1
|
Vicente-Zurdo D, Gómez-Mejía E, Morante-Zarcero S, Rosales-Conrado N, Sierra I. Analytical Strategies for Green Extraction, Characterization, and Bioactive Evaluation of Polyphenols, Tocopherols, Carotenoids, and Fatty Acids in Agri-Food Bio-Residues. Molecules 2025; 30:1326. [PMID: 40142101 PMCID: PMC11944699 DOI: 10.3390/molecules30061326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Recent advancements in analytical strategies have enabled the efficient extraction and characterization of bioactive compounds from agri-food bio-residues, emphasizing green chemistry and circular economy principles. This review highlights the valorization of several agri-food bio-residues for the extraction of high-value-added bioactive compounds, particularly polyphenols, tocopherols, carotenoids, and fatty acids, as a biorefinery approach. To this end, the adoption of environmentally friendly extraction technologies is essential to improve performance, reduce energy consumption, and minimize costs. This study therefore examines emerging methodologies such as supercritical fluid extraction, pressurized liquid extraction, pulsed electric fields, and matrix solid-phase dispersion, highlighting their advantages and limitations. Additionally, the chemical characterization of these bioactive compounds is explored through spectrophotometric and high-resolution chromatographic techniques, crucial for their accurate identification and quantification. This is complemented by an analysis of bioactivity assays evaluating antioxidant, antimicrobial, anticancer, neuroprotective, and anti-inflammatory properties, with a focus on their applications in the food, pharmaceutical, and cosmetic industries. However, the analytical control of toxic compounds, such as alkaloids, in these bio-residues is undoubtedly needed. Ultimately, this approach not only promotes sustainability but also contributes to the development of eco-friendly solutions in various industries.
Collapse
Affiliation(s)
- David Vicente-Zurdo
- Departamento de Tecnología Química y Ambiental, Escuela Superior de Ciencias Experimentales y Tecnología (E.S.C.E.T), Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain; (D.V.-Z.); (S.M.-Z.)
| | - Esther Gómez-Mejía
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Av Complutense s/n, 28040 Madrid, Spain;
| | - Sonia Morante-Zarcero
- Departamento de Tecnología Química y Ambiental, Escuela Superior de Ciencias Experimentales y Tecnología (E.S.C.E.T), Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain; (D.V.-Z.); (S.M.-Z.)
| | - Noelia Rosales-Conrado
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Av Complutense s/n, 28040 Madrid, Spain;
| | - Isabel Sierra
- Departamento de Tecnología Química y Ambiental, Escuela Superior de Ciencias Experimentales y Tecnología (E.S.C.E.T), Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain; (D.V.-Z.); (S.M.-Z.)
- Instituto de Investigación de Tecnologías para la Sostenibilidad, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| |
Collapse
|
2
|
Valdivieso E, Zabala M, Muñoz Noval A, López-Méndez R, Carmona N, Espinosa A, García García FJ, Boulahya K, Lucas JA, Biancotto L, Amador U, Azcondo MT, Hurtado-Marcos C. Hyperthermic Core-Shell Silver-Gold Nanoparticles: Green Synthesis and Adsorption-Uptake by Macrophages, Fibroblasts and Cancer Cells. ChemistryOpen 2025; 14:e202400459. [PMID: 39967444 DOI: 10.1002/open.202400459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
Gold-coated silver nanoparticles (Ag@AuNPs) are synthesized by green synthesis using Vaccinium corymbosum as reducing agent. The obtained Ag@AuNPs present a core-shell structure with nanostar shape. The absorption spectrum of these nanoparticles shows a prominent band centred at 680 nm, within the optimal range for photothermal applications. Dispersions of Ag@AuNPs in water, 1.87 1010 NPs/mL, reach a temperature of 44.3 °C under laser excitation in 10 minutes, which is suitable for hyperthermia therapy. The internalization of Ag@AuNPs, at a concentration of 3 108 NPs/ml, by macrophages (Raw 264.7), human fibroblasts (Hs27), and cancer cells (4T1) is confirmed by transmission electron microscopy. Cytotoxicity studies demonstrate that at this concentration the cells are viable.
