enhanced by PB, and consequently, irreversible senescence and apoptosis were induced in GBM cells. Finally, PB@PH/Cu-CNCs demonstrated a more potent anti-GBM effect than those treated with free PB or PH/Cu-CNCs (drug-free hydrogel) in cultured cells or in an orthotopic glioma model. These results prove that the injection of the PB-loaded hydrogel in situ is an effective strategy to deliver the CDK4/6 inhibitor into the brain and its anti-GBM effect can be further enhanced by combining Cu2+-mediated Fenton-like reaction.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Like Ning
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Hongshuai Wu
- Department of Central Laboratory, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, China
| | - Suisui Yang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Ziyi Hu
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Wenhong Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Yuandong Cao
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongliang Xin
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Chaoqun You
- Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China.
| | - Fan Lin
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China.
- Institute for Brain Tumors & Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
33
|
Mondal A, Nayak AK, Chakraborty P, Banerjee S, Nandy BC. Natural Polymeric Nanobiocomposites for Anti-Cancer Drug Delivery Therapeutics: A Recent Update. Pharmaceutics 2023; 15:2064. [PMID: 37631276 PMCID: PMC10459560 DOI: 10.3390/pharmaceutics15082064] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is one of the most common lethal diseases and the leading cause of mortality worldwide. Effective cancer treatment is a global problem, and subsequent advancements in nanomedicine are useful as substitute management for anti-cancer agents. Nanotechnology, which is gaining popularity, enables fast-expanding delivery methods in science for curing diseases in a site-specific approach, utilizing natural bioactive substances because several studies have established that natural plant-based bioactive compounds can improve the effectiveness of chemotherapy. Bioactive, in combination with nanotechnology, is an exceptionally alluring and recent development in the fight against cancer. Along with their nutritional advantages, natural bioactive chemicals may be used as chemotherapeutic medications to manage cancer. Alginate, starch, xanthan gum, pectin, guar gum, hyaluronic acid, gelatin, albumin, collagen, cellulose, chitosan, and other biopolymers have been employed successfully in the delivery of medicinal products to particular sites. Due to their biodegradability, natural polymeric nanobiocomposites have garnered much interest in developing novel anti-cancer drug delivery methods. There are several techniques to create biopolymer-based nanoparticle systems. However, these systems must be created in an affordable and environmentally sustainable way to be more readily available, selective, and less hazardous to increase treatment effectiveness. Thus, an extensive comprehension of the various facets and recent developments in natural polymeric nanobiocomposites utilized to deliver anti-cancer drugs is imperative. The present article provides an overview of the latest research and developments in natural polymeric nanobiocomposites, particularly emphasizing their applications in the controlled and targeted delivery of anti-cancer drugs.
Collapse
Affiliation(s)
- Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India
| | - Amit Kumar Nayak
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751 003, India;
| | - Prithviraj Chakraborty
- Department of Pharmaceutics, Royal School of Pharmacy, The Assam Royal Global University, Guwahati 781 035, India;
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, India;
| | - Bankim Chandra Nandy
- Department of Pharmaceutics, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India;
| |
Collapse
|
34
|
Fazal T, Murtaza BN, Shah M, Iqbal S, Rehman MU, Jaber F, Dera AA, Awwad NS, Ibrahium HA. Recent developments in natural biopolymer based drug delivery systems. RSC Adv 2023; 13:23087-23121. [PMID: 37529365 PMCID: PMC10388836 DOI: 10.1039/d3ra03369d] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
Targeted delivery of drug molecules to diseased sites is a great challenge in pharmaceutical and biomedical sciences. Fabrication of drug delivery systems (DDS) to target and/or diagnose sick cells is an effective means to achieve good therapeutic results along with a minimal toxicological impact on healthy cells. Biopolymers are becoming an important class of materials owing to their biodegradability, good compatibility, non-toxicity, non-immunogenicity, and long blood circulation time and high drug loading ratio for both macros as well as micro-sized drug molecules. This review summarizes the recent trends in biopolymer-based DDS, forecasting their broad future clinical applications. Cellulose chitosan, starch, silk fibroins, collagen, albumin, gelatin, alginate, agar, proteins and peptides have shown potential applications in DDS. A range of synthetic techniques have been reported to design the DDS and are discussed in the current study which is being successfully employed in ocular, dental, transdermal and intranasal delivery systems. Different formulations of DDS are also overviewed in this review article along with synthesis techniques employed for designing the DDS. The possibility of these biopolymer applications points to a new route for creating unique DDS with enhanced therapeutic qualities for scaling up creative formulations up to the clinical level.
