1
|
Guo C, Ding T, Cheng Y, Zheng J, Fang X, Feng Z. The rational design, biofunctionalization and biological properties of orthopedic porous titanium implants: a review. Front Bioeng Biotechnol 2025; 13:1548675. [PMID: 40078794 PMCID: PMC11897010 DOI: 10.3389/fbioe.2025.1548675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
Porous titanium implants are becoming an important tool in orthopedic clinical applications. This review provides a comprehensive survey of recent advances in porous titanium implants for orthopedic use. First, the review briefly describes the characteristics of bone and the design requirements of orthopedic implants. Subsequently, the pore size and structural design of porous titanium alloy materials are presented, then we introduce the application of porous titanium alloy implants in orthopedic clinical practice, including spine surgery, joint surgery, and the treatment of bone tumors. Following that, we describe the surface modifications applied to porous titanium implants to obtain better biological functions. Finally, we discuss incorporating environmental responsive mechanisms into porous titanium alloy materials to achieve additional functionalities.
Collapse
Affiliation(s)
- Chunliang Guo
- Wuxi People's Hospital, Wuxi, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Ding
- Wuxi People's Hospital, Wuxi, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuan Cheng
- Wuxi Xishan NJU Institute of Applied Biotechnology, Wuxi, Jiangsu, China
| | - Jianqing Zheng
- Wuxi People's Hospital, Wuxi, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiule Fang
- Wuxi People's Hospital, Wuxi, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhiyun Feng
- Wuxi People's Hospital, Wuxi, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Ghanbari Hassan Kiadeh S, Rahaiee S, Azizi H, Govahi M. The synthesis of broccoli sprout extract-loaded silk fibroin nanoparticles as efficient drug delivery vehicles: development and characterization. Pharm Dev Technol 2024; 29:359-370. [PMID: 38546461 DOI: 10.1080/10837450.2024.2336101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
Targeted drug delivery of biological molecules using the development of biocompatible, non-toxic and biodegradable nanocarriers can be a promising method for cancer therapy. In this study, silk fibroin protein nanoparticles (SFPNPs) were synthesized as a targeted delivery system for sulforaphane-rich broccoli sprout extract (BSE). The BSE-loaded SFPNPs were conjugated with polyethylene glycol and folic acid, and then their physicochemical properties were characterized via UV-Vis, XRD, FTIR, DLS, FE-SEM and EDX analyses. In vitro, the release profile, antioxidant and anticancer activities of NPs were also studied. The FE-SEM and DLS analyses indicated stable NPs with an average size of 88.5 nm and high zeta potential (-32 mV). The sulforaphane release profile from NPs was pH-dependent, with the maximum release value (70%) observed in simulated intestinal fluid (pH = 7.4). Encapsulation of BSE also decreased the release rate of sulforaphane from the capsules compared to free BSE. In vitro cytotoxicity of BSE and NPs on breast cancer cell lines (MCF-7) was concentration-dependent, and the IC50 for BSE and NPs were 54 and 210 μg ml-1, respectively. Moreover, the NPs demonstrated no appreciable cytotoxicity in normal mouse fibroblast (L929) cell lines. These results indicated that biocompatible NPs synthesized as controlled and long-term targeted drug delivery systems can be a potential candidate for breast cancer therapy.
Collapse
Affiliation(s)
- Saeed Ghanbari Hassan Kiadeh
- Department of Microbial Biotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Somayeh Rahaiee
- Department of Microbial Biotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Department of Nano Biotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Mostafa Govahi
- Department of Nano Biotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
3
|
Madiwal V, Khairnar B, Rajwade J. Enhanced antibacterial activity and superior biocompatibility of cobalt-deposited titanium discs for possible use in implant dentistry. iScience 2024; 27:108827. [PMID: 38303692 PMCID: PMC10831949 DOI: 10.1016/j.isci.2024.108827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/08/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
The clinical success of implants depends on rapid osseointegration, and new materials are being developed considering the increasing demand. Considering cobalt (Co) antibacterial characteristics, we developed Co-deposited titanium (Ti) using direct current (DC) sputtering and investigated it as a new material for implant dentistry. The material was characterized using atomic absorption spectroscopy, scanning electron microscopy-energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The material's surface topography, roughness, surface wettability, and hardness were also analyzed. The Co thin film (Ti-Co15) showed excellent antibacterial effects against microbes implicated in peri-implantitis. Furthermore, Ti-Co15 was compatible and favored the attachment and spreading of MG-63 cells. The alkaline phosphatase and calcium mineralization activities of MG-63 cells cultured on Ti-Co15 remained unaltered compared to Ti. These data correlated well with the time-dependent expression of ALP, RUNX-2, and BMP-2 genes involved in osteogenesis. The results demonstrate that Co-deposited Ti could be a promising material in implant dentistry.