Collapse
Affiliation(s)
- E Valdivieso
- Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU-Universities, 28668, Boadilla del Monte, Spain
| | - M Zabala
- Universidad San Pablo-CEU, CEU Universities, Facultad de Farmacia, Departamento de Química y Bioquímica, Urbanización Montepríncipe, Boadilla del Monte, E-28668, Madrid, Spain
| | - A Muñoz Noval
- Departamento de Física de Materiales, Facultad de Físicas, Universidad Complutense, E-28040, Madrid, Spain
- IMDEA Nanociencia c/ Faraday, 9, Madrid, 28049, Spain
| | | | - N Carmona
- Departamento de Física de Materiales, Facultad de Físicas, Universidad Complutense, E-28040, Madrid, Spain
| | - A Espinosa
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, calle Sor Juana Inés de la Cruz 3, 28049-, Madrid, Spain
| | - F J García García
- ICTS-Centro Nacional de Microscopía Electrónica F. CC. Químicas, UCM Av. Complutense S/N, 28040-, Madrid, Spain
| | - K Boulahya
- Departamento de Química Inorgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040, Madrid, Spain
| | - J A Lucas
- Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU-Universities, 28668, Boadilla del Monte, Spain
| | - L Biancotto
- Universidad San Pablo-CEU, CEU Universities, Facultad de Farmacia, Departamento de Química y Bioquímica, Urbanización Montepríncipe, Boadilla del Monte, E-28668, Madrid, Spain
| | - U Amador
- Universidad San Pablo-CEU, CEU Universities, Facultad de Farmacia, Departamento de Química y Bioquímica, Urbanización Montepríncipe, Boadilla del Monte, E-28668, Madrid, Spain
| | - M T Azcondo
- Universidad San Pablo-CEU, CEU Universities, Facultad de Farmacia, Departamento de Química y Bioquímica, Urbanización Montepríncipe, Boadilla del Monte, E-28668, Madrid, Spain
| | - C Hurtado-Marcos
- Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU-Universities, 28668, Boadilla del Monte, Spain
| |
Collapse
|
3
|
Rodríguez MR, Comelli NC, López TE, Sánchez Matías MDH, Denett GO, Bracamonte DM, Pietro ED, Diez PA, González-Baró AC, Sampietro DA. Effectiveness of Green Cupric Oxide Nanoparticles for Walnut Storage Pest Management. Chem Biodivers 2025; 22:e202401382. [PMID: 39235587 DOI: 10.1002/cbdv.202401382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/06/2024]
Abstract
Walnut yield and quality are often affected by beetle infestations, particularly those caused by Carpophilus truncatus (Murray) (Nitidulidae) and Oryzaephilus mercator (L.) (Silvanidae). Beetle damage exposes walnuts to microbial food spoilers such as Fusarium species. Insecticides currently used for beetle control are environmentally unfriendly. This work explored a green synthesis approach for copper oxide nanoparticles (CuO-NPs) in a basic medium at 30 °C by hydrolates, aqueous extracts obtained from Lippia integrifolia and Pimpinella anisum, denoted as CuO-I and CuO-A, respectively. Characterization through XRD, FT-IR, Raman, UV-visible absorbance, and AFM techniques indicated that CuO-A and CuO-I have a size ranging from 2-10 nm in height. The antifungal assay showed that both have a similar efficacy (MID=320 μg), 3-fold stronger than CuO- NPs obtained in absence of hydrolates (denoted CuO-W) (MID=960 μg), with the broadest inhibitory halos (ID=126-128 mm) observed for CuO-A. Insecticidal activity of CuO-NPs showed a concentration-dependent behavior, with CuO-I showing an effect comparable to that of diatomaceous earth. SEM images confirmed the adhesion of nanoparticles to insect surfaces, which could induce oxygen deprivation and disruption of metabolic processes. Both CuO-A and CuO-I are promising for their use in integrated pest control in walnut storage.
