1
|
Austin K, Torres JA, Waters JDV, Balog ERM, Halpern JM, Pantazes RJ. An Orthogonal Workflow of Electrochemical, Computational, and Thermodynamic Methods Reveals Limitations of Using a Literature-Reported Insulin Binding Peptide in Biosensors. ACS OMEGA 2024; 9:39219-39231. [PMID: 39310205 PMCID: PMC11411520 DOI: 10.1021/acsomega.4c06481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
Developing a continuous insulin-monitoring biosensor is of great importance for both the cellular biomanufacturing industry and for treating diabetes mellitus. Such a sensor needs to be able to effectively monitor insulin across a range of temperatures and pHs and with varying concentrations of competing analytes. One of the two main components of any biosensor is the recognition element, which is responsible for interacting with the molecule of interest. Prior literature describes an insulin-binding peptide (IBP) that was reported to bind to insulin with a 3 nM affinity. Here, we used orthogonal and complementary electrochemical, computational, and thermodynamic characterization methods to evaluate IBP's appropriateness for use in a biosensor. Unfortunately, all three methods failed to produce evidence of IBP-insulin binding either on surfaces or in solution. This indicates that the binding exhibited in previous reports is likely restricted to a limited set of conditions and that IBP is not a suitable recognition element for a continuous insulin biosensor.
Collapse
Affiliation(s)
- Katherine Austin
- Department
of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Jazmine A. Torres
- Department
of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Jeffery D. V. Waters
- School
of Molecular and Physical Sciences, University
of New England, Biddeford, Maine 04005, United States
| | - Eva Rose M. Balog
- School
of Molecular and Physical Sciences, University
of New England, Biddeford, Maine 04005, United States
| | - Jeffrey M. Halpern
- Department
of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Robert J. Pantazes
- Department
of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
2
|
Wang L, Li N, Zhang X, Bobrinetskiy I, Gadjanski I, Fu W. Sensing with Molecularly Imprinted Membranes on Two-Dimensional Solid-Supported Substrates. SENSORS (BASEL, SWITZERLAND) 2024; 24:5119. [PMID: 39204816 PMCID: PMC11358988 DOI: 10.3390/s24165119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024]
Abstract
Molecularly imprinted membranes (MIMs) have been a focal research interest since 1990, representing a breakthrough in the integration of target molecules into membrane structures for cutting-edge sensing applications. This paper traces the developmental history of MIMs, elucidating the diverse methodologies employed in their preparation and characterization on two-dimensional solid-supported substrates. We then explore the principles and diverse applications of MIMs, particularly in the context of emerging technologies encompassing electrochemistry, surface-enhanced Raman scattering (SERS), surface plasmon resonance (SPR), and the quartz crystal microbalance (QCM). Furthermore, we shed light on the unique features of ion-sensitive field-effect transistor (ISFET) biosensors that rely on MIMs, with the notable advancements and challenges of point-of-care biochemical sensors highlighted. By providing a comprehensive overview of the latest innovations and future trajectories, this paper aims to inspire further exploration and progress in the field of MIM-driven sensing technologies.
Collapse
Affiliation(s)
- Lishuang Wang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (L.W.); (N.L.)
| | - Nan Li
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (L.W.); (N.L.)
| | - Xiaoyan Zhang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (L.W.); (N.L.)
| | - Ivan Bobrinetskiy
- BioSense Institute, University of Novi Sad, Dr Zorana Đinđića 1a, 21000 Novi Sad, Serbia; (I.B.); (I.G.)
| | - Ivana Gadjanski
- BioSense Institute, University of Novi Sad, Dr Zorana Đinđića 1a, 21000 Novi Sad, Serbia; (I.B.); (I.G.)
| | - Wangyang Fu
- School of Materials Science and Engineering, Tsinghua University, No. 1 Tsinghua Yuan, Haidian District, Beijing 100084, China
| |
Collapse
|
3
|
Levy IK, Salustro D, Battaglini F, Lizarraga L, Murgida DH, Agusti R, D’Accorso N, Raventos Segura D, González Palmén L, Negri RM. Quantification of Enzymatic Biofilm Removal Using the Sauerbrey Equation: Application to the Case of Pseudomonas protegens. ACS OMEGA 2024; 9:10445-10458. [PMID: 38463305 PMCID: PMC10918834 DOI: 10.1021/acsomega.3c08475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/30/2023] [Accepted: 01/03/2024] [Indexed: 03/12/2024]
Abstract
A methodology for the quantitative analysis of enzymatic removal of biofilms (BF) was developed, based on a quartz crystal microbalance (QCM) under stationary conditions. This was applied to the case of Pseudomonas protegens (PP) BFs, through a series of five enzymes, whose removal activity was screened using the presented methodology. The procedure is based on the following: when BFs can be modeled as rigid materials, QCM can be used as a balance under stationary conditions for determining the BFs mass reduction by enzymatic removal. For considering a BF as a rigid model, energy dissipation effects, associated with viscoelastic properties of the BF, must be negligible. Hence, a QCM system with detection of dissipation (referred to as QCM with dissipation) was used for evaluating the energy losses, which, in fact, resulted in negligible energy losses in the case of dehydrated PP BFs, validating the application of the Sauerbrey equation for the change of mass calculations. The stationary methodology reduces operating times and simplifies data analysis in comparison to dynamic approaches based on flow setups, which requires the incorporation of dissipation effects due to the liquid media. By carrying out QCM, glycosidase-type enzymes showed BF removal higher than 80% at enzyme concentration 50 ppm, reaching removal over 90% in the cases of amylase and cellulase/xylanase enzymes. The highest removal percentage produced a reduction from about 15 to 1 μg in the BF mass. Amylase enzyme was tested from below 50 to 1 ppm, reaching around 60% of removal at 1 ppm. The obtained results were supported by other instrumental techniques such as Raman spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy, atomic force microscopy, high performance anion exchange chromatography, thermogravimetric analysis, and differential scanning calorimetry. The removal quantifications obtained with QCM were compared with those obtained by well-established screening techniques (UV-vis spectrophotometry using crystal violet and agar diffusion test). The proposed methodology expands the possibility of using a quartz microbalance to perform enzymatic activity screening.
