1
|
Cai C, Yang D, Cao Y, Peng Z, Wang Y, Xi J, Yan C, Li X. Anticancer potential of active alkaloids and synthetic analogs derived from marine invertebrates. Eur J Med Chem 2024; 279:116850. [PMID: 39270448 DOI: 10.1016/j.ejmech.2024.116850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/30/2023] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
In recent years, the number of cancers has soared, becoming one of the leading causes of human death. At the same time, marine anticancer substances have been the focus of marine drug research. Marine alkaloids derived from marine invertebrates like sponges are an important class of secondary metabolites, which have good bioactivities of blocking the cancer cell cycle, inducing autophagy and apoptosis of cancer cells, inhibiting cancer cell invasion and proliferation. They show potential as anticancer drug candidates. Therefore, in this review, we focus on the detailed introduction of bioactive alkaloids and their synthetic analogs from marine invertebrates, such as 4-chloro fascapysin and other 41 kinds of marine alkaloids or marine alkaloid synthetic analogs. They have significant anticancer activities on breast cancer, cervical cancer, colorectal cancer, prostate cancer, lung cancer, liver cancer, and so on. It provides new candidate compounds for anticancer drug research and provides a reference basis for marine drug resources research.
Collapse
Affiliation(s)
- Chunyan Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yulin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
2
|
Liu Y, Zhou Z, Sun S. Prospects of marine-derived compounds as potential therapeutic agents for glioma. PHARMACEUTICAL BIOLOGY 2024; 62:513-526. [PMID: 38864445 PMCID: PMC11172260 DOI: 10.1080/13880209.2024.2359659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/17/2024] [Indexed: 06/13/2024]
Abstract
CONTEXT Glioma, the most common primary malignant brain tumour, is a grave health concern associated with high morbidity and mortality. Current treatments, while effective to some extent, are often hindered by factors such as the blood-brain barrier and tumour microenvironment. This underscores the pressing need for exploring new pharmacologically active anti-glioma compounds. METHODS This review synthesizes information from major databases, including Chemical Abstracts, Medicinal and Aromatic Plants Abstracts, ScienceDirect, SciFinder, Google Scholar, Scopus, PubMed, Springer Link and relevant books. Publications were selected without date restrictions, using terms such as 'Hymenocrater spp.,' 'phytochemical,' 'pharmacological,' 'extract,' 'essential oil' and 'traditional uses.' General web searches using Google and Yahoo were also performed. Articles related to agriculture, ecology, synthetic work or published in languages other than English or Chinese were excluded. RESULTS The marine environment has been identified as a rich source of diverse natural products with potent antitumour properties. CONCLUSIONS This paper not only provides a comprehensive review of marine-derived compounds but also unveils their potential in treating glioblastoma multiforme (GBM) based on functional classifications. It encapsulates the latest research progress on the regulatory biological functions and mechanisms of these marine substances in GBM, offering invaluable insights for the development of new glioma treatments.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Zhiyang Zhou
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shusen Sun
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, USA
| |
Collapse
|
3
|
Steenblock C, Richter S, Lindemann D, Ehrlich H, Bornstein SR, Bechmann N. Marine Sponge-Derived Secondary Metabolites Modulate SARS-CoV-2 Entry Mechanisms. Horm Metab Res 2024; 56:308-317. [PMID: 37793428 DOI: 10.1055/a-2173-0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The emergence of SARS-CoV 2 caused the COVID-19 pandemic, resulting in numerous global infections and deaths. In particular, people with metabolic diseases display an increased risk of severe COVID 19 and a fatal outcome. Treatment options for severe cases are limited, and the appearance of new virus variants complicates the development of novel therapies. To better manage viral infections like COVID 19, new therapeutic approaches are needed. Marine sponges offer a natural and renewable source of unique bioactive agents. These sponges produce secondary metabolites with various effects, including anti-viral, anti-inflammatory, and anti-tumorigenic properties. In the current study, we investigated the effect of five different marine sponge-derived secondary metabolites (four bromotyrosines and one sesquiterpenoid hydroquinone). Two of these, Avarol and Acetyl-dibromoverongiaquinol reduced the expression of ACE2, the main receptor for SARS-CoV 2, and the alternative receptor NRP1. Moreover, these substances derived from sponges demonstrated the ability to diminish the virus titer in SARS-CoV 2-infected cells, especially concerning the Omicron lineage. However, the reduction was not substantial enough to expect a significant impact on infected humans. Consequently, the investigated sponge-derived secondary metabolites are not likely to be effective to treat COVID 19 as a stand-alone therapy.
Collapse
Affiliation(s)
- Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stefanie Richter
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Dirk Lindemann
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Hermann Ehrlich
- Center for Advanced Technologies, Adam Mickiewicz University, Poznan, Poland
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom of Great Britain and Northern Ireland
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zürich, Switzerland
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
4
|
Salas-Castañeda MR, Saavedra-Sotelo NC, Cruz-Barraza JA, Bisbal-Pardo CI, Rocha-Olivares A. Novel microsatellite markers suggest significant genetic isolation in the Eastern Pacific sponge Aplysina gerardogreeni. Mol Biol Rep 2024; 51:87. [PMID: 38183556 PMCID: PMC10771372 DOI: 10.1007/s11033-023-09043-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 10/25/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND The Eastern Tropical Pacific (ETP) harbors a great diversity of Porifera. In particular, the Aplysina genus has acquired biotechnological and pharmacological importance. Nevertheless, the ecological aspects of their species and populations have been poorly studied. Aplysina gerardogreeni is the most conspicuous verongid sponge from the ETP, where it is usually found on rocky-coralline ecosystems. We evaluated the polymorphism levels of 18 microsatellites obtained from next-generation sequencing technologies. Furthermore, we tested the null hypothesis of panmixia in A. gerardogreeni population from two Mexican-Pacific localities. METHODS AND RESULTS A total of 6,128,000 paired reads were processed of which primer sets of 18 microsatellites were designed. The loci were tested in 64 specimens from Mazatlan, Sinaloa (N = 32) and Isabel Island, Nayarit (N = 32). The microsatellites developed were moderately polymorphic with a range of alleles between 2 and 11, and Ho between 0.069 and 0.785. Fifteen loci displayed significant deviation from the Hardy-Weinberg equilibrium. No linkage disequilibrium was detected. A strong genetic structure was confirmed between localities using hierarchical Bayesian analyses, principal coordinates analyses, and fixation indices (FST = 0.108*). All the samples were assigned to their locality; however, there was a small sign of mixing between localities. CONCLUSIONS Despite the moderate values of diversity in microsatellites, they showed a strong signal of genetic structure between populations. We suggest that these molecular markers can be a relevant tool to evaluate all populations across the ETP. In addition, 17 of these microsatellites were successfully amplified in the species A. fistularis and A. lacunosa, meaning they could also be applied in congeneric sponges from the Caribbean Sea. The use of these molecular markers in population genetic studies will allow assessment of the connectivity patterns in species of the Aplysina genus.
Collapse
Affiliation(s)
- Manuel Ricardo Salas-Castañeda
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria Coyoacán, C.P. 04510, Mexico City, Mexico
- Unidad Académica Mazatlán, Instituto Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Joel Montes Camarena s/n, CP 82000, Mazatlán, Sinaloa, Mexico
| | - Nancy C Saavedra-Sotelo
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa (UAS), Mazatlán, Sinaloa, Mexico
| | - José Antonio Cruz-Barraza
- Unidad Académica Mazatlán, Instituto Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Joel Montes Camarena s/n, CP 82000, Mazatlán, Sinaloa, Mexico.
| | - Celia Isabel Bisbal-Pardo
- Departamento de Oceanografía Biológica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico
| | - Axayácatl Rocha-Olivares
- Departamento de Oceanografía Biológica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico
| |
Collapse
|
5
|
Zawadzka-Knefel A, Rusak A, Mrozowska M, Machałowski T, Żak A, Haczkiewicz-Leśniak K, Kulus M, Kuropka P, Podhorska-Okołów M, Skośkiewicz-Malinowska K. Chitin scaffolds derived from the marine demosponge Aplysina fistularis stimulate the differentiation of dental pulp stem cells. Front Bioeng Biotechnol 2023; 11:1254506. [PMID: 38033818 PMCID: PMC10682193 DOI: 10.3389/fbioe.2023.1254506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
The use of stem cells for tissue regeneration is a prominent trend in regenerative medicine and tissue engineering. In particular, dental pulp stem cells (DPSCs) have garnered considerable attention. When exposed to specific conditions, DPSCs have the ability to differentiate into osteoblasts and odontoblasts. Scaffolds are critical for cell differentiation because they replicate the 3D microenvironment of the niche and enhance cell adhesion, migration, and differentiation. The purpose of this study is to present the biological responses of human DPSCs to a purified 3D chitin scaffold derived from the marine demosponge Aplysina fistularis and modified with hydroxyapatite (HAp). Responses examined included proliferation, adhesion, and differentiation. The control culture consisted of the human osteoblast cell line, hFOB 1.19. Electron microscopy was used to examine the ultrastructure of the cells (transmission electron microscopy) and the surface of the scaffold (scanning electron microscopy). Cell adhesion to the scaffolds was determined by neutral red and crystal violet staining methods. An alkaline phosphatase (ALP) assay was used for assessing osteoblast/odontoblast differentiation. We evaluated the expression of osteogenic marker genes by performing ddPCR for ALP, RUNX2, and SPP1 mRNA expression levels. The results show that the chitin biomaterial provides a favorable environment for DPSC and hFOB 1.19 cell adhesion and supports both cell proliferation and differentiation. The chitin scaffold, especially with HAp modification, isolated from A. fistularis can make a significant contribution to tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Anna Zawadzka-Knefel
- Department of Conservative Dentistry with Endodontics, Wroclaw Medical University, Wroclaw, Poland
| | - Agnieszka Rusak
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Monika Mrozowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Tomasz Machałowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan, Poland
| | - Andrzej Żak
- Electron Microscopy Laboratory, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | | | - Michał Kulus
- Division of Ultrastructural Research, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Kuropka
- Division of Histology and Embryology, Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Marzenna Podhorska-Okołów
- Division of Ultrastructural Research, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | | |
Collapse
|
6
|
Duminis T, Heljak M, Święszkowski W, Ereskovsky A, Dziedzic I, Nowicki M, Pajewska-Szmyt M, Voronkina A, Bornstein SR, Ehrlich H. On the Mechanical Properties of Microfibre-Based 3D Chitinous Scaffolds from Selected Verongiida Sponges. Mar Drugs 2023; 21:463. [PMID: 37755076 PMCID: PMC10532465 DOI: 10.3390/md21090463] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Skeletal constructs of diverse marine sponges remain to be a sustainable source of biocompatible porous biopolymer-based 3D scaffolds for tissue engineering and technology, especially structures isolated from cultivated demosponges, which belong to the Verongiida order, due to the renewability of their chitinous, fibre-containing architecture focused attention. These chitinous scaffolds have already shown excellent and promising results in biomimetics and tissue engineering with respect to their broad diversity of cells. However, the mechanical features of these constructs have been poorly studied before. For the first time, the elastic moduli characterising the chitinous samples have been determined. Moreover, nanoindentation of the selected bromotyrosine-containing as well as pigment-free chitinous scaffolds isolated from selected verongiids was used in the study for comparative purposes. It was shown that the removal of bromotyrosines from chitin scaffolds results in a reduced elastic modulus; however, their hardness was relatively unaffected.