Collapse
Affiliation(s)
- Maria Rosa Rodríguez
- Laboratorio de Control Biológico y Biodiversidad de Insectos (LACBBI), Centro Regional de Energía y Ambiente para el Desarrollo Sustentable (CREAS), CONICET-Universidad Nacional de Catamarca (UNCA), Prado 366, K4700BDH, San Fernando Del Valle de Catamarca, Argentina
- Facultad de Tecnología y Ciencias Aplicadas, Universidad Nacional de Catamarca (UNCA), Catamarca, Argentina
| | - Nieves Carolina Comelli
- Laboratorio de Control Biológico y Biodiversidad de Insectos (LACBBI), Centro Regional de Energía y Ambiente para el Desarrollo Sustentable (CREAS), CONICET-Universidad Nacional de Catamarca (UNCA), Prado 366, K4700BDH, San Fernando Del Valle de Catamarca, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional de Catamarca (UNCA), Catamarca, Argentina
| | - Tamara Elizabeth López
- Facultad de Ciencias Agrarias, Universidad Nacional de Catamarca (UNCA), Catamarca, Argentina
| | - Mariana Del Huerto Sánchez Matías
- Laboratorio de Biología de Agentes Bioactivos y Fitopatógenos (LABIFITO), Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Gabriel Omar Denett
- Laboratorio de Control Biológico y Biodiversidad de Insectos (LACBBI), Centro Regional de Energía y Ambiente para el Desarrollo Sustentable (CREAS), CONICET-Universidad Nacional de Catamarca (UNCA), Prado 366, K4700BDH, San Fernando Del Valle de Catamarca, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional de Catamarca (UNCA), Catamarca, Argentina
| | | | - Eduardo Daniel Pietro
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET-Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Patricia Alejandra Diez
- Laboratorio de Control Biológico y Biodiversidad de Insectos (LACBBI), Centro Regional de Energía y Ambiente para el Desarrollo Sustentable (CREAS), CONICET-Universidad Nacional de Catamarca (UNCA), Prado 366, K4700BDH, San Fernando Del Valle de Catamarca, Argentina
| | - Ana Cecilia González-Baró
- Centro de Química Inorgánica (CEQUINOR), CONICET-Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Diego Alejandro Sampietro
- Laboratorio de Biología de Agentes Bioactivos y Fitopatógenos (LABIFITO), Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| |
Collapse
|
4
|
Nkosi NC, Basson AK, Ntombela ZG, Dlamini NG, Pullabhotla RVSR. A Review on Bioflocculant-Synthesized Copper Nanoparticles: Characterization and Application in Wastewater Treatment. Bioengineering (Basel) 2024; 11:1007. [PMID: 39451384 PMCID: PMC11504074 DOI: 10.3390/bioengineering11101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Copper nanoparticles (CuNPs) are tiny materials with special features such as high electric conductivity, catalytic activity, antimicrobial activity, and optical activity. Published reports demonstrate their utilization in various fields, including biomedical, agricultural, environmental, wastewater treatment, and sensor fields. CuNPs can be produced utilizing traditional procedures; nevertheless, such procedures have restrictions like excessive consumption of energy, low production yields, and the utilization of detrimental substances. Thus, the adoption of environmentally approachable "green" approaches for copper nanoparticle synthesis is gaining popularity. These approaches involve employing plants, bacteria, and fungi. Nonetheless, there is a scarcity of data regarding the application of microbial bioflocculants in the synthesis of copper NPs. Therefore, this review emphasizes copper NP production using microbial flocculants, which offer economic benefits and are sustainable and harmless. The review also provides a characterization of the synthesized copper nanoparticles, employing numerous analytical tools to determine their compositional, morphological, and topographical features. It focuses on scientific advances from January 2015 to December 2023 and emphasizes the use of synthesized copper NPs in wastewater treatment.