Collapse
Affiliation(s)
- Ivana K. Levy
- Instituto
de Química Física de los Materiales, Medio Ambiente
y Energía (INQUIMAE). Consejo Nacional de Investigaciones Científicas
y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires C1428EGA, Argentina
| | - Débora Salustro
- Instituto
de Química Física de los Materiales, Medio Ambiente
y Energía (INQUIMAE). Consejo Nacional de Investigaciones Científicas
y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires C1428EGA, Argentina
| | - Fernando Battaglini
- Instituto
de Química Física de los Materiales, Medio Ambiente
y Energía (INQUIMAE). Consejo Nacional de Investigaciones Científicas
y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires C1428EGA, Argentina
- Universidad
de Buenos Aires (UBA), Departamento de Química Inorgánica,
Analítica y Química Física. Facultad de Ciencias
Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Leonardo Lizarraga
- Universidad
de Buenos Aires (UBA), Departamento de Química Inorgánica,
Analítica y Química Física. Facultad de Ciencias
Exactas y Naturales, Buenos Aires C1428EGA, Argentina
- Centro
de Investigación en Bionanociencias (CIBION), Consejo Nacional
de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQD, Argentina
| | - Daniel H. Murgida
- Instituto
de Química Física de los Materiales, Medio Ambiente
y Energía (INQUIMAE). Consejo Nacional de Investigaciones Científicas
y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires C1428EGA, Argentina
- Universidad
de Buenos Aires (UBA), Departamento de Química Inorgánica,
Analítica y Química Física. Facultad de Ciencias
Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Rosalía Agusti
- Centro
de Investigaciones en Hidratos de Carbono (CIHIDECAR), Consejo Nacional
de Investigaciones Científicas y Técnicas (CONICET),
Universidad de Buenos Aires, Buenos
Aires C1428EGA, Argentina
- Universidad
de Buenos Aires (UBA), Departamento de Química Orgánica,
Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Norma D’Accorso
- Centro
de Investigaciones en Hidratos de Carbono (CIHIDECAR), Consejo Nacional
de Investigaciones Científicas y Técnicas (CONICET),
Universidad de Buenos Aires, Buenos
Aires C1428EGA, Argentina
- Universidad
de Buenos Aires (UBA), Departamento de Química Orgánica,
Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | | | | | - R. Martín Negri
- Instituto
de Química Física de los Materiales, Medio Ambiente
y Energía (INQUIMAE). Consejo Nacional de Investigaciones Científicas
y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires C1428EGA, Argentina
- Universidad
de Buenos Aires (UBA), Departamento de Química Inorgánica,
Analítica y Química Física. Facultad de Ciencias
Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
4
|
Agnishwaran B, Manivasagam G, Udduttula A. Molecularly Imprinted Polymers: Shaping the Future of Early-Stage Bone Loss Detection-A Review. ACS OMEGA 2024; 9:8730-8742. [PMID: 38434830 PMCID: PMC10905706 DOI: 10.1021/acsomega.3c08977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
Osteoporosis is the deterioration of bone mineral density (BMD) because of an imbalance between bone resorption and formation, which might happen due to lots of factors like age, hormonal imbalance, and several others. While this occurrence is prevalent in both genders, it is more common in women, especially postmenopausal women. It is an asymptomatic disease that is underlying until the first incidence of a fracture. The bone is weakened, making it more susceptible to fracture. Even a low trauma can result in a fracture, making osteoporosis an even more alarming disease. These fractures can sometimes be fatal or can make the patient bedridden. Osteoporosis is an understudied disease, and there are certain limitations in diagnosing and early-stage detection of this condition. The standard method of dual X-ray absorptiometry can be used to some extent and can be detected in standard radiographs after the deterioration of a significant amount of bone mass. Clinically assessing osteoporosis using biomarkers can still be challenging, as clinical tests can be expensive and cannot be accessed by most of the general population. In addition, manufacturing antibodies specific to these biomarkers can be a challenging, time-consuming, and expensive method. As an alternative to these antibodies, molecularly imprinted polymers (MIPs) can be used in the detection of these biomarkers. This Review provides a comprehensive exploration of bone formation, resorption, and remodeling processes, linking them to the pathophysiology of osteoporosis. It details biomarker-based detection and diagnosis methods, with a focus on MIPs for sensing CTX-1, NTX-1, and other biomarkers. The discussion compares traditional clinical practices with MIP-based sensors, revealing comparable sensitivity with identified limitations. Additionally, the Review contrasts antibody-functionalized sensors with MIPs. Finally, our Review concludes by highlighting the potential of MIPs in future early-stage osteoporosis detection.
Collapse
Affiliation(s)
- Bala Agnishwaran
- Centre
for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore-632014, Tamil Nadu, India
- School
of Bio Sciences and Technology (SBST), Vellore
Institute of Technology (VIT), Vellore-632014, Tamil
Nadu, India
| | - Geetha Manivasagam
- Centre
for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore-632014, Tamil Nadu, India
| | - Anjaneyulu Udduttula
- Centre
for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore-632014, Tamil Nadu, India
| |
Collapse
|
5
|
Chen D, Wen Y, Li P, Wang Y, Dong T. Magnetically Modulated Differential Quartz Crystal Microbalances for Rapid, Ultrasensitive, and Direct Probing of Prostate-Specific Antigens Conjugated with Magnetic Beads. ACS Sens 2023; 8:4031-4041. [PMID: 37943682 DOI: 10.1021/acssensors.3c00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The occurrence and development of diseases are closely related to overexpression of specific biomarkers in the serum of patients. Rapid and sensitive biomarker detection is beneficial for early diagnosis and treatment. However, the current laboratory processes and assays for biomarker detection are expensive and time-consuming, and their operation also requires a large number of professionals. We developed a magnetically modulated differential quartz crystal microbalance (MMD-QCM) method combined with magnetic bead (MB) labels for rapid and highly sensitive quantitative detection of prostate-specific antigen (PSA). Because MBs exhibit magnetized rotation motion under an applied AC magnetic field, a pair of QCMs are utilized to measure the difference between the magnetic motion intensities of the MBs and the MB-PSA immune complex to determine the PSA concentration. Experimental results demonstrate that the proposed method can be adopted to determine the PSA concentration in a wide range of 0.01-1000 ng/mL as well as exhibit a low detection limit of 0.065 ng/mL. In addition, the proposed scheme enables fast detection and low sample consumption. The single detection process takes less than 4 h and requires only 113 μL of sample solution. The proposed detection strategy is superior to the existing detection method and can be effectively used in early screening and prognostic diagnosis of cancer and other related diseases owing to its simplicity, low cost, and high speed.
Collapse
Affiliation(s)
- Dongyu Chen
- School of Electronic, Information and Electrical Eng., Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| | - Yumei Wen
- School of Electronic, Information and Electrical Eng., Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| | - Ping Li
- School of Electronic, Information and Electrical Eng., Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| | - Yao Wang
- School of Electronic, Information and Electrical Eng., Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| | - Tao Dong
- Department of Microsystems, Norwegian Centre of Expertise on Micro-Nanotechnology, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, 3603 Kongsberg, Norway
| |
Collapse
|
6
|
Latif U, Seifner A, Dickert FL. Selective Detection of Erythrocytes with QCMs-ABO Blood Group Typing. SENSORS (BASEL, SWITZERLAND) 2023; 23:7533. [PMID: 37687989 PMCID: PMC10490655 DOI: 10.3390/s23177533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Blood transfusion, as well as organ transplantation, is only possible after prior blood group (BG) typing and crossmatching. The most important blood group system is that of Landsteiner's ABO classification based on antigen presence on the erythrocyte surfaces. A mass sensitive QCM (quartz crystal microbalance) sensor for BG typing has been developed by utilizing molecular imprinting technology. Polyvinylpyrrolidone (crosslinked with N,N-methylenebisacrylamide) is a favorable coating that was imprinted with erythrocytes of different blood groups. In total, 10 MHz quartz sheets with two resonators, one for MIP (molecularly imprinted polymer) and the other for NIP (non-imprinted polymer) were fabricated and later used for mass-sensitive measurements. The structure of erythrocyte imprints resembles a donut, as identified by AFM (atomic force microscope). All the erythrocytes of the ABO system were chosen as templates and the responses to these selective coatings were evaluated against all blood groups. Each blood group can be characterized by the pattern of responses in an unambiguous way. The results for blood group O are remarkable given that all types of erythrocytes give nearly the same result. This can be easily understood as blood group O does not possess neither antigen A nor antigen B. The responses can be roughly related to the number of respective antigens on the erythrocyte surface. The imprints generate hollows, which are used for reversible recognition of the erythrocytes. This procedure is based on molecular recognition (based on supramolecular strategies), which results from size, shape and enthalpic interactions between host and guest molecules.
Collapse
Affiliation(s)
- Usman Latif
- Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, A-1090 Vienna, Austria; (U.L.); (A.S.)
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore 54600, Pakistan
| | - Alexandra Seifner
- Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, A-1090 Vienna, Austria; (U.L.); (A.S.)
| | - Franz L. Dickert
- Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, A-1090 Vienna, Austria; (U.L.); (A.S.)
| |
Collapse
|
7
|
Psoma SD, Kanthou C. Wearable Insulin Biosensors for Diabetes Management: Advances and Challenges. BIOSENSORS 2023; 13:719. [PMID: 37504117 PMCID: PMC10377143 DOI: 10.3390/bios13070719] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023]
Abstract
We present a critical review of the current progress in wearable insulin biosensors. For over 40 years, glucose biosensors have been used for diabetes management. Measurement of blood glucose is an indirect method for calculating the insulin administration dosage, which is critical for insulin-dependent diabetic patients. Research and development efforts aiming towards continuous-insulin-monitoring biosensors in combination with existing glucose biosensors are expected to offer a more accurate estimation of insulin sensitivity, regulate insulin dosage and facilitate progress towards development of a reliable artificial pancreas, as an ultimate goal in diabetes management and personalised medicine. Conventional laboratory analytical techniques for insulin detection are expensive and time-consuming and lack a real-time monitoring capability. On the other hand, biosensors offer point-of-care testing, continuous monitoring, miniaturisation, high specificity and sensitivity, rapid response time, ease of use and low costs. Current research, future developments and challenges in insulin biosensor technology are reviewed and assessed. Different insulin biosensor categories such as aptamer-based, molecularly imprinted polymer (MIP)-based, label-free and other types are presented among the latest developments in the field. This multidisciplinary field requires engagement between scientists, engineers, clinicians and industry for addressing the challenges for a commercial, reliable, real-time-monitoring wearable insulin biosensor.