Collapse
Affiliation(s)
- Tomas Duminis
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland; (I.D.); (M.N.); (M.P.-S.)
| | - Marcin Heljak
- Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Wołoska 141, 02-507 Warsaw, Poland; (M.H.); (W.Ś.)
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Wołoska 141, 02-507 Warsaw, Poland; (M.H.); (W.Ś.)
| | - Alexander Ereskovsky
- Institut Méditerranéen de Biodiversité et d’Écologie Marine et Continentale (IMBE), Aix Marseille Université, Station Marine d’Endoume, Rue de la Batterie des Lions, 13007 Marseille, France;
| | - Izabela Dziedzic
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland; (I.D.); (M.N.); (M.P.-S.)
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
| | - Marek Nowicki
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland; (I.D.); (M.N.); (M.P.-S.)
| | - Martyna Pajewska-Szmyt
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland; (I.D.); (M.N.); (M.P.-S.)
| | - Alona Voronkina
- Department of Pharmacy, National Pirogov Memorial Medical University, Vinnytsya, Pirogov Str. 56, 21018 Vinnytsia, Ukraine;
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav Zeuner Str. 3, 09599 Freiberg, Germany
| | - Stefan R. Bornstein
- Department of Medicine III, Universitz Hospital Carl Gustav Carus, Technische Universitat Dresden, Fetschelstrasse 74, 01307 Dresden, Germany;
- Departmen of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
| | - Hermann Ehrlich
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland; (I.D.); (M.N.); (M.P.-S.)
| |
Collapse
|
7
|
Kubiak A, Pajewska-Szmyt M, Kotula M, Leśniewski B, Voronkina A, Rahimi P, Falahi S, Heimler K, Rogoll A, Vogt C, Ereskovsky A, Simon P, Langer E, Springer A, Förste M, Charitos A, Joseph Y, Jesionowski T, Ehrlich H. Spongin as a Unique 3D Template for the Development of Functional Iron-Based Composites Using Biomimetic Approach In Vitro. Mar Drugs 2023; 21:460. [PMID: 37755073 PMCID: PMC10532518 DOI: 10.3390/md21090460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Marine sponges of the subclass Keratosa originated on our planet about 900 million years ago and represent evolutionarily ancient and hierarchically structured biological materials. One of them, proteinaceous spongin, is responsible for the formation of 3D structured fibrous skeletons and remains enigmatic with complex chemistry. The objective of this study was to investigate the interaction of spongin with iron ions in a marine environment due to biocorrosion, leading to the occurrence of lepidocrocite. For this purpose, a biomimetic approach for the development of a new lepidocrocite-containing 3D spongin scaffold under laboratory conditions at 24 °C using artificial seawater and iron is described for the first time. This method helps to obtain a new composite as "Iron-Spongin", which was characterized by infrared spectroscopy and thermogravimetry. Furthermore, sophisticated techniques such as X-ray fluorescence, microscope technique, and X-Ray diffraction were used to determine the structure. This research proposed a corresponding mechanism of lepidocrocite formation, which may be connected with the spongin amino acids functional groups. Moreover, the potential application of the biocomposite as an electrochemical dopamine sensor is proposed. The conducted research not only shows the mechanism or sensor properties of "Iron-spongin" but also opens the door to other applications of these multifunctional materials.
Collapse
Affiliation(s)
- Anita Kubiak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; (M.K.); (B.L.)
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland;
| | - Martyna Pajewska-Szmyt
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland;
| | - Martyna Kotula
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; (M.K.); (B.L.)
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland;
| | - Bartosz Leśniewski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; (M.K.); (B.L.)
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland;
| | - Alona Voronkina
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg, Germany; (A.V.); (P.R.); (S.F.); (Y.J.)
- Department of Pharmacy, National Pirogov Memorial Medical University, Vinnytsya, Pyrogov Street. 56, 21018 Vinnytsia, Ukraine
| | - Parvaneh Rahimi
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg, Germany; (A.V.); (P.R.); (S.F.); (Y.J.)
| | - Sedigheh Falahi
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg, Germany; (A.V.); (P.R.); (S.F.); (Y.J.)
| | - Korbinian Heimler
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (K.H.); (A.R.); (C.V.)
| | - Anika Rogoll
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (K.H.); (A.R.); (C.V.)
| | - Carla Vogt
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (K.H.); (A.R.); (C.V.)
| | - Alexander Ereskovsky
- IMBE, CNRS, IRD, Aix Marseille University, Station Marine d’Endoume, Rue de la Batterie des Lions, 13007 Marseille, France;
| | - Paul Simon
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden, Germany;
| | - Enrico Langer
- Institute of Semiconductors and Microsystems, TU Dresden, Nöthnitzer Str. 64, 01187 Dresden, Germany;
| | - Armin Springer
- Department Life, Light & Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany;
- Medical Biology and Electron Microscopy Centre, Rostock University Medical Center, Strempelstr. 14, 18057 Rostock, Germany
| | - Maik Förste
- Institute for Nonferrous Metallurgy and Purest Materials (INEMET), TU Bergakademie Freiberg, Leipziger Str. 34, D-09599 Freiberg, Germany; (M.F.); (A.C.)
| | - Alexandros Charitos
- Institute for Nonferrous Metallurgy and Purest Materials (INEMET), TU Bergakademie Freiberg, Leipziger Str. 34, D-09599 Freiberg, Germany; (M.F.); (A.C.)
| | - Yvonne Joseph
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg, Germany; (A.V.); (P.R.); (S.F.); (Y.J.)
| | - Teofil Jesionowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland;
| | - Hermann Ehrlich
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland;
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland;
| |
Collapse
|
8
|
Wysokowski M, Machałowski T, Idaszek J, Chlanda A, Jaroszewicz J, Heljak M, Niemczak M, Piasecki A, Gajewska M, Ehrlich H, Święszkowski W, Jesionowski T. Deep eutectic solvent-assisted fabrication of bioinspired 3D carbon-calcium phosphate scaffolds for bone tissue engineering. RSC Adv 2023; 13:21971-21981. [PMID: 37483675 PMCID: PMC10358318 DOI: 10.1039/d3ra02356g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023] Open
Abstract
Tissue engineering is a burgeoning field focused on repairing damaged tissues through the combination of bodily cells with highly porous scaffold biomaterials, which serve as templates for tissue regeneration, thus facilitating the growth of new tissue. Carbon materials, constituting an emerging class of superior materials, are currently experiencing remarkable scientific and technological advancements. Consequently, the development of novel 3D carbon-based composite materials has become significant for biomedicine. There is an urgent need for the development of hybrids that will combine the unique bioactivity of ceramics with the performance of carbonaceous materials. Considering these requirements, herein, we propose a straightforward method of producing a 3D carbon-based scaffold that resembles the structural features of spongin, even on the nanometric level of their hierarchical organization. The modification of spongin with calcium phosphate was achieved in a deep eutectic solvent (choline chloride : urea, 1 : 2). The holistic characterization of the scaffolds confirms their remarkable structural features (i.e., porosity, connectivity), along with the biocompatibility of α-tricalcium phosphate (α-TCP), rendering them a promising candidate for stem cell-based tissue-engineering. Culturing human bone marrow mesenchymal stem cells (hMSC) on the surface of the biomimetic scaffold further verifies its growth-facilitating properties, promoting the differentiation of these cells in the osteogenesis direction. ALP activity was significantly higher in osteogenic medium compared to proliferation, indicating the differentiation of hMSC towards osteoblasts. However, no significant difference between C and C-αTCP in the same medium type was observed.
Collapse
Affiliation(s)
- Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology Poznan 60-965 Poland
| | - Tomasz Machałowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology Poznan 60-965 Poland
| | - Joanna Idaszek
- Faculty of Materials Science and Engineering, Warsaw University of Technology Warsaw 02-507 Poland
| | - Adrian Chlanda
- Lukasiewicz Research Network - Institute of Microelectronics and Photonics, Flake Graphene Research Group 02-668 Warsaw Poland
| | - Jakub Jaroszewicz
- Faculty of Materials Science and Engineering, Warsaw University of Technology Warsaw 02-507 Poland
| | - Marcin Heljak
- Faculty of Materials Science and Engineering, Warsaw University of Technology Warsaw 02-507 Poland
| | - Michał Niemczak
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology Poznan 60-965 Poland
| | - Adam Piasecki
- Institute of Materials Engineering, Poznan University of Technology Piotrowo 3 61138 Poznan Poland
| | - Marta Gajewska
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology Mickiewicza 30 30-059 Kraków Poland
| | - Hermann Ehrlich
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology Poznan 60-965 Poland
- Center for Advanced Technologies, Adam Mickiewicz University Uniwersytetu Poznanskiego 10 61-614 Poznan Poland
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology Warsaw 02-507 Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology Poznan 60-965 Poland
| |
Collapse
|
9
|
Dziedzic I, Voronkina A, Pajewska-Szmyt M, Kotula M, Kubiak A, Meissner H, Duminis T, Ehrlich H. The Loss of Structural Integrity of 3D Chitin Scaffolds from Aplysina aerophoba Marine Demosponge after Treatment with LiOH. Mar Drugs 2023; 21:334. [PMID: 37367659 DOI: 10.3390/md21060334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/28/2023] Open
Abstract
Aminopolysaccharide chitin is one of the main structural biopolymers in sponges that is responsible for the mechanical stability of their unique 3D-structured microfibrous and porous skeletons. Chitin in representatives of exclusively marine Verongiida demosponges exists in the form of biocomposite-based scaffolds chemically bounded with biominerals, lipids, proteins, and bromotyrosines. Treatment with alkalis remains one of the classical approaches to isolate pure chitin from the sponge skeleton. For the first time, we carried out extraction of multilayered, tube-like chitin from skeletons of cultivated Aplysina aerophoba demosponge using 1% LiOH solution at 65 °C following sonication. Surprisingly, this approach leads not only to the isolation of chitinous scaffolds but also to their dissolution and the formation of amorphous-like matter. Simultaneously, isofistularin-containing extracts have been obtained. Due to the absence of any changes between the chitin standard derived from arthropods and the sponge-derived chitin treated with LiOH under the same experimental conditions, we suggest that bromotyrosines in A. aerophoba sponge represent the target for lithium ion activity with respect to the formation of LiBr. This compound, however, is a well-recognized solubilizing reagent of diverse biopolymers including cellulose and chitosan. We propose a possible dissolution mechanism of this very special kind of sponge chitin.