Collapse
Affiliation(s)
- Nkanyiso C. Nkosi
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa 3886, South Africa
| | - Albertus K. Basson
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa 3886, South Africa
| | - Zuzingcebo G. Ntombela
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa 3886, South Africa
| | - Nkosinathi G. Dlamini
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa 3886, South Africa
| | - Rajasekhar V. S. R. Pullabhotla
- Chemistry Department, Faculty of Science, Agriculture, and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa 3886, South Africa
| |
Collapse
|
5
|
Vieira IRS, da Silva AA, da Silva BD, Neto LT, Tessaro L, Furtado CRG, de Sousa AMF, Carvalho NMF, Conte-Junior CA. Eco-friendly synthesis of ZnO nanomaterial from green tea extract: photocatalytic, antibacterial and antioxidant potential. BIOMASS CONVERSION AND BIOREFINERY 2024; 14:24317-24331. [DOI: 10.1007/s13399-023-04456-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/27/2023] [Accepted: 06/04/2023] [Indexed: 01/06/2025]
|
6
|
de Jesus LADS, Cabral RLB, Ferreira MKP, de Santana Souza DF, Galvão ERVP, Rios RB, do Nascimento JHO. Evaluation of reduced graphene oxide from cotton waste as an efficient phenol adsorbent in aqueous media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34708-6. [PMID: 39177742 DOI: 10.1007/s11356-024-34708-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
The elimination of organic substances, such as phenol, in conventional and biological processes, has been considered a challenge for the petroleum industry. In this work, reduced graphene oxide (rGO), obtained from cellulosic biomass (CB-rGO), as cotton waste, was employed as a phenol adsorbent in an aqueous solution simulating refinery effluent. The CB-rGO was characterized using HRTEM, Raman, XRD, FTIR, BET, and zeta analysis. The behavior of variables such as pH, contact time, temperature, CB-rGO mass, and adsorbate concentration on the characteristics of the adsorption process were continuously investigated. These parameters of the adsorption process were evaluated across a range of adsorbent concentrations from 100 to 300 mg/L, pH in the range of 2-11, adsorbent mass 5-25 mg, contact time of 0-180 min, and temperature of 20-60 °C. The adsorption isotherm data were better described by the Freundlich equation compared to the Langmuir and Sips models, despite the small difference in R2 values. Mechanism diffusion was analyzed using the Boyd model and confirmed to be the rate-limiting step in the adsorption process. The endothermic nature of this CB-rGO adsorption process with phenol was confirmed by verifying the thermodynamic data. This successful removal of phenol from synthetic effluents highlights the promising potential of this adsorbent obtained from an industrial residue and being an ecologically more sustainable alternative compared to the synthesis of other materials identified to remove this contaminant.
Collapse
Affiliation(s)
- Lucas Antônio da Silva de Jesus
- Center of Technology, Postgraduate Program in Chemical Engineering, Federal University of Rio Grande Do Norte, Natal, RN, 59072-970, Brazil.
- Research Group On Innovation in Micro and Nanotechnology, Federal University of Rio Grande Do Norte, Natal, RN, 59072-970, Brazil.
- Nanoup Startup - Center of Technology, Federal University of Rio Grande Do Norte, Natal, RN, 59072-970, Brazil.
| | - Rivaldo Leonn Bezerra Cabral
- Center of Technology, Postgraduate Program in Chemical Engineering, Federal University of Rio Grande Do Norte, Natal, RN, 59072-970, Brazil
- Research Group On Innovation in Micro and Nanotechnology, Federal University of Rio Grande Do Norte, Natal, RN, 59072-970, Brazil
- Nanoup Startup - Center of Technology, Federal University of Rio Grande Do Norte, Natal, RN, 59072-970, Brazil
| | - Myllena Kely Pereira Ferreira
- Center of Technology, Postgraduate Program in Chemical Engineering, Federal University of Rio Grande Do Norte, Natal, RN, 59072-970, Brazil
- Research Group On Innovation in Micro and Nanotechnology, Federal University of Rio Grande Do Norte, Natal, RN, 59072-970, Brazil
| | - Domingos Fabiano de Santana Souza
- Center of Technology, Postgraduate Program in Chemical Engineering, Federal University of Rio Grande Do Norte, Natal, RN, 59072-970, Brazil
| | | | - Rafael Barbosa Rios
- Department of Engineering and Technology, Federal University of the Semi-Arid Region, Mossoró, RN, 59625-900, Brazil
| | - José Heriberto Oliveira do Nascimento
- Center of Technology, Postgraduate Program in Chemical Engineering, Federal University of Rio Grande Do Norte, Natal, RN, 59072-970, Brazil
- Research Group On Innovation in Micro and Nanotechnology, Federal University of Rio Grande Do Norte, Natal, RN, 59072-970, Brazil
- Nanoup Startup - Center of Technology, Federal University of Rio Grande Do Norte, Natal, RN, 59072-970, Brazil
| |
Collapse
|
7
|
Vodyashkin A, Stoinova A, Kezimana P. Promising biomedical systems based on copper nanoparticles: Synthesis, characterization, and applications. Colloids Surf B Biointerfaces 2024; 237:113861. [PMID: 38552288 DOI: 10.1016/j.colsurfb.2024.113861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
Copper and copper oxide nanoparticles (CuNPs) have unique physicochemical properties that make them highly promising for biomedical applications. This review discusses the application of CuNPs in biomedicine, including diagnosis, therapy, and theranostics. Recent synthesis methods, with an emphasis on green approaches, are described, and the latest techniques for nanoparticle characterization are critically analyzed. CuNPs, including Cu2O, CuO, and Cu, have significant potential as anti-cancer agents, drug delivery systems, and photodynamic therapy enhancers, among other applications. While challenges such as ensuring biocompatibility and stability must be addressed, the state-of-the-art research reviewed here provides strong evidence for the efficacy and versatility of CuNPs. These multifunctional properties have been extensively researched and documented, showcasing the immense potential of CuNPs in biomedicine. Overall, the evidence suggests that CuNPs are a promising avenue for future research and development in biomedicine. We strongly support further progress in the development of synthesis and application strategies to enhance the effectiveness and safety of CuNPs for clinical purposes.