Collapse
Affiliation(s)
- Vaibhav Madiwal
- Nanobioscience Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411 004, India
- Savitribai Phule Pune University, Homi Bhabha Road, Pune, Maharashtra 411 007, India
| | - Bhushan Khairnar
- Nanobioscience Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411 004, India
- Savitribai Phule Pune University, Homi Bhabha Road, Pune, Maharashtra 411 007, India
| | - Jyutika Rajwade
- Nanobioscience Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411 004, India
- Savitribai Phule Pune University, Homi Bhabha Road, Pune, Maharashtra 411 007, India
| |
Collapse
|
4
|
Fuest S, Smeets R, Gosau M, Aavani F, Knipfer C, Grust ALC, Kopp A, Becerikli M, Behr B, Matthies L. Layer-by-Layer Deposition of Regenerated Silk Fibroin─An Approach to the Surface Coating of Biomedical Implant Materials. ACS Biomater Sci Eng 2023; 9:6644-6657. [PMID: 37983947 DOI: 10.1021/acsbiomaterials.3c00852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Biomaterials and coating techniques unlock major benefits for advanced medical therapies. Here, we explored layer-by-layer (LbL) deposition of silk fibroin (SF) by dip coating to deploy homogeneous films on different materials (titanium, magnesium, and polymers) frequently used for orthopedic and other bone-related implants. Titanium and magnesium specimens underwent preceding plasma electrolytic oxidation (PEO) to increase hydrophilicity. This was determined as surface properties were visualized by scanning electron microscopy and contact angle measurements as well as Fourier transform infrared spectroscopy (FTIR) analysis. Finally, biological in vitro evaluations of hemocompatibility, THP-1 cell culture, and TNF-α assays were conducted. A more hydrophilic surface could be achieved using the PEO surface, and the contact angle for magnesium and titanium showed a reduction from 73 to 18° and from 58 to 17°, respectively. Coating with SF proved successful on all three surfaces, and coating thicknesses of up to 5.14 μm (±SD 0.22 μm) were achieved. Using FTIR analysis, it was shown that the insolubility of the material was achieved by post-treatment with water vapor annealing, although the random coil peak (1640-1649 cm-1) and the α-helix peak (at 1650 cm-1) were still evident. SF did not change hemocompatibility, regardless of the substrate, whereas the PEO-coated materials showed improved hemocompatibility. THP-1 cell culture showed that cells adhered excellently to all of the tested material surfaces. Interestingly, SF coatings induced a significantly higher amount of TNF-α for all materials, indicating an inflammatory response, which plays an important role in a variety of physiological processes, including osteogenesis. LbL coatings of SF are shown to be promising candidates to modulate the body's immune response to implants manufactured from titanium, magnesium, and polymers. They may therefore facilitate future applications for bioactive implant coatings. However, further in vivo studies are needed to confirm the proposed effects on osteogenesis in a physiological environment.
Collapse
Affiliation(s)
- Sandra Fuest
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Farzaneh Aavani
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Christian Knipfer
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Audrey Laure Céline Grust
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | | | - Mustafa Becerikli
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, D-44789 Bochum, Germany
| | - Björn Behr
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, D-44789 Bochum, Germany
| | - Levi Matthies
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| |
Collapse
|
5
|
Hu J, Jiang Z, Zhang J, Yang G. Application of silk fibroin coatings for biomaterial surface modification: a silk road for biomedicine. J Zhejiang Univ Sci B 2023; 24:943-956. [PMID: 37961798 PMCID: PMC10646393 DOI: 10.1631/jzus.b2300003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/18/2023] [Indexed: 11/15/2023]
Abstract
Silk fibroin (SF) as a natural biopolymer has become a popular material for biomedical applications due to its minimal immunogenicity, tunable biodegradability, and high biocompatibility. Nowadays, various techniques have been developed for the applications of SF in bioengineering. Most of the literature reviews focus on the SF-based biomaterials and their different forms of applications such as films, hydrogels, and scaffolds. SF is also valuable as a coating on other substrate materials for biomedicine; however, there are few reviews related to SF-coated biomaterials. Thus, in this review, we focused on the surface modification of biomaterials using SF coatings, demonstrated their various preparation methods on substrate materials, and introduced the latest procedures. The diverse applications of SF coatings for biomedicine are discussed, including bone, ligament, skin, mucosa, and nerve regeneration, and dental implant surface modification. SF coating is conducive to inducing cell adhesion and migration, promoting hydroxyapatite (HA) deposition and matrix mineralization, and inhibiting the Notch signaling pathway, making it a promising strategy for bone regeneration. In addition, SF-coated composite scaffolds can be considered prospective candidates for ligament regeneration after injury. SF coating has been proven to enhance the mechanical properties of the substrate material, and render integral stability to the dressing material during the regeneration of skin and mucosa. Moreover, SF coating is a potential strategy to accelerate nerve regeneration due to its dielectric properties, mechanical flexibility, and angiogenesis promotion effect. In addition, SF coating is an effective and popular means for dental implant surface modification to promote osteogenesis around implants made of different materials. Thus, this review can be of great benefit for further improvements in SF-coated biomaterials, and will undoubtedly contribute to clinical transformation in the future.
