1
|
Massoud EN, Hebert MK, Siddharthan A, Ferreira T, Neron A, Goodrow M, Ferreira T. Delivery vehicles for light-mediated drug delivery: microspheres, microbots, and nanoparticles: a review. J Drug Target 2025; 33:691-703. [PMID: 39714878 DOI: 10.1080/1061186x.2024.2446636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/09/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024]
Abstract
This review delves into the evolving landscape of mediated drug delivery, focusing on the versatility of a variety of drug delivery vehicles such as microspheres, microbots, and nanoparticles (NPs). The review also expounds on the critical components and mechanisms for light-mediated drug delivery, including photosensitizers and light sources such as visible light detectable by the human eye, ultraviolet (UV) light, shorter wavelengths than visible light, and near-infra-red (NIR) light, which has longer wavelength than visible light. This longer wavelength has been implemented in drug delivery for its ability to penetrate deeper tissues and highlighted for its role in precise and controlled drug release. Furthermore, this review discusses the significance of these drug delivery vehicles towards a spectrum of diverse applications spanning gene therapy, cancer treatment, diagnostics, and microsurgery, and the materials used in the fabrication of these vehicles encompassing polymers, ceramics, and lipids. Moreover, the review analyses the challenges and limitations of such drug delivery vehicles as areas of improvement to provide researchers with valuable insights for addressing current obstacles in the progression of drug delivery. Overall, this review underscores the potential of light-mediated drug delivery to revolutionise healthcare and personalised medicine, providing precise, targeted, and effective therapeutic interventions.
Collapse
Affiliation(s)
- Engi Nadia Massoud
- Department of Bioengineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| | | | | | - Tyler Ferreira
- Department of Bioengineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| | - Abid Neron
- Department of Bioengineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| | - Mary Goodrow
- Department of Bioengineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| | - Tracie Ferreira
- Department of Bioengineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| |
Collapse
|
2
|
Yun L, Fan Q, Wang J, Wu A, Liu Z, Sun F, Zhou X, Wang Q, Du X, Luo N, Zhou J, Long Y, Xie B, Wu J, Zou W, Chen Q. A thermosensitive chitosan hydrogel loaded with Thonningianin A nanoparticles promotes diabetic wound healing by modulating oxidative stress and angiogenesis. Int J Biol Macromol 2025; 310:143136. [PMID: 40233907 DOI: 10.1016/j.ijbiomac.2025.143136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/26/2025] [Accepted: 04/12/2025] [Indexed: 04/17/2025]
Abstract
Diabetic wounds are difficult to heal because of persistent oxidative stress and limited angiogenesis. However, traditional wound dressings cannot address these issues simultaneously. In this study, a thermosensitive chitosan (CS) hydrogel loaded with Thonningianin A (TA) nanoparticles (TA-NPs) was constructed. First, TA-NPs were developed via the nanoprecipitation technique. CS was subsequently combined with β‑sodium glycerophosphate (β-GP) to prepare a thermosensitive hydrogel matrix (CS/β-GP). Finally, composite hydrogels (TA-NPs@Gel) with antioxidant and angiogenesis-promoting properties were synthesized by incorporating TA-NPs into a CS/β-GP hydrogel matrix. Characterization revealed that the TA-NPs were uniformly spherical, with a particle size of 186.30 ± 1.15 nm and a zeta potential of -35.07 ± 0.61 mV. Scanning electron microscopy and Fourier transform infrared spectroscopy confirmed the successful integration of TA-NPs into the hydrogel matrix. Both in vitro and in vivo studies demonstrated that TA-NPs@Gel exhibited potent antioxidant and angiogenic effects, significantly accelerating wound healing in a diabetic mouse model. Network pharmacology predictions indicated that TA-NPs@Gel promoted diabetic wound healing through the HIF-1 signaling pathway. Overall, the integration of TA-NPs into a hydrogel system has broad therapeutic potential for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Long Yun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qingze Fan
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Jie Wang
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, School of Nursing, Southwest Medical University, Luzhou 646000, China
| | - Anguo Wu
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Zhixuan Liu
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Fuhua Sun
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xiaogang Zhou
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Qiaozhi Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xi Du
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Nannan Luo
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, School of Nursing, Southwest Medical University, Luzhou 646000, China
| | - Jiahan Zhou
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yang Long
- Department of Endocrinology and Metabolism, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Bingqing Xie
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Wenjun Zou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Qi Chen
- Department of Endocrinology and Metabolism, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, School of Nursing, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
3
|
Liang J, Huang X, Qin K, Wei H, Yang J, Liu B, Fan Z. Implanted Magnetoelectric Bionic Cartilage Hydrogel. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415417. [PMID: 40134358 DOI: 10.1002/adma.202415417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/24/2025] [Indexed: 03/27/2025]
Abstract
Enhancing defective cartilage repair by creating a bionic cartilage hydrogel supplemented with in situ electromagnetic stimulation, replicating endogenous electromagnetic effects, remains challenging. To achieve this, a unique three-phase solvent system is designed to prepare a magnetoelectric bionic cartilage hydrogel incorporating piezoelectric poly(3-hydroxybutyric acid-3-hydroxyvaleric acid) (PHBV) and magnetostrictive triiron tetraoxide nanoparticles (Fe3O4 NPs) into sodium alginate (SA) hydrogel to form a dual-network, semi-crosslinked chain entanglement structure. The synthesized hydrogel features similar composition, structure, and mechanical properties to natural cartilage. In addition, after the implantation of cartilage, the motion-driven magnetoelectric-coupled cyclic transformation model is triggered by gentle joint forces, initiating a piezoelectric response that leads to magnetoelectric-coupled cyclic transformation. The freely excitable and cyclically enhanced electromagnetic stimulation it can provide, by simulating and amplifying endogenous electromagnetic effects, obtains induced defective cartilage repair efficacy superior to piezoelectric or magnetic stimulation alone.
Collapse
Affiliation(s)
- Jiachen Liang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Xinyue Huang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Kaiqi Qin
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Hui Wei
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Jiaxin Yang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Bin Liu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Zengjie Fan
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, 730000, P.R. China
| |
Collapse
|
4
|
Parida APK, Mishra B, Gupta MK, Kumar P. Structural, microstructural, dielectric, mechanical properties of PVDF/HAP nanocomposite films for bone regeneration applications. Biomed Mater 2025; 20:025041. [PMID: 40009994 DOI: 10.1088/1748-605x/adbaa4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 02/26/2025] [Indexed: 02/28/2025]
Abstract
Poly(vinylidene fluoride) (PVDF)/hydroxyapatite (HAP) nanocomposite films, incorporating HAP nanoparticles as filler within a PVDF matrix, were successfully synthesized by solution casting method. Increasing the HAP concentration in the nanocomposite significantly enhances its electroactive properties, with synergistic effects on surface, electrical and biological characteristics are investigated comprehensively. Improvements in topographical and mechanical parameters reveal the nanocomposite films for biomimetic suitability. Notably, the impact of dielectric and ferroelectric properties on biological studies is well established. With increasing the HAP concentration, we observed significant improvements in remnant polarization from 0.28 to 1.87 µC cm-2, saturation polarization from 1.1 to 2.10 µC cm-2, and coercive field from 88.55 to 243.65 kV cm-1. Inin-vitroexperiments with osteosarcoma cells, the nanocomposite films with 40% HAP showed higher cell proliferation and viability. Present finding indicated 60PVDF/40HAP nanocomposite films as a biomimicry candidate for bone regeneration applications.
Collapse
Affiliation(s)
- A P Kajal Parida
- Department of Physics and Astronomy, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Balaram Mishra
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Pawan Kumar
- Department of Physics and Astronomy, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| |
Collapse
|
5
|
Ke S, Sun X, Qian J, Zhou Z, Lin M, He B, Shen R, Ye Z. The Experimental Study of Double-Layer Heterogeneous CA Scaffold in Promoting the Surface Shape Recovery and Internal Osteogenesis of Alveolar Bone. Biotechnol J 2025; 20:e202400603. [PMID: 39956934 DOI: 10.1002/biot.202400603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 02/18/2025]
Abstract
In this work, double-layer heterogeneous CA scaffolds were designed for alveolar bone defects. The outer layer featured high hardness and slow degradation, and large pores and rapid degradation characterized the inner layer. The CA scaffold morphology was akin to bone defects, and its direct implantation reduced the operation time. A higher concentration of CA resulted in smaller pores and slower degradation. CA can promote the formation of mineralized nodules and the expression of genes related to mineralization without inducing cytotoxic effects. It also promoted the expression of cellular inflammatory factors, potentially through the TLR4 pathway. In vivo studies confirmed that CA did not promote the aggregation of inflammatory cells or the expression of inflammatory factors. In conclusion, the scaffold's characteristics of high surface hardness and slow degradation were beneficial for surface osteogenesis and maintaining the defect's shape and osteogenic space. Conversely, rapid internal degradation favors the formation of bone tissue.
Collapse
Affiliation(s)
- Songxia Ke
- School of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Stomatology, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Xiaohui Sun
- College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Jing Qian
- College of Chemical Engineering, Huaqiao University, Xiamen, China
- Department of Laboratory, Putian Center for Disease Prevention and Control, Putian, China
| | - Ziqing Zhou
- School of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Stomatology, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Minhong Lin
- School of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Stomatology, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Baoying He
- Department of Oncology, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Renze Shen
- School of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Stomatology, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Zhanchao Ye
- School of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Stomatology, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, China
| |
Collapse
|
6
|
Jafari T, Naghib SM, Mozafari MR. Chitosan-based Nano/Biomaterials in Bone Tissue Engineering and Regenerative Medicine: Recent Progress and Advances. Curr Org Synth 2025; 22:457-480. [PMID: 40420784 DOI: 10.2174/0115701794307242240612075648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/29/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2025]
Abstract
The biopolymer chitosan, which is derived from chitin, has shown great promise for tissue regeneration and regulated drug delivery. Its broad-spectrum antibacterial action, low toxicity, biocompatibility, and many other attributes make it appealing for use in biomedical applications. Crucially, chitosan may be synthesized into a range of forms that can be customized to provide desired results, such as hydrogels, membranes, scaffolds, and nanoparticles. Hydrogels that are biocompatible and self-healing are innovative soft materials with considerable potential for use in biomedical applications. Hydrogels that self-heal using chitosan, which are mostly made by dynamic imine linkages, have gained a lot of interest because of their great biocompatibility, moderate preparation requirements, and capacity to mend themselves in a physiological setting. In this study, a summary of the applications of chitosan-based self-healing hydrogels in bone, cartilage, and tooth tissue regeneration and drug delivery is provided. Lastly, we have mentioned the difficulties and potential outcomes for the biomedical field's creation of hydrogels based on chitosan that can mend themselves.