Collapse
Affiliation(s)
- Sotiria D Psoma
- School of Engineering & Innovation, The Open University, Milton Keynes MK7 6AA, UK
| | - Chryso Kanthou
- Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield S10 2RX, UK
| |
Collapse
|
8
|
Ostrovidov S, Ramalingam M, Bae H, Orive G, Fujie T, Hori T, Nashimoto Y, Shi X, Kaji H. Molecularly Imprinted Polymer-Based Sensors for the Detection of Skeletal- and Cardiac-Muscle-Related Analytes. SENSORS (BASEL, SWITZERLAND) 2023; 23:5625. [PMID: 37420790 DOI: 10.3390/s23125625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023]
Abstract
Molecularly imprinted polymers (MIPs) are synthetic polymers with specific binding sites that present high affinity and spatial and chemical complementarities to a targeted analyte. They mimic the molecular recognition seen naturally in the antibody/antigen complementarity. Because of their specificity, MIPs can be included in sensors as a recognition element coupled to a transducer part that converts the interaction of MIP/analyte into a quantifiable signal. Such sensors have important applications in the biomedical field in diagnosis and drug discovery, and are a necessary complement of tissue engineering for analyzing the functionalities of the engineered tissues. Therefore, in this review, we provide an overview of MIP sensors that have been used for the detection of skeletal- and cardiac-muscle-related analytes. We organized this review by targeted analytes in alphabetical order. Thus, after an introduction to the fabrication of MIPs, we highlight different types of MIP sensors with an emphasis on recent works and show their great diversity, their fabrication, their linear range for a given analyte, their limit of detection (LOD), specificity, and reproducibility. We conclude the review with future developments and perspectives.
Collapse
Affiliation(s)
- Serge Ostrovidov
- Department of Diagnostic and Therapeutic Systems Engineering, Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), Tokyo 101-0062, Japan
| | - Murugan Ramalingam
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Center, Dankook University, Cheonan 31116, Republic of Korea
- School of Basic Medical Science, Institute for Advanced Study, Affiliated Hospital of Chengdu University, Chengdu University, Chengdu 610106, China
- Department of Metallurgical and Materials Engineering, Atilim University, 06830 Ankara, Turkey
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, 78054 Villingen-Schwennigen, Germany
| | - Hojae Bae
- KU Convergence Science and Technology Institute, Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul 05029, Republic of Korea
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
| | - Toshinori Fujie
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
- Living System Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Takeshi Hori
- Department of Diagnostic and Therapeutic Systems Engineering, Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), Tokyo 101-0062, Japan
| | - Yuji Nashimoto
- Department of Diagnostic and Therapeutic Systems Engineering, Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), Tokyo 101-0062, Japan
| | - Xuetao Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Hirokazu Kaji
- Department of Diagnostic and Therapeutic Systems Engineering, Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), Tokyo 101-0062, Japan
| |
Collapse
|
9
|
Vargas E, Nandhakumar P, Ding S, Saha T, Wang J. Insulin detection in diabetes mellitus: challenges and new prospects. Nat Rev Endocrinol 2023:10.1038/s41574-023-00842-3. [PMID: 37217746 DOI: 10.1038/s41574-023-00842-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 05/24/2023]
Abstract
Tremendous progress has been made towards achieving tight glycaemic control in individuals with diabetes mellitus through the use of frequent or continuous glucose measurements. However, in patients who require insulin, accurate dosing must consider multiple factors that affect insulin sensitivity and modulate insulin bolus needs. Accordingly, an urgent need exists for frequent and real-time insulin measurements to closely track the dynamic blood concentration of insulin during insulin therapy and guide optimal insulin dosing. Nevertheless, traditional centralized insulin testing cannot offer timely measurements, which are essential to achieving this goal. This Perspective discusses the advances and challenges in moving insulin assays from traditional laboratory-based assays to frequent and continuous measurements in decentralized (point-of-care and home) settings. Technologies that hold promise for insulin testing using disposable test strips, mobile systems and wearable real-time insulin-sensing devices are discussed. We also consider future prospects for continuous insulin monitoring and for fully integrated multisensor-guided closed-loop artificial pancreas systems.
Collapse
Affiliation(s)
- Eva Vargas
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Ponnusamy Nandhakumar
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Shichao Ding
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Tamoghna Saha
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
10
|
Wardani NI, Kangkamano T, Wannapob R, Kanatharana P, Thavarungkul P, Limbut W. Electrochemical sensor based on molecularly imprinted polymer cryogel and multiwalled carbon nanotubes for direct insulin detection. Talanta 2023; 254:124137. [PMID: 36463801 DOI: 10.1016/j.talanta.2022.124137] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
Insulin is the polypeptide hormone that regulates blood glucose levels. It is used as an indicator of both types of diabetes. An electrochemical insulin sensor was developed using a gold electrode modified with carboxylated multiwalled carbon nanotubes (f-MWCNTs) and molecularly imprinted polymer (MIP) cryogel. The MIP provided specific recognition sites for insulin, while the macropores of the cryogel promoted the mass transfer of insulin to the recognition sites. The f-MWCNTs increased the effective surface area and conductivity of the sensor and also reduced the potential required to oxidize insulin. Insulin oxidation was directly measured in a flow system using square wave voltammetry. This MIP cryogel/f-MWCNTs sensor provided a linear range of 0.050-1.40 pM with a very low limit of detection (LOD) of 33 fM. The sensor exhibited high selectivity and long-term stability over 10 weeks of dry storage at room temperature. The results of insulin determination in human serum using the sensor compared well with the results of the Elecsys insulin assay. The developed MIP sensor offers a promising alternative for the diagnosis and treatment of diabetes.
Collapse
Affiliation(s)
- Nur Indah Wardani
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Tawatchai Kangkamano
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Department of Chemistry, Faculty of Science, Thaksin University (Phatthalung Campus), Papayom, Phatthalung, 93110, Thailand
| | - Rodtichoti Wannapob
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
11
|
Zidarič T, Majer D, Maver T, Finšgar M, Maver U. The development of an electropolymerized, molecularly imprinted polymer (MIP) sensor for insulin determination using single-drop analysis. Analyst 2023; 148:1102-1115. [PMID: 36723087 DOI: 10.1039/d2an02025d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An electrochemical sensor for the detection of insulin in a single drop (50 μL) was developed based on the concept of molecularly imprinted polymers (MIP). The synthetic MIP receptors were assembled on a screen-printed carbon electrode (SPCE) by the electropolymerization of pyrrole (Py) in the presence of insulin (the protein template) using cyclic voltammetry. After electropolymerization, insulin was removed from the formed polypyrrole (Ppy) matrix to create imprinting cavities for the subsequent analysis of the insulin analyte in test samples. The surface characterization, before and after each electrosynthesis step of the MIP sensors, was performed using atomic force microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The performance of the developed MIP-SPCE sensor was evaluated using a single drop of solution containing K3Fe(CN)6 and the square-wave voltammetry technique. The MIP-SPCE showed a linear concentration range of 20.0-70.0 pM (R2 = 0.9991), a limit of detection of 1.9 pM, and a limit of quantification of 6.2 pM. The rapid response time to the protein target and the portability of the developed sensor, which is considered a disposable MIP-based system, make this MIP-SPCE sensor a promising candidate for point-of-care applications. In addition, the MIP-SPCE sensor was successfully used to detect insulin in a pharmaceutical sample. The sensor was deemed to be accurate (the average recovery was 108.46%) and precise (the relative standard deviation was 7.23%).