Collapse
Affiliation(s)
- Tanzeela Fazal
- Department of Chemistry, Abbottabad University of Science and Technology Pakistan
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology Pakistan
| | - Mazloom Shah
- Department of Chemistry, Faculty of Science, Grand Asian University Sialkot Pakistan
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST) H-12 Islamabad 46000 Pakistan
| | - Mujaddad-Ur Rehman
- Department of Microbiology, Abbottabad University of Science & Technology Pakistan
| | - Fadi Jaber
- Department of Biomedical Engineering, Ajman University Ajman UAE
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University Ajman UAE
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University Abha Saudi Arabia
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
35
|
Saleem A, Rehman R, Hussain S, Salem MA, Ali F, Shah SAA, Younas U, El-Bahy SM, El-Bahy ZM, Iqbal M. Biodegradable and hemocompatible alginate/okra hydrogel films with promising stability and biological attributes. Int J Biol Macromol 2023:125532. [PMID: 37355067 DOI: 10.1016/j.ijbiomac.2023.125532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Currently, combinations of natural polymers and semi-synthetic biomolecules have gained attention for food-packaging, drug delivery, coatings, and biomedical applications. In this work, cross-linking property of two biopolymers was employed for the fabrication of hydrogel films. Sodium alginate (SAlg) and Okra gel (OkG) were used in different ratios (95:05, 75:25 and 85:15) to synthesize hydrogel films by solvent-casting method. Formation of the films was confirmed by FTIR and Raman techniques which specified the interaction between biomolecules of SAlg and OkG. XRD pattern has shown the presence of both amorphous and micro-crystalline phases in the hydrogel films and SEM studies have shown porosity, amorphousness and agglomerated morphology. TGA and DSC analyses revealed degradation of the film at 420 °C and stability studies using PBS buffer indicated stability and hydrophilic nature of hydrogel films. In-vitro degradation test was also performed for 10 weeks through the incubation of hydrogel-films in simulated body fluid and the effect of pH and temperature was also studied. Results have shown worth-some influence of okra gel on the fabricated films. Hemolytic and antioxidant activities of the gels were also determined and being non-toxic, all these ratios were found suitable for biomedical applications; especially 85:15 have shown maximum potential.
Collapse
Affiliation(s)
- Aimon Saleem
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Roeya Rehman
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Sania Hussain
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Mohamed A Salem
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail, Assir, Saudi Arabia
| | - Faisal Ali
- Department of Chemistry, The University of Lahore, Lahore, Pakistan.
| | | | - Umer Younas
- Department of Chemistry, The University of Lahore, Lahore, Pakistan.