Collapse
Affiliation(s)
- Taha Jafari
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Monash Institute of Medical Research, Clayton, VIC 3168, Australia
| |
Collapse
|
7
|
Wang Z, Shang J, Zhang Z. Composite or Modified Hydroxyapatite Microspheres as Drug Delivery Carrier for Bone and Tooth Tissue Engineering. Curr Med Chem 2025; 32:974-981. [PMID: 38523515 DOI: 10.2174/0109298673303632240320073606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
Since hydroxyapatite (HAp) is an important constituent of bone and teeth, it has excellent biocompatibility and bioactivity, good osteoconductive effects and the ability to induce bone formation as a material for bone or tooth repair and replacement. At present, widely used HAp microspheres have some characteristics, such as large specific surface area, light mass, good injection properties, good fluidity, and low aggregation ability, but they are difficult to really meet the biological and clinical needs due to their own mechanical property defects, such as low strength, brittleness, and poor plasticity. Based on the current research status of HAp microspheres, we summarize the research progress of various types of composite microspheres, including inorganic materials, natural polymer materials and synthetic polymer materials, and further analyze the advantages of HAp composite microspheres loaded with drug molecules, proteins and bioactive factors, so as to explore the development prospect of HAp composite microspheres as scaffolds for constructing sustained release systems. It provides a theoretical basis and research direction to prepare HAp composite micro-spheres with superior comprehensive properties so that they can be better applied in bone tissue regeneration and tooth regeneration engineering.
Collapse
Affiliation(s)
- Zhe Wang
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300000, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Jiaxin Shang
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300000, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Zheng Zhang
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300000, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| |
Collapse
|
8
|
Abdian N, Soltani Zangbar H, Etminanfar M, Hamishehkar H. 3D chitosan/hydroxyapatite scaffolds containing mesoporous SiO2-HA particles: A new step to healing bone defects. Int J Biol Macromol 2024; 278:135014. [PMID: 39181354 DOI: 10.1016/j.ijbiomac.2024.135014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/10/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Biocompatible scaffolds with high mechanical strengths that contain biodegradable components could boost bone regeneration compared with nondegradable bone repair materials. In this study, porous chitosan (CS)/hydroxyapatite (HA) scaffolds containing mesoporous SiO2-HA particles were fabricated through the freeze-drying process. According to field emission scanning electron microscopy (FESEM) results, combining mesoporous SiO2-HA particles in CS/HA scaffolds led to a uniform porous structure. It decreased pore sizes from 320 ± 1.1 μm to 145 ± 1.4 μm. Moreover, the compressive strength value of this scaffold was 25 ± 1.2 MPa. The in-vitro approaches exhibited good sarcoma osteogenic cell line (SAOS-2) adhesion, spreading, and proliferation, indicating that the scaffolds provided a suitable environment for cell cultivation. Also, in-vivo analyses in implanted defect sites of rats proved that the CS/HA/mesoporous SiO2-HA scaffolds could promote bone regeneration via enhancing osteoconduction and meliorating the expression of osteogenesis gene to 19.31 (about 5-fold higher compared to the control group) by exposing them to the bone-like precursors. Further, this scaffold's new bone formation percentage was equal to 90 % after 21 days post-surgery. Therefore, incorporating mesoporous SiO2-HA particles into CS/HA scaffolds can suggest a new future tissue engineering and regeneration strategy.
Collapse
Affiliation(s)
- Nesa Abdian
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, Tabriz, Iran
| | - Hamid Soltani Zangbar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamadreza Etminanfar
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Arif A, Ameer N, Hanif M, Mahmood K, Arif M, Shah AA, Nisar HR, Khan B, Khan WS, Dureshahwar. Lipase-copper complex/chitosan microspheres; loaded with attapulgite used for the treatment of E. coli-induced diarrhea. Int J Biol Macromol 2024; 277:134167. [PMID: 39067724 DOI: 10.1016/j.ijbiomac.2024.134167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Diarrhea is a globally major problem especially Escherichia coli induced diarrhea becoming fatal nowadays in developing countries. Colon-targeted chitosan microspheres (Ms) comprising of lipase‑zinc and lipase‑copper complexes were prepared, loaded with Attapulgite (Cts-Li-Zn-ATG/Ms and Cts-Li-Cu-ATG/Ms) for the treatment of bacterial diarrhea. Thin layer chromatography (TLC) and Fourier-transform infrared spectroscopy (FTIR) studies were used for confirmation of proposed lipase-metal complexes. Ms showed particle size range 18 ± 0.24 to 23 ± 0.83 μm, zeta potential -13.7 ± 0.71 to -29.3 ± 1.34 mV, PDI 0.5 ± 0.04 to 1.0 ± 0.07 and hemolytic activity was found to be <5 ± 1.25 %. After coating with Eudragit S-100 for colon targeting, in-vitro % drug release of ATG at pH 7.4 was 80 ± 0.21 % for Eud-Cts-Li-Zn-ATG/Ms while it was increased to 83 ± 0.54 % for Eud-Cts-Li-Cu-ATG/Ms within 7 h, respectively. In-vivo anti-diarrheal activity of Eud-Cts-Li-Zn-ATG/Ms and Eud-Cts-Li-Cu-ATG/Ms was performed by oral challenge on albino mice having infectious diarrhea colonized with E. coli. Results revealed significant anti-diarrheal effect of proposed Eud-Cts-Li-Cu-ATG/Ms in terms of weight gain from 24 ± 0.12 g to 26.05 ± 0.31 g, which was 2-fold increase as compared to Eud-Cts-Li-Zn-ATG/Ms. Conclusively, Eud-Cts-Li-Cu-ATG/Ms provides an innovative alternate for the treatment of bacterial diarrhea with additional support of chitosan and lipase for nutritional support and immunity which was compromised in diarrheal patients.
Collapse
Affiliation(s)
- Aimen Arif
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Nabeela Ameer
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Hanif
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan.
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan.
| | | | - Amir Asad Shah
- Department of Pathology, Nishtar Medical University, Multan, Pakistan
| | - Hafiza Razia Nisar
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Bushra Khan
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Waheed S Khan
- National Institute for Biotechnology & Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Dureshahwar
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
10
|
Vahidi M, Rizkalla AS, Mequanint K. Extracellular Matrix-Surrogate Advanced Functional Composite Biomaterials for Tissue Repair and Regeneration. Adv Healthc Mater 2024; 13:e2401218. [PMID: 39036851 DOI: 10.1002/adhm.202401218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/13/2024] [Indexed: 07/23/2024]
Abstract
Native tissues, comprising multiple cell types and extracellular matrix components, are inherently composites. Mimicking the intricate structure, functionality, and dynamic properties of native composite tissues represents a significant frontier in biomaterials science and tissue engineering research. Biomimetic composite biomaterials combine the benefits of different components, such as polymers, ceramics, metals, and biomolecules, to create tissue-template materials that closely simulate the structure and functionality of native tissues. While the design of composite biomaterials and their in vitro testing are frequently reviewed, there is a considerable gap in whole animal studies that provides insight into the progress toward clinical translation. Herein, we provide an insightful critical review of advanced composite biomaterials applicable in several tissues. The incorporation of bioactive cues and signaling molecules into composite biomaterials to mimic the native microenvironment is discussed. Strategies for the spatiotemporal release of growth factors, cytokines, and extracellular matrix proteins are elucidated, highlighting their role in guiding cellular behavior, promoting tissue regeneration, and modulating immune responses. Advanced composite biomaterials design challenges, such as achieving optimal mechanical properties, improving long-term stability, and integrating multifunctionality into composite biomaterials and future directions, are discussed. We believe that this manuscript provides the reader with a timely perspective on composite biomaterials.
Collapse
Affiliation(s)
- Milad Vahidi
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, N6A5B9, Canada
| | - Amin S Rizkalla
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, N6A5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, N6A5B9, Canada
| | - Kibret Mequanint
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, N6A5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, N6A5B9, Canada
| |
Collapse
|
11
|
Seifi S, Shamloo A, Barzoki AK, Bakhtiari MA, Zare S, Cheraghi F, Peyrovan A. Engineering biomimetic scaffolds for bone regeneration: Chitosan/alginate/polyvinyl alcohol-based double-network hydrogels with carbon nanomaterials. Carbohydr Polym 2024; 339:122232. [PMID: 38823905 DOI: 10.1016/j.carbpol.2024.122232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 06/03/2024]
Abstract
In this study, new types of hybrid double-network (DN) hydrogels composed of polyvinyl alcohol (PVA), chitosan (CH), and sodium alginate (SA) are introduced, with the hypothesis that this combination and incorporating multi-walled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) will enhance osteogenetic differentiation and the structural and mechanical properties of scaffolds for bone tissue engineering applications. Initially, the impact of varying mass ratios of the PVA/CH/SA mixture on mechanical properties, swelling ratio, and degradability was examined. Based on this investigation, a mass ratio of 4:6:6 was determined to be optimal. At this ratio, the hydrogel demonstrated a Young's modulus of 47.5 ± 5 kPa, a swelling ratio of 680 ± 6 % after 3 h, and a degradation rate of 46.5 ± 5 % after 40 days. In the next phase, following the determination of the optimal mass ratio, CNTs and GNPs were incorporated into the 4:6:6 composite resulting in a significant enhancement in the electrical conductivity and stiffness of the scaffolds. The introduction of CNTs led to a notable increase of 36 % in the viability of MG63 osteoblast cells. Additionally, the inhibition zone test revealed that GNPs and CNTs increased the diameter of the inhibition zone by 49.6 % and 52.6 %, respectively.
Collapse
Affiliation(s)
- Saeed Seifi
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Amir Shamloo
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran.
| | - Ali Kheirkhah Barzoki
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Mohammad Ali Bakhtiari
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Sona Zare
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran; Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Cheraghi
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Ave., P.O. Box 11155-9466, Tehran, Iran
| | - Aisan Peyrovan
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran; Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Jin A, Shao Y, Wang F, Feng J, Lei L, Dai M. Designing polysaccharide materials for tissue repair and regeneration. APL MATERIALS 2024; 12. [DOI: 10.1063/5.0223937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Tissue repair and regeneration are critical processes for maintaining the integrity and function of various organs and tissues. Recently, polysaccharide materials and protein materials have garnered interest for use in tissue repair strategies. However, polysaccharides are more stable and unaffected by temperature and pH changes compared to proteins, and some polysaccharides can provide stronger mechanical support, which is particularly important for constructing tissue-engineered scaffolds and wound dressings. This Review provides an in-depth overview of the origins of polysaccharides, the advantages of polysaccharide materials, and processing and design strategies. In addition, the potential of polysaccharide materials for the restoration of tissues such as skin, heart, and nerves is highlighted. Finally, we discuss in depth the challenges that polysaccharide materials still face in tissue repair, such as the stability of the material, regulating mechanical characteristics and deterioration rates under different conditions. To achieve more effective tissue repair and regeneration, future research must focus on further improving the characteristics and functionalities of polysaccharide materials.