Collapse
Affiliation(s)
- Izabela Dziedzic
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland
| | - Alona Voronkina
- Department of Pharmacy, National Pirogov Memorial Medical University, Pirogov Str. 56, 21018 Vinnytsia, Ukraine
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav Zeuner Str. 3, 09599 Freiberg, Germany
| | - Martyna Pajewska-Szmyt
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland
| | - Martyna Kotula
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland
| | - Anita Kubiak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland
| | - Heike Meissner
- Department of Prosthetic Dentistry, Faculty of Medicine, University Hospital Carl Gustav Carus of Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Tomas Duminis
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland
| | - Hermann Ehrlich
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland
| |
Collapse
|
10
|
Fooladi S, Nematollahi MH, Rabiee N, Iravani S. Bacterial Cellulose-Based Materials: A Perspective on Cardiovascular Tissue Engineering Applications. ACS Biomater Sci Eng 2023. [PMID: 37146213 DOI: 10.1021/acsbiomaterials.3c00300] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Today, a wide variety of bio- and nanomaterials have been deployed for cardiovascular tissue engineering (TE), including polymers, metal oxides, graphene/its derivatives, organometallic complexes/composites based on inorganic-organic components, among others. Despite several advantages of these materials with unique mechanical, biological, and electrical properties, some challenges still remain pertaining to their biocompatibility, cytocompatibility, and possible risk factors (e.g., teratogenicity or carcinogenicity), restricting their future clinical applications. Natural polysaccharide- and protein-based (nano)structures with the benefits of biocompatibility, sustainability, biodegradability, and versatility have been exploited in the field of cardiovascular TE focusing on targeted drug delivery, vascular grafts, engineered cardiac muscle, etc. The usage of these natural biomaterials and their residues offers several advantages in terms of environmental aspects such as alleviating emission of greenhouse gases as well as the production of energy as a biomass consumption output. In TE, the development of biodegradable and biocompatible scaffolds with potentially three-dimensional structures, high porosity, and suitable cellular attachment/adhesion still needs to be comprehensively studied. In this context, bacterial cellulose (BC) with high purity, porosity, crystallinity, unique mechanical properties, biocompatibility, high water retention, and excellent elasticity can be considered as promising candidate for cardiovascular TE. However, several challenges/limitations regarding the absence of antimicrobial factors and degradability along with the low yield of production and extensive cultivation times (in large-scale production) still need to be resolved using suitable hybridization/modification strategies and optimization of conditions. The biocompatibility and bioactivity of BC-based materials along with their thermal, mechanical, and chemical stability are crucial aspects in designing TE scaffolds. Herein, cardiovascular TE applications of BC-based materials are deliberated, with a focus on the most recent advancements, important challenges, and future perspectives. Other biomaterials with cardiovascular TE applications and important roles of green nanotechnology in this field of science are covered to better compare and comprehensively review the subject. The application of BC-based materials and the collective roles of such biomaterials in the assembly of sustainable and natural-based scaffolds for cardiovascular TE are discussed.
Collapse
Affiliation(s)
- Saba Fooladi
- Department of Clinical Biochemistry, Afzalipour Medical School, Kerman University of Medical Sciences, 76169-13555 Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Department of Clinical Biochemistry, Afzalipour Medical School, Kerman University of Medical Sciences, 76169-13555 Kerman, Iran
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, 76169-13555 Kerman, Iran
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia 6150, Australia
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461 Isfahan, Iran
| |
Collapse
|
11
|
Nowacki K, Galiński M, Fursov A, Voronkina A, Meissner H, Petrenko I, Stelling AL, Ehrlich H. Electrolysis as a Universal Approach for Isolation of Diverse Chitin Scaffolds from Selected Marine Demosponges. Mar Drugs 2022; 20:665. [PMID: 36354988 PMCID: PMC9699038 DOI: 10.3390/md20110665] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 09/28/2023] Open
Abstract
Three-dimensional chitinous scaffolds often used in regenerative medicine, tissue engineering, biomimetics and technology are mostly isolated from marine organisms, such as marine sponges (Porifera). In this work, we report the results of the electrochemical isolation of the ready to use chitinous matrices from three species of verongiid demosponges (Aplysina archeri, Ianthella basta and Suberea clavata) as a perfect example of possible morphological and chemical dimorphism in the case of the marine chitin sources. The electrolysis of concentrated Na2SO4 aqueous solution showed its superiority over the chemical chitin isolation method in terms of the treatment time reduction: only 5.5 h for A. archeri, 16.5 h for I. basta and 20 h for the S. clavata sample. Further investigation of the isolated scaffolds by digital microscopy and SEM showed that the electrolysis-supported isolation process obtains chitinous scaffolds with well-preserved spatial structure and it can be competitive to other alternative chitin isolation techniques that use external accelerating factors such as microwave irradiation or atmospheric plasma. Moreover, the infrared spectroscopy (ATR-FTIR) proved that with the applied electrochemical conditions, the transformation into chitosan does not take place.
Collapse
Affiliation(s)
- Krzysztof Nowacki
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Maciej Galiński
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Andriy Fursov
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner Str. 3, 09599 Freiberg, Germany
| | - Alona Voronkina
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner Str. 3, 09599 Freiberg, Germany
- Department of Pharmacy, National Pirogov Memorial Medical University, 21018 Vinnytsia, Ukraine
| | - Heike Meissner
- Department of Prosthetic Dentistry, Faculty of Medicine, University Hospital Carl Gustav Carus of Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Iaroslav Petrenko
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner Str. 3, 09599 Freiberg, Germany
| | - Allison L. Stelling
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner Str. 3, 09599 Freiberg, Germany
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland
| |
Collapse
|
12
|
Sugumaran A, Pandiyan R, Kandasamy P, Antoniraj MG, Navabshan I, Sakthivel B, Dharmaraj S, Chinnaiyan SK, Ashokkumar V, Ngamcharussrivichai C. Marine biome-derived secondary metabolites, a class of promising antineoplastic agents: A systematic review on their classification, mechanism of action and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155445. [PMID: 35490806 DOI: 10.1016/j.scitotenv.2022.155445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Cancer is one of the most deadly diseases on the planet. Over the past decades, numerous antineoplastic compounds have been discovered from natural resources such as medicinal plants and marine species as part of multiple drug discovery initiatives. Notably, several marine flora (e.g. Ascophyllum nodosum, Sargassum thunbergii) have been identified as a rich source for novel cytotoxic compounds of different chemical forms. Despite the availability of enormous chemically enhanced new resources, the anticancer potential of marine flora and fauna has received little attention. Interestingly, numerous marine-derived secondary metabolites (e.g., Cytarabine, Trabectedin) have exhibited anticancer effects in preclinical cancer models. Most of the anticancer drugs obtained from marine sources stimulated apoptotic signal transduction pathways in cancer cells, such as the intrinsic and extrinsic pathways. This review highlights the sources of different cytotoxic secondary metabolites obtained from marine bacteria, algae, fungi, invertebrates, and vertebrates. Furthermore, this review provides a comprehensive overview of the utilisation of numerous marine-derived cytotoxic compounds as anticancer drugs, as well as their modes of action (e.g., molecular target). Finally, it also discusses the future prospects of marine-derived drug developments and their constraints.
Collapse
Affiliation(s)
- Abimanyu Sugumaran
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Rajesh Pandiyan
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai 600073, India
| | - Palanivel Kandasamy
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, Inselspital, University of Bern, Bern, Switzerland; Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Mariya Gover Antoniraj
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Science, Ben-Gurion University of Negev, Israel
| | - Irfan Navabshan
- Crescent School of Pharmacy, B.S. Abdur Rahman Cresent Institute of Science and Technology, Chennai, India
| | | | - Selvakumar Dharmaraj
- Department of Marine Biotechnology, Academy of Maritime Education and Training [AMET] (Deemed to be University), Chennai 603112, Tamil Nadu, India
| | - Santhosh Kumar Chinnaiyan
- Department of Pharmaceutics, Srikrupa Institute of Pharmaceutical Sciences, Velikatta, Kondapak, Siddipet, Telangana State 502277, India.
| | - Veeramuthu Ashokkumar
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India; Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand.
| | - Chawalit Ngamcharussrivichai
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand
| |
Collapse
|
13
|
Rahman MM, Islam MR, Shohag S, Hossain ME, Shah M, Shuvo SK, Khan H, Chowdhury MAR, Bulbul IJ, Hossain MS, Sultana S, Ahmed M, Akhtar MF, Saleem A, Rahman MH. Multifaceted role of natural sources for COVID-19 pandemic as marine drugs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46527-46550. [PMID: 35507224 PMCID: PMC9065247 DOI: 10.1007/s11356-022-20328-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/14/2022] [Indexed: 05/05/2023]
Abstract
COVID-19, which is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly spread over the world, posing a global health concern. The ongoing epidemic has necessitated the development of novel drugs and potential therapies for patients infected with SARS-CoV-2. Advances in vaccination and medication development, no preventative vaccinations, or viable therapeutics against SARS-CoV-2 infection have been developed to date. As a result, additional research is needed in order to find a long-term solution to this devastating condition. Clinical studies are being conducted to determine the efficacy of bioactive compounds retrieved or synthesized from marine species starting material. The present study focuses on the anti-SARS-CoV-2 potential of marine-derived phytochemicals, which has been investigated utilizing in in silico, in vitro, and in vivo models to determine their effectiveness. Marine-derived biologically active substances, such as flavonoids, tannins, alkaloids, terpenoids, peptides, lectins, polysaccharides, and lipids, can affect SARS-CoV-2 during the viral particle's penetration and entry into the cell, replication of the viral nucleic acid, and virion release from the cell; they can also act on the host's cellular targets. COVID-19 has been proven to be resistant to several contaminants produced from marine resources. This paper gives an overview and summary of the various marine resources as marine drugs and their potential for treating SARS-CoV-2. We discussed at numerous natural compounds as marine drugs generated from natural sources for treating COVID-19 and controlling the current pandemic scenario.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sheikh Shohag
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj-8100, Gopalganj, Bangladesh
| | - Md Emon Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Shakil Khan Shuvo
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Hosneara Khan
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | | | - Israt Jahan Bulbul
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh
| | - Md Sarowar Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore Campus, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh.
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Korea.
| |
Collapse
|
14
|
Bioremediation Capabilities of Hymeniacidon perlevis (Porifera, Demospongiae) in a Land-Based Experimental Fish Farm. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10070874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The expansion of aquaculture practices in coastal areas can alter the balance of microbial communities in nearby marine ecosystems with negative impacts on both farmed and natural species, as well as on human health through their consumption. Among marine filter-feeder invertebrates, poriferans are known as effective microbial bioremediators, even though they are currently still underutilized in association with fish mariculture plants. In this study, we investigate the microbial bioremediation capability of the demosponge Hymeniacidon perlevis in an experimental land-based fish farm where this species occurred consistently in the drainage conduit of the wastewater. Microbiological analyses of cultivable vibrios, total culturable bacteria (37 °C), fecal and total coliforms, and fecal enterococci were carried out on the fish farm wastewater in two sampling periods: autumn and spring. The results showed that H. perlevis is able to filter and remove all the considered bacterial groups from the wastewater, including human potential pathogens, in both sampling periods. This finding sustains the hypothesis of H. perlevis use as a bioremediator in land-based aquaculture plants as well.