| | - Salah M El-Bahy
- Department of Chemistry, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Zeinhom M El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Munawar Iqbal
- Department of Chemistry, University of Education Lahore, Faisalabad Campus, Faisalabad, Pakistan
| |
Collapse
|
36
|
Kesavan S, Rajesh D, Shanmugam J, Sharmili SA, Gopal M, Vijayakumar S. Biocompatible polysaccharide fabricated graphene oxide nanoparticles: A versatile nanodrug carrier to deliver κ- carrageenan against cancer cells. Int J Biol Macromol 2023:125322. [PMID: 37307980 DOI: 10.1016/j.ijbiomac.2023.125322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
A graphene oxide mediated hybrid nano system for pH stimuli-responsive and in vitro drug delivery targeted for cancer was described in this study. Graphene oxide (GO) functionalized Chitosan (CS) mediated nanocarrier capped with xyloglucan (XG) was fabricated with and without Kappa carrageenan (κ-C) from red seaweed, Kappaphycus alverzii, as an active drug. FTIR, EDAX, XPS, XRD, SEM and HR-TEM studies were carried out for GO-CS-XG nanocarrier loaded with and without active drugs to understand the physicochemical properties. XPS (C1s, N1s and O1s) confirmed the fabrications of XG and functionalization of GO by CS via the binding energies at 284.2 eV, 399.4 eV and 531.3 eV, respectively. The amount of drug loaded in vitro was 0.422 mg/mL. The GO-CS-XG nanocarrier showed a cumulative drug release of 77 % at acidic pH 5.3. In contrast to physiological conditions, the release rate of κ-C from the GO-CS-XG nanocarrier was considerably higher in the acidic condition. Thus, a pH stimuli-responsive anticancer drug release was successfully achieved with the GO-CS-XG-κ-C nanocarrier system for the first time. The drug release mechanism was carried out using various kinetic models that showed a mixed release behavior depending on concentration and diffusion/swelling mechanism. The best-fitting model which supports our release mechanism are zero order, first order and Higuchi models. GO-CS-XG and κ-C loaded nanocarrier biocompatibility were determined by in vitro hemolysis and membrane stabilization studies. MCF-7 and U937 cancer cell lines were used to study the cytotoxicity of the nanocarrier by MTT assay, which indicates excellent cytocompatibility. These findings support the versatile use of a green renewable biocompatible GO-CS-XG nanocarrier as targeted drug delivery and potential anticancer agent for therapeutic purposes.
Collapse
Affiliation(s)
- Sonia Kesavan
- Department of Biochemistry, Ethiraj College for Women (Autonomous), Chennai, Tamil Nadu, 600 008, India; Department of Chemistry, Queen Mary's College (Autonomous), Chennai, Tamil Nadu 600004, India
| | - D Rajesh
- Department of Microbiology, Chennai National Arts and Science College, Chennai, Tamil Nadu 600 054, India
| | - Jayashree Shanmugam
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai, Tamil Nadu 600086, India
| | - S Aruna Sharmili
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai, Tamil Nadu 600086, India.
| | | | | |
Collapse
|
37
|
Jafari H, Namazi H, Mahdavinia GR. pH-sensitive biocompatible chitosan/sepiolite-based cross-linked citric acid magnetic nanocarrier for efficient sunitinib release. Int J Biol Macromol 2023; 242:124739. [PMID: 37148933 DOI: 10.1016/j.ijbiomac.2023.124739] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
In this study, the magnetite nanoparticles were immobilized on the sepiolite needles via co-precipitation of iron ions. Then, the resulted magnetic sepiolite (mSep) nanoparticles were coated with chitosan biopolymer (Chito) in the presence of citric acid (CA) to prepare mSep@Chito core-shell drug nanocarriers (NCs). TEM images showed magnetic Fe3O4 nanoparticles with small sizes (less than 25 nm) on the sepiolite needles. Sunitinib anticancer drug loading efficiencies were ⁓45 and 83.7 % for the NCs with low and high content of Chito, respectively. The in-vitro drug release results exhibited that the mSep@Chito NCs have a sustained release behavior with high pH-dependent properties. Cytotoxic results (MTT assay) showed that the sunitinib-loaded mSep@Chito2 NC had a significant cytotoxic effect on the MCF-7 cell lines. Also, the in-vitro compatibility of erythrocytes, physiological stability, biodegradability, and antibacterial and antioxidant activities of NCs was evaluated. The results showed that the synthesized NCs had excellent hemocompatibility, good antioxidant properties, and were sufficiently stable and biocompatible. Based on the antibacterial data, the minimal inhibitory concentration (MIC) values for mSep@Chito1, mSep@Chito2, and mSep@Chito3 were obtained as 125, 62.5, and 31.2 μg/mL towards S. aureus, respectively. All in all, the prepared NCs could be potentially used as a pH-triggered system for biomedical applications.