Collapse
Affiliation(s)
- Anqi Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Yunyuan Shao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Fangyan Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Jiayin Feng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University 2 , Wenzhou 325200, China
| |
Collapse
|
13
|
Costa W, Félix Farias AF, Silva-Filho EC, Osajima JA, Medina-Carrasco S, Del Mar Orta M, Fonseca MG. Polysaccharide Hydroxyapatite (Nano)composites and Their Biomedical Applications: An Overview of Recent Years. ACS OMEGA 2024; 9:30035-30070. [PMID: 39035931 PMCID: PMC11256335 DOI: 10.1021/acsomega.4c02170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Hydroxyapatite can combine with polysaccharide originating biomaterials with special applications in the biomedical field. In this review, the synthesis of (nano)composites is discussed, focusing on natural polysaccharides such as alginate, chitosan, and pectin. In this way, advances in recent years in the development of preparing materials are revised and discussed. Therefore, an overview of the recent synthesis and applications of polyssacharides@hydroxyapatites is presented. Several studies based on chitosan@hydroxyapatite combined with other inorganic matrices are highlighted, while pectin@hydroxyapatite is present in a smaller number of reports. Biomedical applications as drug carriers, adsorbents, and bone implants are discussed, combining their dependence with the nature of interactions on the molecular scale and the type of polysaccharides used, which is a relevant aspect to be explored.
Collapse
Affiliation(s)
- Wanderson
Barros Costa
- Fuel and
Materials Laboratory − NPE-LACOM, UFPB, 58051-085, João Pessoa, Paraiba, Brazil
| | - Ana F. Félix Farias
- Fuel and
Materials Laboratory − NPE-LACOM, UFPB, 58051-085, João Pessoa, Paraiba, Brazil
| | | | - Josy A. Osajima
- Interdisciplinary
Laboratory for Advanced Materials − LIMAV, UFPI, 64049-550, Teresina, Piaui, Brazil
| | - Santiago Medina-Carrasco
- SGI Laboratorio
de Rayos X - Centro de Investigación, Tecnología e Innovación de la Universidad de Sevilla
(CITIUS), 41012, Sevilla, Spain
| | - Maria Del Mar Orta
- Departamento
de Química Analítica, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García, González 2, 41012 Sevilla, Spain
| | - Maria G. Fonseca
- Fuel and
Materials Laboratory − NPE-LACOM, UFPB, 58051-085, João Pessoa, Paraiba, Brazil
| |
Collapse
|
14
|
Jadach B, Kowalczyk M, Froelich A. Assessment of Alginate Gel Films as the Orodispersible Dosage Form for Meloxicam. Gels 2024; 10:379. [PMID: 38920926 PMCID: PMC11202906 DOI: 10.3390/gels10060379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
The aim of this study was to obtain films based on sodium alginate (SA) for disintegration in the oral cavity. The films were prepared with a solvent-casting method, and meloxicam (MLX) as the active ingredient was suspended in a 3% sodium alginate solution. Two different solid-dosage-form additives containing different disintegrating agents, i.e., VIVAPUR 112® (MCC; JRS Pharma, Rosenberg, Germany) and Prosolve EASYtabs SP® (MIX; JRS Pharma, Rosenberg, Germany), were used, and four different combinations of drying time and temperature were tested. The influence of the used disintegrant on the properties of the ODFs (orodispersible films) was investigated. The obtained films were studied for their appearance, elasticity, mass uniformity, water content, meloxicam content and, finally, disintegration time, which was studied using two different methods. The films obtained with the solvent-casting method were flexible and homogeneous in terms of MLX content. Elasticity was slightly better when MIX was used as a disintegrating agent. However, these samples also revealed worse uniformity and mechanical durability. It was concluded that the best properties of the films were achieved using the mildest drying conditions. The type of the disintegrating agent had no effect on the amount of water remaining in the film after drying. The water content depended on the drying conditions. The disintegration time was not affected by the disintegrant type, but some differences were observed when various drying conditions were applied. However, regardless of the formulation type and manufacturing conditions, the analyzed films could not be classified as fast disintegrating films, as the disintegration time exceeded 30 s in all of the tested formulations.
Collapse
Affiliation(s)
- Barbara Jadach
- Division of Industrial Pharmacy, Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland;
| | - Martyna Kowalczyk
- Division of Industrial Pharmacy, Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland;
| | - Anna Froelich
- 3D Printing Division, Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland
| |
Collapse
|
15
|
Dacrory S. Anti-proliferative, antimicrobial, DFT calculations, and molecular docking 3D scaffold based on sodium alginate, chitosan, neomycin sulfate and hydroxyapatite. Int J Biol Macromol 2024; 270:132297. [PMID: 38744365 DOI: 10.1016/j.ijbiomac.2024.132297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
3D multifunctional scaffold has been designed based on Cs/SA/NS/NPHA. Nanoparticles hydroxyapatite (NPHA) was prepared via precipitation method of sodium dihydrogen phosphate in presence calcium chloride. Different ratios of Chitosan (CS)/Sodium Alginate (SA) were used to prepare Cs/SA scaffolds in presence of CaCl2 as a cross linker. NPHA was incorporated in CS/SA scaffold and neomycin sulfate (NS) was added as an antimicrobial agent. The structure and surface morphology of the scaffolds were investigated via infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM) and thermal gravimetric analysis (TGA) techniques. Additionally, Antimicrobial activity of the scaffold has evaluated against Gram- negative and Gram- positive bacteria. The result showed promising antimicrobial activity against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans. Furthermore, cytotoxicity against MG63 osteosarcoma cell and fibroblast normal cell line has investigated. The result showed anti-proliferative against MG63. DFT calculations and molecular docking were used to study the reactivity of the compounds. The results exhibited that Cs/SA/NS/NPHA is potent expected to be used in bone tissue regeneration.
Collapse
Affiliation(s)
- Sawsan Dacrory
- Cellulose & Paper Department, National Research Centre, Dokki, Giza, Egypt.
| |
Collapse
|
16
|
Bujda M, Klíma K. Enhancing Guided Bone Regeneration with a Novel Carp Collagen Scaffold: Principles and Applications. J Funct Biomater 2024; 15:150. [PMID: 38921524 PMCID: PMC11205119 DOI: 10.3390/jfb15060150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Bone defects resulting from trauma, surgery, and congenital, infectious, or oncological diseases are a functional and aesthetic burden for patients. Bone regeneration is a demanding procedure, involving a spectrum of molecular processes and requiring the use of various scaffolds and substances, often yielding an unsatisfactory result. Recently, the new collagen sponge and its structural derivatives manufactured from European carp (Cyprinus carpio) were introduced and patented. Due to its fish origin, the novel scaffold poses no risk of allergic reactions or transfer of zoonoses and additionally shows superior biocompatibility, mechanical stability, adjustable degradation rate, and porosity. In this review, we focus on the basic principles of bone regeneration and describe the characteristics of an "ideal" bone scaffold focusing on guided bone regeneration. Moreover, we suggest several possible applications of this novel material in bone regeneration processes, thus opening new horizons for further research.
Collapse
Affiliation(s)
- Michele Bujda
- Department of Oral and Maxillofacial Surgery, 1st Faculty of Medicine and General University Hospital in Prague, Charles University, 12108 Prague, Czech Republic
| | | |
Collapse
|
17
|
Salimi E, Asim MH, Abidin MNZ. Investigating the in-vitro bioactivity, biodegradability and drug release behavior of the newly developed PES/HA/WS biocompatible nanocomposites as bone graft substitute. Sci Rep 2024; 14:10798. [PMID: 38734777 PMCID: PMC11088656 DOI: 10.1038/s41598-024-61586-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/07/2024] [Indexed: 05/13/2024] Open
Abstract
The nucleation of carbonate-containing apatite on the biomaterials surface is regarded as a significant stage in bone healing process. In this regard, composites contained hydroxyapatite (Ca10(PO4)6(OH)2, HA), wollastonite (CaSiO3, WS) and polyethersulfone (PES) were synthesized via a simple solvent casting technique. The in-vitro bioactivity of the prepared composite films with different weight ratios of HA and WS was studied by placing the samples in the simulated body fluid (SBF) for 21 days. The results indicated that the the surface of composites containing 2 wt% HA and 4 wt% WS was completely covered by a thick bone-like apatite layer, which was characterized by Grazing incidence X-ray diffraction, attenuated total reflectance-Fourier transform infrared spectrometer, field emission electron microscopy and energy dispersive X-ray analyzer (EDX). The degradation study of the samples showed that the concentration of inorganic particles could not influence the degradability of the polymeric matrix, where all samples expressed similar dexamethasone (DEX) release behavior. Moreover, the in-vitro cytotoxicity results indicated the significant cyto-compatibility of all specimens. Therefore, these findings revealed that the prepared composite films composed of PES, HA, WS and DEX could be regarded as promising bioactive candidates with low degradation rate for bone tissue engineering applications.
Collapse
Affiliation(s)
- Esmaeil Salimi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, 3619995161, Iran.
| | | | - Muhammad Nidzhom Zainol Abidin
- Department of Chemistry, Faculty of Science, Universiti Malaya, Jalan Profesor Diraja Ungku Aziz, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Panigrahi SK, Das S, Majumdar S. Unveiling the potentials of hydrophilic and hydrophobic polymers in microparticle systems: Opportunities and challenges in processing techniques. Adv Colloid Interface Sci 2024; 326:103121. [PMID: 38457900 DOI: 10.1016/j.cis.2024.103121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024]
Abstract
Conventional drug delivery systems are associated with various shortcomings, including low bioavailability and limited control over release. Biodegradable polymeric microparticles have emerged as versatile carriers in drug delivery systems addressing all these challenges. This comprehensive review explores the dynamic landscape of microparticles, considering the role of hydrophilic and hydrophobic materials. Within the continuously evolving domain of microparticle preparation methods, this review offers valuable insights into the latest advancements and addresses the factors influencing microencapsulation, which is pivotal for harnessing the full potential of microparticles. Exploration of the latest research in this dynamic field unlocks the possibilities of optimizing microencapsulation techniques to produce microparticles of desired characteristics and properties for different applications, which can help contribute to the ongoing evolution in the field of pharmaceutical science.