Collapse
|
15
|
Triunfo M, Tafi E, Guarnieri A, Salvia R, Scieuzo C, Hahn T, Zibek S, Gagliardini A, Panariello L, Coltelli MB, De Bonis A, Falabella P. Characterization of chitin and chitosan derived from Hermetia illucens, a further step in a circular economy process. Sci Rep 2022; 12:6613. [PMID: 35459772 PMCID: PMC9033872 DOI: 10.1038/s41598-022-10423-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/28/2022] [Indexed: 11/09/2022] Open
Abstract
Due to their properties and applications, the growing demand for chitin and chitosan has stimulated the market to find more sustainable alternatives to the current commercial source (crustaceans). Bioconverter insects, such as Hermetia illucens, are the appropriate candidates, as chitin is a side stream of insect farms for feed applications. This is the first report on production and characterization of chitin and chitosan from different biomasses derived from H. illucens, valorizing the overproduced larvae in feed applications, the pupal exuviae and the dead adults. Pupal exuviae are the best biomass, both for chitin and chitosan yields and for their abundance and easy supply from insect farms. Fourier-transform infrared spectroscopy, X-ray diffraction and scanning electron microscope analysis revealed the similarity of insect-derived polymers to commercial ones in terms of purity and structural morphology, and therefore their suitability for industrial and biomedical applications. Its fibrillary nature makes H. illucens chitin suitable for producing fibrous manufacts after conversion to chitin nanofibrils, particularly adults-derived chitin, because of its high crystallinity. A great versatility emerged from the evaluation of the physicochemical properties of chitosan obtained from H. illucens, which presented a lower viscosity-average molecular weight and a high deacetylation degree, fostering its putative antimicrobial properties.
Collapse
Affiliation(s)
- Micaela Triunfo
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Elena Tafi
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Anna Guarnieri
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, Potenza, Italy.
- Spinoff XFLIES s.r.l, University of Basilicata, Potenza, Italy.
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Potenza, Italy
- Spinoff XFLIES s.r.l, University of Basilicata, Potenza, Italy
| | - Thomas Hahn
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Susanne Zibek
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | | | - Luca Panariello
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
| | | | - Angela De Bonis
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Potenza, Italy.
- Spinoff XFLIES s.r.l, University of Basilicata, Potenza, Italy.
| |
Collapse
|
16
|
Kertmen A, Ehrlich H. Patentology of chitinous biomaterials. Part I: Chitin. Carbohydr Polym 2022; 282:119102. [DOI: 10.1016/j.carbpol.2022.119102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 01/08/2023]
|
17
|
Romano G, Almeida M, Varela Coelho A, Cutignano A, Gonçalves LG, Hansen E, Khnykin D, Mass T, Ramšak A, Rocha MS, Silva TH, Sugni M, Ballarin L, Genevière AM. Biomaterials and Bioactive Natural Products from Marine Invertebrates: From Basic Research to Innovative Applications. Mar Drugs 2022; 20:md20040219. [PMID: 35447892 PMCID: PMC9027906 DOI: 10.3390/md20040219] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022] Open
Abstract
Aquatic invertebrates are a major source of biomaterials and bioactive natural products that can find applications as pharmaceutics, nutraceutics, cosmetics, antibiotics, antifouling products and biomaterials. Symbiotic microorganisms are often the real producers of many secondary metabolites initially isolated from marine invertebrates; however, a certain number of them are actually synthesized by the macro-organisms. In this review, we analysed the literature of the years 2010–2019 on natural products (bioactive molecules and biomaterials) from the main phyla of marine invertebrates explored so far, including sponges, cnidarians, molluscs, echinoderms and ascidians, and present relevant examples of natural products of interest to public and private stakeholders. We also describe omics tools that have been more relevant in identifying and understanding mechanisms and processes underlying the biosynthesis of secondary metabolites in marine invertebrates. Since there is increasing attention on finding new solutions for a sustainable large-scale supply of bioactive compounds, we propose that a possible improvement in the biodiscovery pipeline might also come from the study and utilization of aquatic invertebrate stem cells.
Collapse
Affiliation(s)
- Giovanna Romano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
- Correspondence: (G.R.); (L.B.)
| | - Mariana Almeida
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Varela Coelho
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (A.V.C.); (L.G.G.)
| | - Adele Cutignano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
- CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Luis G Gonçalves
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (A.V.C.); (L.G.G.)
| | - Espen Hansen
- Marbio, UiT-The Arctic University of Norway, 9037 Tromso, Norway;
| | - Denis Khnykin
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Department of Pathology, Oslo University Hospital-Rikshospitalet, 0450 Oslo, Norway;
| | - Tali Mass
- Faculty of Natural Science, Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel;
| | - Andreja Ramšak
- National Institute of Biology, Marine Biology Station, Fornače 41, SI-6330 Piran, Slovenia;
| | - Miguel S. Rocha
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133 Milan, Italy;
| | - Loriano Ballarin
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35100 Padova, Italy
- Correspondence: (G.R.); (L.B.)
| | - Anne-Marie Genevière
- Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, CNRS, 1 Avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France;
| |
Collapse
|
18
|
Pokharkar O, Lakshmanan H, Zyryanov G, Tsurkan M. In Silico Evaluation of Antifungal Compounds from Marine Sponges against COVID-19-Associated Mucormycosis. Mar Drugs 2022; 20:215. [PMID: 35323514 PMCID: PMC8950821 DOI: 10.3390/md20030215] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/07/2022] [Accepted: 03/15/2022] [Indexed: 11/27/2022] Open
Abstract
The world is already facing the devastating effects of the SARS-CoV-2 pandemic. A disseminated mucormycosis epidemic emerged to worsen this situation, causing havoc, especially in India. This research aimed to perform a multitargeted docking study of marine-sponge-origin bioactive compounds against mucormycosis. Information on proven drug targets and marine sponge compounds was obtained via a literature search. A total of seven different targets were selected. Thirty-five compounds were chosen using the PASS online program. For homology modeling and molecular docking, FASTA sequences and 3D structures for protein targets were retrieved from NCBI and PDB databases. Autodock Vina in PyRx 0.8 was used for docking studies. Further, molecular dynamics simulations were performed using the IMODS server for top-ranked docked complexes. Moreover, the drug-like properties and toxicity analyses were performed using Lipinski parameters in Swiss-ADME, OSIRIS, ProTox-II, pkCSM, and StopTox servers. The results indicated that naamine D, latrunculin A and S, (+)-curcudiol, (+)-curcuphenol, aurantoside I, and hyrtimomine A had the highest binding affinity values of -8.8, -8.6, -9.8, -11.4, -8.0, -11.4, and -9.0 kcal/mol, respectively. In sum, all MNPs included in this study are good candidates against mucormycosis. (+)-curcudiol and (+)-curcuphenol are promising compounds due to their broad-spectrum target inhibition potential.
Collapse
Affiliation(s)
- Omkar Pokharkar
- Department of Organic & Bio-Molecular Chemistry, Chemical Engineering Institute, Ural Federal University, Mira St. 19, 620002 Yekaterinburg, Russia;
| | - Hariharan Lakshmanan
- La Trobe Institute of Molecular Science, Plenty Rd & Kingsbury Dr., Bundoora, Melbourne, VIC 3086, Australia;
| | - Grigory Zyryanov
- Department of Organic & Bio-Molecular Chemistry, Chemical Engineering Institute, Ural Federal University, Mira St. 19, 620002 Yekaterinburg, Russia;
- Postovsky Institute of Organic Synthesis of RAS (Ural Division), 22/20, S. Kovalevskoy/Akademicheskaya St., 620990 Yekaterinburg, Russia
| | - Mikhail Tsurkan
- Leibniz Institute of Polymer Research, 01005 Dresden, Germany
| |
Collapse
|
19
|
Biocatalytic System Made of 3D Chitin, Silica Nanopowder and Horseradish Peroxidase for the Removal of 17α-Ethinylestradiol: Determination of Process Efficiency and Degradation Mechanism. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041354. [PMID: 35209143 PMCID: PMC8876220 DOI: 10.3390/molecules27041354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 11/26/2022]
Abstract
The occurrence of 17α-ethinylestradiol (EE2) in the environment and its removal have drawn special attention from the scientific community in recent years, due to its hazardous effects on human and wildlife around the world. Therefore, the aim of this study was to produce an efficient enzymatic system for the removal of EE2 from aqueous solutions. For the first time, commercial silica nanopowder and 3D fibrous chitinous scaffolds from Aplysina fistularis marine sponge were used as supports for horseradish peroxidase (HRP) immobilization. The effect of several process parameters onto the removal mechanism of EE2 by enzymatic conversion and adsorption of EE2 were investigated here, including system type, pH, temperature and concentrations of H2O2 and EE2. It was possible to fully remove EE2 from aqueous solutions using system SiO2(HRP)–chitin(HRP) over a wide investigated pH range (5–9) and temperature ranges (4–45 °C). Moreover, the most suitable process conditions have been determined at pH 7, temperature 25 °C and H2O2 and EE2 concentrations equaling 2 mM and 1 mg/L, respectively. As determined, it was possible to reuse the nanoSiO2(HRP)–chitin(HRP) system to obtain even 55% EE2 degradation efficiency after five consecutive catalytic cycles.
Collapse
|
20
|
Zhang X, Mao Y, Briber RM. Efficient production of oligomeric chitin with narrow distributions of degree of polymerization using sonication-assisted phosphoric acid hydrolysis. Carbohydr Polym 2022; 276:118736. [PMID: 34823772 DOI: 10.1016/j.carbpol.2021.118736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 01/19/2023]
Abstract
A method of producing oligomeric chitin using sonication-assisted phosphoric acid hydrolysis was introduced. The processing was continuous and scalable. Oligomeric chitin fractions with narrow distributions of degree of polymerization were obtained by differential precipitation using ethanol as precipitating agent at different ethanol-to-phosphoric-acid-solution volume ratios. The yield of oligomeric chitin with degree of polymerization between 4 and 10 was ≈30% (mass fraction). The content of each fraction was characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI TOF MS). Changes in chemical composition of oligomeric chitin were negligible, as verified by MALDI TOF MS, Fourier-transform infrared, and nuclear magnetic resonance spectroscopy. This new method for producing oligomeric chitin molecules is rapid, cost-effective, and safe.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA.
| | - Yimin Mao
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA; NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Robert M Briber
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
21
|
Machałowski T, Idaszek J, Chlanda A, Heljak M, Piasecki A, Święszkowski W, Jesionowski T. Naturally prefabricated 3D chitinous skeletal scaffold of marine demosponge origin, biomineralized ex vivo as a functional biomaterial. Carbohydr Polym 2022; 275:118750. [PMID: 34742446 DOI: 10.1016/j.carbpol.2021.118750] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/15/2021] [Accepted: 10/08/2021] [Indexed: 01/10/2023]
Abstract
Solutions developed by nature for structural and functional optimization of three-dimensional (3D) skeletal structures provide unique windows not only into the evolutionary pathways of organisms, but also into bioinspired materials science and biomimetics. Great examples are naturally formed 3D chitinous scaffolds of marine sponge remain a focus of modern biomedicine and tissue engineering. Due to its properties like renewability, bioactivity, and biodegradability such constructs became very interesting players as components of organic-inorganic biocomposites. Herein, we developed chitin-based biocomposites by biomimetic ex vivo deposition of calcium carbonate particles using hemolymph from the cultivated mollusk Cornu aspersum and chitinous matrix from the marine demosponge Aplysina fistularis. The biological potential of the developed biofunctionalized scaffolds for bone tissue engineering was evaluated by investigating the spreading and viability of a human fetal osteoblast cell line has been determined for the first time. Performed analyses like dynamic mechanical analysis and atomic force microscopy shown that biofunctionalized scaffold possess about 4 times higher mechanical resistance. Moreover, several topographical changes have been observed, as e.g., surface roughness (Rq) increased from 31.75 ± 2.7 nm to 120.7 ± 0.3 nm. The results are indicating its potential for use in the modification of cell delivery systems in future biomedical applications.