Collapse
Affiliation(s)
| | - Anastasia Stoinova
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia.
| | - Parfait Kezimana
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia.
| |
Collapse
|
8
|
Xie Y, Cui S, Hu J, Yu H, Xuan A, Wei Y, Lian Y, Wu J, Du W, Zhang E. Design and preparation of Ti-xFe antibacterial titanium alloys based on micro-area potential difference. Biometals 2024; 37:337-355. [PMID: 37904075 DOI: 10.1007/s10534-023-00551-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/05/2023] [Indexed: 11/01/2023]
Abstract
Fe was selected as an alloying element for the first time to prepare a new antibacterial titanium alloy based on micro-area potential difference (MAPD) antibacterial mechanism. The microstructure, the corrosion resistance, the mechanical properties, the antibacterial properties and the cell biocompatibility have been investigated in detail by optical microscopy, scanning electron microscopy, electrochemical testing, mechanical property test, plate count method and cell toxicity measurement. It was demonstrated that heat treatment had a significant on the compressive mechanical properties and the antibacterial properties. Ti-xFe (x = 3,5 and 9) alloys after 850 °C/3 h + 550 °C/62 h heat treatment exhibited strong antimicrobial properties with an antibacterial rate of more than 90% due to the MAPD caused by the redistribution of Fe element during the aging process. In addition, the Fe content and the heat treatment process had a significant influence on the mechanical properties of Ti-xFe alloy but had nearly no effect on the corrosion resistance. All Ti-xFe alloys showed non-toxicity to the MC3T3 cell line in comparison with cp-Ti, indicating that the microzone potential difference had no adverse effect on the corrosion resistance, cell proliferation, adhesion, and spreading. Strong antibacterial properties, good cell compatibility and good corrosion resistance demonstrated that Ti-xFe alloy might be a candidate titanium alloy for medical applications.
Collapse
Affiliation(s)
- Yanchun Xie
- Northern Theater General Hospital, Shenyang, 110016, China
| | - Shenshen Cui
- Key Laboratory for Anisotropy and Texture of Materials, School of Materials Science and Engineering, Education Ministry of China, Northeastern University, Shenyang, 110819, China
| | - Jiali Hu
- Key Laboratory for Anisotropy and Texture of Materials, School of Materials Science and Engineering, Education Ministry of China, Northeastern University, Shenyang, 110819, China
| | - Hailong Yu
- Northern Theater General Hospital, Shenyang, 110016, China.