Collapse
Affiliation(s)
- Hessam Jafari
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
| | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Gholam Reza Mahdavinia
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Maragheh, 55181-83111 Maragheh, Iran
| |
Collapse
|
38
|
Kurniawan D, Mathew J, Rahardja MR, Pham HP, Wong PC, Rao NV, Ostrikov KK, Chiang WH. Plasma-Enabled Graphene Quantum Dot Hydrogels as Smart Anticancer Drug Nanocarriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206813. [PMID: 36732883 DOI: 10.1002/smll.202206813] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/10/2023] [Indexed: 05/18/2023]
Abstract
One of the major challenges on the way to low-cost, simple, and effective cancer treatments is the lack of smart anticancer drug delivery materials with the requisite of site-specific and microenvironment-responsive properties. This work reports the development of plasma-engineered smart drug nanocarriers (SDNCs) containing chitosan and nitrogen-doped graphene quantum dots (NGQDs) for drug delivery in a pH-responsive manner. Through a customized microplasma processing, a highly cross-linked SDNC with only 4.5% of NGQD ratio can exhibit enhanced toughness up to threefold higher than the control chitosan group, avoiding the commonly used high temperatures and toxic chemical cross-linking agents. The SDNCs demonstrate improved loading capability for doxorubicin (DOX) via π-π interactions and stable solid-state photoluminescence to monitor the DOX loading and release through the Förster resonance energy transfer (FRET) mechanism. Moreover, the DOX loaded SDNC exhibits anticancer effects against cancer cells during cytotoxicity tests at minimum concentration. Cellular uptake studies confirm that the DOX loaded SDNC can be successfully internalized into the nucleus after 12 h incubation period. This work provides new insights into the development of smart, environmental-friendly, and biocompatible nanographene hydrogels for the next-generation biomedical applications.
Collapse
Affiliation(s)
- Darwin Kurniawan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Jacob Mathew
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Michael Ryan Rahardja
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Hoang-Phuc Pham
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Pei-Chun Wong
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei, 110, Taiwan
| | - Neralla Vijayakameswara Rao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and QUT Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland, 4000, Australia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| |
Collapse
|
39
|
Pourmadadi M, Rahmani E, Shamsabadipour A, Samadi A, Esmaeili J, Arshad R, Rahdar A, Tavangarian F, Pandey S. Novel Carboxymethyl cellulose based nanocomposite: A Promising Biomaterial for Biomedical Applications. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
40
|
Alrushaid N, Khan FA, Al-Suhaimi EA, Elaissari A. Nanotechnology in Cancer Diagnosis and Treatment. Pharmaceutics 2023; 15:1025. [PMID: 36986885 PMCID: PMC10052895 DOI: 10.3390/pharmaceutics15031025] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Traditional cancer diagnosis has been aided by the application of nanoparticles (NPs), which have made the process easier and faster. NPs possess exceptional properties such as a larger surface area, higher volume proportion, and better targeting capabilities. Additionally, their low toxic effect on healthy cells enhances their bioavailability and t-half by allowing them to functionally penetrate the fenestration of epithelium and tissues. These particles have attracted attention in multidisciplinary areas, making them the most promising materials in many biomedical applications, especially in the treatment and diagnosis of various diseases. Today, many drugs are presented or coated with nanoparticles for the direct targeting of tumors or diseased organs without harming normal tissues/cells. Many types of nanoparticles, such as metallic, magnetic, polymeric, metal oxide, quantum dots, graphene, fullerene, liposomes, carbon nanotubes, and dendrimers, have potential applications in cancer treatment and diagnosis. In many studies, nanoparticles have been reported to show intrinsic anticancer activity due to their antioxidant action and cause an inhibitory effect on the growth of tumors. Moreover, nanoparticles can facilitate the controlled release of drugs and increase drug release efficiency with fewer side effects. Nanomaterials such as microbubbles are used as molecular imaging agents for ultrasound imaging. This review discusses the various types of nanoparticles that are commonly used in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Noor Alrushaid