Collapse
Affiliation(s)
- Subrat Kumar Panigrahi
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, Telangana 502285, India
| | - Sougat Das
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, Telangana 502285, India
| | - Saptarshi Majumdar
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, Telangana 502285, India.
| |
Collapse
|
19
|
Liu Y, Shi C, Ming P, Yuan L, Jiang X, Jiang M, Cai R, Lan X, Xiao J, Tao G. Biomimetic fabrication of sr-silk fibroin co-assembly hydroxyapatite based microspheres with angiogenic and osteogenic properties for bone tissue engineering. Mater Today Bio 2024; 25:101011. [PMID: 38445010 PMCID: PMC10912917 DOI: 10.1016/j.mtbio.2024.101011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Bone defects caused by trauma, tumor resection, or developmental abnormalities are important issues in clinical practice. The vigorous development of tissue engineering technology provides new ideas and directions for regenerating bone defects. Hydroxyapatite (HAp), a bioactive ceramic, is extensively used in bone tissue engineering because of its excellent osteoinductive performance. However, its application is challenged by its single function and conventional environment-unfriendly synthesis methods. In this study, we successfully "green" synthesized sr-silk fibroin co-assembly hydroxyapatite nanoparticles (Sr-SF-HA) using silk fibroin (SF) as a biomineralized template, thus enabling it to have angiogenic activity and achieving the combination of organic and inorganic substances. Then, the rough composite microspheres loaded with Sr-SF-HA (CS/Sr-SF-HA) through electrostatic spraying technology and freeze-drying method were prepared. The CCK-8 test and live/dead cell staining showed excellent biocompatibility of CS/Sr-SF-HA. Alkaline phosphatase (ALP) staining, alizarin red staining (ARS), immunofluorescence, western blotting, and qRT-PCR test showed that CS/Sr-SF-HA activated the expression of related genes and proteins, thus inducing the osteogenic differentiation of rBMSCs. Moreover, tube formation experiments, scratch experiments, immunofluorescence, and qRT-PCR detection indicated that CS/Sr-SF-HA have good angiogenic activity. Furthermore, in vivo studies showed that the CS/Sr-SF-HA possesses excellent biocompatibility, vascular activity, as well as ectopic osteogenic ability in the subcutaneous pocket of rats. This study indicates that the construction of CS/Sr-SF-HA with angiogenic and osteogenic properties has great potential for bone tissue engineering.
Collapse
Affiliation(s)
- Yunfei Liu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Chengji Shi
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Piaoye Ming
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Lingling Yuan
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Xueyu Jiang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Min Jiang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Rui Cai
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Jingang Xiao
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Gang Tao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
20
|
Kong Q, Wang Y, Jiang N, Wang Y, Wang R, Hu X, Mao J, Shi X. Exosomes as Promising Therapeutic Tools for Regenerative Endodontic Therapy. Biomolecules 2024; 14:330. [PMID: 38540750 PMCID: PMC10967740 DOI: 10.3390/biom14030330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 11/06/2024] Open
Abstract
Pulpitis is a common and frequent disease in dental clinics. Although vital pulp therapy and root canal treatment can stop the progression of inflammation, they do not allow for genuine structural regeneration and functional reconstruction of the pulp-dentin complex. In recent years, with the development of tissue engineering and regenerative medicine, research on stem cell-based regenerative endodontic therapy (RET) has achieved satisfactory preliminary results, significantly enhancing its clinical translational prospects. As one of the crucial paracrine effectors, the roles and functions of exosomes in pulp-dentin complex regeneration have gained considerable attention. Due to their advantages of cost-effectiveness, extensive sources, favorable biocompatibility, and high safety, exosomes are considered promising therapeutic tools to promote dental pulp regeneration. Accordingly, in this article, we first focus on the biological properties of exosomes, including their biogenesis, uptake, isolation, and characterization. Then, from the perspectives of cell proliferation, migration, odontogenesis, angiogenesis, and neurogenesis, we aim to reveal the roles and mechanisms of exosomes involved in regenerative endodontics. Lastly, immense efforts are made to illustrate the clinical strategies and influencing factors of exosomes applied in dental pulp regeneration, such as types of parental cells, culture conditions of parent cells, exosome concentrations, and scaffold materials, in an attempt to lay a solid foundation for exploring and facilitating the therapeutic strategy of exosome-based regenerative endodontic procedures.
Collapse
Affiliation(s)
- Qingyue Kong
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.K.); (Y.W.); (Y.W.); (R.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yujie Wang
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.K.); (Y.W.); (Y.W.); (R.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Nan Jiang
- Central Laboratory, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China;
| | - Yifan Wang
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.K.); (Y.W.); (Y.W.); (R.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Rui Wang
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.K.); (Y.W.); (Y.W.); (R.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xiaohan Hu
- Outpatient Department Office, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Jing Mao
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.K.); (Y.W.); (Y.W.); (R.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xin Shi
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.K.); (Y.W.); (Y.W.); (R.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
21
|
Li SH, Li YF, Wu D, Xu Y, Yan HJ, Hu JN. Metal-polyphenol microgels for oral delivery of puerarin to alleviate the onset of diabetes. Drug Deliv Transl Res 2024; 14:757-772. [PMID: 37768531 DOI: 10.1007/s13346-023-01428-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
Puerarin (Pue) is a naturally bioactive compound with many potential functions in regulating blood glucose and lipid metabolism. However, the low bioavailability and rapid elimination in vivo limit the application of Pue in diabetic treatment. Here, we developed a metal-polyphenol-functionalized microgel to effectively deliver Pue in vivo and eventually alleviate the onset of diabetes. Pue was initially encapsulated in alginate beads through electrospray technology, and further immersed in Fe3+ and tannic acid solution from tannic acid (TA)-iron (Fe) coatings (TF). These constructed Pue@SA-TF microgels exhibited uniform spheres with an average size of 367.89 ± 18.74 µm and high encapsulation efficiency of Pue with 61.16 ± 1.39%. In vivo experiments proved that compared with free Pue and microgels without TF coatings, the biological distribution of Pue@SA-TF microgels specifically accumulated in the small intestine, prolonged the retention time of Pue, and achieved a high effectiveness in vivo. Anti-diabetic experimental results showed that Pue@SA-TF microgels significantly improved the levels of blood glucose, blood lipid, and oxidative stress in diabetic mice. Meanwhile, histopathological observations indicated that Pue@SA-TF microgels could significantly alleviate the damage to the liver, kidney, and pancreas in diabetic mice. Our study provided an effective strategy for oral delivery of Pue and achieved high anti-diabetic efficacy.
Collapse
Affiliation(s)
- Si-Hui Li
- Research Group of Nutrition and Health, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, China
| | - Yan-Fei Li
- Research Group of Nutrition and Health, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, China
| | - Di Wu
- Research Group of Nutrition and Health, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, China
| | - Yu Xu
- Research Group of Nutrition and Health, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, China
| | - Hui-Jia Yan
- Research Group of Nutrition and Health, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, China
| | - Jiang-Ning Hu
- Research Group of Nutrition and Health, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
22
|
Ren Z, Wang Y, Wu H, Cong H, Yu B, Shen Y. Preparation and application of hemostatic microspheres containing biological macromolecules and others. Int J Biol Macromol 2024; 257:128299. [PMID: 38008144 DOI: 10.1016/j.ijbiomac.2023.128299] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/18/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
Bleeding from uncontrollable wounds can be fatal, and the body's clotting mechanisms are unable to control bleeding in a timely and effective manner in emergencies such as battlefields and traffic accidents. For irregular and inaccessible wounds, hemostatic materials are needed to intervene to stop bleeding. Hemostatic microspheres are promising for hemostasis, as their unique structural features can promote coagulation. There is a wide choice of materials for the preparation of microspheres, and the modification of natural macromolecular materials such as chitosan to enhance the hemostatic properties and make up for the deficiencies of synthetic macromolecular materials makes the hemostatic microspheres multifunctional and expands the application fields of hemostatic microspheres. Here, we focus on the hemostatic mechanism of different materials and the preparation methods of microspheres, and introduce the modification methods, related properties and applications (in cancer therapy) for the structural characteristics of hemostatic microspheres. Finally, we discuss the future trends of hemostatic microspheres and research opportunities for developing the next generation of hemostatic microsphere materials.
Collapse
Affiliation(s)
- Zekai Ren
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yumei Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Han Wu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
23
|
Jain P, Mirza MA, Reyaz E, Beg MA, Selvapandiyan A, Hasan N, Naqvi A, Punnoth Poonkuzhi N, Kuruniyan MS, Yadav HN, Ahmad FJ, Iqbal Z. QbD-Assisted Development and Optimization of Doxycycline Hyclate- and Hydroxyapatite-Loaded Nanoparticles for Periodontal Delivery. ACS OMEGA 2024; 9:4455-4465. [PMID: 38313517 PMCID: PMC10831838 DOI: 10.1021/acsomega.3c07092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024]
Abstract
The current research aims to develop a carrier system for the delivery of a matrix metalloproteinase (MMP) inhibitor along with a bioceramic agent to the periodontal pocket. It is proposed that the present system, if given along with a systemic antibiotic, would be a fruitful approach for periodontitis amelioration. To fulfill the aforementioned objective, a doxycycline hyclate- and hydroxyapatite-adsorbed composite was prepared by a physical adsorption method and successfully loaded inside sodium alginate-chitosan nanoparticles and optimized based on particle size and drug content. Optimized formulation was then subjected to different evaluation parameters like encapsulation efficiency, hydroxyapatite content, ζ potential, surface morphology, in vitro drug release, cell line studies, and stability studies. For the optimized formulation, particle size, polydispersity index (PDI), entrapment efficiency, ζ potential, and drug content were found to be 336.50 nm, 0.23, 41.77%, -13.85 mV, and 14.00%, respectively. The surface morphology of the placebo and adsorbed composite-loaded nanoparticles as observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the spherical shape and rough surface of the particles. In gingival crevicular fluid (GCF) 7.6, a sustained drug release profile was obtained up to 36 h. In vitro % viability studies performed on murine fibroblast cells (NIH3T3) and human periodontal ligament (hPDL) cell lines confirmed the proliferative nature of the formulation. Also, when subjected to stability studies for 4 weeks, particle size, PDI, and drug content did not vary considerably, thereby ensuring the stable nature of nanoparticles. Henceforth, sodium alginate-chitosan nanoparticles appeared to be a good carrier system for doxycycline hyclate and hydroxyapatite for periodontal therapy. If given along with a system antibiotic, the system will serve as a fruitful tool for infection-mediated periodontal regeneration and healing.
Collapse
Affiliation(s)
- Pooja Jain
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, SPER, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, SPER, Jamia Hamdard, New Delhi 110062, India
| | - Enam Reyaz
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Mirza Adil Beg
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | | | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, SPER, Jamia Hamdard, New Delhi 110062, India
| | - Akbar Naqvi
- Department of Dentistry, HIMSR, New Delhi 110062, India
| | | | | | | | - Farhan J Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, SPER, Jamia Hamdard, New Delhi 110062, India
| | - Zeenat Iqbal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, SPER, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
24
|
Ma S, Ding Q, Xia G, Li A, Li J, Sun P, Ding C, Liu W. Multifunctional biomaterial hydrogel loaded with antler blood peptide effectively promotes wound repair. Biomed Pharmacother 2024; 170:116076. [PMID: 38147738 DOI: 10.1016/j.biopha.2023.116076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 12/28/2023] Open
Abstract
Diabetes is an epidemic in contemporary society, which seriously affects people's health. Therefore, it is imperative to develop a multifunctional wound dressing that can expedite the healing of diabetic wounds. In this study, quaternized oxidized sodium alginate (QOSA) and carboxymethyl chitosan (CMCS) formed hydrogel through Schiff base reaction, and the composite hydrogel was prepared by adding the antioxidant activity of deer antler blood polypeptide (D). The hydrogel exhibits favorable attributes, including a high swelling ratio, biocompatibility, and noteworthy antioxidant, antibacterial, and hemostatic properties. Finally, it was used to evaluate its effectiveness in repairing diabetic wounds. Upon evaluation, this hydrogel can effectively promote diabetic wound healing. It facilitates cell proliferation at the wound site, mitigates inflammatory responses, and enhances the expression of growth factors at the wound site. This suggests that this hydrogel holds significant promise as an ideal candidate for advanced wound dressings.