Collapse
Affiliation(s)
- Tomasz Machałowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan 60-965, Poland
| | - Joanna Idaszek
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw 02-507, Poland
| | - Adrian Chlanda
- Łukasiewicz Research Network - Institute of Microelectronics and Photonics, Department of Chemical Synthesis and Flake Graphene, 02-668 Warsaw, Poland
| | - Marcin Heljak
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw 02-507, Poland
| | - Adam Piasecki
- Institute of Materials Science and Engineering, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Poznan 60-965, Poland
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw 02-507, Poland.
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan 60-965, Poland.
| |
Collapse
|
22
|
Di Cesare Mannelli L, Palma Esposito F, Sangiovanni E, Pagano E, Mannucci C, Polini B, Ghelardini C, Dell’Agli M, Izzo AA, Calapai G, de Pascale D, Nieri P. Pharmacological Activities of Extracts and Compounds Isolated from Mediterranean Sponge Sources. Pharmaceuticals (Basel) 2021; 14:ph14121329. [PMID: 34959729 PMCID: PMC8715745 DOI: 10.3390/ph14121329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022] Open
Abstract
Marine pharmacology is an exciting and growing discipline that blends blue biotechnology and natural compound pharmacology together. Several sea-derived compounds that are approved on the pharmaceutical market were discovered in sponges, marine organisms that are particularly rich in bioactive metabolites. This paper was specifically aimed at reviewing the pharmacological activities of extracts or purified compounds from marine sponges that were collected in the Mediterranean Sea, one of the most biodiverse marine habitats, filling the gap in the literature about the research of natural products from this geographical area. Findings regarding different Mediterranean sponge species were individuated, reporting consistent evidence of efficacy mainly against cancer, infections, inflammatory, and neurological disorders. The sustainable exploitation of Mediterranean sponges as pharmaceutical sources is strongly encouraged to discover new compounds.
Collapse
Affiliation(s)
- Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health—Neurofarba—Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy;
- Correspondence:
| | - Fortunato Palma Esposito
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (F.P.E.); (D.d.P.)
| | - Enrico Sangiovanni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (E.S.); (M.D.)
| | - Ester Pagano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (E.P.); (A.A.I.)
| | - Carmen Mannucci
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy; (C.M.); (G.C.)
| | - Beatrice Polini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (P.N.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health—Neurofarba—Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy;
| | - Mario Dell’Agli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (E.S.); (M.D.)
| | - Angelo Antonio Izzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (E.P.); (A.A.I.)
| | - Gioacchino Calapai
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy; (C.M.); (G.C.)
| | - Donatella de Pascale
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (F.P.E.); (D.d.P.)
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (P.N.)
- Interdepartmental Center of Marine Pharmacology (MarinePHARMA), University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
23
|
Wan MC, Qin W, Lei C, Li QH, Meng M, Fang M, Song W, Chen JH, Tay F, Niu LN. Biomaterials from the sea: Future building blocks for biomedical applications. Bioact Mater 2021; 6:4255-4285. [PMID: 33997505 PMCID: PMC8102716 DOI: 10.1016/j.bioactmat.2021.04.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 02/08/2023] Open
Abstract
Marine resources have tremendous potential for developing high-value biomaterials. The last decade has seen an increasing number of biomaterials that originate from marine organisms. This field is rapidly evolving. Marine biomaterials experience several periods of discovery and development ranging from coralline bone graft to polysaccharide-based biomaterials. The latter are represented by chitin and chitosan, marine-derived collagen, and composites of different organisms of marine origin. The diversity of marine natural products, their properties and applications are discussed thoroughly in the present review. These materials are easily available and possess excellent biocompatibility, biodegradability and potent bioactive characteristics. Important applications of marine biomaterials include medical applications, antimicrobial agents, drug delivery agents, anticoagulants, rehabilitation of diseases such as cardiovascular diseases, bone diseases and diabetes, as well as comestible, cosmetic and industrial applications.
Collapse
Affiliation(s)
- Mei-chen Wan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Wen Qin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Chen Lei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Qi-hong Li
- Department of Stomatology, The Fifth Medical Centre, Chinese PLA General Hospital (Former 307th Hospital of the PLA), Dongda Street, Beijing, 100071, PR China
| | - Meng Meng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Ming Fang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Wen Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Ji-hua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Franklin Tay
- College of Graduate Studies, Augusta University, Augusta, GA, 30912, USA
| | - Li-na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, PR China
| |
Collapse
|
24
|
Natural Bioactive Compounds Targeting Epigenetic Pathways in Cancer: A Review on Alkaloids, Terpenoids, Quinones, and Isothiocyanates. Nutrients 2021; 13:nu13113714. [PMID: 34835969 PMCID: PMC8621755 DOI: 10.3390/nu13113714] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is one of the most complex and systemic diseases affecting the health of mankind, causing major deaths with a significant increase. This pathology is caused by several risk factors, of which genetic disturbances constitute the major elements, which not only initiate tumor transformation but also epigenetic disturbances which are linked to it and which can induce transcriptional instability. Indeed, the involvement of epigenetic disturbances in cancer has been the subject of correlations today, in addition to the use of drugs that operate specifically on different epigenetic pathways. Natural molecules, especially those isolated from medicinal plants, have shown anticancer effects linked to mechanisms of action. The objective of this review is to explore the anticancer effects of alkaloids, terpenoids, quinones, and isothiocyanates.
Collapse
|
25
|
Microwave Technology Using Low Energy Concentrated Beam for Processing of Solid Waste Materials from Rapana thomasiana Seashells. ENERGIES 2021. [DOI: 10.3390/en14206780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The solid waste of Rapana thomasiana seashells both from domestic activities and natural waste on seashore can be used to obtain viable products for medical applications. However, conventional technologies applied for sintering the materials require massive energy consumption due to the resistance heating. Microwave heating represents an advanced technology for sintering, but the stability of the process, in terms of thermal runaway and microwave plasma arc discharge, jeopardizes the quality of the sintered products. This paper aims to present the results of research focused on viable heating technology and the mechanical properties of the final products. A comparative analysis, in terms of energy efficiency vs. mechanical properties, has been performed for three different heating technologies: direct microwave heating, hybrid microwave heating and resistance heating. The results obtained concluded that the hybrid microwave heating led to final products from Rapana thomasiana solid waste with similar mechanical properties compared with resistance heating. In terms of energy efficiency, the hybrid microwave heating was 20 times better than resistance heating.
Collapse
|
26
|
Colijn I, Fokkink R, Schroën K. Quantification of energy input required for chitin nanocrystal aggregate size reduction through ultrasound. Sci Rep 2021; 11:17217. [PMID: 34446774 PMCID: PMC8390482 DOI: 10.1038/s41598-021-96657-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Nanoparticles have been claimed to contribute efficiently to e.g. the mechanical strength of composite materials when present as individual particles. However, these particles tend to aggregate. In this paper we prepare nanocrystals from chitin, a product with high potential added value for application in bio-based materials, and investigate the effect of ultrasound on de-aggregation. Chitin nanocrystals with a length ~ 200 nm and a diameter ~ 15 nm, were obtained via acid hydrolysis of crude chitin powder. Freeze drying resulted in severe aggregation and after redispersion sizes up to ~ 200 µm were found. Ultrasound treatment was applied and break up behaviour was investigated using static light scattering, dynamic light scattering, and laser diffraction. Our results suggest that the cumulative energy input was the dominant factor for chitin nanocrystal aggregate breakup. When a critical energy barrier of ~ 100 kJ/g chitin nanocrystals was exceeded, the chitin nanocrystal aggregates broke down to nanometre range. The break up was mostly a result of fragmentation: the aggregation energy of chitin nanocrystal aggregates was quantified to be ~ 370 kJ/g chitin nanocrystals and we hypothesize that mainly van der Waals interactions and hydrogen bonds are responsible for aggregation.
Collapse
Affiliation(s)
- Ivanna Colijn
- grid.4818.50000 0001 0791 5666Wageningen University and Research, Food Process Engineering Group, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Remco Fokkink
- grid.4818.50000 0001 0791 5666Wageningen University and Research, Physical Chemistry and Soft Matter Group, Stippeneng 4, 6708 WE Wagningen, The Netherlands
| | - Karin Schroën
- grid.4818.50000 0001 0791 5666Wageningen University and Research, Food Process Engineering Group, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
27
|
Geahchan S, Ehrlich H, Rahman MA. The Anti-Viral Applications of Marine Resources for COVID-19 Treatment: An Overview. Mar Drugs 2021; 19:409. [PMID: 34436248 PMCID: PMC8402008 DOI: 10.3390/md19080409] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
The ongoing pandemic has led to an urgent need for novel drug discovery and potential therapeutics for Sars-CoV-2 infected patients. Although Remdesivir and the anti-inflammatory agent dexamethasone are currently on the market for treatment, Remdesivir lacks full efficacy and thus, more drugs are needed. This review was conducted through literature search of PubMed, MDPI, Google Scholar and Scopus. Upon review of existing literature, it is evident that marine organisms harbor numerous active metabolites with anti-viral properties that serve as potential leads for COVID-19 therapy. Inorganic polyphosphates (polyP) naturally found in marine bacteria and sponges have been shown to prevent viral entry, induce the innate immune response, and downregulate human ACE-2. Furthermore, several marine metabolites isolated from diverse sponges and algae have been shown to inhibit main protease (Mpro), a crucial protein required for the viral life cycle. Sulfated polysaccharides have also been shown to have potent anti-viral effects due to their anionic properties and high molecular weight. Likewise, select marine sponges produce bromotyrosines which have been shown to prevent viral entry, replication and protein synthesis. The numerous compounds isolated from marine resources demonstrate significant potential against COVID-19. The present review for the first time highlights marine bioactive compounds, their sources, and their anti-viral mechanisms of action, with a focus on potential COVID-19 treatment.
Collapse
Affiliation(s)
- Sarah Geahchan
- Centre for Climate Change Research, Toronto, ON M4P 1J4, Canada; (S.G.); (H.E.)
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 2E8, Canada
| | - Hermann Ehrlich
- Centre for Climate Change Research, Toronto, ON M4P 1J4, Canada; (S.G.); (H.E.)
- A.R. Environmental Solutions, University of Toronto, ICUBE-UTM, Mississauga, ON L5L 1C6, Canada
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
| | - M. Azizur Rahman
- Centre for Climate Change Research, Toronto, ON M4P 1J4, Canada; (S.G.); (H.E.)
- A.R. Environmental Solutions, University of Toronto, ICUBE-UTM, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
28
|
Synthesis and Cytotoxicity Evaluation of Spirocyclic Bromotyrosine Clavatadine C Analogs. Mar Drugs 2021; 19:md19070400. [PMID: 34356825 PMCID: PMC8305101 DOI: 10.3390/md19070400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/01/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
Marine-originated spirocyclic bromotyrosines are considered as promising scaffolds for new anticancer drugs. In a continuation of our research to develop potent and more selective anticancer compounds, we synthesized a library of 32 spirocyclic clavatadine analogs by replacing the agmatine, i.e., 4-(aminobutyl)guanidine, side chain with different substituents. These compounds were tested for cytotoxicity against skin cancer using the human melanoma cell line (A-375) and normal human skin fibroblast cell line (Hs27). The highest cytotoxicity against the A-375 cell line was observed for dichloro compound 18 (CC50 0.4 ± 0.3 µM, selectivity index (SI) 2). The variation of selectivity ranged from SI 0.4 to reach 2.4 for the pyridin-2-yl derivative 29 and hydrazide analog of 2-picoline 37. The structure-activity relationships of the compounds in respect to cytotoxicity and selectivity toward cancer cell lines are discussed.