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Univ. Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622 Lyon, France
| | - Firdos Alam Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ebtesam Abdullah Al-Suhaimi
- Biology Department, College of Science, Institute of Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Abdelhamid Elaissari
- Univ. Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622 Lyon, France
| |
Collapse
|
41
|
Mahdavinia GR, Hoseinzadeh H, Labib P, Jabbari P, Mohebbi A, Barzeger S, Jafari H. (Magnetic laponite/κ-carrageenan)@chitosan core–shell carrier for pH-sensitive release of doxorubicin. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
42
|
Wang H, Fu H, Fu Y, Jiang L, Wang L, Tong H, Xie Z, Huang P, Sun M. Knowledge mapping concerning applications of nanocomposite hydrogels for drug delivery: A bibliometric and visualized study (2003-2022). Front Bioeng Biotechnol 2023; 10:1099616. [PMID: 36686234 PMCID: PMC9852897 DOI: 10.3389/fbioe.2022.1099616] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Background: Nanocomposite Hydrogels (NHs) are 3D molecular networks formed by physically or covalently crosslinking polymer with nanoparticles or nanostructures, which are particularly suitable for serving as carriers for drug delivery systems. Many articles pertaining to the applications of Nanocomposite Hydrogels for drug delivery have been published, however, the use of bibliometric and visualized analysis in this area remains unstudied. The purpose of this bibliometric study intended to comprehensively analyze the knowledge domain, research hotspots and frontiers associated with the applications of Nanocomposite Hydrogels for drug delivery. Methods: We identified and retrieved the publications concerning the applications of NHs for drug delivery between 2003 and 2022 from Web of Science Core Collection Bibliometric and visualized analysis was utilized in this investigative study. Results: 631 articles meeting the inclusion criteria were identified and retrieved from WoSCC. Among those, 2,233 authors worldwide contributed in the studies, accompanied by an average annual article increase of 24.67%. The articles were co-authored by 764 institutions from 52 countries/regions, and China published the most, followed by Iran and the United States. Five institutions published more than 40 papers, namely Univ Tabriz (n = 79), Tabriz Univ Med Sci (n = 70), Islamic Azad Univ (n = 49), Payame Noor Univ (n = 42) and Texas A&M Univ (n = 41). The articles were published in 198 journals, among which the International Journal of Biological Macromolecules (n = 53) published the most articles, followed by Carbohydrate Polymers (n = 24) and ACS Applied Materials and Interfaces (n = 22). The top three journals most locally cited were Carbohydrate Polymers, Biomaterials and Advanced materials. The most productive author was Namazi H (29 articles), followed by Bardajee G (15 articles) and Zhang J (11 articles) and the researchers who worked closely with other ones usually published more papers. "Doxorubicin," "antibacterial" and "responsive hydrogels" represent the current research hotspots in this field and "cancer therapy" was a rising research topic in recent years. "(cancer) therapeutics" and "bioadhesive" represent the current research frontiers. Conclusion: This bibliometric and visualized analysis offered an investigative study and comprehensive understanding of publications regarding the applications of Nanocomposite Hydrogels for drug delivery from 2003 to 2022. The outcome of this study would provide insights for researchers in the field of Nanocomposite Hydrogels applications for drug delivery.