Collapse
Affiliation(s)
- Jinxing Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Jing Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
6
|
Păun AG, Dumitriu C, Ungureanu C, Popescu S. Silk Fibroin/ZnO Coated TiO 2 Nanotubes for Improved Antimicrobial Effect of Ti Dental Implants. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5855. [PMID: 37687548 PMCID: PMC10488414 DOI: 10.3390/ma16175855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
The aim of the present research is to develop a novel hybrid coating for a Ti dental implant that combines nature-inspired biomimetic polymers and TiO2 nanostructures with an entrapped ZnO antimicrobial agent. ZnO was used in other studies to cover the surface of Ti or Ti-Zr to reduce the need of clinical antibiotics, prevent the onset of peri-implantitis, and increase the success rate of oral clinical implantation. We developed an original coating that represents a promising approach in clinical dentistry. The titanium surface was first anodized to obtain TiO2 nanotubes (NT). Subsequently, on the NT surface, silk fibroin isolated from Bombyx mori cocoons was deposited as nanofibers using the electrospun technique. For an improved antibacterial effect, ZnO nanoparticles were incorporated in this biopolymer using three different methods. The surface properties of the newly created coatings were assessed to establish how they are influenced by the most important features: morphology, wettability, topography. The evaluation of stability by electrochemical methods in simulated physiological solutions was discussed more in detail, considering that it could bring necessary information related to the behavior of the implant material. All samples had improved roughness and hydrophilicity, as well as corrosion stability (with protection efficiency over 80%). The antibacterial test shows that the functional hybrid coating has good antibacterial activity because it can inhibit the proliferation of Staphylococcus aureus up to 53% and Enterococcus faecalis up to 55%. All Ti samples with the modified surface have proven superior properties compared with unmodified TiNT, which proved that they have the potential to be used as implant material in dentistry.
Collapse
Affiliation(s)
| | | | | | - Simona Popescu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7 Street, 011061 Bucharest, Romania; (A.G.P.); (C.D.); (C.U.)
| |
Collapse
|
7
|
Singh AK, Pramanik K. Fabrication and investigation of physicochemical and biological properties of
3D
printed sodium alginate‐chitosan blend polyelectrolyte complex scaffold for bone tissue engineering application. J Appl Polym Sci 2023. [DOI: 10.1002/app.53642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Amit Kumar Singh
- Center of Excellence in Tissue Engineering, Department of Biotechnology & Medical Engineering National Institute of Technology Rourkela Rourkela Odisha India
| | - Krishna Pramanik
- Center of Excellence in Tissue Engineering, Department of Biotechnology & Medical Engineering National Institute of Technology Rourkela Rourkela Odisha India
| |
Collapse
|
8
|
Li J, Hou W, Yang Y, Deng Q, Fu H, Yin Y, Duan K, Feng B, Guo T, Weng J. Micro/nano-topography promotes osteogenic differentiation of bone marrow stem cells by regulating periostin expression. Colloids Surf B Biointerfaces 2022; 218:112700. [PMID: 35907353 DOI: 10.1016/j.colsurfb.2022.112700] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 12/18/2022]
Abstract
Micro/nano-topography (MNT) is an important factor affecting cell response. Earlier studies using titania (TiO2) nanotube as a model of MNT found that they mediated the differentiation of BMSCs into osteoblasts, but the mechanisms are not fully understood. Surprisingly, Periostin (Postn), a secreted protein involved in extracellular matrix (ECM) construction and promoting osteogenic differentiation of bone marrow stem cells (BMSCs), was previously observed to significantly up-regulated on TiO2 nanotube. We proposed that Postn may act as a MNT signal transduction role. In this study, we investigated the effect of MNT on Postn, and the influence of Postn on osteogenic differentiation-related genes through focal adhesion and downstream signals. It was found that, titanium (Ti) plates carrying TiO2 nanotubes with diameters of ∼100 nm (TNT-100) significantly up-regulated the expression of Postn compared with flat Ti. Furthermore, Postn activated the downstream focal adhesion kinase (FAK) signal pathway and β-catenin into the nucleus by interacting with integrin αV. Surprisingly, TNT-100 up-regulated the transcription level of Wnt3a, which was independent of the up-regulation of Postn. This new Postn signaling pathway may provide more insights into the signal transduction mechanism of MNT and development of biomaterials with improved osteogenic properties.
Collapse
Affiliation(s)
- Jinsheng Li
- School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wenqing Hou
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Yali Yang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qing Deng
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Hong Fu
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Yiran Yin
- Sichuan Provincial Lab of Orthopaedic Engineering, Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ke Duan
- Sichuan Provincial Lab of Orthopaedic Engineering, Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Bo Feng
- School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tailin Guo
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jie Weng
- School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China; College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
9
|
Wu Y, Deng Z, Wang X, Chen A, Li Y. Synergistic antibacterial photocatalytic and photothermal properties over bowl-shaped TiO2 nanostructures on Ti-19Zr-10Nb-1Fe alloy. Regen Biomater 2022; 9:rbac025. [PMID: 35592141 PMCID: PMC9113230 DOI: 10.1093/rb/rbac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/06/2022] [Accepted: 04/14/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
As implant substitutes are increasingly applied to the clinic, the infection caused by implants has become one of the most common complications, and the modification of the antibacterial function of the implant can reduce such complications. In this work, a well-defined bowl-shaped nanostructure coating with photocatalytic and photothermal synergistic antibacterial properties was prepared on Ti-19Zr-10Nb-1Fe (TZNF) alloy. The coating is obtained by spin-coating and sintering TiO2 precursors templated from self-assembled microspheres of polystyrene-poly(4-vinylpyridine) (PS-P4VP) amphiphilic block polymer (BCP) on TZNF alloy. PS-P4VP provides the bowl-shaped TiO2 nanostructures doped with C, N elements, reducing the bandgap of TiO2, which can absorb near-infrared (NIR) light to release reactive oxygen species (ROS) and produce photothermal conversion. The bowl structure is expected to enhance the utilization of light via the reflection in the confined space. The bowl-shaped surface has 100% antibacterial rates after 30 min of NIR light irradiation. In addition to antibacterial properties, the bowl-shaped surface has better hydrophilicity and protein adsorption capacity. The amount of protein adsorbed on TZNF with the bowl-shaped structures was 6 times that of TZNF. Hence, the bowl-shaped nanostructure can promote the proliferation and adhesion of osteoblasts, the cell proliferation rate was increased by 10-30%.