Collapse
Affiliation(s)
- Tanja Zidarič
- University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska ulica 8, 2000 Maribor, Slovenia
| | - David Majer
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Tina Maver
- University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska ulica 8, 2000 Maribor, Slovenia.,University of Maribor, Faculty of Medicine, Department of Pharmacology, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Matjaž Finšgar
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Uroš Maver
- University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska ulica 8, 2000 Maribor, Slovenia.,University of Maribor, Faculty of Medicine, Department of Pharmacology, Taborska ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
12
|
Liu R, Ko CC. Molecularly Imprinted Polymer-Based Luminescent Chemosensors. BIOSENSORS 2023; 13:295. [PMID: 36832061 PMCID: PMC9953969 DOI: 10.3390/bios13020295] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Molecularly imprinted polymer (MIP)-based luminescent chemosensors combine the advantages of the highly specific molecular recognition of the imprinting sites and the high sensitivity with the luminescence detection. These advantages have drawn great attention during the past two decades. Luminescent molecularly imprinted polymers (luminescent MIPs) towards different targeted analytes are constructed with different strategies, such as the incorporation of luminescent functional monomers, physical entrapment, covalent attachment of luminescent signaling elements on the MIPs, and surface-imprinting polymerization on the luminescent nanomaterials. In this review, we will discuss the design strategies and sensing approaches of luminescent MIP-based chemosensors, as well as their selected applications in biosensing, bioimaging, food safety, and clinical diagnosis. The limitations and prospects for the future development of MIP-based luminescent chemosensors will also be discussed.
Collapse
|
13
|
Sakthivel R, Lin LY, Duann YF, Chen HH, Su C, Liu X, He JH, Chung RJ. MOF-Derived Cu-BTC Nanowire-Embedded 2D Leaf-like Structured ZIF Composite-Based Aptamer Sensors for Real-Time In Vivo Insulin Monitoring. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28639-28650. [PMID: 35709524 DOI: 10.1021/acsami.2c06785] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Insulin, which is a hormone produced by the β-cells of the pancreas, regulates the glucose levels in the blood and can transport glucose into cells to produce glycogen or triglycerides. Insulin deficiency can lead to hyperglycemia and diabetes. Therefore, insulin detection is critical in clinical diagnosis. In this study, disposable Au electrodes were modified with copper(II) benzene-1,3,5-tricarboxylate (Cu-BTC)/leaf-like zeolitic imidazolate framework (ZIF-L) for insulin detection. The aptamers are easily immobilized on the Cu-BTC/ZIF-L composite by physical adsorption and facilitated the specific interaction between aptamers and insulin. The Cu-BTC/ZIF-L composite-based aptasensor presented a wide linear insulin detection range (0.1 pM to 5 μM) and a low limit of detection of 0.027 pM. In addition, the aptasensor displayed high specificity, good reproducibility and stability, and favorable practicability in human serum samples. For the in vivo tests, Cu-BTC/ZIF-L composite-modified electrodes were implanted in non-diabetic and diabetic mice, and insulin was quantified using electrochemical and enzyme-linked immunosorbent assay methods.
Collapse
Affiliation(s)
- Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Lu-Yin Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Yeh-Fang Duann
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Hsiao-Hsuan Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Chaochin Su
- Institute of Organic and Polymeric Materials, Research and Development Center for Smart Textile Technology,National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Xinke Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jr-Hau He
- Department of Materials Science and Engineering, City University of Hong Kong, 26 Kowloon, Kowloon 999077, Hong Kong
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| |
Collapse
|
14
|
Wen T, Nie Q, Han L, Gong Z, Li D, Ma Q, Wang Z, He W, Wen L, Peng H. Molecularly imprinted polymers-based piezoelectric coupling sensor for the rapid and nondestructive detection of infested citrus. Food Chem 2022; 387:132905. [PMID: 35447512 DOI: 10.1016/j.foodchem.2022.132905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/22/2022] [Accepted: 04/04/2022] [Indexed: 11/04/2022]
Affiliation(s)
- Tao Wen
- School of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qiyi Nie
- School of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Longbo Han
- School of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Zhongliang Gong
- School of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Dapeng Li
- School of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qiang Ma
- College of Science, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Zhiyu Wang
- School of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Weitao He
- School of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Liang Wen
- College of Life Sciences, South China Normal University, Guangzhou, Guangdong 510630, China
| | - Hailong Peng
- Department of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
15
|
|
16
|
Fabrication and evaluation of a molecularly imprinted polymer electrochemical nanosensor for the sensitive monitoring of phenobarbital in biological samples. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Park R, Jeon S, Jeong J, Park SY, Han DW, Hong SW. Recent Advances of Point-of-Care Devices Integrated with Molecularly Imprinted Polymers-Based Biosensors: From Biomolecule Sensing Design to Intraoral Fluid Testing. BIOSENSORS 2022; 12:136. [PMID: 35323406 PMCID: PMC8946830 DOI: 10.3390/bios12030136] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 05/11/2023]
Abstract
Recent developments of point-of-care testing (POCT) and in vitro diagnostic medical devices have provided analytical capabilities and reliable diagnostic results for rapid access at or near the patient's location. Nevertheless, the challenges of reliable diagnosis still remain an important factor in actual clinical trials before on-site medical treatment and making clinical decisions. New classes of POCT devices depict precise diagnostic technologies that can detect biomarkers in biofluids such as sweat, tears, saliva or urine. The introduction of a novel molecularly imprinted polymer (MIP) system as an artificial bioreceptor for the POCT devices could be one of the emerging candidates to improve the analytical performance along with physicochemical stability when used in harsh environments. Here, we review the potential availability of MIP-based biorecognition systems as custom artificial receptors with high selectivity and chemical affinity for specific molecules. Further developments to the progress of advanced MIP technology for biomolecule recognition are introduced. Finally, to improve the POCT-based diagnostic system, we summarized the perspectives for high expandability to MIP-based periodontal diagnosis and the future directions of MIP-based biosensors as a wearable format.
Collapse
Affiliation(s)
- Rowoon Park
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (R.P.); (S.J.); (J.J.); (D.-W.H.)
| | - Sangheon Jeon
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (R.P.); (S.J.); (J.J.); (D.-W.H.)
| | - Jeonghwa Jeong
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (R.P.); (S.J.); (J.J.); (D.-W.H.)
| | - Shin-Young Park
- Department of Dental Education and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Korea;
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (R.P.); (S.J.); (J.J.); (D.-W.H.)
- Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (R.P.); (S.J.); (J.J.); (D.-W.H.)
- Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Korea
| |
Collapse
|
18
|
Wang Y, Yang X, Pang L, Geng P, Mi F, Hu C, Peng F, Guan M. Application progress of magnetic molecularly imprinted polymers chemical sensors in the detection of biomarkers. Analyst 2022; 147:571-586. [PMID: 35050266 DOI: 10.1039/d1an01112j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Specific recognition and highly sensitive detection of biomarkers play an essential role in identification, early diagnosis and prevention of many diseases. Magnetic molecularly imprinted polymers (MMIPs) have been widely used to capture biomimetic receptors for targets in various complex matrices due to their superior recognition ability, structural stability, and rapid separation characteristics, which overcome the existing deficiencies of traditional recognition elements such as antibodies, aptamers. The integration of MMIPs as recognition elements with chemical sensors opens new opportunities for the development of advanced analytical devices with improved selectivity and sensitivity, shorter analysis time, and lower cost. Recently, MMIPs-chemical sensors (MMIPs-CS) have made significant progress in detection, but many challenges and development spaces remain. Therefore, this review focuses on the research progress of the sensor based on biomarker detection and introduces the surface modification of the magnetic support material used to prepare high selective MMIPs, as well as the selective extraction of target biomarkers by MMIPs from the complex biological sample matrix. Based on the understanding of optical sensors and electrochemical sensors, the applications of MMIPs-optical sensors (MMIPs-OS) and MMIPs-electrochemical sensors (MMIPs-ECS) for biomarker detection were reviewed and discussed in detail. Moreover, it provides an overview of the challenges in this research area and the potential strategies for the rational design of high-performance MMIPs-CS, accelerating the development of multifunctional MMIPs-CS.