Collapse
Affiliation(s)
- Hao Wang
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Hongxun Fu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China,Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, China
| | - Yefan Fu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Lin Jiang
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Liye Wang
- College of Pharmacy, University of Houston, Houston, TX, United States
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Zuoxu Xie
- College of Pharmacy, University of Houston, Houston, TX, United States
| | - Peng Huang
- Department of Pharmacy, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,*Correspondence: Peng Huang, ; Meiyan Sun,
| | - Meiyan Sun
- College of Laboratory Medicine, Jilin Medical University, Jilin, China,*Correspondence: Peng Huang, ; Meiyan Sun,
| |
Collapse
|
43
|
Yavuz B, Kondolot Solak E, Oktar C. Preparation of biocompatible microsphere-cryogel composite system and controlled release of mupirocin. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2022.2163638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Burcu Yavuz
- Department of Chemical Engineering, Gazi University, Ankara, Turkey
| | - Ebru Kondolot Solak
- Department of Chemistry and Chemical Processing Technologies, Gazi University, Ankara, Turkey
- Department of Advanced Technologies, Gazi University, Ankara, Turkey
| | - Ceren Oktar
- Department of Chemical Engineering, Gazi University, Ankara, Turkey
- Department of Advanced Technologies, Gazi University, Ankara, Turkey
| |
Collapse
|
44
|
Functionalization of graphene oxide quantum dots for anticancer drug delivery. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
45
|
Bhamore JR, Patil BS. Carbon dots in hydrogels and their applications. CARBON DOTS IN ANALYTICAL CHEMISTRY 2023:149-160. [DOI: 10.1016/b978-0-323-98350-1.00018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
46
|
Kazeminava F, Javanbakht S, Nouri M, Gholizadeh P, Nezhad-Mokhtari P, Ganbarov K, Tanomand A, Kafil HS. Gentamicin-loaded chitosan/folic acid-based carbon quantum dots nanocomposite hydrogel films as potential antimicrobial wound dressing. J Biol Eng 2022; 16:36. [PMID: 36544213 PMCID: PMC9773523 DOI: 10.1186/s13036-022-00318-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND To provide effective healing in the wound, various carbohydrate polymers are commonly utilized that are highly potent platforms as wound dressing films. In this work, novel antibacterial flexible polymeric hydrogel films were designed via crosslinking polymeric chitosan (CS) with folic acid-based carbon quantum dots (CQDs). To end this, folic acid as a bio-precursor is used to synthesize CQDs through the hydrothermal technique. The synthesized CQDs as a crosslinking agent was performed at different concentrations to construct nanocomposite hydrogel films via the casting technique. Also, gentamicin (GM), L-Arginine and glycerol were supplemented in the formulation of nanocomposite since their antibiotic, bioactivity and plasticizing ability, respectively. RESULTS The successful construction of films were verified with different methods (FT-IR, UV-Vis, PL, SEM, and AFM analyses). The GM release profile displayed a controlled release manner over 48 h with a low initial burst release in the simulated wound media (PBS, pH 7.4). Antibacterial and in vitro cytotoxicity results showed a significant activity toward different gram-positive and negative bacterial strains (about 2.5 ± 0.1 cm inhibition zones) and a desired cytocompatibility against Human skin fibroblast (HFF-1) cells (over 80% cell viability), respectively. CONCLUSION The obtained results recommend CQDs-crosslinked CS (CS/CQD) nanocomposite as a potent antimicrobial wound dressing.
Collapse
Affiliation(s)
- Fahimeh Kazeminava
- grid.412888.f0000 0001 2174 8913Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siamak Javanbakht
- grid.412888.f0000 0001 2174 8913Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- grid.412888.f0000 0001 2174 8913Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- grid.412888.f0000 0001 2174 8913Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parinaz Nezhad-Mokhtari
- grid.412888.f0000 0001 2174 8913Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khudaverdi Ganbarov
- grid.37600.320000 0001 1010 9948Research Laboratory of Microbiology and Virology, Baku State University, Baku, Azerbaijan
| | - Asghar Tanomand
- grid.449862.50000 0004 0518 4224Department of Microbiology, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Hossein Samadi Kafil
- grid.412888.f0000 0001 2174 8913Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
47
|
Mahdi Eshaghi M, Pourmadadi M, Rahdar A, Díez-Pascual AM. Novel Carboxymethyl Cellulose-Based Hydrogel with Core-Shell Fe 3O 4@SiO 2 Nanoparticles for Quercetin Delivery. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15248711. [PMID: 36556516 PMCID: PMC9784486 DOI: 10.3390/ma15248711] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 05/23/2023]
Abstract
A nanocomposite composed of carboxymethyl cellulose (CMC) and core-shell nanoparticles of Fe3O4@SiO2 was prepared as a pH-responsive nanocarrier for quercetin (QC) delivery. The nanoparticles were further entrapped in a water-in-oil-in-water emulsion system for a sustained release profile. The CMC/Fe3O4@SiO2/QC nanoparticles were characterized using dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), a field emission scanning electron microscope (FE-SEM), and a vibrating sample magnetometer (VSM) to obtain insights into their size, stability, functional groups/chemical bonds, crystalline structure, morphology, and magnetic properties, respectively. The entrapment and loading efficiency were slightly improved after the incorporation of Fe3O4@SiO2 NPs within the hydrogel network. The dialysis method was applied for drug release studies. It was found that the amount of QC released increased with the decrease in pH from 7.4 to 5.4, while the sustained-release pattern was preserved. The A549 cell line was chosen to assess the anticancer activity of the CMC/Fe3O4@SiO2/QC nanoemulsion and its components for lung cancer treatment via an MTT assay. The L929 cell line was used in the MTT assay to determine the possible side effects of the nanoemulsion. Moreover, a flow cytometry test was performed to measure the level of apoptosis and necrosis. Based on the obtained results, CMC/Fe3O4@SiO2 can be regarded as a novel promising system for cancer therapy.