Collapse
Affiliation(s)
- Shuang Ma
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Guofeng Xia
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Jilin 132101, China
| | - Anning Li
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Jilin 132101, China
| | - Jianguo Li
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Jilin 132101, China
| | - Pingping Sun
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Jilin 132101, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Jilin 132101, China; College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China.
| |
Collapse
|
25
|
Akshata CR, Murugan E, Harichandran G. Alginate templated synthesis, characterization and in vitro osteogenic evaluation of strontium-substituted hydroxyapatite. Int J Biol Macromol 2023; 252:126478. [PMID: 37625758 DOI: 10.1016/j.ijbiomac.2023.126478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
The objective of this study is to explore the potential role of alginate (Alg) in the crystallization of metal-substituted hydroxyapatite, with application in orthopaedic reconstruction. The alginate at different concentrations (0.5 and 1.0 wt%) facilitated in situ mineralization of hydroxyapatite (HA) and strontium-substituted HA (SHA, 10 and 30 mol%). The incorporation of the biopolymer and dopant induced notable changes in HA, including reduced crystal size from 31.0 to 16.4 nm and increased lattice volume from 577.3 to 598.0 Å3. The superior affinity of alginate for Sr2+ than for Ca2+ resulted in higher residual alginate in Alg/SHA (13.0 to 19.0 %) compared to Alg/HA (7.1 to 8.2 %). This residual alginate influenced composite properties: surface charge decreased from -26.5 to -45.7 mV, microhardness increased from 0.33 to 0.54 GPa, and dissolution increased from 0.17 to 0.39 %. The in vitro studies revealed that strontium substitution as well as the organization and crystallographic aspects of apatite regulated osteoblastic cell survival, proliferation, differentiation, and biomineralization. The findings suggest that an alginate concentration of 0.5 wt% is optimal for the crystallization of SHA with 10 mol% substitution, and its resulting composite possesses the ideal biomechanical properties to imitate native bone.
Collapse
Affiliation(s)
- C R Akshata
- Department of Polymer Science, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India.
| | - E Murugan
- Department of Physical Chemistry, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | - G Harichandran
- Department of Polymer Science, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India.
| |
Collapse
|
26
|
Moeinzadeh A, Ashtari B, Garcia H, Koruji M, Velazquez CA, Bagher Z, Barati M, Shabani R, Davachi SM. The Effect of Chitosan/Alginate/Graphene Oxide Nanocomposites on Proliferation of Mouse Spermatogonial Stem Cells. J Funct Biomater 2023; 14:556. [PMID: 38132810 PMCID: PMC10744091 DOI: 10.3390/jfb14120556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Male survivors of childhood cancer have been known to be afflicted with azoospermia. To combat this, the isolation and purification of spermatogonial stem cells (SSCs) are crucial. Implementing scaffolds that emulate the extracellular matrix environment is vital for promoting the regeneration and proliferation of SSCs. This research aimed to evaluate the efficiency of nanocomposite scaffolds based on alginate, chitosan, and graphene oxide (GO) in facilitating SSCs proliferation. To analyze the cytotoxicity of the scaffolds, an MTT assay was conducted at 1, 3, and 7 days, and the sample containing 30 µg/mL of GO (ALGCS/GO30) exhibited the most favorable results, indicating its optimal performance. The identity of the cells was confirmed using flow cytometry with C-Kit and GFRα1 markers. The scaffolds were subjected to various analyses to characterize their properties. FTIR was employed to assess the chemical structure, XRD to examine crystallinity, and SEM to visualize the morphology of the scaffolds. To evaluate the proliferation of SSCs, qRT-PCR was used. The study's results demonstrated that the ALGCS/GO30 nanocomposite scaffold exhibited biocompatibility and facilitated the attachment and proliferation of SSCs. Notably, the scaffold displayed a significant increase in proliferation markers compared to the control group, indicating its ability to support SSC growth. The expression level of the PLZF protein was assessed using the Immunocytochemistry method. The observations confirmed the qRT-PCR results, which indicated that the nanocomposite scaffolds had higher levels of PLZF protein expression than scaffolds without GO. The biocompatible ALGCS/GO30 is a promising alternative for promoting SSC proliferation in in vitro applications.
Collapse
Affiliation(s)
- Alaa Moeinzadeh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Ashtari
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Heriberto Garcia
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX 78041, USA
| | - Morteza Koruji
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Carlo Alberto Velazquez
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX 78041, USA
| | - Zohreh Bagher
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- ENT and Head & Neck Research Center and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Barati
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Reproductive Sciences and Technology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Davachi
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX 78041, USA
| |
Collapse
|
27
|
Wee CY, Lim QRT, Zhao Y, Xu X, Yang Z, Wang D, Thian ES. Optimizing fabrication parameters via Taguchi method for production of high yield hydroxyapatite microsphere scaffolds using Drop-on-Demand inkjet method. J Biomed Mater Res B Appl Biomater 2023; 111:1938-1955. [PMID: 37378477 DOI: 10.1002/jbm.b.35297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/27/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
Drop on demand (DOD) inkjet method is a cost-efficient way of producing hydroxyapatite (HAp) microsphere scaffolds with narrow size distribution. However, DOD fabrication parameters may influence the yield and characteristics of the microsphere scaffolds. Testing different permutations and combinations of fabrication parameters is costly and time consuming. Taguchi method could be used as a predictive tool for optimizing the key fabrication parameters to produce HAp microspheres with desired yield and properties, minimizing the number of experimental combinations to be tested. The aim of this study is to investigate the influence of the fabrication parameters on the characteristics of the microspheres formed and determine optimum parameter conditions for producing high yield HAp microsphere scaffolds with the desired properties intended to serve as potential bone substitutes. We aimed to achieve microspheres with high production yield, microsphere size of <230 μm, micropore sizes <1 μm, rough surface morphology and high sphericity. Experiments were conducted using Taguchi method with a L9 orthogonal array at three levels per parameter to determine optimum parameter values for (1) operating pressure, (2) shutter speed duration, (3) nozzle height and (4) CaCl2 concentration. Based on signal-to-noise (S/N) ratio analysis, the identified optimum parameter conditions for operating pressure, shutter speed duration, nozzle height and CaCl2 concentration to be 0.9-1.3 bar, 100 ms, 8 cm and 0.4 M respectively. The microspheres obtained had an average size of 213 μm, 0.45 μm micropore size, high sphericity index of 0.95 and high production yield of 98%. Confirmation tests and ANOVA results affirms the validity of Taguchi method in optimizing HAp microspheres with high yield, desired size, micropore size and shape. HAp microsphere scaffolds produced by optimum conditions were subjected to a 7-day in-vitro study. Cells remained viable and continued to proliferate (increased 1.2-fold) over 7 days with microspheres maintaining high cell density with cells bridging between microspheres. Alkaline phosphatase (ALP) assay increased 1.5-fold from day 1, suggesting good osteogenic potency of HAp microspheres as potential bone substitutes.
Collapse
Affiliation(s)
- Chien Yi Wee
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Quentin Ray Tjieh Lim
- Department of Material Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Yun Zhao
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Xin Xu
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Zhijie Yang
- Zhejiang Biocare Biotechnology Co.Ltd, Shaoxing, China
| | - Dong Wang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Eng San Thian
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
28
|
Zhou J, Li T, Zhang M, Han B, Xia T, Ni S, Liu Z, Chen Z, Tian X. Thermosensitive black phosphorus hydrogel loaded with silver sulfadiazine promotes skin wound healing. J Nanobiotechnology 2023; 21:330. [PMID: 37715259 PMCID: PMC10503145 DOI: 10.1186/s12951-023-02054-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/07/2023] [Indexed: 09/17/2023] Open
Abstract
Wounds can lead to skin and soft tissue damage and their improper management may lead to the growth of pathogenic bacteria at the site of injury. Identifying better ways to promote wound healing is a major unmet need and biomedical materials with the ability to promote wound healing are urgently needed. Here, we report a thermosensitive black phosphorus hydrogel composed of black phosphorus nano-loaded drug silver sulfadiazine (SSD) and chitosan thermosensitive hydrogel for wound healing. The hydrogel has temperature-sensitive properties and enables the continuous release of SSD under near-infrared irradiation to achieve synergistic photothermal and antibacterial treatment. Additionally, it exerts antibacterial effects on Staphylococcus aureus. In a rat skin injury model, it promotes collagen deposition, boosts neovascularization, and suppresses inflammatory markers. In summary, the excellent thermosensitivity, biocompatibility, and wound-healing-promoting qualities of the reported thermosensitive hydrogel make it suitable as an ideal wound dressing in the clinic.
Collapse
Affiliation(s)
- Jie Zhou
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Tianjiao Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Meili Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Tao Xia
- Sinopharm Xinjiang Pharmaceutical Co. LTD, Urumqi, 830032, China
| | - Shuangshuang Ni
- Sinopharm Xinjiang Pharmaceutical Co. LTD, Urumqi, 830032, China
| | - Zhiyong Liu
- College of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| | - Zhenyang Chen
- Sinopharm Xinjiang Pharmaceutical Co. LTD, Urumqi, 830032, China.
| | - Xing Tian
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China.
- Sinopharm Xinjiang Pharmaceutical Co. LTD, Urumqi, 830032, China.
| |
Collapse
|
29
|
Guo X, Song P, Li F, Yan Q, Bai Y, He J, Che Q, Cao H, Guo J, Su Z. Research Progress of Design Drugs and Composite Biomaterials in Bone Tissue Engineering. Int J Nanomedicine 2023; 18:3595-3622. [PMID: 37416848 PMCID: PMC10321437 DOI: 10.2147/ijn.s415666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023] Open
Abstract
Bone, like most organs, has the ability to heal naturally and can be repaired slowly when it is slightly injured. However, in the case of bone defects caused by diseases or large shocks, surgical intervention and treatment of bone substitutes are needed, and drugs are actively matched to promote osteogenesis or prevent infection. Oral administration or injection for systemic therapy is a common way of administration in clinic, although it is not suitable for the long treatment cycle of bone tissue, and the drugs cannot exert the greatest effect or even produce toxic and side effects. In order to solve this problem, the structure or carrier simulating natural bone tissue is constructed to control the loading or release of the preparation with osteogenic potential, thus accelerating the repair of bone defect. Bioactive materials provide potential advantages for bone tissue regeneration, such as physical support, cell coverage and growth factors. In this review, we discuss the application of bone scaffolds with different structural characteristics made of polymers, ceramics and other composite materials in bone regeneration engineering and drug release, and look forward to its prospect.