Collapse
Affiliation(s)
- Ying Wang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Xiaomin Yang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Lin Pang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Pengfei Geng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Fang Mi
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Cunming Hu
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Fei Peng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Ming Guan
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| |
Collapse
|
19
|
Gheybalizadeh H, Hejazi P. Influence of hydrophilic and hydrophobic functional monomers on the performance of magnetic molecularly imprinted polymers for selective recognition of human insulin. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Murugan K, Jothi VK, Rajaram A, Natarajan A. Novel Metal-Free Fluorescent Sensor Based on Molecularly Imprinted Polymer N-CDs@MIP for Highly Selective Detection of TNP. ACS OMEGA 2022; 7:1368-1379. [PMID: 35036798 PMCID: PMC8756778 DOI: 10.1021/acsomega.1c05985] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/20/2021] [Indexed: 05/06/2023]
Abstract
In this article, we designed a fluorometric sensor based on nitrogen-passivated carbon dots infused with a molecularly imprinted polymer (N-CDs@MIP) via a reverse microemulsion technique using 3-aminopropyltriethoxysilane as a functional monomer, tetraethoxysilane as a cross-linker, and 2,4,6-trinitrophenol (TNP) as a template. The synthesized probe was used for selective and sensitive detection of trace amounts of TNP. The infusion of N-CDs (QY-21.6 percent) with a molecularly imprinted polymer can increase the fluorescent sensor sensitivity to detect TNP. Removal of template molecules leads to the formation of a molecularly imprinted layer, and N-CDs@MIP fluorescence response was quenched by TNP. The developed fluorescence probe shows a fine linear range from 0.5 to 2.5 nM with a detection limit of 0.15 nM. The synthesized fluorescent probe was used to analyze TNP in regular tap and lake water samples.
Collapse
Affiliation(s)
- Komal Murugan
- Department of Chemistry, College of
Engineering and Technology, SRM Institute
of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Vinoth Kumar Jothi
- Department of Chemistry, College of
Engineering and Technology, SRM Institute
of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Arulmozhi Rajaram
- Department of Chemistry, College of
Engineering and Technology, SRM Institute
of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Abirami Natarajan
- Department of Chemistry, College of
Engineering and Technology, SRM Institute
of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| |
Collapse
|
21
|
Lian K, Feng H, Liu S, Wang K, Liu Q, Deng L, Wang G, Chen Y, Liu G. Insulin quantification towards early diagnosis of prediabetes/diabetes. Biosens Bioelectron 2022; 203:114029. [DOI: 10.1016/j.bios.2022.114029] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/19/2022]
|
22
|
Sudjarwo WAA, Dobler MT, Lieberzeit PA. QCM-based assay designs for human serum albumin. Anal Bioanal Chem 2022; 414:731-741. [PMID: 34950982 PMCID: PMC8748353 DOI: 10.1007/s00216-021-03771-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022]
Abstract
Solid-phase synthesis is an elegant way to create molecularly imprinted polymer nanoparticles (nano-MIPs) comprising a single binding site, i.e. mimics of antibodies. When using human serum albumin (HSA) as the template, one achieves nano-MIPs with 53 ± 19 nm diameter, while non-imprinted polymer nanoparticles (nano-NIPs) reach 191 ± 96 nm. Fluorescence assays lead to Stern-Volmer plots revealing selective binding to HSA with selectivity factors of 1.2 compared to bovine serum albumin (BSA), 1.9 for lysozyme, and 4.1 for pepsin. Direct quartz crystal microbalance (QCM) assays confirm these results: nano-MIPs bind to HSA immobilized on QCM surfaces. This opens the way for competitive QCM-based assays for HSA: adding HSA to nanoparticle solutions indeed reduces binding to the QCM surfaces in a concentration-dependent manner. They achieve a limit of detection (LoD) of 80 nM and a limit of quantification (LoQ) of 244 nM. Furthermore, the assay shows recovery rates around 100% for HSA even in the presence of competing analytes.
Collapse
Affiliation(s)
- Wisnu Arfian A Sudjarwo
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Mathias Thomas Dobler
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Peter A Lieberzeit
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, Waehringer Strasse 42, 1090, Vienna, Austria.
| |
Collapse
|
23
|
Debabhuti N, Mukherjee S, Neogi S, Sharma P, Sk UH, Maiti S, Sarkar MP, Tudu B, Bhattacharyya N, Bandyopadhyay R. A study of vegetable oil modified QCM sensor to detect β-pinene in Indian cardamom. Talanta 2022; 236:122837. [PMID: 34635227 DOI: 10.1016/j.talanta.2021.122837] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 11/24/2022]
Abstract
A quartz crystal microbalance (QCM) sensor was developed in this study with the vegetable oil from olive (OLV-QCM) to detect an important volatile organic compound, β-pinene in Indian cardamom. Hydrophobic vegetable oil from olive, which contains oleic acid and omega-9, a monounsaturated fatty acid was found to be suitable for binding β-pinene through non-covalent bonds. The fabricated QCM sensor coating was examined with the field emission scanning electron microscope (FESEM) and Fourier-transform infrared spectroscopy (FTIR) to determine its surface morphology and chemical compositions. The sensitivity, reproducibility, repeatability, and reusability were studied for the developed sensor. Notably, the sensor was observed to be highly selective towards β-pinene as compared to the other volatile components present in cardamom. The limit of detection (LOD) and limit of quantitation (LOQ) parameters were determined as 5.57 mg L-1 and 18.57 mg L-1, respectively. Moreover, the adsorption isotherm models of the sensor were studied to validate the physical adsorption affinity towards β-pinene applying Langmuir, Freundlich, and Langmuir-Freundlich isotherm models. The sensor showed a correlation factor of 0.99 with the peak area percentage of gas chromatography-mass spectrometry (GC-MS) analysis for β-pinene in cardamom samples. The sensor was prepared with natural vegetable oil, unlike health hazard chemicals. In addition to this, the low-cost, easy fabrication process ensured the suitability of the sensor for practical deployment.
Collapse
Affiliation(s)
- Nilava Debabhuti
- Department of Instrumentation and Electronics Engineering, Jadavpur University, Kolkata, 700 106, India
| | - Sumani Mukherjee
- Department of Electronics and Communication Engineering, St. Thomas' College of Engineering and Technology, Kolkata, 700023, India
| | - Swarnali Neogi
- Department of Instrumentation and Electronics Engineering, Jadavpur University, Kolkata, 700 106, India
| | - Prolay Sharma
- Department of Instrumentation and Electronics Engineering, Jadavpur University, Kolkata, 700 106, India.
| | - Ugir Hossain Sk
- Clinical and Translational Research, Chittaranjan National Cancer Institute, Kolkata, West Bengal, 700 026, India
| | - Soumen Maiti
- Department of Basic Science & Humanities, St. Thomas' College of Engineering and Technology, Kolkata, 700023, India
| | | | - Bipan Tudu
- Department of Instrumentation and Electronics Engineering, Jadavpur University, Kolkata, 700 106, India
| | - Nabarun Bhattacharyya
- Centre for Development of Advanced Computing, Kolkata, 700 091, India; Laboratory of Artificial Sensory Systems, ITMO University, Saint Petersburg, 191002, Russia
| | - Rajib Bandyopadhyay
- Department of Instrumentation and Electronics Engineering, Jadavpur University, Kolkata, 700 106, India; Laboratory of Artificial Sensory Systems, ITMO University, Saint Petersburg, 191002, Russia
| |
Collapse
|
24
|
Abstract
Quartz Crystal Microbalance (QCM) is one of the many acoustic transducers. It is the most popular and widely used acoustic transducer for sensor applications. It has found wide applications in chemical and biosensing fields owing to its high sensitivity, robustness, small sized-design, and ease of integration with electronic measurement systems. However, it is necessary to coat QCM with a sensing film. Without coating materials, its selectivity and sensitivity are not obtained. At present, this is not an issue, mainly due to the advancement of oscillator circuits and dedicated measurement circuits. Since a new researcher may seek to understand QCM sensors, we provide an overview of QCM from its fundamental knowledge. Then, we explain some of the recent QCM applications both in gas-phase and liquid-phase. Next, the theory of QCM is introduced by using piezoelectric stress equations and the Mason equivalent circuit, which explains how the QCM behavior is obtained. Then, the conventional equations that govern QCM behaviors in terms of resonant frequency and resistance are described. We show the behavior of QCM with a viscous film based on the acoustic wave equation and Mason equivalent circuit. Then, we present various existing QCM electronic measurement methods. Furthermore, we describe the experiment on QCM with viscous loading and its interpretation based on the Mason equivalent circuit. Lastly, we review some theoretical models to describe QCM behavior with various models.