| | - Anwu Xuan
- Northern Theater General Hospital, Shenyang, 110016, China
| | - Yongcun Wei
- Graduate School of Dalian Medical University, Dalian, 116051, China
| | - Yi Lian
- Northern Theater General Hospital, Shenyang, 110016, China
| | - Jinhua Wu
- Zhejiang Wanfeng Precision Casting Co., Ltd, Shaoxing, 312000, China
| | - Weinan Du
- Zhejiang Wanfeng Precision Casting Co., Ltd, Shaoxing, 312000, China
| | - Erlin Zhang
- Key Laboratory for Anisotropy and Texture of Materials, School of Materials Science and Engineering, Education Ministry of China, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
9
|
Asmat-Campos D, Rojas-Jaimes J, Simbrón de la Cruz M, Montes de Oca-Vásquez G. Enhanced antimicrobial efficacy of biogenic ZnO nanoparticles through UV-B activation: A novel approach for textile garment. Heliyon 2024; 10:e25580. [PMID: 38356582 PMCID: PMC10864978 DOI: 10.1016/j.heliyon.2024.e25580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Zinc oxide nanoparticles (ZnO NP) are characterized by novel properties which have been attracting the attention of different lines of research due to their wide applicability. Obtaining this nanomaterial is strongly linked to biogenic synthesis methods, which have also been developed in this research, using Coriandrum sativum extract as a reducing agent. ZnO NPs have been properly characterized by techniques to evaluate their morphology by transmission electron microscopy (TEM) and elemental analysis by EDX. The evaluation of the antimicrobial and antifungal effects is linked to the use of a system provided by "locker sanitizer" equipment, which has been designed and built as part of this research, and is intended to treat textile garments by nebulizing the ZnO NP colloid (99.08 μg/mL) + UV-B, water + UV-B, and UV-B only, and also to evaluate the influence of the treatment time for 1, 2 and 3 min. In this sense, it is known that the nanomaterial used shows a better response to UV light because more hydroxyl radicals are produced, leading to a higher reaction rate, which results in greater efficiency in inhibitory processes. The results show that the use of the locker sanitizer is more efficient when using ZnO NP + UV-B light since it achieved 100 % growth inhibition against E. coli, C. albicans, and A. brasiliensis, and >99 % against S. aureus, after 3 min of treatment.
Collapse
Affiliation(s)
- David Asmat-Campos
- Dirección de Investigación, Innovación & Responsabilidad Social, Universidad Privada del Norte, Peru
- Grupo de Investigación en Ciencias Aplicadas y Nuevas Tecnologías, Universidad Privada del Norte, Trujillo, Peru
| | - Jesús Rojas-Jaimes
- Dirección de Investigación, Innovación & Responsabilidad Social, Universidad Privada del Norte, Peru
- Facultad de Ciencias de la Salud, Universidad Privada del Norte, Lima, Peru
| | | | | |
Collapse
|
10
|
de Jesus RA, de Assis GC, Oliveira RJD, Costa JAS, da Silva CMP, Iqbal HM, Ferreira LFR. Metal/metal oxide nanoparticles: A revolution in the biosynthesis and medical applications. NANO-STRUCTURES & NANO-OBJECTS 2024; 37:101071. [DOI: 10.1016/j.nanoso.2023.101071] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
11
|
Zhang D, Liu P. Biosynthesis of metal nanoparticles: Bioreduction and biomineralization. NANOTECHNOLOGY REVIEWS 2023; 12. [DOI: 10.1515/ntrev-2023-0170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Abstract
The biosynthesis of metal nanoparticles by plants, bacteria, and cells has been receiving considerable attention in recent years. The traditional synthesis of metal nanoparticles always needed high temperatures, high pressure, and toxic agents. However, the biosynthesis process (including bioreduction and biomineralization) is simpler, safe, economical, and green. The process of biosynthesis can insulate toxic agents, streamline flux, increase the transition efficiency of interactants, and improve the product yield. The biosynthesized metal nanoparticles share similar characteristics with traditional ones, serving as photosensors to achieve light-to-heat/energy transduction, or a drug delivery system. The biosynthetic metal nanoparticles thus could be widely applied in the medical field for disease diagnosis and treatment. It contributed a novel modality for the facile and green synthesis of metal nanoparticles. Increasing studies have been exploring the mechanism for the biosynthesis of metal nanoparticles, devoted to a controllable biosynthesis process. Combined with our previous studies on the biosynthesis of gold nanoparticles with green tea, tumor cells, and cell components, we reviewed the green methods of bioreduction and biomineralization of metal nanoparticles including the internal mechanism, aimed to make a comprehensive introduction to the biosynthesis of metal nanoparticles and relevant biomedical applications, and inspired further research.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022 , China