Collapse
Affiliation(s)
- Yan Wu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
- Beihang Hangzhou Innovation Institute Yuhang, Beihang University, Hangzhou, 310023, China
| | - Zichao Deng
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Xueying Wang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
- Biomaterials Laboratory of the Medical Device Inspection Institute, National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Aihua Chen
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Yan Li
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
- Beihang Hangzhou Innovation Institute Yuhang, Beihang University, Hangzhou, 310023, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
10
|
dos Anjos KFL, da Silva CDC, de Souza MAA, de Mattos AB, Coelho LCBB, Machado G, de Melo JV, de Figueiredo RCBQ. The Deposition of a Lectin from Oreochromis niloticus on the Surface of Titanium Dioxide Nanotubes Improved the Cell Adhesion, Proliferation, and Osteogenic Activity of Osteoblast-like Cells. Biomolecules 2021; 11:1748. [PMID: 34944393 PMCID: PMC8698878 DOI: 10.3390/biom11121748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022] Open
Abstract
Titanium and its alloys are used as biomaterials for medical and dental applications, due to their mechanical and physical properties. Surface modifications of titanium with bioactive molecules can increase the osseointegration by improving the interface between the bone and implant. In this work, titanium dioxide nanotubes (TiO2NTs) were functionalized with a lectin from the plasma of the fish Oreochromis niloticus aiming to favor the adhesion and proliferation of osteoblast-like cells, improving its biocompatibility. The TiO2NTs were obtained by anodization of titanium and annealed at 400 °C for 3 h. The resulting TiO2NTs were characterized by high-resolution scanning electron microscopy. The successful incorporation of OniL on the surface of TiO2NTs, by spin coating, was demonstrated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIE), and attenuated total reflection-Fourier transform infrared spectrum (ATR-FTIR). Our results showed that TiO2NTs were successfully synthesized in a regular and well-distributed way. The modification of TiO2NTs with OniL favored adhesion, proliferation, and the osteogenic activity of osteoblast-like cells, suggesting its use to improve the quality and biocompatibility of titanium-based biomaterials.
Collapse
Affiliation(s)
- Keicyanne Fernanda Lessa dos Anjos
- Departamento de Microbiologia, Instituto Aggeu Magalhães (FIOCRUZ-PE), Campus da UFPE, Av. Prof. Moraes Rego s/n Cidade Universitária, Recife 50670-420, PE, Brazil; (K.F.L.d.A.); (C.D.C.d.S.); (M.A.A.d.S.)
| | - Cynarha Daysy Cardoso da Silva
- Departamento de Microbiologia, Instituto Aggeu Magalhães (FIOCRUZ-PE), Campus da UFPE, Av. Prof. Moraes Rego s/n Cidade Universitária, Recife 50670-420, PE, Brazil; (K.F.L.d.A.); (C.D.C.d.S.); (M.A.A.d.S.)
| | - Mary Angela Aranda de Souza
- Departamento de Microbiologia, Instituto Aggeu Magalhães (FIOCRUZ-PE), Campus da UFPE, Av. Prof. Moraes Rego s/n Cidade Universitária, Recife 50670-420, PE, Brazil; (K.F.L.d.A.); (C.D.C.d.S.); (M.A.A.d.S.)
| | - Alessandra Batista de Mattos
- Centro de Tecnologias Estratégicas do Nordeste (CETENE), Av. Prof. Luiz Freire, 01. Cidade Universitária, Recife 50740-540, PE, Brazil; (A.B.d.M.); (G.M.); (J.V.d.M.)
| | - Luana Cassandra Breitenbach Barroso Coelho
- Centro de Ciências Biológicas, Departamento de Bioquímica, Campus da UFPE, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego s/n Cidade Universitária, Recife 50670-420, PE, Brazil;
| | - Giovanna Machado
- Centro de Tecnologias Estratégicas do Nordeste (CETENE), Av. Prof. Luiz Freire, 01. Cidade Universitária, Recife 50740-540, PE, Brazil; (A.B.d.M.); (G.M.); (J.V.d.M.)
| | - Janaina Viana de Melo
- Centro de Tecnologias Estratégicas do Nordeste (CETENE), Av. Prof. Luiz Freire, 01. Cidade Universitária, Recife 50740-540, PE, Brazil; (A.B.d.M.); (G.M.); (J.V.d.M.)
| | - Regina Celia Bressan Queiroz de Figueiredo
- Departamento de Microbiologia, Instituto Aggeu Magalhães (FIOCRUZ-PE), Campus da UFPE, Av. Prof. Moraes Rego s/n Cidade Universitária, Recife 50670-420, PE, Brazil; (K.F.L.d.A.); (C.D.C.d.S.); (M.A.A.d.S.)