Collapse
|
25
|
Fuji S, Tanaka K, Kishikawa S, Morita S, Doi M. Quartz crystal microbalance sensor for the detection of collagen model peptides based on the formation of triple helical structure. J Biosci Bioeng 2021; 133:168-173. [PMID: 34872873 DOI: 10.1016/j.jbiosc.2021.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/04/2021] [Accepted: 11/16/2021] [Indexed: 02/05/2023]
Abstract
Collagen is a major structural protein, and abnormalities in collagen structure can lead to several connective tissue diseases such as osteoporosis. We report the preparation of a collagen sensor using a synthetic peptide as proof of concept for detecting the collagen like peptides. The synthetic peptide 9-fluorenylmethyloxycarbonyl (Fmoc)-(prolyl-prolyl-glycine)7-OH was coupled to thiazolidine, which gets adsorbed on metal surfaces. Fmoc-(prolyl-prolyl-glycine)7-thiazolidine was immobilized on the surface of a quartz crystal microbalance (QCM) electrode used as a sensor probe. The collagen model peptide (prolyl-prolyl-glycine)10 could be detected, and the model peptide was directly adsorbed onto the surface of the electrode and was not removed by washing with hot water. Additionally, it was proved that the sensitivity of the probe could be enhanced to nanogram order by immobilizing the blocking reagent, Fmoc-prolyl-prolyl-glycine, within the gap of sensor probes on the electrode. The detectable mass of the model peptide decreased as the probe gap became narrower because of self-association of the probes. Moreover, the sensitivity of sensor probes also decreases as the gap between the probes becomes wider. Therefore, the optimum distance between the immobilized probes was determined from the simulation based on the experimental values. The association rate of the model peptide with sensor probes could be quantitatively determined when the distance between the probes was optimum, and this result suggested that most sensor probes could form a triple helical structure with the model peptide.
Collapse
Affiliation(s)
- Sota Fuji
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Wakayama College, Noshima 77, Nada, Gobo, Wakayama 644-0023, Japan
| | - Kotaro Tanaka
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Wakayama College, Noshima 77, Nada, Gobo, Wakayama 644-0023, Japan
| | - Shiho Kishikawa
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Wakayama College, Noshima 77, Nada, Gobo, Wakayama 644-0023, Japan
| | - Seiichi Morita
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Wakayama College, Noshima 77, Nada, Gobo, Wakayama 644-0023, Japan
| | - Masamitsu Doi
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Wakayama College, Noshima 77, Nada, Gobo, Wakayama 644-0023, Japan.
| |
Collapse
|
26
|
Tari K, Khamoushian S, Madrakian T, Afkhami A, Łos MJ, Ghoorchian A, Samarghandi MR, Ghavami S. Controlled Transdermal Iontophoresis of Insulin from Water-Soluble Polypyrrole Nanoparticles: An In Vitro Study. Int J Mol Sci 2021; 22:ijms222212479. [PMID: 34830361 PMCID: PMC8621898 DOI: 10.3390/ijms222212479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022] Open
Abstract
The iontophoresis delivery of insulin (INS) remains a serious challenge due to the low permeability of the drug through the skin. This work aims to investigate the potential of water-soluble polypyrrole nanoparticles (WS-PPyNPs) as a drug donor matrix for controlled transdermal iontophoresis of INS. WS-PPyNPs have been prepared via a simple chemical polymerization in the presence of sodium dodecyl sulfate (SDS) as both dopant and the stabilizing agent. The synthesis of the soluble polymer was characterized using field emission scanning electron microscopy (FESEM), dynamic light scattering (DLS), fluorescence spectroscopy, and Fourier transform infrared (FT–IR) spectroscopy. The loading mechanism of INS onto the WS-PPyNPs is based on the fact that the drug molecules can be replaced with doped dodecyl sulfate. A two-compartment Franz-type diffusion cell was employed to study the effect of current density, formulation pH, INS concentration, and sodium chloride concentration on anodal iontophoresis (AIP) and cathodal iontophoresis (CIP) of INS across the rat skin. Both AIP and CIP delivery of INS using WS-PPyNPs were significantly increased compared to passive delivery. Furthermore, while the AIP experiment (60 min at 0.13 mA cm–2) show low cumulative drug permeation for INS (about 20.48 µg cm−2); the CIP stimulation exhibited a cumulative drug permeation of 68.29 µg cm−2. This improvement is due to the separation of positively charged WS-PPyNPs and negatively charged INS that has occurred in the presence of cathodal stimulation. The obtained results confirm the potential applicability of WS-PPyNPs as an effective approach in the development of controlled transdermal iontophoresis of INS.
Collapse
Affiliation(s)
- Kamran Tari
- Department of Environmental Health Engineering, Faculty of Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran;
| | - Soroush Khamoushian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6516738695, Iran; (S.K.); (A.A.); (A.G.)
| | - Tayyebeh Madrakian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6516738695, Iran; (S.K.); (A.A.); (A.G.)
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7135646141, Iran
- Correspondence: (T.M.); (M.J.Ł.); (M.R.S.)
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6516738695, Iran; (S.K.); (A.A.); (A.G.)
- D-8 International University, Hamedan 65178-38695, Iran
| | - Marek Jan Łos
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7135646141, Iran
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland
- Correspondence: (T.M.); (M.J.Ł.); (M.R.S.)
| | - Arash Ghoorchian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6516738695, Iran; (S.K.); (A.A.); (A.G.)
| | - Mohammad Reza Samarghandi
- Department of Environmental Health Engineering, Faculty of Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran;
- Correspondence: (T.M.); (M.J.Ł.); (M.R.S.)
| | - Saeid Ghavami
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada;
| |
Collapse
|
27
|
Mostafa AM, Barton SJ, Wren SP, Barker J. Review on molecularly imprinted polymers with a focus on their application to the analysis of protein biomarkers. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Shafiqul Islam AKM, Krishnan H, Ahmad MN, Nadaraja P, Uddin ABMH. A Novel Molecular Imprint Polymer Quartz Crystal Microbalance Nanosensor for the Detection of Andrographolide in the Medicinal Plant Extract. RUSS J ELECTROCHEM+ 2021. [DOI: 10.1134/s1023193520120228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Asadpour F, Mazloum-Ardakani M, Hoseynidokht F, Moshtaghioun SM. In situ monitoring of gating approach on mesoporous silica nanoparticles thin-film generated by the EASA method for electrochemical detection of insulin. Biosens Bioelectron 2021; 180:113124. [PMID: 33714159 DOI: 10.1016/j.bios.2021.113124] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/19/2021] [Accepted: 02/25/2021] [Indexed: 01/02/2023]
Abstract
An innovative label-free electrochemical aptasensing platform has been designed for detection of insulin using functionalized mesoporous silica thin-film (MSTF) coated on a glassy carbon electrode through the one-step electrochemically assisted self-assembly (EASA) method. This strategy is contingent upon the covalent attachment of a complementary DNA (cDNA) oligonucleotide sequence on the mesoporous silica surface, for which further hybridization with its labeled aptamer as a gating molecule restricts the diffusion of the electroactive probe (Fe(CN)63-/4-) toward the electrode surface by the closing of mesochannels. Upon insulin introduction as the stimulus target molecule, hybridization between aptamer and cDNA is efficiently destroyed, which triggers the opening of nanochannels to facilitate redox probe diffusion toward the electrode with a noticeable increase in differential pulse voltammetry signal. The proposed aptasensor showed a wide detection ranging from 10.0 to 350.0 nM and a suitable detection limit of 3.0 nM. This method offers the sensitive and rapid detection of insulin without the need for cargo (dye/fluorophore) as an electrochemical marker inside the pore, at low cost and with a fast modification time.