| | - Pengran Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , 430022 , China
| |
Collapse
|
12
|
Rojas-Jaimes J, Asmat-Campos D. Cu 2O, ZnO, and Ag/ Cu 2O nanoparticles synthesized by biogenic and chemical route and their effect on Pseudomonas aeruginosa and Candida albicans. Sci Rep 2023; 13:21478. [PMID: 38052801 PMCID: PMC10697934 DOI: 10.1038/s41598-023-47917-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023] Open
Abstract
Pseudomonas aeruginosa and Candida albicans are two important pathogens in public health due to the infections they cause in immunocompromised patients and with hospital stay, increasing morbimortality rates. Three groups of Cu2O, ZnO, and Ag/Cu2O nanoparticles were synthesized and characterized physicochemically and confronted to P. aeruginosa and C. albicans to determine their antibacterial effect. Statistical analyses were performed using Analysis of Variance (ANOVA) (p < 0.001). The structures of Cu2O, ZnO, and Ag/Cu2O nanoparticles were spherical, sized 6 nm, 10 nm, and 50 nm for Ag, Cu2, and Zn metals, respectively. Furthermore, a 100% antibacterial and antifungal effect against Pseudomonas aeruginosa and Candida albicans was observed for Cu2O, ZnO, and Ag/Cu2O nanoparticles respectively. It is concluded from these findings that the nanoparticles synthesized by biogenic and chemical route had a good size between 6 and 50 nm and that Cu2O, ZnO, and Ag/Cu2O nanoparticles presented an excellent antibacterial (100% growth inhibition) effect against P. aeruginosa and C. albicans (p < 0.001) compared to the control.
Collapse
Affiliation(s)
- J Rojas-Jaimes
- Faculty of Health Sciences, Universidad Privada del Norte, Av. El Sol 461, San Juan de Lurigancho, Lima, 15434, Peru.
| | - David Asmat-Campos
- Department of Research, Innovation & Social Responsibility, Universidad Privada del Norte, Trujillo, Peru
- Applied Sciences and New Technologies Research Group, Universidad Privada del Norte, Trujillo, Peru
| |
Collapse
|
13
|
Priya M, Venkatesan R, Deepa S, Sana SS, Arumugam S, Karami AM, Vetcher AA, Kim SC. Green synthesis, characterization, antibacterial, and antifungal activity of copper oxide nanoparticles derived from Morinda citrifolia leaf extract. Sci Rep 2023; 13:18838. [PMID: 37914791 PMCID: PMC10620180 DOI: 10.1038/s41598-023-46002-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023] Open
Abstract
The green methodologies of nanoparticles with plant extracts have received an increase of interest. Copper oxide nanoparticles (CuO NPs) have been utilized in a many of applications in the last few decades. The current study presents the synthesis of CuO NPs with aqueous extract of Morinda citrifolia as a stabilizing agent. The leaf extract of Morinda citrifolia was mixed with a solution of copper sulphate (CuSO4·5H2O) and sodium hydroxide as a catalyst. UV-visible spectroscopy, FTIR, XRD, SEM, TEM, and EDAX analysis were performed to study the synthesized CuO NPs. Particle size distribution of the synthesized CuO NPs have been measured with dynamic light scattering. The CuO NPs synthesized were highly stable, sphere-like, and have size of particles from 20 to 50 nm. Furthermore, as-formed CuO NPs shown strong antibacterial activity against the Gram-positive bacteria (Bacillus subtilis, and Staphylococcus aureus), and Gram-negative bacteria (Escherichia coli). CuO NPs revealed a similar trend was analysed for antifungal activity. The zone of inhibition for the fungi evaluated for Aspergillus flavus (13.0 ± 1.1), Aspergillus niger (14.3 ± 0.7), and Penicillium frequentans (16.8 ± 1.4). According to the results of this investigation, green synthesized CuO NPs with Morinda citrifolia leaf extract may be used in biomedicine as a replacement agent for biological applications.