| |
Collapse
|
11
|
Cheng X, Long D, Chen L, Jansen JA, Leeuwenburgh SC, Yang F. Electrophoretic deposition of silk fibroin coatings with pre-defined architecture to facilitate precise control over drug delivery. Bioact Mater 2021; 6:4243-4254. [PMID: 33997504 PMCID: PMC8102429 DOI: 10.1016/j.bioactmat.2021.03.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
The therapeutic precision and clinical applicability of drug-eluting coatings can be substantially improved by facilitating tunable drug delivery. However, the design of coatings which allows for precise control over drug release kinetics is still a major challenge. Here, a double-layered silk fibroin (SF) coating system was constructed by sequential electrophoretic deposition. A mixture of dissolved Bombyx mori SF (bmSF) molecules and pre-made bmSF nanospheres at different ratios was deposited as under-layer. Subsequently, this underlayer was covered by a top-layer comprising Antheraea pernyi SF (apSF) molecules (rich in arginylglycylaspartic acid, RGD) to improve the cellular response of the resulting double-layered coatings. Additionally, model drug doxycycline was either pre-mixed with dissolved bmSF molecules or pre-loaded into pre-made bmSF nanospheres at the same amount before their mixing and deposition. The thickness and nanosphere content of the under-layer architecture were proportional to the deposition time and nanosphere concentration in precursor mixtures, respectively. The surface topography, wettability, degradation rate and adhesion strength were comparable within the double-layered coating system. As expected, RGD-rich apSF top-layer improved cell adhesion, spreading and proliferation compared with bmSF top-layer. Furthermore, the amount and duration of drug release increased linearly with increasing nanosphere concentration at fixed deposition time, whereas drug release amount increased linearly with increasing deposition time. These results indicate that the dosage and kinetics of loaded drugs can be quantitatively tailored by altering nanosphere concentration and deposition time as main processing parameters. Overall, this study illustrates the strong potential of pre-defining coating architecture to facilitate control over drug delivery.
Collapse
Affiliation(s)
- Xian Cheng
- Department of Dentistry-Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Philips van Leydenlaan 25, 6525, EX Nijmegen, the Netherlands
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, PR China
| | - Dingpei Long
- Institute for Biomedical Sciences, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30302, USA
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - John A. Jansen
- Department of Dentistry-Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Philips van Leydenlaan 25, 6525, EX Nijmegen, the Netherlands
| | - Sander C.G. Leeuwenburgh
- Department of Dentistry-Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Philips van Leydenlaan 25, 6525, EX Nijmegen, the Netherlands
| | - Fang Yang
- Department of Dentistry-Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Philips van Leydenlaan 25, 6525, EX Nijmegen, the Netherlands
| |
Collapse
|
12
|
Zuo W, Yu L, Lin J, Yang Y, Fei Q. Properties improvement of titanium alloys scaffolds in bone tissue engineering: a literature review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1259. [PMID: 34532396 PMCID: PMC8421948 DOI: 10.21037/atm-20-8175] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 05/28/2021] [Indexed: 12/19/2022]
Abstract
Owing to their excellent biocompatibility and corrosion-resistant properties, titanium (Ti) (and its alloy) are essential artificial substitute biomaterials for orthopedics. However, flaws, such as weak osteogenic induction ability and higher Young's modulus, have been observed during clinical application. As a result, short- and long-term postoperative follow-up has found that several complications have occurred. For decades, scientists have exerted efforts to compensate for these deficiencies. Different modification methods have been investigated, including changing alloy contents, surface structure transformation, three-dimensional (3D) structure transformation, coating, and surface functionalization technologies. The cell-surface interaction effect and imitation of the natural 3D bone structure are the two main mechanisms of these improved methods. In recent years, significant progress has been made in materials science research methods, including thorough research of titanium alloys of different compositions, precise surface pattern control technology, controllable 3D structure construction technology, improvement of coating technologies, and novel concepts of surface functionalization. These improvements facilitate the possibility for further research in the field of bone tissue engineering. Although the underlying mechanism is still not fully understood, these studies still have some implications for clinical practice. Therefore, for the direction of further research, it is beneficial to summarize these studies according to the basal method used. This literature review aimed to classify these technologies, thereby providing beginners with a preliminary understanding of the field.
Collapse
Affiliation(s)
- Weiyang Zuo
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lingjia Yu
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jisheng Lin
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yong Yang
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qi Fei
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Arafat MM, Dinan B, Haseeb ASMA, Akbar SA, Rahman BMA, Rozali S, Naher S. Growth of 1D TiO 2nanostructures on Ti substrates incorporated with residual stress through humid oxidation and their characterizations. NANOTECHNOLOGY 2021; 32:475607. [PMID: 34388742 DOI: 10.1088/1361-6528/ac1d77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Different Ti substrates, such as particles (as-received and ball milled), plate and TEM grid were oxidized for the growth of one dimensional (1D) TiO2nanostructures. The Ti substrates were oxidized for 4 h at temperatures of 700 °C-750 °C in humid and dry Ar containing 5 ppm of O2. The effects of residual stress on the growth of 1D TiO2nanostructures were investigated. The residual stress inside the Ti particles was measured by XRD-sin2ψtechnique. The oxidized Ti substrates were characterized using field emission scanning electron microscope equipped with energy dispersive x-ray spectroscope, transmission electron microscope, x-ray diffractometer and x-ray photoelectron spectroscope. Results revealed that humid environment enhances the growth of 1D TiO2nanostructures. Four different types of 1D morphologies obtained during humid oxidation, e.g. stacked, ribbon, plateau and lamp-post shaped nanostructures. The presence of residual stress significantly enhances the density and coverage of 1D nanostructures. The as-grown TiO2nanostructures possess tetragonal rutile structure having length up to 10μm along the 〈1 0 1〉 directions. During initial stage of oxidation, a TiO2layer is formed on Ti substrate. Lower valence oxides (Ti3O5, Ti2O3and TiO) then form underneath the TiO2layer and induce stress at the interface of oxide layers. The induced stress plays significant role on the growth of 1D TiO2nanostructures. The induced stress is relaxed by creating new surfaces in the form of 1D TiO2nanostructures. A diffusion based model is proposed to explain the mechanism of 1D TiO2growth during humid oxidation of Ti. The 1D TiO2nanostructures and TiO2layer is formed by the interstitial diffusion of Ti4+ions to the surface and reacts with the surface adsorbed hydroxide ions (OH-). Lower valence oxides are formed at the metal-oxide interface by the reaction between diffused oxygen ions and Ti ions.