Collapse
Affiliation(s)
- Xinghua Guo
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Pan Song
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Feng Li
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Qihao Yan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, People’s Republic of China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, People’s Republic of China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou, 510663, People’s Republic of China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, People’s Republic of China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| |
Collapse
|
30
|
Budiarso IJ, Rini NDW, Tsalsabila A, Birowosuto MD, Wibowo A. Chitosan-Based Smart Biomaterials for Biomedical Applications: Progress and Perspectives. ACS Biomater Sci Eng 2023. [PMID: 37178166 DOI: 10.1021/acsbiomaterials.3c00216] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Over the past decade, smart and functional biomaterials have escalated as one of the most rapidly emerging fields in the life sciences because the performance of biomaterials could be improved by careful consideration of their interaction and response with the living systems. Thus, chitosan could play a crucial role in this frontier field because it possesses many beneficial properties, especially in the biomedical field such as excellent biodegradability, hemostatic properties, antibacterial activity, antioxidant properties, biocompatibility, and low toxicity. Furthermore, chitosan is a smart and versatile biopolymer due to its polycationic nature with reactive functional groups that allow the polymer to form many interesting structures or to be modified in various ways to suit the targeted applications. In this review, we provide an up-to-date development of the versatile structures of chitosan-based smart biomaterials such as nanoparticles, hydrogels, nanofibers, and films, as well as their application in the biomedical field. This review also highlights several strategies to enhance biomaterial performance for fast growing fields in biomedical applications such as drug delivery systems, bone scaffolds, wound healing, and dentistry.
Collapse
Affiliation(s)
- Indra J Budiarso
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia
| | - Novi D W Rini
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia
| | - Annisa Tsalsabila
- Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University, Jl. Meranti, Bogor 16680, West Java, Indonesia
| | - Muhammad D Birowosuto
- Łukasiewicz Research Network - PORT Polish Center for Technology Development, Stabłowicka 147, Wrocław 54-066, Poland
| | - Arie Wibowo
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia
- Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Bandung 40132, West Java, Indonesia
| |
Collapse
|
31
|
Li Y, Zhu J, Zhang X, Li Y, Zhang S, Yang L, Li R, Wan Q, Pei X, Chen J, Wang J. Drug-Delivery Nanoplatform with Synergistic Regulation of Angiogenesis-Osteogenesis Coupling for Promoting Vascularized Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17543-17561. [PMID: 37010447 DOI: 10.1021/acsami.2c23107] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
It has been confirmed that substantial vascularization is an effective strategy to heal large-scale bone defects in the field of bone tissue engineering. The local application of deferoxamine (DFO) is among the most common and effective methods for promoting the formation of blood vessels, although its short half-life in plasma, rapid clearance, and poor biocompatibility limit its therapeutic suitability. Herein, zeolitic imidazolate framework-8 (ZIF-8) was selected as a vehicle to extend the half-life of DFO. In the present study, a nano DFO-loaded ZIF-8 (DFO@ZIF-8) drug delivery system was established to promote angiogenesis-osteogenesis coupling. The nanoparticles were characterized, and their drug loading efficiency was examined to confirm the successful synthesis of nano DFO@ZIF-8. Additionally, due to the sustained release of DFO and Zn2+, DFO@ZIF-8 NPs were able to promote angiogenesis in human umbilical vein endothelial cells (HUVECs) culture and osteogenesis in bone marrow stem cells (BMSCs) in vitro. Furthermore, the DFO@ZIF-8 NPs promoted vascularization by enhancing the expression of type H vessels and a vascular network. The DFO@ZIF-8 NPs promoted bone regeneration in vivo by increasing the expression of OCN and BMP-2. RNA sequencing analysis revealed that the PI3K-AKT-MMP-2/9 and HIF-1α pathways were upregulated by DFO@ZIF-8 NPs in HUVECs, ultimately leading to the formation of new blood vessels. In addition, the mechanism by which DFO@ZIF-8 NPs promoted bone regeneration was potentially related to the synergistic effect of angiogenesis-osteogenesis coupling and Zn2+-mediation of the MAPK pathway. Taken together, DFO@ZIF-8 NPs, which were demonstrated to have low cytotoxicity and excellent coupling of angiogenesis and osteogenesis, represent a promising strategy for the reconstruction of critical-sized bone defects.
Collapse
Affiliation(s)
- Yahong Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Junjin Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuanyuan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Linxin Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruyi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
32
|
Fatima T, Jolly R, Mushahid F, Khan N, Umar MS, Owais M, Shakir M. Combinatorial approach to fabricate silica doped polyvinyl alcohol/hydroxyapatite/carrageenan nanocomposite for bone regeneration applications. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.6048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
33
|
Chen S, Li H, Bai Y, Zhang J, Ikoma T, Huang D, Li X, Chen W. Hierarchical and urchin-like chitosan/hydroxyapatite microspheres as drug-laden cell carriers. Int J Biol Macromol 2023; 238:124039. [PMID: 36921830 DOI: 10.1016/j.ijbiomac.2023.124039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023]
Abstract
Biopolymer/hydroxyapatite (HAp) composites are one type of the most promising materials for a variety of biomedical applications. In this study, hierarchical and urchin-like chitosan/HAp nanowire (HU-CS/HAp NW) microspheres were for the first time synthesized by in situ hydrothermal treatment of chitosan/HAp (CS/HAp) microspheres in the acetic acid solution. The results indicate that HU-CS/HAp NW microspheres were spherical in morphology with a diameter of 100-300 μm. Their surface was mainly constructed by numerous HAp NWs with the diameter of 80-120 nm and showed a hierarchical and urchin-like nanofibrous architecture. It was found that the acidic hydrothermal treatment caused an in situ conversion of HAp NPs to HAp NWs. In vitro biocompatible evaluation indicates that HU-CS/HAp NW microspheres showed an enhanced cell attachment and proliferation due to the presence of hierarchical and urchin-like architecture. Furthermore, HU-CS/HAp NW microspheres showed a good adsorption capacity for tetracycline hydrochloride (model drug, one of the most representative antibiotics) with a higher adsorption capacity than CS/HAp microspheres and well maintained their antibacterial efficacy to inhibit the growth of bacteria: Escherichia coli and Staphylococcus aureus. Thus, the present HU-CS/HAp NW microspheres would be applicable as novel drug-laden cell carriers.
Collapse
Affiliation(s)
- Song Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Hao Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yajia Bai
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jianan Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Toshiyuki Ikoma
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Di Huang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Xiaona Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Weiyi Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
34
|
Shuai C, Chen X, He C, Chen M, Peng S, Yang W. Fe-doped mesoporous silica catalyzes ascorbic acid oxidation for tumor-specific therapy in scaffold. Colloids Surf B Biointerfaces 2023; 225:113251. [PMID: 36931045 DOI: 10.1016/j.colsurfb.2023.113251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/15/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023]
Abstract
Ascorbic acid (AA) is a promising antitumor agent, yet its autooxidation is too slow which constrains the further application. Fortunately, the autoxidation process can be accelerated by transition metal catalysts, especially Fe3+ ions. In this study, AA was loaded to Fe-doped mesoporous silica (designated as AA@Fe-SiO2), which was introduced into poly-L-lactic acid (PLLA) and then prepared into a scaffold. Mechanistically, AA@Fe-SiO2 degraded in acidic tumor microenvironment because excessive H+ substituted Fe atoms in the iron silicate framework, releasing Fe3+ and AA. The Fe3+ boosted the pro-oxidation reaction of AA, generating numerous hydrogen peroxide (H2O2) and Fe2+. Then, Fe2+ reacted with H2O2 to initiate Fenton reactions favoring hydroxyl radical generation, triggering oxidative damage on tumor cells to implement tumor-specific therapy. Results showed that the release amount of AA in acidic solution was about 3 times higher than that in neutral solution, which was attributed to the pH-dependency of the degradation of AA@Fe-SiO2 in scaffold. Furthermore, the scaffold generated numerous ascorbate radical intermediate and increased the H2O2 concentration by 120.2%, demonstrating that Fe3+ remarkably accelerated the oxidation rate of AA. Cell experimental results showed that the scaffold caused massive apoptosis of tumor cells, while no obvious cytotoxicity to normal cells, confirming the antitumor specificity of scaffold. This work paves a promising way to construct a biodegradable and catalytic scaffold, featuring effective tumor-specific therapy.
Collapse
Affiliation(s)
- Cijun Shuai
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China; State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China; Shenzhen Institute of Information Technology, School of Sino-German Robotics, Shenzhen 518115, China
| | - Xuan Chen
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Chongxian He
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China
| | - Min Chen
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Shuping Peng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410013, China; School of Energy and Machinery Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China.
| | - Wenjing Yang
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China.
| |
Collapse
|
35
|
Sui X, Zhang H, Yao J, Yang L, Zhang X, Li L, Wang J, Li M, Liu Z. 3D printing of 'green' thermo-sensitive chitosan-hydroxyapatite bone scaffold based on lyophilized platelet-rich fibrin. Biomed Mater 2023; 18. [PMID: 36758238 DOI: 10.1088/1748-605x/acbad5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
The critical bone defect is still an urgent problem in the field of bone repair. Here, we reported a new type of chitosan (CS)-hydroxyapatite (HAP) scaffolds based on lyophilized platelet-rich fibrin (L-PRF) for releasing abundant growth factors to realize their respective functions. It also has strong mechanical properties to maintain the stability of the bone repair environment. However, acid-soluble CS hydrogels often contain toxic and organic solvents. Moreover, chemical agents may be used for cross-linking for better mechanical properties, further increasing cytotoxicity. In this study, we used an alkali/urea dissolution system to dissolve CS, which improved its mechanical properties and made it thermo-sensitive. Finally, the L-PRF-CS-HAP (P-C-H) composite scaffold was constructed by extrusion-based printing. The results showed that the printing ink had desirable printability and temperature sensitivity. The compressive properties of the scaffolds exhibited a trend of decline with L-PRF content increasing, but all of them could meet the strength of cancellous bone. Meanwhile, the scaffolds had high hydrophilicity, porosity, and could be degraded stablyin vitro. The antibacterial properties of the scaffolds were also verified, greatly reducing the risk of infection during bone repair. It was also demonstrated that the release time of growth factor from L-PRF was significantly prolonged, and growth factor could still be detected after 35 d of sustained release. The capacity of cells to proliferate increased as the number of L-PRF components increased, indicating that L-PRF still exhibited biological activity after 3D printing.