Collapse
|
29
|
Naturally Formed Chitinous Skeleton Isolated from the Marine Demosponge Aplysina fistularis as a 3D Scaffold for Tissue Engineering. MATERIALS 2021; 14:ma14112992. [PMID: 34205950 PMCID: PMC8198059 DOI: 10.3390/ma14112992] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022]
Abstract
Tissue engineering (TE) is a field of regenerative medicine that has been experiencing a special boom in recent years. Among various materials used as components of 3D scaffolds, naturally formed chitinous materials seem to be especially attractive because of their abundance, non-toxic and eco-friendly character. In this study, chitinous skeleton isolated from the marine sponge Aplysina fistularis (phylum: Porifera) was used for the first time as a support for the cultivation of murine fibroblasts (Balb/3T3), human dermal fibroblasts (NHDF), human keratinocyte (HaCaT), and human neuronal (SH-SY5Y) cells. Characterization techniques such as ATR FTIR, TGA, and μCT, clearly indicate that an interconnected macro-porous, thermostable, pure α-chitin scaffold was obtained after alkali–acid treatment of air-dried marine sponge. The biocompatibility of the naturally formed chitin scaffolds was confirmed by cell attachment and proliferation determined by various microscopic methods (e.g., SEM, TEM, digital microscopy) and specific staining. Our observations show that fibroblasts and keratinocytes form clusters on scaffolds that resemble a skin structure, including the occurrence of desmosomes in keratinocyte cells. The results obtained here suggest that the chitinous scaffold from the marine sponge A. fistularis is a promising biomaterial for future research about tissues regeneration.
Collapse
|
30
|
Laffoley D, Baxter J, Amon D, Claudet J, Hall‐Spencer J, Grorud‐Colvert K, Levin L, Reid P, Rogers A, Taylor M, Woodall L, Andersen N. Evolving the narrative for protecting a rapidly changing ocean, post-COVID-19. AQUATIC CONSERVATION : MARINE AND FRESHWATER ECOSYSTEMS 2021; 31:1512-1534. [PMID: 33362396 PMCID: PMC7753556 DOI: 10.1002/aqc.3512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 05/02/2023]
Abstract
The ocean is the linchpin supporting life on Earth, but it is in declining health due to an increasing footprint of human use and climate change. Despite notable successes in helping to protect the ocean, the scale of actions is simply not now meeting the overriding scale and nature of the ocean's problems that confront us.Moving into a post-COVID-19 world, new policy decisions will need to be made. Some, especially those developed prior to the pandemic, will require changes to their trajectories; others will emerge as a response to this global event. Reconnecting with nature, and specifically with the ocean, will take more than good intent and wishful thinking. Words, and how we express our connection to the ocean, clearly matter now more than ever before.The evolution of the ocean narrative, aimed at preserving and expanding options and opportunities for future generations and a healthier planet, is articulated around six themes: (1) all life is dependent on the ocean; (2) by harming the ocean, we harm ourselves; (3) by protecting the ocean, we protect ourselves; (4) humans, the ocean, biodiversity, and climate are inextricably linked; (5) ocean and climate action must be undertaken together; and (6) reversing ocean change needs action now.This narrative adopts a 'One Health' approach to protecting the ocean, addressing the whole Earth ocean system for better and more equitable social, cultural, economic, and environmental outcomes at its core. Speaking with one voice through a narrative that captures the latest science, concerns, and linkages to humanity is a precondition to action, by elevating humankind's understanding of our relationship with 'planet Ocean' and why it needs to become a central theme to everyone's lives. We have only one ocean, we must protect it, now. There is no 'Ocean B'.
Collapse
Affiliation(s)
- D. Laffoley
- IUCN World Commission on Protected AreasIUCN (International Union for Conservation of Nature)GlandSwitzerland
| | - J.M. Baxter
- Marine Alliance for Science and Technology for Scotland, School of Biology, East SandsUniversity of St AndrewsSt AndrewsUK
| | - D.J. Amon
- Department of Life SciencesNatural History MuseumLondonUK
| | - J. Claudet
- National Centre for Scientific ResearchPSL Université Paris, CRIOBE, USR 3278 CNRS‐EPHE‐UPVDParisFrance
| | - J.M. Hall‐Spencer
- School of Marine and Biological SciencesUniversity of PlymouthPlymouthUK
- Shimoda Marine Research CenterUniversity of TsukubaShimodaJapan
| | - K. Grorud‐Colvert
- Department of Integrative BiologyOregon State UniversityCorvallisUSA
| | - L.A. Levin
- Center for Marine Biodiversity and Conservation, Scripps Institution of OceanographyUniversity of California San DiegoLa JollaUSA
| | - P.C. Reid
- School of Marine and Biological SciencesUniversity of PlymouthPlymouthUK
- The LaboratoryThe Continuous Plankton Recorder Survey, Marine Biological AssociationCitadel HillPlymouthUK
| | - A.D. Rogers
- Somerville CollegeUniversity of OxfordOxfordUK
- REV OceanLysakerNorway
| | | | - L.C. Woodall
- Department of ZoologyUniversity of OxfordOxfordUK
| | - N.F. Andersen
- Department of Environment and GeographyUniversity of YorkYorkUK
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
| |
Collapse
|
31
|
Yui T, Uto T, Ogawa K. Molecular and Crystal Structure of a Chitosan-Zinc Chloride Complex. NANOMATERIALS 2021; 11:nano11061407. [PMID: 34073379 PMCID: PMC8229668 DOI: 10.3390/nano11061407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 01/11/2023]
Abstract
We determined the molecular and packing structure of a chitosan–ZnCl2 complex by X-ray diffraction and linked-atom least-squares. Eight D-glucosamine residues—composed of four chitosan chains with two-fold helical symmetry, and four ZnCl2 molecules—were packed in a rectangular unit cell with dimensions a = 1.1677 nm, b = 1.7991 nm, and c = 1.0307 nm (where c is the fiber axis). We performed exhaustive structure searches by examining all of the possible chain packing modes. We also comprehensively searched the positions and spatial orientations of the ZnCl2 molecules. Chitosan chains of antiparallel polarity formed zigzag-shaped chain sheets, where N2···O6, N2···N2, and O6···O6 intermolecular hydrogen bonds connected the neighboring chains. We further refined the packing positions of the ZnCl2 molecules by theoretical calculations of the crystal models, which suggested a possible coordination scheme of Zn(II) with an O6 atom.
Collapse
Affiliation(s)
- Toshifumi Yui
- Faculty of Engineering, University of Miyazaki, Nishi 1-1 Gakuen-kibanadai, Miyazaki 889-2192, Japan
- Correspondence: ; Tel.: +81-985-58-7319
| | - Takuya Uto
- Organization for Promotion of Tenure Track, University of Miyazaki, Nishi 1-1 Gakuen-kibanadai, Miyazaki 889-2192, Japan;
| | - Kozo Ogawa
- Research Institute for Advanced Science and Technology, Osaka Prefecture University, 1-2 Gakuencho, Sakai, Osaka 599-8570, Japan;
| |
Collapse
|
32
|
Cytotoxic Compounds of Two Demosponges ( Aplysina aerophoba and Spongia sp.) from the Aegean Sea. Biomolecules 2021; 11:biom11050723. [PMID: 34065941 PMCID: PMC8151441 DOI: 10.3390/biom11050723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/21/2022] Open
Abstract
The class of demosponges is the biggest and most diverse of all described sponge species and it is reported to produce a plethora of chemically different metabolites with interesting biological activities. The focus of the present study was to investigate the chemical composition of two Mediterranean demosponges, targeting their brominated compounds and prenylated hydroquinones, compounds with interesting cytotoxic and anti-microbial properties. In order to gain a deeper insight into the chemical diversity of their metabolites and their activities, 20 pure secondary metabolites including new natural products were isolated from two different species (Aplysina aerophoba and Spongia sp.) using various chromatographic techniques. Their structures were confirmed by NMR and HRMS, revealing molecules with various chemical scaffolds, mainly prenylated hydroquinones from Spongia sp. and halogenated compounds from Aplysina aerophoba, including 5 novel natural products. The isolated compounds were investigated for their cytotoxic properties using 9 different cell lines, and especially one compound, 2,6-dibromo-4-hydroxy-4-methoxycarbonylmethylcyclohexa-2,5-dien-1-one showed good activities in all tested models.
Collapse
|
33
|
Jo SH, Kim C, Park SH. Novel Marine Organism-Derived Extracellular Vesicles for Control of Anti-Inflammation. Tissue Eng Regen Med 2021; 18:71-79. [PMID: 33415671 DOI: 10.1007/s13770-020-00319-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/13/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) exhibit potential as functional biomolecules for tissue regeneration and immunomodulation as they play important roles in the physiological communication between cells. EV internal cargo contains miRNAs, proteins, lipids, and so on. Osteoarthritis (OA) is a common joint disease causing disability owing to impaired joint function and pain. EVs originating from animal cells and tissue matrices are also being considered for OA, in addition to research involving non-steroidal therapeutic agents. However, there are no studies on EVs from marine organisms. Hence, we focused on sea cucumber-derived EVs and conducted experiments to set up an extraction protocol and to demonstrate their efficacy to modulate the inflammatory environment. METHODS Sea cucumber extracellular matrices (SECMs) were prepared by a decellularization process. Lyophilized SECMs were treated with collagenase and filtered to isolate sea cucumber extracellular vesicles (SEVs). After isolation, we conducted physical characterization and cell activation studies including cytotoxicity, proliferation, and anti-inflammation effect assays. RESULTS The physical characterization results showed circular SEVs in the size range of 66-480 nm. These SEVs contained large amounts of protein cargo, infiltrated the synoviocyte membrane without damage, and had a suppressive effect on inflammatory cytokines. CONCLUSION This study established an extraction process for EVs from sea cucumber and reported the anti-inflammatory ability of SEVs. Isolated SEVs can be further utilized for tissue regeneration studies and can be compared to various marine or animal-derived EVs.