Collapse
Affiliation(s)
- M M Arafat
- Department of Mechanical Engineering and Aeronautics, School of Mathematics, Computer Science and Engineering, City, University of London, Northampton Square, London EC1V 0HB, United Kingdom
| | - B Dinan
- Department of Materials Science and Engineering, Ohio State University, 2041 College Road, Columbus, OH 43210, United States of America
| | - A S M A Haseeb
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - S A Akbar
- Department of Materials Science and Engineering, Ohio State University, 2041 College Road, Columbus, OH 43210, United States of America
| | - B M A Rahman
- Department of Electrical and Electronic Engineering, School of Mathematics, Computer Science and Engineering, City, University of London, Northampton Square, London EC1V 0HB, United Kingdom
| | - S Rozali
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - S Naher
- Department of Mechanical Engineering and Aeronautics, School of Mathematics, Computer Science and Engineering, City, University of London, Northampton Square, London EC1V 0HB, United Kingdom
| |
Collapse
|
14
|
Multifunctional natural polymer-based metallic implant surface modifications. Biointerphases 2021; 16:020803. [PMID: 33906356 DOI: 10.1116/6.0000876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
High energy traumas could cause critical damage to bone, which will require permanent implants to recover while functionally integrating with the host bone. Critical sized bone defects necessitate the use of bioactive metallic implants. Because of bioinertness, various methods involving surface modifications such as surface treatments, the development of novel alloys, bioceramic/bioglass coatings, and biofunctional molecule grafting have been utilized to effectively integrate metallic implants with a living bone. However, the applications of these methods demonstrated a need for an interphase layer improving bone-making to overcome two major risk factors: aseptic loosening and peri-implantitis. To accomplish a biologically functional bridge with the host to prevent loosening, regenerative cues, osteoimmunomodulatory modifications, and electrochemically resistant layers against corrosion appeared as imperative reinforcements. In addition, interphases carrying antibacterial cargo were proven to be successful against peri-implantitis. In the literature, metallic implant coatings employing natural polymers as the main matrix were presented as bioactive interphases, enabling rapid, robust, and functional osseointegration with the host bone. However, a comprehensive review of natural polymer coatings, bridging and grafting on metallic implants, and their activities has not been reported. In this review, state-of-the-art studies on multifunctional natural polymer-based implant coatings effectively utilized as a bone tissue engineering (BTE) modality are depicted. Protein-based, polysaccharide-based coatings and their combinations to achieve better osseointegration via the formation of an extracellular matrix-like (ECM-like) interphase with gap filling and corrosion resistance abilities are discussed in detail. The hypotheses and results of these studies are examined and criticized, and the potential future prospects of multifunctional coatings are also proposed as final remarks.
Collapse
|
15
|
Ai C, Liu L, Goh JCH. Pore size modulates in vitro osteogenesis of bone marrow mesenchymal stem cells in fibronectin/gelatin coated silk fibroin scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112088. [PMID: 33947578 DOI: 10.1016/j.msec.2021.112088] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/18/2021] [Accepted: 03/27/2021] [Indexed: 12/21/2022]
Abstract
Porous scaffolds have been widely used for bone tissue engineering (BTE), and the pore structure of scaffolds plays an important role in osteogenesis. Silk fibroin (SF) is a favorable biomaterial for BTE due to its excellent mechanical property, biocompatibility, and biodegradation, but the lack of cell attachment sites in SF chemical structure resulted in poor cell-material interactions. In this study, SF scaffolds were coated with fibronectin/gelatin (Fn/G) to improve cell adhesion. Furthermore, the effect of pore size in Fn/G coated SF scaffolds on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) were investigated in vitro. Scaffolds with average pore diameters of 384.52, 275.23, and 173.8 μm were prepared by salt leaching method, labelled as Large, Medium, and Small group. Porcine BMSCs were seeded on scaffolds and cultured in osteogenic medium for 21 days to evaluate cell proliferation, alkaline phosphatase (ALP) activity, calcium deposition, gene expression of osteogenic markers, and histological performance. The results showed Fn/G coating effectively improved cell adhesion on SF scaffolds. Cell metabolic rate in each group increased significantly with time, but there was no statistical difference at each time point among the three groups. On day 21, ALP/DNA and calcium/DNA in the Small group were significantly higher than those in the Large group. Among the three pore sizes, the Small group showed higher mRNA expression of COl I on day 7, OPN on day 14, and OCN on day 21. Immunohistochemical staining on day 21 showed that Col I and OCN in Small group were more highly expressed. In conclusion, the Fn/G coated SF scaffolds with a mean pore diameter of 173.8 μm was optimal for osteogenic differentiation of BMSC in vitro.