Collapse
Affiliation(s)
- Xin Sui
- Hospital of Stomatology, Jilin University, 130021, People's Republic of China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, People's Republic of China
| | - Huili Zhang
- Hospital of Stomatology, Jilin University, 130021, People's Republic of China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, People's Republic of China
| | - Jingjing Yao
- Hospital of Stomatology, Jilin University, 130021, People's Republic of China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, People's Republic of China
| | - Liuqing Yang
- Hospital of Stomatology, Jilin University, 130021, People's Republic of China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, People's Republic of China
| | - Xiao Zhang
- Hospital of Stomatology, Jilin University, 130021, People's Republic of China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, People's Republic of China
| | - Lingfeng Li
- Hospital of Stomatology, Jilin University, 130021, People's Republic of China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, People's Republic of China
| | - Jue Wang
- Hospital of Stomatology, Jilin University, 130021, People's Republic of China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, People's Republic of China
| | - Meihui Li
- Hospital of Stomatology, Jilin University, 130021, People's Republic of China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, People's Republic of China
| | - Zhihui Liu
- Hospital of Stomatology, Jilin University, 130021, People's Republic of China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, People's Republic of China
| |
Collapse
|
36
|
Feng W, Xiao X, Li J, Xiao Q, Ma L, Gao Q, Wan Y, Huang Y, Liu T, Luo X, Luo S, Zeng G, Yu K. Bioleaching and immobilizing of copper and zinc using endophytes coupled with biochar-hydroxyapatite: Bipolar remediation for heavy metals contaminated mining soils. CHEMOSPHERE 2023; 315:137730. [PMID: 36603675 DOI: 10.1016/j.chemosphere.2022.137730] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/26/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Copper and zinc are toxic heavy metals in soils that require development of feasible strategies for remediation of contaminated soils around the mine areas. In this study, the processing conditions and mechanisms of immobilization and bioleaching for remediation of highly contaminated soils with heavy metals are investigated. Soil remediation is carried out using a bioleaching-immobilization bipolar method. The results show that LSE03 bacteria provide efficient leaching result and immobilization on Cu2+ and Zn2+. Among the bacterial metabolites, cis, cis-muconic acid and isovaleric acid play major roles in the bioleaching process. The bacterial extracellular polymeric substances are rich in a variety of organic acids that show a significant decrease in content after the adsorption process, indicating that all of these substances are involved in the binding of heavy metals. Characterization of the endophytes and immobilizing agents with FTIR, TEM-mapping, and XPS techniques reveal the ability of both bacteria and composites to adsorb Cu-Zn as well as the main functional groups of -OH, -COOH, -PO43-, and -NH. According to the heavy metals species analyses, competitive adsorption experiments, and bioleaching desorption experiments, it is planned to carry out the bipolar remediation of contaminated soil through immobilization followed by bioleaching process. After bipolar remediation processing, 97.923% and 96.387% of available Cu and Zn are respectively removed. Soils fertility significantly increases in all cases. Our study provides a green, practical, and environmentally friendly treatment method for soils contaminated with high concentrations of heavy metals.
Collapse
Affiliation(s)
- Weiran Feng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Xiao Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China.
| | - Junjie Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Qicheng Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Li Ma
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Qifeng Gao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Yuke Wan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Yutian Huang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Ting Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China; Key Laboratory of Jiangxi Province for Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region, School of Life Sciences, Jinggangshan University, Ji'an, 343009, China
| | - Shenglian Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Guisheng Zeng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Kai Yu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| |
Collapse
|
37
|
Singh AK, Pramanik K. Fabrication and investigation of physicochemical and biological properties of
3D
printed sodium alginate‐chitosan blend polyelectrolyte complex scaffold for bone tissue engineering application. J Appl Polym Sci 2023. [DOI: 10.1002/app.53642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Amit Kumar Singh
- Center of Excellence in Tissue Engineering, Department of Biotechnology & Medical Engineering National Institute of Technology Rourkela Rourkela Odisha India
| | - Krishna Pramanik
- Center of Excellence in Tissue Engineering, Department of Biotechnology & Medical Engineering National Institute of Technology Rourkela Rourkela Odisha India
| |
Collapse
|
38
|
Hu J, Li H, Zhao Y, Ke Y, Rupenthal ID, Liu H, Ye J, Han X, Yang F, Li W, Lin H, Hou D. Critical Evaluation of Multifunctional Betaxolol Hydrochloride Nanoformulations for Effective Sustained Intraocular Pressure Reduction. Int J Nanomedicine 2022; 17:5915-5931. [PMID: 36506343 PMCID: PMC9729687 DOI: 10.2147/ijn.s382968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction Glaucoma is a chronic disease that requires long-term adherence to treatment. Topical application of conventional eye drops results in substantial drug loss due to rapid tear turnover, with poor drug bioavailability being a major challenge for efficient glaucoma treatment. We aimed to prepare the anti-glaucoma drug betaxolol hydrochloride (BH) as a novel nano-delivery system that prolonged the retention time at the ocular surface and improved bioavailability. Methods We constructed multifunctional nanoparticles (MMt-BH-HA/CS-ED NPs) by ion cross-linking-solvent evaporation method. The particle size, zeta potential, encapsulation efficiency and drug loading of MMt-BH-HA/CS-ED NPs were physicochemically characterized. The structure of the preparations was characterized by microscopic techniques of SEM, TEM, XPS, XRD, FTIR and TGA, and evaluated for their in vitro release performance as well as adhesion properties. Its safety was investigated using irritation assays of hemolysis experiment, Draize test and histopathology examination. Precorneal retention was examined by in vivo fluorescence tracer method and pharmacokinetics in tear fluid was studied. A model of high IOP successfully induced by injection of compound carbomer solution was used to assess the IOP-lowering efficacy of the formulation, and it was proposed that micro-interactions between the formulation and the tear film would be used to analyze the behavior at the ocular surface. Results The positively charged MMt-BH-HA/CS-ED NPs were successfully prepared with good two-step release properties, higher viscosity, and slower pre-corneal diffusion rate along with longer precorneal retention time compared to BH solution. The micro-interactions between nanoparticles and tear film converted the drug clearance from being controlled by fast aqueous layer turnover to slow mucin layer turnover, resulting in higher drug concentration on the ocular surface, providing more durable and stable IOP-lowering efficacy. Conclusion The novel multifunctional MMt-BH-HA/CS-ED NPs can effectively reduce IOP and are suitable for the treatment of chronic disease glaucoma.
Collapse
Affiliation(s)
- Jie Hu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of China
| | - Huihui Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of China
| | - Yingshan Zhao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of China
| | - Yuancheng Ke
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of China
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Hanyu Liu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of China
| | - Jinghua Ye
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of China
| | - Xinyue Han
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of China
| | - Fan Yang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of China
| | - Wei Li
- Guangzhou Institute for Drug Control, Guangzhou, Guangdong, People’s Republic of China
| | - Huaqing Lin
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of China,Correspondence: Huaqing Lin; Dongzhi Hou, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, People’s Republic of China, Tel +86 180 2631 2508, Fax +86 20 3935 2117, Email ;
| | - Dongzhi Hou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
39
|
Han Y, Tao J, Khan A, Ullah R, Ali N, Ali N, Malik S, Yu C, Yang Y, Bilal M. Design and fabrication of chitosan cross-linked bismuth sulfide nanoparticles for sequestration of mercury in river water samples. ENVIRONMENTAL RESEARCH 2022; 215:113978. [PMID: 35985490 DOI: 10.1016/j.envres.2022.113978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The existence of heavy metals in ecological systems poses great threats to living organisms due to their toxicant and bio-accumulating properties. Mercury is a known toxicant with notable malignant impacts. It has long been known to cause toxic threats to the health of living organisms since the break out of Minamata disease. The turbulent expulsion of mercury-based pollutants from the industrial sector, requires a proper solution. Many attempts have been made to design a greener and more efficient route for a satisfactory removal of mercury. In the current study, bismuth sulfide nanoparticles (BiSNPs) have been synthesized via the co-precipitation method. The BiSNPs were supported with crosslinked chitosan to enhance their sorption capacity and avoid leaching. The average size of the BiSNPs was 42 nm based on SEM micrographs. The SEM analysis of the bismuth sulfide chitosan-crosslinked beads (BiS-CB) showed that the beads possessed a spherical and smooth morphology with a size of 1.02 mm. The FTIR analysis showed that the beads possessed the characteristics bands of imine groups of chitosan, bismuth, sulfur, and glycosidic linkages present in the molecules. The XRD analysis confirmed the phase crystallinity of the BiS-CB with an average crystallite size of 11 nm. The BiS-CB was employed for the sorption of mercury from water samples. The maximum sorption capacity of 65.51 mg/g was achieved at optimized conditions of pH 5, concentration 80 ppm, in 45 min at 30 °C. The mechanism studied for mercury removal showed that sorption followed the complexation mechanism according to the SHAB concept. In conclusion, the results showed that the BiS-CB sorbent exhibited an excellent sorption capacity to remove mercury.
Collapse
Affiliation(s)
- Yonghong Han
- School of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, PR China.
| | - Juan Tao
- School of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, PR China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Rizwan Ullah
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Nauman Ali
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Sumeet Malik
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Chunhao Yu
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Department of Pharmaceutical Engineering, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Yong Yang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Department of Pharmaceutical Engineering, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
40
|
Development and characterization of alginate-derived crosslinked hydrogel membranes incorporated with ConA and gentamicin for wound dressing applications. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Devi G.V. Y, Nagendra AH, Shenoy P. S, Chatterjee K, Venkatesan J. Fucoidan-Incorporated Composite Scaffold Stimulates Osteogenic Differentiation of Mesenchymal Stem Cells for Bone Tissue Engineering. Mar Drugs 2022; 20:589. [PMID: 36286414 PMCID: PMC9604642 DOI: 10.3390/md20100589] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Globally, millions of bone graft procedures are being performed by clinicians annually to treat the rising prevalence of bone defects. Here, the study designed a fucoidan from Sargassum ilicifolium incorporated in an osteo-inductive scaffold comprising calcium crosslinked sodium alginate-nano hydroxyapatite-nano graphene oxide (Alg-HA-GO-F), which tends to serve as a bone graft substitute. The physiochemical characterization that includes FT-IR, XRD, and TGA confirms the structural integration between the materials. The SEM and AFM reveal highly suitable surface properties, such as porosity and nanoscale roughness. The incorporation of GO enhanced the mechanical strength of the Alg-HA-GO-F. The findings demonstrate the slower degradation and improved protein adsorption in the fucoidan-loaded scaffolds. The slow and sustained release of fucoidan in PBS for 120 h provides the developed system with an added advantage. The apatite formation ability of Alg-HA-GO-F in the SBF solution predicts the scaffold's osteointegration and bone-bonding capability. In vitro studies using C3H10T1/2 revealed a 1.5X times greater cell proliferation in the fucoidan-loaded scaffold than in the control. Further, the results determined the augmented alkaline phosphatase and mineralization activity. The physical, structural, and enriching osteogenic potential results of Alg-HA-GO-F indicate that it can be a potential bone graft substitute for orthopedic applications.
Collapse
Affiliation(s)
- Yashaswini Devi G.V.
- Biomaterial Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Apoorva H Nagendra
- Stem Cells and Regenerative Medicine and Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Sudheer Shenoy P.