Collapse
Affiliation(s)
- Sung-Han Jo
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea.,The Center for Marine Integrated Biomedical Technology (BK21 PLUS), Pukyong National University, Busan, 48513, Republic of Korea
| | - Changsu Kim
- Department of Orthopedics Surgery, Kosin University Gospel Hospital, Busan, 49267, Republic of Korea
| | - Sang-Hyug Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea. .,The Center for Marine Integrated Biomedical Technology (BK21 PLUS), Pukyong National University, Busan, 48513, Republic of Korea. .,Department of Biomedical Engineering, Pukyong National University, 45, Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea.
| |
Collapse
|
34
|
Muzychka L, Voronkina A, Kovalchuk V, Smolii OB, Wysokowski M, Petrenko I, Youssef DTA, Ehrlich I, Ehrlich H. Marine biomimetics: bromotyrosines loaded chitinous skeleton as source of antibacterial agents. APPLIED PHYSICS. A, MATERIALS SCIENCE & PROCESSING 2021; 127:15. [PMID: 33424135 PMCID: PMC7776313 DOI: 10.1007/s00339-020-04167-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/23/2020] [Indexed: 05/10/2023]
Abstract
UNLABELLED The marine sponges of the order Verongiida (Demospongiae: Porifera) have survived on our planet for more than 500 million years due to the presence of a unique strategy of chemical protection by biosynthesis of more than 300 derivatives of biologically active bromotyrosines as secondary metabolites. These compounds are synthesized within spherulocytes, highly specialized cells located within chitinous skeletal fibers of these sponges from where they can be extruded in the sea water and form protective space against pathogenic viruses, bacteria and other predators. This chitin is an example of unique biomaterial as source of substances with antibiotic properties. Traditionally, the attention of researchers was exclusively drawn to lipophilic bromotyrosines, the extraction methods of which were based on the use of organic solvents only. Alternatively, we have used in this work a biomimetic water-based approach, because in natural conditions, sponges actively extrude bromotyrosines that are miscible with the watery environment. This allowed us to isolate 3,5-dibromoquinolacetic acid from an aqueous extract of the dried demosponge Aplysina aerophoba and compare its antimicrobial activity with the same compound obtained by the chemical synthesis. Both synthetic and natural compounds have shown antimicrobial properties against clinical strains of Staphylococcus aureus, Enterococcus faecalis and Propionibacterium acnes. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00339-020-04167-0.
Collapse
Affiliation(s)
- Liubov Muzychka
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Murmanska Str. 1, Kiev, 02094 Ukraine
| | - Alona Voronkina
- Department of Pharmacy, National Pirogov Memorial Medical University, Vinnytsya, Vinnytsia 21018 Ukraine
| | - Valentine Kovalchuk
- Department of Microbiology, National Pirogov Memorial Medical University, Vinnytsya, Vinnytsia 21018 Ukraine
| | - Oleg B. Smolii
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Murmanska Str. 1, Kiev, 02094 Ukraine
| | - Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner Str. 3, 09599 Freiberg, Germany
| | - Iaroslav Petrenko
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner Str. 3, 09599 Freiberg, Germany
| | - Diaa T. A. Youssef
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522 Egypt
| | | | - Hermann Ehrlich
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner Str. 3, 09599 Freiberg, Germany
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
| |
Collapse
|
35
|
Sadhasivam B, Ramamoorthy D, Dhamodharan R. Scale-up of non-toxic poly(butylene adipate-co-terephthalate)-Chitin based nanocomposite articles by injection moulding and 3D printing. Int J Biol Macromol 2020; 165:3145-3155. [PMID: 33122061 DOI: 10.1016/j.ijbiomac.2020.10.181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
Abstract
Poly(butylene adipate-co-terephthalate) (PBAT), a compostable polymer, filled with different weight percentage of unbleached nano chitin (NC; 10%, 30% and 50%), a biodegradable filler from crustacean waste, were prepared from the extruded blends by injection moulding and 3D printing. The nanochitin required was prepared from chitin isolated from prawn shells (Fenneropenaeus indicus). The nanochitin crystals were observed to contain carboxylic acid surface functional groups as assessed by FT-IR, 13C solid state NMR (SS NMR) spectroscopy, zeta potential measurements and the extent of the same was estimated by potentiometric titration. The PBAT-NC nanocomposites were characterized SS NMR spectroscopy, FT-IR spectroscopy, wide angle X-ray diffraction, dynamic mechanical analysis, DSC and TGA. Thermal and mechanical properties of the nanocomposites were determined. The moulded nanocomposites changed more and more rigid with increasing weight percentage of NC without significant change in the tensile strength. The TGA indicated that the thermal stability of PBAT could be improved but not significantly by the addition of NC. Wound healing was enhanced in the presence of the nanocomposite while in vivo toxicity was significant at high concentration. The PBAT-NC nanocomposites could be moulded in to useful articles such as laptop charger cover, rat cover for washing machine, planters and key holders under conditions similar to that used in the processing of LDPE.
Collapse
Affiliation(s)
- Balaji Sadhasivam
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600 036, India
| | - Devi Ramamoorthy
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600 036, India
| | - Raghavachari Dhamodharan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600 036, India.
| |
Collapse
|
36
|
Wang D, Zhang N, Meng G, He J, Wu F. The effect of form of carboxymethyl-chitosan dressings on biological properties in wound healing. Colloids Surf B Biointerfaces 2020; 194:111191. [DOI: 10.1016/j.colsurfb.2020.111191] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022]
|
37
|
An Innovative IMTA System: Polychaetes, Sponges and Macroalgae Co-Cultured in a Southern Italian In-Shore Mariculture Plant (Ionian Sea). JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8100733] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this paper, we report data from the first year of rearing of a set of filter feeder bioremediator organisms: macrobenthic invertebrates (sabellid polychaetes and sponges), coupled with macroalgae, realized in a mariculture fish farm. This innovative integrated multi-trophic aquaculture (IMTA) system was realized at a preindustrial level in the Gulf of Taranto (southern Italy, northern Ionian Sea), within the framework of the EU Remedia Life project. Long lines containing different collector typologies were placed around the fish breeding cages. Vertical collectors were utilized for both polychaetes and sponges, whilst macroalgae were cultivated in horizontal collectors. Data on the growth and mortality of the target species after the first year of rearing and cultivation are given together with their biomass estimation. Polychaete biomass was obtained from natural settlement on ropes previously hung in the system, while sponges and macroalgae were derived from explants and/or inocules inserted in the collectors. The description of the successional pattern occurring on collectors used for settling until reaching a “stable” point is also described, with indications of additional filter feeder macroinvertebrates other than polychaetes and sponges that are easily obtainable and useful in the system as bioremediators as well. The results demonstrate an easy, natural obtaining of large biomass of sabellid polychaetes settling especially from about a 4 to 10 m depth. Sponges and macroalgae need to be periodically cleaned from the fouling covering. The macroalgae cycle was different from that of invertebrates and requires the cultivation of two different species with about a 6-month cycle for each one. The present study represents one of the first attempts at IMTA in the Mediterranean area where invertebrates and macroalgae are co-cultured in an inshore fish farm. Possible utilization of the produced biomass is also suggested.
Collapse
|
38
|
Talevski T, Talevska Leshoska A, Pejoski E, Pejin B, Machałowski T, Wysokowski M, Tsurkan MV, Petrova O, Sivkov V, Martinovic R, Pantovic S, Khrunyk Y, Trylis V, Fursov A, Djurovic M, Jesionowski T, Ehrlich H. Identification and first insights into the structure of chitin from the endemic freshwater demosponge Ochridaspongia rotunda (Arndt, 1937). Int J Biol Macromol 2020; 162:1187-1194. [PMID: 32615216 DOI: 10.1016/j.ijbiomac.2020.06.247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Studies on the identification, properties and function of chitin in sponges (Porifera), which are recognized as the first multicellular organisms on Earth, continue to be of fundamental scientific interest. The occurrence of chitin has so far been reported in 21 marine sponge species and only in two inhabiting fresh water. In this study, we present the discovery of α-chitin in the endemic demosponge Ochridaspongia rotunda, found in Lake Ohrid, which dates from the Tertiary. The presence of chitin in this species was confirmed using special staining, a chitinase test, FTIR, Raman and NEXAFS spectroscopy, and electrospray ionization mass spectrometry (ESI-MS). In contrast to the case of marine sponges, chitin in O. rotunda has been found only within its holdfast, suggesting a role of chitin in the attachment of the sponge to the hard substratum. Isolated fibrous matter strongly resemble the shape and size of the sponge holdfast with membrane-like structure.
Collapse
Affiliation(s)
- Trajce Talevski
- Hydrobiological Institute, Naum Ohridski 50, 6000 Ohrid, Macedonia.
| | - Aleksandra Talevska Leshoska
- Hydrobiological Institute, Naum Ohridski 50, 6000 Ohrid, Macedonia; PHO BIOMED LAB, Vancho Pitosheski 19 a, 6000 Ohrid, Macedonia
| | - Elena Pejoski
- PHO BIOMED LAB, Vancho Pitosheski 19 a, 6000 Ohrid, Macedonia
| | - Boris Pejin
- Department of Life Sciences, Institute for Multidisciplinary Research - IMSI, University of Belgrade, 11030 Belgrade, Serbia
| | - Tomasz Machałowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, 60965 Poznan, Poland; Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-str. 3, 09599 Freiberg, Germany
| | - Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, 60965 Poznan, Poland; Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-str. 3, 09599 Freiberg, Germany
| | - Mikhail V Tsurkan
- Max Bergmann Centre of Biomaterials, Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany
| | - Olga Petrova
- Federal Research Center Komi Scientific Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Komi Republic 167982, Russia
| | - Viktor Sivkov
- Federal Research Center Komi Scientific Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Komi Republic 167982, Russia
| | - Rajko Martinovic
- Institute of Marine Biology, University of Montenegro, 85330 Kotor, Montenegro
| | - Snezana Pantovic
- Faculty of Medicine, University of Montenegro, Kruševac, 81000 Podgorica, Montenegro
| | - Yuliya Khrunyk
- Department of Heat Treatment and Physics of Metal, Ural Federal University, 620002 Ekaterinburg, Russia; The Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences, 620990 Ekaterinburg, Russia
| | - Volodymyr Trylis
- Institute of Hydrobiology, National Academy of Sciences of Ukraine, 04210 Kyiv, Ukraine
| | - Andriy Fursov
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-str. 3, 09599 Freiberg, Germany
| | - Mirko Djurovic
- Institute of Marine Biology, University of Montenegro, 85330 Kotor, Montenegro
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, 60965 Poznan, Poland
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-str. 3, 09599 Freiberg, Germany; Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland.
| |
Collapse
|
39
|
Machałowski T, Czajka M, Petrenko I, Meissner H, Schimpf C, Rafaja D, Ziętek J, Dzięgiel B, Adaszek Ł, Voronkina A, Kovalchuk V, Jaroszewicz J, Fursov A, Rahimi-Nasrabadi M, Stawski D, Bechmann N, Jesionowski T, Ehrlich H. Functionalization of 3D Chitinous Skeletal Scaffolds of Sponge Origin Using Silver Nanoparticles and Their Antibacterial Properties. Mar Drugs 2020; 18:E304. [PMID: 32531909 PMCID: PMC7345230 DOI: 10.3390/md18060304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
Chitin, as one of nature's most abundant structural polysaccharides, possesses worldwide, high industrial potential and a functionality that is topically pertinent. Nowadays, the metallization of naturally predesigned, 3D chitinous scaffolds originating from marine sponges is drawing focused attention. These invertebrates represent a unique, renewable source of specialized chitin due to their ability to grow under marine farming conditions. In this study, the development of composite material in the form of 3D chitin-based skeletal scaffolds covered with silver nanoparticles (AgNPs) and Ag-bromide is described for the first time. Additionally, the antibacterial properties of the obtained materials and their possible applications as a water filtration system are also investigated.