Collapse
Affiliation(s)
- Mohammad Mahdi Eshaghi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol 538-98615, Iran
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
48
|
Kumar N, Ghosh B, Kumar A, Koley R, Dhara S, Chattopadhyay S. Multilayered “SMART” hydrogel systems for on-site drug delivery applications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
49
|
Fluorescent cellulosic composites based on carbon dots: Recent advances, developments, and applications. Carbohydr Polym 2022; 294:119768. [DOI: 10.1016/j.carbpol.2022.119768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022]
|
50
|
Fragal EH, Fragal VH, Silva EP, Paulino AT, da Silva Filho EC, Mauricio MR, Silva R, Rubira AF, Muniz EC. Magnetic-responsive polysaccharide hydrogels as smart biomaterials: Synthesis, properties, and biomedical applications. Carbohydr Polym 2022; 292:119665. [PMID: 35725166 DOI: 10.1016/j.carbpol.2022.119665] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022]
Abstract
This review reports recent advances in polysaccharide-based magnetic hydrogels as smart platforms for different biomedical applications. These hydrogels have proved to be excellent, viable, eco-friendly alternative materials for the biomedical field due to their biocompatibility, biodegradability, and possibility of controlling delivery processes via modulation of the remote magnetic field. We first present their main synthesis methods and compare their advantages and disadvantages. Next, the synergic properties of hydrogels prepared with polysaccharides and magnetic nanoparticles (MNPs) are discussed. Finally, we describe the main contributions of polysaccharide-based magnetic hydrogels in the targeted drug delivery, tissue regeneration, and hyperthermia therapy fields. Overall, this review aims to motivate the synthesis of novel composite biomaterials, based on the combination of magnetic nanoparticles and natural polysaccharides, to overcome challenges that still exist in the treatment of several diseases.
Collapse
Affiliation(s)
- Elizângela H Fragal
- State University of Maringá, Department of Chemistry, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, PR, Brazil
| | - Vanessa H Fragal
- State University of Maringá, Department of Chemistry, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, PR, Brazil.
| | - Elisangela P Silva
- State University of Maringá, Department of Chemistry, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, PR, Brazil
| | - Alexandre T Paulino
- Santa Catarina State University, Department of Chemistry, Rua Paulo Malschitzki, 200, Zona Industrial Norte, 89.219-710 Joinville, SC, Brazil
| | - Edson C da Silva Filho
- Federal University of Piauí, Department of Chemistry, Campus Petrônio Portella, Bairro Ininga, 64049-550 Teresina, PI, Brazil
| | - Marcos R Mauricio
- State University of Maringá, Department of Chemistry, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, PR, Brazil
| | - Rafael Silva
- State University of Maringá, Department of Chemistry, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, PR, Brazil
| | - Adley F Rubira
- State University of Maringá, Department of Chemistry, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, PR, Brazil
| | - Edvani C Muniz
- State University of Maringá, Department of Chemistry, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, PR, Brazil; Federal University of Piauí, Department of Chemistry, Campus Petrônio Portella, Bairro Ininga, 64049-550 Teresina, PI, Brazil; Federal Technological University of Paraná, Estrada dos Pioneiros, 3131, Jardim Morumbi, 86036-370 Londrina, PR, Brazil.
| |
Collapse
|