- Stem Cells and Regenerative Medicine and Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Kaushik Chatterjee
- Departmental of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Jayachandran Venkatesan
- Biomaterial Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| |
Collapse
|
42
|
Rama M, Vijayalakshmi U. Drug delivery system in bone biology: an evolving platform for bone regeneration and bone infection management. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04442-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Chitosan-Based Biomaterials for Bone Tissue Engineering Applications: A Short Review. Polymers (Basel) 2022; 14:polym14163430. [PMID: 36015686 PMCID: PMC9416295 DOI: 10.3390/polym14163430] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 12/16/2022] Open
Abstract
Natural bone tissue is composed of calcium-deficient carbonated hydroxyapatite as the inorganic phase and collagen type I as the main organic phase. The biomimetic approach of scaffold development for bone tissue engineering application is focused on mimicking complex bone characteristics. Calcium phosphates are used in numerous studies as bioactive phases to mimic natural bone mineral. In order to mimic the organic phase, synthetic (e.g., poly(ε-caprolactone), polylactic acid, poly(lactide-co-glycolide acid)) and natural (e.g., alginate, chitosan, collagen, gelatin, silk) biodegradable polymers are used. However, as materials obtained from natural sources are accepted better by the human organism, natural polymers have attracted increasing attention. Over the last three decades, chitosan was extensively studied as a natural polymer suitable for biomimetic scaffold development for bone tissue engineering applications. Different types of chitosan-based biomaterials (e.g., molded macroporous, fiber-based, hydrogel, microspheres and 3D-printed) with specific properties for different regenerative applications were developed due to chitosan's unique properties. This review summarizes the state-of-the-art of biomaterials for bone regeneration and relevant studies on chitosan-based materials and composites.
Collapse
|
44
|
Sathiyavimal S, Vasantharaj S, Kaliannan T, Chinnathambi A, Ali Alharbi S, Krishnan R, Brindhadevi K, Lan Chi NT, Pugazhendhi A. Synthesis of HAp/CS-SA composite for effective removal of highly toxic dyes in aqueous solution. Food Chem Toxicol 2022; 168:113346. [DOI: 10.1016/j.fct.2022.113346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 10/15/2022]
|
45
|
Xu M, Liu T, Qin M, Cheng Y, Lan W, Niu X, Wei Y, Hu Y, Lian X, Zhao L, Chen S, Chen W, Huang D. Bone-like hydroxyapatite anchored on alginate microspheres for bone regeneration. Carbohydr Polym 2022; 287:119330. [DOI: 10.1016/j.carbpol.2022.119330] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/21/2022] [Accepted: 03/06/2022] [Indexed: 02/08/2023]
|
46
|
Hassani A, Avci ÇB, Kerdar SN, Amini H, Amini M, Ahmadi M, Sakai S, Bagca BG, Ozates NP, Rahbarghazi R, Khoshfetrat AB. Interaction of alginate with nano-hydroxyapatite-collagen using strontium provides suitable osteogenic platform. J Nanobiotechnology 2022; 20:310. [PMID: 35765003 PMCID: PMC9238039 DOI: 10.1186/s12951-022-01511-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hydrogels based on organic/inorganic composites have been at the center of attention for the fabrication of engineered bone constructs. The establishment of a straightforward 3D microenvironment is critical to maintaining cell-to-cell interaction and cellular function, leading to appropriate regeneration. Ionic cross-linkers, Ca2+, Ba2+, and Sr2+, were used for the fabrication of Alginate-Nanohydroxyapatite-Collagen (Alg-nHA-Col) microspheres, and osteogenic properties of human osteoblasts were examined in in vitro and in vivo conditions after 21 days. Results Physicochemical properties of hydrogels illustrated that microspheres cross-linked with Sr2+ had reduced swelling, enhanced stability, and mechanical strength, as compared to the other groups. Human MG-63 osteoblasts inside Sr2+ cross-linked microspheres exhibited enhanced viability and osteogenic capacity indicated by mineralization and the increase of relevant proteins related to bone formation. PCR (Polymerase Chain Reaction) array analysis of the Wnt (Wingless-related integration site) signaling pathway revealed that Sr2+ cross-linked microspheres appropriately induced various signaling transduction pathways in human osteoblasts leading to osteogenic activity and dynamic growth. Transplantation of Sr2+ cross-linked microspheres with rat osteoblasts into cranium with critical size defect in the rat model accelerated bone formation analyzed with micro-CT and histological examination. Conclusion Sr2+ cross-linked Alg-nHA-Col hydrogel can promote functionality and dynamic growth of osteoblasts. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01511-9.
Collapse
Affiliation(s)
- Ayla Hassani
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, 51335-1996, Iran.,Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, 51335-1996, Iran
| | - Çığır Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Sajed Nazif Kerdar
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, 51335-1996, Iran.,Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, 51335-1996, Iran
| | - Hassan Amini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Meisam Amini
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
| | - Mahdi Ahmadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shinji Sakai
- Division of Chemical Engineering, Department of Materials Science and Engineering, Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
| | - Bakiye Goker Bagca
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Baradar Khoshfetrat
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, 51335-1996, Iran. .,Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, 51335-1996, Iran.
| |
Collapse
|
47
|
Fabrication of Biologically Active Fish Bone Derived Hydroxyapatite and Montmorillonite Blended Sodium Alginate Composite for In-Vitro Drug Delivery Studies. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02401-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
48
|
Yang Z, Wu C, Shi H, Luo X, Sun H, Wang Q, Zhang D. Advances in Barrier Membranes for Guided Bone Regeneration Techniques. Front Bioeng Biotechnol 2022; 10:921576. [PMID: 35814003 PMCID: PMC9257033 DOI: 10.3389/fbioe.2022.921576] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Guided bone regeneration (GBR) is a widely used technique for alveolar bone augmentation. Among all the principal elements, barrier membrane is recognized as the key to the success of GBR. Ideal barrier membrane should have satisfactory biological and mechanical properties. According to their composition, barrier membranes can be divided into polymer membranes and non-polymer membranes. Polymer barrier membranes have become a research hotspot not only because they can control the physical and chemical characteristics of the membranes by regulating the synthesis conditions but also because their prices are relatively low. Still now the bone augment effect of barrier membrane used in clinical practice is more dependent on the body’s own growth potential and the osteogenic effect is difficult to predict. Therefore, scholars have carried out many researches to explore new barrier membranes in order to improve the success rate of bone enhancement. The aim of this study is to collect and compare recent studies on optimizing barrier membranes. The characteristics and research progress of different types of barrier membranes were also discussed in detail.
Collapse
Affiliation(s)
- Ze Yang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Chang Wu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Huixin Shi
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xinyu Luo
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Hui Sun
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
- *Correspondence: Qiang Wang, ; Dan Zhang,
| | - Dan Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
- *Correspondence: Qiang Wang, ; Dan Zhang,
| |
Collapse
|
49
|
Venkatesan J, Murugan SS, Ad P, Dgv Y, Seong GH. Alginate-based Composites Microspheres: Preparations and Applications for Bone Tissue Engineering. Curr Pharm Des 2022; 28:1067-1081. [PMID: 35593346 DOI: 10.2174/1381612828666220518142911] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/19/2022] [Indexed: 11/22/2022]
Abstract
Alginate-based biomaterials have been extensively studied for bone tissue engineering. Scaffolds, microspheres, and hydrogels can be developed using alginate, which is biocompatible, biodegradable, and able to deliver growth factors and drugs. Alginate microspheres can be produced using crosslinking, microfluidic, three-dimensional printing, extrusion, and emulsion methods. The sizes of the alginate microspheres range from 10 µm to 4 mm. This review describes the chemical characterization and mechanical assessment of alginate-based microspheres. Combinations of alginate with hydroxyapatite, chitosan, collagen, polylactic acid, polycaprolactone, and bioglass were discussed for bone tissue repair and regeneration. In addition, alginate combinations with bone morphogenetic proteins, vascular endothelial growth factor, transforming growth factor beta-3, other growth factors, cells, proteins, drugs, and osteoinductive drugs were analyzed for tissue engineering applications. Furthermore, the biocompatibility of developed alginate microspheres was discussed for different cell lines. Finally, alginate microsphere-based composites with stem cell interaction for bone tissue regeneration were presented. In the present review, we have assessed the preclinical research on in vivo models of alginate-based microspheres for bone tissue repair and regeneration. Overall, alginate-based microspheres are potential candidates for graft substitutes and the treatment of various bone-related diseases.
Collapse
Affiliation(s)
- Jayachandran Venkatesan
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan 426-791, South Korea.,Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Sesha Subramanian Murugan
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan 426-791, South Korea
| | - Pandurang Ad
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan 426-791, South Korea
| | - Yashaswini Dgv
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan 426-791, South Korea
| | - Gi Hun Seong
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| |
Collapse
|
50
|
Madamsetty VS, Mohammadinejad R, Uzieliene I, Nabavi N, Dehshahri A, García-Couce J, Tavakol S, Moghassemi S, Dadashzadeh A, Makvandi P, Pardakhty A, Aghaei Afshar A, Seyfoddin A. Dexamethasone: Insights into Pharmacological Aspects, Therapeutic Mechanisms, and Delivery Systems. ACS Biomater Sci Eng 2022; 8:1763-1790. [PMID: 35439408 PMCID: PMC9045676 DOI: 10.1021/acsbiomaterials.2c00026] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dexamethasone (DEX) has been widely used to treat a variety of diseases, including autoimmune diseases, allergies, ocular disorders, cancer, and, more recently, COVID-19. However, DEX usage is often restricted in the clinic due to its poor water solubility. When administered through a systemic route, it can elicit severe side effects, such as hypertension, peptic ulcers, hyperglycemia, and hydro-electrolytic disorders. There is currently much interest in developing efficient DEX-loaded nanoformulations that ameliorate adverse disease effects inhibiting advancements in scientific research. Various nanoparticles have been developed to selectively deliver drugs without destroying healthy cells or organs in recent years. In the present review, we have summarized some of the most attractive applications of DEX-loaded delivery systems, including liposomes, polymers, hydrogels, nanofibers, silica, calcium phosphate, and hydroxyapatite. This review provides our readers with a broad spectrum of nanomedicine approaches to deliver DEX safely.
Collapse
Affiliation(s)
- Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, Florida 32224, United States
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7618866749, Iran
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
| | - Noushin Nabavi
- Department of Urologic Sciences, Vancouver Prostate Centre, Vancouver, British Columbia, Canada V6H 3Z6
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Jomarien García-Couce
- Department of Radiology, Division of Translational Nanobiomaterials and Imaging, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
- Department of Polymeric Biomaterials, Biomaterials Center (BIOMAT), University of Havana, Havana 10600, Cuba
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1417755469, Iran
| | - Saeid Moghassemi
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7618866748, Iran
| | - Abbas Aghaei Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7618866749, Iran
| | - Ali Seyfoddin
- Drug Delivery Research Group, Auckland University of Technology (AUT), School of Science, Auckland 1010, New Zealand
| |
Collapse
|