Collapse
Affiliation(s)
- Tomasz Machałowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland;
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany; (I.P.); (A.F.)
| | - Maria Czajka
- Institute of Material Science of Textiles and Polymer Composites, Lodz University of Technology, Zeromskiego 16, 90924 Lodz, Poland; (M.C.); (D.S.)
| | - Iaroslav Petrenko
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany; (I.P.); (A.F.)
| | - Heike Meissner
- Department of Prosthetic Dentistry, Faculty of Medicine and University Hospital Carl Gustav Carus of Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany;
| | - Christian Schimpf
- Institute of Materials Science, TU Bergakademie Freiberg, Gustav-Zeuner str. 5, 09599 Freiberg, Germany; (C.S.); (D.R.)
| | - David Rafaja
- Institute of Materials Science, TU Bergakademie Freiberg, Gustav-Zeuner str. 5, 09599 Freiberg, Germany; (C.S.); (D.R.)
| | - Jerzy Ziętek
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 13, 20612 Lublin, Poland; (J.Z.); (B.D.); (Ł.A.)
| | - Beata Dzięgiel
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 13, 20612 Lublin, Poland; (J.Z.); (B.D.); (Ł.A.)
| | - Łukasz Adaszek
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 13, 20612 Lublin, Poland; (J.Z.); (B.D.); (Ł.A.)
| | - Alona Voronkina
- Department of Pharmacy, National Pirogov Memorial Medical University, Pirogov str. 56, 21018 Vinnitsa, Ukraine;
| | - Valentin Kovalchuk
- Department of Microbiology, National Pirogov Memorial Medical University, Pirogov str. 56, 21018 Vinnitsa, Ukraine;
| | - Jakub Jaroszewicz
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02507 Warsaw, Poland;
| | - Andriy Fursov
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany; (I.P.); (A.F.)
| | - Mehdi Rahimi-Nasrabadi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 1951683759, Iran;
- Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran 1951683759, Iran
| | - Dawid Stawski
- Institute of Material Science of Textiles and Polymer Composites, Lodz University of Technology, Zeromskiego 16, 90924 Lodz, Poland; (M.C.); (D.S.)
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany;
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114, 14558 Nuthetal, Germany
- German Center for Diabetes Research (DZD), Ingolstaedter Landstrasse 1, 85764 München-Neuherberg, Germany
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland;
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany; (I.P.); (A.F.)
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61614 Poznan, Poland
| |
Collapse
|
40
|
Anti-Tumor Activity vs. Normal Cell Toxicity: Therapeutic Potential of the Bromotyrosines Aerothionin and Homoaerothionin In Vitro. Mar Drugs 2020; 18:md18050236. [PMID: 32369901 PMCID: PMC7281235 DOI: 10.3390/md18050236] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
Novel strategies to treat cancer effectively without adverse effects on the surrounding normal tissue are urgently needed. Marine sponges provide a natural and renewable source of promising anti-tumor agents. Here, we investigated the anti-tumor activity of Aerothionin and Homoaerothionin, two bromotyrosines isolated from the marine demosponge Aplysina cavernicola, on two mouse pheochromocytoma cells, MPC and MTT. To determine the therapeutic window of these metabolites, we furthermore explored their cytotoxicity on cells of the normal tissue. Both metabolites diminished the viability of the pheochromocytoma cell lines significantly from a concentration of 25 µM under normoxic and hypoxic conditions. Treatment of MPC cells leads moreover to a reduction in the number of proliferating cells. To confirm the anti-tumor activity of these bromotyrosines, 3D-pheochromocytoma cell spheroids were treated with 10 µM of either Aerothionin or Homoaerothionin, resulting in a significant reduction or even complete inhibition of the spheroid growth. Both metabolites reduced viability of normal endothelial cells to a comparable extent at higher micromolar concentration, while the viability of fibroblasts was increased. Our in vitro results show promise for the application of Aerothionin and Homoaerothionin as anti-tumor agents against pheochromocytomas and suggest acceptable toxicity on normal tissue cells.
Collapse
|
41
|
Hong S, Yuan Y, Zhang K, Lian H, Liimatainen H. Efficient Hydrolysis of Chitin in a Deep Eutectic Solvent Synergism for Production of Chitin Nanocrystals. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E869. [PMID: 32365931 PMCID: PMC7279284 DOI: 10.3390/nano10050869] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
A deep eutectic solvent (DES) derived from ferric chloride hexahydrate and betaine chloride (molar ratio of 1:1) was used as hydrolytic media for production of chitin nanocrystals (ChNCs) with a high yield (up to 88.5%). The synergistic effect of Lewis acid and released Brønsted acid from betaine hydrochloride enabled the efficient hydrolysis of chitin for production of ChNCs coupled with ultrasonication with low energy consumption. The obtained ChNCs were with an average diameter of 10 nm and length of 268 nm, and a crystallinity of 89.2% with optimal synthesis conditions (at 100 °C for 1 h with chitin-to-DES mass ratio of 1:20). The ChNCs were further investigated as efficient emulsion stabilizers, and they resulted in stable o/w emulsions even at a high oil content of 50% with a low ChNC dosage of 1 mg/g. Therefore, a potential approach based on a DES on the production of chitin-based nanoparticles as emulsifiers is introduced.
Collapse
Affiliation(s)
- Shu Hong
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China;
- Fibre and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland; (Y.Y.); (K.Z.)
| | - Yang Yuan
- Fibre and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland; (Y.Y.); (K.Z.)
| | - Kaitao Zhang
- Fibre and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland; (Y.Y.); (K.Z.)
| | - Hailan Lian
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Henrikki Liimatainen
- Fibre and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland; (Y.Y.); (K.Z.)
| |
Collapse
|
42
|
Zdarta J, Machałowski T, Degórska O, Bachosz K, Fursov A, Ehrlich H, Ivanenko VN, Jesionowski T. 3D Chitin Scaffolds from the Marine Demosponge Aplysina archeri as a Support for Laccase Immobilization and Its Use in the Removal of Pharmaceuticals. Biomolecules 2020; 10:biom10040646. [PMID: 32331371 PMCID: PMC7226420 DOI: 10.3390/biom10040646] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 01/08/2023] Open
Abstract
For the first time, 3D chitin scaffolds from the marine demosponge Aplysina archeri were used for adsorption and immobilization of laccase from Trametes versicolor. The resulting chitin-enzyme biocatalytic systems were applied in the removal of tetracycline. Effective enzyme immobilization was confirmed by scanning electron microscopy. Immobilization yield and kinetic parameters were investigated in detail, in addition to the activity of the enzyme after immobilization. The designed systems were further used for the removal of tetracycline under various process conditions. Optimum process conditions, enabling total removal of tetracycline from solutions at concentrations up to 1 mg/L, were found to be pH 5, temperature between 25 and 35 °C, and 1 h process duration. Due to the protective effect of the chitinous scaffolds and stabilization of the enzyme by multipoint attachment, the storage stability and thermal stability of the immobilized biomolecules were significantly improved as compared to the free enzyme. The produced biocatalytic systems also exhibited good reusability, as after 10 repeated uses they removed over 90% of tetracycline from solution. Finally, the immobilized laccase was used in a packed bed reactor for continuous removal of tetracycline, and enabled the removal of over 80% of the antibiotic after 24 h of continuous use.
Collapse
Affiliation(s)
- Jakub Zdarta
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; (T.M.); (O.D.); (K.B.)
- Correspondence: (J.Z.); (T.J.)
| | - Tomasz Machałowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; (T.M.); (O.D.); (K.B.)
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany; (A.F.); (H.E.)
| | - Oliwia Degórska
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; (T.M.); (O.D.); (K.B.)
| | - Karolina Bachosz
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; (T.M.); (O.D.); (K.B.)
| | - Andriy Fursov
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany; (A.F.); (H.E.)
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany; (A.F.); (H.E.)
- Wielkopolska Center for Advanced Technologies (WCAT), Poznan University str. 10, 61614 Poznan, Poland
| | - Viatcheslav N. Ivanenko
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Teofil Jesionowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; (T.M.); (O.D.); (K.B.)
- Correspondence: (J.Z.); (T.J.)
| |
Collapse
|
43
|
Wysokowski M, Machałowski T, Petrenko I, Schimpf C, Rafaja D, Galli R, Ziętek J, Pantović S, Voronkina A, Kovalchuk V, Ivanenko VN, Hoeksema BW, Diaz C, Khrunyk Y, Stelling AL, Giovine M, Jesionowski T, Ehrlich H. 3D Chitin Scaffolds of Marine Demosponge Origin for Biomimetic Mollusk Hemolymph-Associated Biomineralization Ex-Vivo. Mar Drugs 2020; 18:E123. [PMID: 32092907 PMCID: PMC7074400 DOI: 10.3390/md18020123] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Structure-based tissue engineering requires large-scale 3D cell/tissue manufacture technologies, to produce biologically active scaffolds. Special attention is currently paid to naturally pre-designed scaffolds found in skeletons of marine sponges, which represent a renewable resource of biomaterials. Here, an innovative approach to the production of mineralized scaffolds of natural origin is proposed. For the first time, a method to obtain calcium carbonate deposition ex vivo, using living mollusks hemolymph and a marine-sponge-derived template, is specifically described. For this purpose, the marine sponge Aplysin aarcheri and the terrestrial snail Cornu aspersum were selected as appropriate 3D chitinous scaffold and as hemolymph donor, respectively. The formation of calcium-based phase on the surface of chitinous matrix after its immersion into hemolymph was confirmed by Alizarin Red staining. A direct role of mollusks hemocytes is proposed in the creation of fine-tuned microenvironment necessary for calcification ex vivo. The X-ray diffraction pattern of the sample showed a high CaCO3 amorphous content. Raman spectroscopy evidenced also a crystalline component, with spectra corresponding to biogenic calcite. This study resulted in the development of a new biomimetic product based on ex vivo synthetized ACC and calcite tightly bound to the surface of 3D sponge chitin structure.
Collapse
Affiliation(s)
- Marcin Wysokowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; (T.M.); (T.J.)
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany;
| | - Tomasz Machałowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; (T.M.); (T.J.)
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany;
| | - Iaroslav Petrenko
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany;
| | - Christian Schimpf
- Institute of Materials Science, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (C.S.); (D.R.)
| | - David Rafaja
- Institute of Materials Science, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (C.S.); (D.R.)
| | - Roberta Galli
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Jerzy Ziętek
- Faculty of Veterinary Medicine, Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences, Głęboka 30, 20612 Lublin, Poland;
| | - Snežana Pantović
- Faculty of Medicine, University of Montenegro, Kruševac bb, 81000 Podgorica, Montenegro;
| | - Alona Voronkina
- Department of Pharmacy, National Pirogov Memorial Medical University, 21018 Vinnitsa, Ukraine;
| | - Valentine Kovalchuk
- Department of Microbiology, National Pirogov Memorial Medical University, 21018 Vinnitsa, Ukraine;
| | - Viatcheslav N. Ivanenko
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Bert W. Hoeksema
- Taxonomy and Systematics Group, Naturalis Biodiversity Center, 2333CR Leiden, The Netherlands;
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747AG Groningen, The Netherlands
| | - Cristina Diaz
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 Old Dixie Hwy, Fort Pierce, FL 34946, USA;
| | - Yuliya Khrunyk
- Department of Heat Treatment and Physics of Metal, Ural Federal University, Mira Str. 19, 620002 Ekaterinburg, Russia;
- The Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences, Akademicheskaya Str. 20, 620990 Ekaterinburg, Russia
| | - Allison L. Stelling
- Department of Biochemistry, Duke University Medical School, Durham, NC 27708, USA;
| | - Marco Giovine
- Department of Sciences of Earth, Environment and Life, University of Genoa, Corso Europa 26, 16132 Genova, Italy;
| | - Teofil Jesionowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; (T.M.); (T.J.)
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany;
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
| |
Collapse
|