Collapse
Affiliation(s)
- Farzaneh Asadpour
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran
| | | | | | | |
Collapse
|
30
|
An K, Guan L, Kang H, Tian D. Zipper-like thermosensitive molecularly imprinted polymers based on konjac glucomannan for metformin hydrochloride. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-020-00892-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Çimen D, Bereli N, Denizli A. Surface Plasmon Resonance Based on Molecularly Imprinted Polymeric Film for l-Phenylalanine Detection. BIOSENSORS 2021; 11:21. [PMID: 33467753 PMCID: PMC7830203 DOI: 10.3390/bios11010021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 05/05/2023]
Abstract
In this study, we designed a simple, rapid, sensitive and selective surface plasmon resonance (SPR) sensor for detection of L-phenylalaine by utilizing molecular imprinting technology. l-phenylalanine imprinted and non-imprinted poly(2-hydroxyethyl methacrylate-methacryloyl-l-phenylalanine) polymeric films were synthesized onto SPR chip surfaces using ultraviolet polymerization. l-phenyalanine imprinted and non-imprinted SPR sensors were characterized by using contact angle, atomic force microscopy and ellipsometry. After characterization studies, kinetic studies were carried out in the concentration range of 5.0-400.0 μM. The limit of detection and quantification were obtained as 0.0085 and 0.0285 μM, respectively. The response time for the test including equilibration, adsorption and desorption was approximately 9 min. The selectivity studies of the l-phenylalanine imprinted SPR sensor was performed in the presence of d-phenylalanine and l-tryptophan. Validation studies were carried out via enzyme-linked immunosorbent analysis technique in order to demonstrate the applicability and superiority of the l-phenylalanine imprinted SPR sensor.
Collapse
Affiliation(s)
| | | | - Adil Denizli
- Department of Chemistry, Hacettepe University, Beytepe, 06800 Ankara, Turkey; (D.Ç.); (N.B.)
| |
Collapse
|
32
|
Çimen D, Bereli N, Kartal F, Denizli A. Molecularly Imprinted Polymer-Based Quartz Crystal Microbalance Sensor for the Clinical Detection of Insulin. Methods Mol Biol 2021; 2359:209-222. [PMID: 34410672 DOI: 10.1007/978-1-0716-1629-1_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, we reported the design of a quartz crystal microbalance (QCM) sensors for selective insulin detection. In the first step, N-methacryloyl-(L) 3-histidine methyl ester (MAH) monomer was formed a complex with insulin. Then, 2-hydroxyethyl methacrylate and ethylene glycol dimethacrylate were mixed with MAH:insulin complex. Insulin-imprinted and non-imprinted QCM sensors were synthesized by ultraviolet polymerization for the insulin detection. Insulin-imprinted QCM sensors was characterized by the contact angle measurements, atomic force microscopy and ellipsometry. Limit of detection (LOD) was found as 0.00158 ng/mL for the insulin-imprinted QCM sensors. Selectivity of insulin-imprinted and non-imprinted QCM sensors was carried in the presence of glucagon and aprotinin. Insulin-imprinted QCM sensor for insulin detection was also examined in the artificial plasma.
Collapse
Affiliation(s)
- Duygu Çimen
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Nilay Bereli
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Fatma Kartal
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
33
|
Romero M, Macchione MA, Mattea F, Strumia M. The role of polymers in analytical medical applications. A review. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Bereli N, Çimen D, Hüseynli S, Denizli A. Detection of amoxicillin residues in egg extract with a molecularly imprinted polymer on gold microchip using surface plasmon resonance and quartz crystal microbalance methods. J Food Sci 2020; 85:4152-4160. [DOI: 10.1111/1750-3841.15529] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 10/02/2020] [Accepted: 10/12/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Nilay Bereli
- Biochemistry Division, Department of Chemistry Hacettepe University Ankara 06800 Turkey
| | - Duygu Çimen
- Biochemistry Division, Department of Chemistry Hacettepe University Ankara 06800 Turkey
| | - Sabina Hüseynli
- Biochemistry Division, Department of Chemistry Hacettepe University Ankara 06800 Turkey
| | - Adil Denizli
- Biochemistry Division, Department of Chemistry Hacettepe University Ankara 06800 Turkey
| |
Collapse
|
35
|
Buffon E, Huguenin J, da Silva L, Carneiro P, Stradiotto N. Spectroscopic ellipsometry studies of an electrochemically synthesized molecularly imprinted polymer for the detection of an aviation biokerosene contaminant. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Abstract
Deep eutectic solvents (DESs)—a promising class of alternatives to conventional ionic liquids (ILs) that have freezing points lower than the individual components—are typically formed from two or more components through hydrogen bond interactions. Due to the remarkable advantages of biocompatibility, economical feasibility and environmental hospitality, DESs show great potentials for green production and manufacturing. In terms of the processing of functional composite resins, DESs have been applied for property modifications, recyclability enhancement and functionality endowment. In this review, the applications of DESs in the processing of multiple functional composite resins such as epoxy, phenolic, acrylic, polyester and imprinted resins, are covered. Functional composite resins processed with DESs have attracted much attention of researchers in both academic and industrial communities. The tailored properties of DESs for the design of functional composite resins—as well as the effects of hydrogen bond on the current polymeric systems—are highlighted. In addition to the review of current works, the future perspectives of applying DESs in the processing of functional composite resins are also presented.
Collapse
|
37
|
Garcia Cruz A, Haq I, Cowen T, Di Masi S, Trivedi S, Alanazi K, Piletska E, Mujahid A, Piletsky SA. Design and fabrication of a smart sensor using in silico epitope mapping and electro-responsive imprinted polymer nanoparticles for determination of insulin levels in human plasma. Biosens Bioelectron 2020; 169:112536. [PMID: 32980804 DOI: 10.1016/j.bios.2020.112536] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 01/07/2023]
Abstract
A robust and highly specific sensor based on electroactive molecularly imprinted polymer nanoparticles (nanoMIP) was developed. The nanoMIP tagged with a redox probe, combines both recognition and reporting capabilities. The developed nanoMIP replaces enzyme-mediator pairs used in traditional biosensors thus, offering enhanced molecular recognition for insulin, improving performance in complex biological samples, and yielding high stability. Also, most of existing sensors show poor performance after storage. To improve costs of the logistics and avoid the need of cold storage in the chain supply, we developed an alternative to biorecognition system that relies on nanoMIP. NanoMIP were computationally designed using "in-silico" insulin epitope mapping and synthesized by solid phase polymerisation. The characterisation of the polymer nanoparticles was performed by transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier-transform Infrared (FT-IR) and surface plasmon resonance (SPR). The electrochemical sensor was developed by chemical immobilisation of the nanoMIP on screen printed platinum electrodes. The insulin sensor displayed satisfactory performances and reproducible results (RSD = 4.2%; n = 30) using differential pulse voltammetry (DPV) in the clinically relevant concentration range from 50 to 2000 pM. The developed nanoMIP offers the advantage of large number of specific recognition sites with tailored geometry, as the resultant, the sensor showed high sensitivity and selectivity to insulin with a limit of detection (LOD) of 26 and 81 fM in buffer and human plasma, respectively, confirming the practical application for point of care monitoring. Moreover, the nanoMIP showed adequate storage stability of 168 days, demonstrating the robustness of sensor for several rounds of insulin analysis.