Collapse
Affiliation(s)
- Chengchong Ai
- NUS Graduate School, Integrative Sciences and Engineering Programme, National University of Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Ling Liu
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - James Cho-Hong Goh
- NUS Graduate School, Integrative Sciences and Engineering Programme, National University of Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore; NUS Tissue Engineering Programme, Life Sciences Institute, National University of Singapore, Singapore; Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
16
|
Lohberger B, Eck N, Glaenzer D, Kaltenegger H, Leithner A. Surface Modifications of Titanium Aluminium Vanadium Improve Biocompatibility and Osteogenic Differentiation Potential. MATERIALS 2021; 14:ma14061574. [PMID: 33807039 PMCID: PMC8005140 DOI: 10.3390/ma14061574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022]
Abstract
Osteogenic cells are strongly influenced in their behaviour by the surface properties of orthopaedic implant materials. Mesenchymal stem and progenitor cells (MSPCs) migrate to the bone–implant interface, adhere to the material surface, proliferate and subsequently differentiate into osteoblasts, which are responsible for the formation of the bone matrix. Five surface topographies on titanium aluminium vanadium (TiAl6V4) were engineered to investigate biocompatibility and adhesion potential of human osteoblasts and the changes in osteogenic differentiation of MSPCs. Elemental analysis of TiAl6V4 discs coated with titanium nitride (TiN), silver (Ag), roughened surface, and pure titanium (cpTi) surface was analysed using energy-dispersive X-ray spectroscopy and scanning electron microscopy. In vitro cell viability, cytotoxicity, adhesion behaviour, and osteogenic differentiation potential were measured via CellTiter-Glo, CytoTox, ELISA, Luminex® technology, and RT-PCR respectively. The Ag coating reduced the growth of osteoblasts, whereas the viability of MSPCs increased significantly. The roughened and the cpTi surface improved the viability of all cell types. The additive coatings of the TiAl6V4 alloy improved the adhesion of osteoblasts and MSPCs. With regard to the osteogenic differentiation potential, an enhanced effect has been demonstrated, especially in the case of roughened and cpTi coatings.
Collapse
Affiliation(s)
- Birgit Lohberger
- Correspondence: ; Tel.: +43-316-385-81640; Fax: +43-316-385-14806
| | | | | | | | | |
Collapse
|
17
|
Zhou L, Pan M, Zhang Z, Diao Z, Peng X. Enhancing Osseointegration of TC4 Alloy by Surficial Activation Through Biomineralization Method. Front Bioeng Biotechnol 2021; 9:639835. [PMID: 33708765 PMCID: PMC7940542 DOI: 10.3389/fbioe.2021.639835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/02/2021] [Indexed: 11/25/2022] Open
Abstract
Titanium (Ti) alloys have been applied to biomedical implants for a long time. Although Ti alloys are biocompatible, efforts have been continuously made to improve their bone conductivity and osteogenesis for enhancing their performance. Silk fibroin (SF) is a natural biomaterial with excellent biomedical and mechanical properties, and hydroxyapatite (HAP) nanocomposites derived from SF are promising for producing “artificial bone” owing to their biomedical applicability and strong mechanical functions. Therefore, we built an SF coating on the surface of Ti–6Al–4V alloy, and then the incubated SF-coated Ti alloy were immersed in simulated body fluid to induce mineral deposition of HAP on the alloys. The results from Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) analysis, and Attenuated Total Reflection–Fourier Transform Infrared Spectroscopy (ATR–FTIR) confirmed the deposition of a mineral layer on the SF film surface. The proliferation, adhesion, and differentiation of MG-63 were tested, along with the BMP-2, COX-2, and OPG expression and protein content in the MG-63. Both Ti + SF and Ti + SF + HAP groups exhibited significantly better performance than a control Ti group with regard to the cell adhesion, cell proliferation, and protein expression. Furthermore, the hybrid layer comprising HAP and SF delivered more significant improvement of the osseointegration than the SF alone. It is hoped that the proposed methods can be used for constructing modified surfaces on Ti alloys, as they endowed the implants with good osteogenic potential.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Materials and Engineering, School of Forestry and Landscape Architecture, Anhui Agriculture University, Hefei, China
| | - Meng Pan
- Department of Materials and Engineering, School of Forestry and Landscape Architecture, Anhui Agriculture University, Hefei, China
| | - Zhenghua Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zijie Diao
- Department of Materials and Engineering, School of Forestry and Landscape Architecture, Anhui Agriculture University, Hefei, China
| | - Xiaochun Peng
- Department of Orthopaedics, The Sixth Affiliated People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Neubauer VJ, Döbl A, Scheibel T. Silk-Based Materials for Hard Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2021; 14:674. [PMID: 33535662 PMCID: PMC7867174 DOI: 10.3390/ma14030674] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
Hard tissues, e.g., bone, are mechanically stiff and, most typically, mineralized. To design scaffolds for hard tissue regeneration, mechanical, physico-chemical and biological cues must align with those found in the natural tissue. Combining these aspects poses challenges for material and construct design. Silk-based materials are promising for bone tissue regeneration as they fulfill several of such necessary requirements, and they are non-toxic and biodegradable. They can be processed into a variety of morphologies such as hydrogels, particles and fibers and can be mineralized. Therefore, silk-based materials are versatile candidates for biomedical applications in the field of hard tissue engineering. This review summarizes silk-based approaches for mineralized tissue replacements, and how to find the balance between sufficient material stiffness upon mineralization and cell survival upon attachment as well as nutrient supply.