Collapse
Affiliation(s)
- Alvaro Garcia Cruz
- Department of Chemistry, University of Leicester, University Road, LE1 7RH, Leicester, UK.
| | - Isma Haq
- Institute of Chemistry, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| | - Todd Cowen
- Department of Chemistry, University of Leicester, University Road, LE1 7RH, Leicester, UK
| | - Sabrina Di Masi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Edificio A6 Multipiano CSEEM, Campus Universitario Ecotekne, Via Monteroni, 73100, Lecce, Italy
| | - Samir Trivedi
- Department of Chemistry, University of Leicester, University Road, LE1 7RH, Leicester, UK
| | - Kaseb Alanazi
- Department of Chemistry, University of Leicester, University Road, LE1 7RH, Leicester, UK
| | - Elena Piletska
- Department of Chemistry, University of Leicester, University Road, LE1 7RH, Leicester, UK
| | - Adnan Mujahid
- Institute of Chemistry, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| | - Sergey A Piletsky
- Department of Chemistry, University of Leicester, University Road, LE1 7RH, Leicester, UK
| |
Collapse
|
38
|
Çimen D, Bereli N, Günaydın S, Denizli A. Detection of cardiac troponin-I by optic biosensors with immobilized anti-cardiac troponin-I monoclonal antibody. Talanta 2020; 219:121259. [PMID: 32887150 DOI: 10.1016/j.talanta.2020.121259] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 01/05/2023]
Abstract
In this study, it is aimed to determine cardiac troponin I by a surface plasmon resonance biosensor immobilized anti-cardiac troponin I monoclonal antibody. The immobilized anti-cardiac troponin I monoclonal antibody surface plasmon resonance biosensors were characterized with ellipsometry, atomic force microscopy and contact angle analysis. After that, surface plasmon resonance biosensor system was completed to biosensor system to investigate kinetic properties for cardiac tropinin I. The sensing ability of surface plasmon resonance biosensor was investigated with 0.001-8.0 ng/mL concentrations of cardiac tropinin I solutions. The limit of detection and limit of quantification were calculated as 0.00012 ng/mL and 0.00041 ng/mL, respectively. To show the selectivity of surface plasmon resonance biosensor competitive adsorption of cardiac tropinin I, myoglobin, immunoglobulin G and prostate specific antigen were investigated. Surface plasmon resonance biosensor was investigated five times with 0.5 ng/mL concentrations of cardiac tropinin I solution to show reuse of the chip. The results showed that surface plasmon resonance biosensor has high selectivity for cardiac tropinin I. The reproducibility of surface plasmon resonance sensors was investigated both on the same day and on different days for five times. To determine the usability, selectivity and validation studies of surface plasmon resonance biosensors were performed by enzyme-linked immunosorbent assay method.
Collapse
Affiliation(s)
- Duygu Çimen
- Hacettepe University, Department of Chemistry, Beytepe, Ankara, Turkey
| | - Nilay Bereli
- Hacettepe University, Department of Chemistry, Beytepe, Ankara, Turkey
| | - Serdar Günaydın
- Department of Cardiovascular Surgery, Ankara Numune Education Hospital, Ankara, Turkey
| | - Adil Denizli
- Hacettepe University, Department of Chemistry, Beytepe, Ankara, Turkey.
| |
Collapse
|
39
|
Faalnouri S, Çimen D, Bereli N, Denizli A. Surface Plasmon Resonance Nanosensors for Detecting Amoxicillin in Milk Samples with Amoxicillin Imprinted Poly(hydroxyethyl methacrylate‐N‐methacryloyl‐(L)‐ glutamic acid). ChemistrySelect 2020. [DOI: 10.1002/slct.202000621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sona Faalnouri
- Hacettepe UniversityDepartment of Chemistry Beytepe, Ankara Turkey
| | - Duygu Çimen
- Hacettepe UniversityDepartment of Chemistry Beytepe, Ankara Turkey
| | - Nilay Bereli
- Hacettepe UniversityDepartment of Chemistry Beytepe, Ankara Turkey
| | - Adil Denizli
- Hacettepe UniversityDepartment of Chemistry Beytepe, Ankara Turkey
| |
Collapse
|
40
|
Temel F. Real-time and selective recognition of erythromycin by self-assembly of calix[4]arene on QCM sensor. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111818] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
41
|
Sun Y, Lin Y, Sun W, Han R, Luo C, Wang X, Wei Q. A highly selective and sensitive detection of insulin with chemiluminescence biosensor based on aptamer and oligonucleotide-AuNPs functionalized nanosilica @ graphene oxide aerogel. Anal Chim Acta 2019; 1089:152-164. [PMID: 31627812 DOI: 10.1016/j.aca.2019.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/20/2019] [Accepted: 09/02/2019] [Indexed: 12/22/2022]
Abstract
A novel, highly selective and sensitive chemiluminescence (CL) biosensor for insulin (INS) detection was proposed based on aptamer and oligonucleotide-gold nanoparticles functionalized nanosilica @ graphene oxide aerogel. Initially, nanosilica functionalized graphene oxide aerogel (SiO2@GOAG) was successfully prepared and the composite showed rich pore distribution, large specific surface area and good biocompatibility. Insulin aptamer (IGA3) was used as a biorecognition element and oligonucleotide functionalized gold nanoparticles (ssDNA-AuNPs) was used as CL signal amplification materials, which were functionalized on the surface of SiO2@GOAG. The multi-functionalized composite - ssDNA-AuNPs/IGA3/SiO2@ GOAG was obtained and used to construct the CL biosensor for insulin detection. When insulin is present in a sample, the insulin will bind to the IGA3, which will result in the release of ssDNA-AuNPs. The released ssDNA-AuNPs would catalyze the luminescence of luminol and H2O2. The linear range of the CL biosensor for insulin detection was 7.5 × 10-12 to 5.0 × 10-9 moL/L and the detection limit was 1.6 × 10-12 moL/L (S/N = 3). The selectivity and stability of the CL biosensor were also studied and the results showed that the biosensor exhibited high selectivity and good stability due to the introduction of ssDNA-AuNPs/IGA3/SiO2@GOAG. The CL biosensor was finally used for recombinant human insulin detection in recombinant human insulin injection and the results were satisfactory.
Collapse
Affiliation(s)
- Yuanling Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yanna Lin
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Weiyan Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Rui Han
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Chuannan Luo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Xueying Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| |
Collapse
|
42
|
Sabu C, Henna T, Raphey V, Nivitha K, Pramod K. Advanced biosensors for glucose and insulin. Biosens Bioelectron 2019; 141:111201. [DOI: 10.1016/j.bios.2019.03.034] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/06/2019] [Accepted: 03/18/2019] [Indexed: 12/20/2022]
|
43
|
Saylan Y, Akgönüllü S, Yavuz H, Ünal S, Denizli A. Molecularly Imprinted Polymer Based Sensors for Medical Applications. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1279. [PMID: 30871280 PMCID: PMC6472044 DOI: 10.3390/s19061279] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/04/2019] [Accepted: 03/10/2019] [Indexed: 02/08/2023]
Abstract
Sensors have been extensively used owing to multiple advantages, including exceptional sensing performance, user-friendly operation, fast response, high sensitivity and specificity, portability, and real-time analysis. In recent years, efforts in sensor realm have expanded promptly, and it has already presented a broad range of applications in the fields of medical, pharmaceutical and environmental applications, food safety, and homeland security. In particular, molecularly imprinted polymer based sensors have created a fascinating horizon for surface modification techniques by forming specific recognition cavities for template molecules in the polymeric matrix. This method ensures a broad range of versatility to imprint a variety of biomolecules with different size, three dimensional structure, physical and chemical features. In contrast to complex and time-consuming laboratory surface modification methods, molecular imprinting offers a rapid, sensitive, inexpensive, easy-to-use, and highly selective approaches for sensing, and especially for the applications of diagnosis, screening, and theranostics. Due to its physical and chemical robustness, high stability, low-cost, and reusability features, molecularly imprinted polymer based sensors have become very attractive modalities for such applications with a sensitivity of minute structural changes in the structure of biomolecules. This review aims at discussing the principle of molecular imprinting method, the integration of molecularly imprinted polymers with sensing tools, the recent advances and strategies in molecular imprinting methodologies, their applications in medical, and future outlook on this concept.
Collapse
Affiliation(s)
- Yeşeren Saylan
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| | - Semra Akgönüllü
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| | - Handan Yavuz
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| | - Serhat Ünal
- Department of Infectious Disease and Clinical Microbiology, Hacettepe University, Ankara 06230, Turkey.
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| |
Collapse
|