Collapse
Affiliation(s)
- Vanessa J. Neubauer
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany; (V.J.N.); (A.D.)
| | - Annika Döbl
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany; (V.J.N.); (A.D.)
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany; (V.J.N.); (A.D.)
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayerisches Polymerinstitut (BPI), Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
19
|
Gorgin Karaji Z, Jahanmard F, Mirzaei AH, van der Wal B, Amin Yavari S. A multifunctional silk coating on additively manufactured porous titanium to prevent implant-associated infection and stimulate bone regeneration. ACTA ACUST UNITED AC 2020; 15:065016. [PMID: 32640431 DOI: 10.1088/1748-605x/aba40b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite tremendous progress in the design and manufacturing of metallic implants, they do not outlive the patient. To illustrate, more than half of hip replacements will fail, mainly due to implant infection and loosening. Surface engineering approaches and, in particular, coatings can facilitate implant bio-functionality via the recruitment of more host cells for new bone formation and inhibition of bacterial colonization. Here, we used electrophoretic deposition to apply a silk fibroin solution consisting of tricalcium phosphate (TCP) and vancomycin as a coating on the surface of additively-manufactured porous titanium. Furthermore, the surface properties of the coatings developed and the release kinetics of the vancomycin were studied to evaluate the applied coating. The in vitro antibacterial behavior of the multifunctional coating, as well as the cell viability and osteogenic differentiation of the MC3T3-E1 cell line were extensively studied. The biomaterials developed exhibited an antibacterial behavior with a reduction of up to four orders of magnitude in both planktonic and adherent bacteria for 6 h and 1 d. A live-dead assay, the Alamar Blue activity, the DNA content, and cytoskeleton staining demonstrated a significant increase in the cell density of the coated groups versus the as-manufactured ones. The significantly enhanced calcium deposition and the increase in mineralization for the groups with TCP after 21 and 28 d, respectively, demonstrate upregulation of the MC3T3 cells' osteogenic differentiation. Our results collectively show that the multifunctional coating studied here can be potentially used to develop a new generation of orthopedic implants.
Collapse
Affiliation(s)
- Z Gorgin Karaji
- Department of Mechanical Engineering, Kermanshah University of Technology, Kermanshah 67156-85420, Iran. Department of Orthopedics, University Medical Centre Utrecht, Utrecht 3584 CX, The Netherlands
| | | | | | | | | |
Collapse
|
20
|
Kunrath MF, Diz FM, Magini R, Galárraga-Vinueza ME. Nanointeraction: The profound influence of nanostructured and nano-drug delivery biomedical implant surfaces on cell behavior. Adv Colloid Interface Sci 2020; 284:102265. [PMID: 33007580 DOI: 10.1016/j.cis.2020.102265] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Nanostructured surfaces feature promising biological properties on biomaterials attracting large interest at basic research, implant industry development, and bioengineering applications. Thou, nanoscale interactions at a molecular and cellular level are not yet completely understood and its biological and clinical implications need to be further elucidated. As follows, the aim of this comprehensive review was to evaluate nanostructured surfaces at biomedical implants focusing on surface development, nanostructuration, and nanoengineered drug delivery systems that can induce specific cell interactions in all relevant aspects of biological, reparative, anti-bacterial, anti-inflammatory and clinical processes. The methods and the physio-chemical properties involved in nanotopography performance, the main cellular characteristics involved at surface/cell interaction, and a summary of results and outlooks reported in studies applying nanostructured surfaces and nano-drug delivery systems is presented. The future prospects and commercial translation of this developing field, particularly concerning multifunctional nanostructured surfaces and its clinical implications are further discussed. At a cellular level, nanostructured biomedical implant surfaces can enhance osteogenesis by targeting osteoblasts, osteocytes, and mesenchymal cells, stimulate fibroblast/epithelial cells proliferation and adherence, inhibit bacterial cell proliferation and biofilm accumulation, and act as immune-modulating surfaces targeting macrophages and reducing pro-inflammatory cytokine expression. Moreover, several methodological options to create drug-delivery systems on metallic implant surfaces are available, however, the clinical translation is yet incomplete. The efficiency of which nanostructured/nano-delivery surfaces may target specific cell interactions and favor clinical outcomes needs to be further elucidated in pre-clinical and clinical studies, along with engineering solutions for commercial translation and approval of controlling agencies.
Collapse
|
21
|
Silk Fibroin-Based Hybrid Nanostructured Coatings for Titanium Implantable Surfaces Modification. COATINGS 2020. [DOI: 10.3390/coatings10060518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study proposes the development of new architectures that combine nanostructured titanium surface and biodegradable polymers as a promising approach to achieve a better performance after bioactive agent incorporation. The silk fibroin protein that was extracted from silkworm Bombyx mori cocoons is important due to the remarkable characteristics, such as biocompatibility, good mechanical properties, adjustable degradation and drug stabilizing capabilities. The titanium substrate was firstly nanostructurated with TiO2 nanotubes and then coated with silk fibroin using electrospinning and electrochemical deposition. The deposited silk film ability to become a bioactive implant coating with antibacterial properties after the encapsulation of the active agents such as CeO2 was investigated. Important features of the new implant coating were analysed: surface properties, electrochemical stability in physiological simulated electrolytes, and antibacterial action against Escherichia coli. The obtained results indicate that silk fibroin bioactive layers are a potential candidate for regenerative medicine.
Collapse
|