Collapse
Affiliation(s)
- Manogar Priya
- Department of Chemistry, School of Basic Sciences, Vels Institute of Science, Technology and Advanced Studies, Chennai, Tamil Nadu, 600117, India.
| | - Raja Venkatesan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Simon Deepa
- Department of Chemistry, School of Basic Sciences, Vels Institute of Science, Technology and Advanced Studies, Chennai, Tamil Nadu, 600117, India
| | - Siva Sankar Sana
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Soundhar Arumugam
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Abdulnasser M Karami
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Alexandre A Vetcher
- Institute of Biochemical Technology and Nanotechnology, Peoples' Friendship, University of Russia (RUDN), 6 Miklukho-Maklaya St., Moscow, Russia, 117198
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
14
|
Kopystecka A, Kozioł I, Radomska D, Bielawski K, Bielawska A, Wujec M. Vaccinium uliginosum and Vaccinium myrtillus-Two Species-One Used as a Functional Food. Nutrients 2023; 15:4119. [PMID: 37836403 PMCID: PMC10574057 DOI: 10.3390/nu15194119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Vaccinium uliginosum L. (commonly known as bog bilberry) and Vaccinium myrtillus L. (commonly known as bilberry) are species of the genus Vaccinium (family Ericaceae). The red-purple-blue coloration of blueberries is attributed largely to the anthocyanins found in bilberries. Anthocyanins, known for their potent biological activity as antioxidants, have a significant involvement in the prophylaxis of cancer or other diseases, including those of metabolic origin. Bilberry is the most important economically wild berry in Northern Europe, and it is also extensively used in juice and food production. A review of the latest literature was performed to assess the composition and biological activity of V. uliginosum and V. myrtillus. Clinical studies confirm the benefits of V. uliginosum and V. myrtillus supplementation as part of a healthy diet. Because of their antioxidant, anti-inflammatory, anti-cancer, and apoptosis-reducing activity, both bog bilberries and bilberries can be used interchangeably as a dietary supplement with anti-free radical actions in the prevention of cancer diseases and cataracts, or as a component of sunscreen preparations.
Collapse
Affiliation(s)
- Agnieszka Kopystecka
- Students’ Scientific Circle on Medical Law at the Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland; (A.K.); (I.K.)
| | - Ilona Kozioł
- Students’ Scientific Circle on Medical Law at the Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland; (A.K.); (I.K.)
| | - Dominika Radomska
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, Kilinskiego 1 Street, 15-089 Bialystok, Poland;
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, Kilinskiego 1 Street, 15-089 Bialystok, Poland;
| | - Anna Bielawska
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, Kilinskiego 1 Street, 15-089 Bialystok, Poland;
| | - Monika Wujec
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| |
Collapse
|
15
|
Ortega-Nieto C, Losada-Garcia N, Prodan D, Furtos G, Palomo JM. Recent Advances on the Design and Applications of Antimicrobial Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2406. [PMID: 37686914 PMCID: PMC10490178 DOI: 10.3390/nano13172406] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
Present worldwide difficulties in healthcare and the environment have motivated the investigation and research of novel materials in an effort to find novel techniques to address the current challenges and requirements. In particular, the use of nanomaterials has demonstrated a significant promise in the fight against bacterial infections and the problem of antibiotic resistance. Metal nanoparticles and carbon-based nanomaterials in particular have been highlighted for their exceptional abilities to inhibit many types of bacteria and pathogens. In order for these materials to be as effective as possible, synthetic techniques are crucial. Therefore, in this review article, we highlight some recent developments in the design and synthesis of various nanomaterials, including metal nanoparticles (e.g., Ag, Zn, or Cu), metal hybrid nanomaterials, and the synthesis of multi-metallic hybrid nanostructured materials. Following that, examples of these materials' applications in antimicrobial performance targeted at eradicating multi-drug resistant bacteria, material protection such as microbiologically influenced corrosion (MIC), or additives in construction materials have been described.
Collapse
Affiliation(s)
- Clara Ortega-Nieto
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC, c/Marie Curie 2, 28049 Madrid, Spain; (C.O.-N.); (N.L.-G.)
| | - Noelia Losada-Garcia
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC, c/Marie Curie 2, 28049 Madrid, Spain; (C.O.-N.); (N.L.-G.)
| | - Doina Prodan
- Department of Dental Composite Materials, Raluca Ripan Institute of Research in Chemistry, Babes-Bolyai University, 30 Fantanele St., 400294 Cluj-Napoca, Romania;
| | - Gabriel Furtos
- Department of Dental Composite Materials, Raluca Ripan Institute of Research in Chemistry, Babes-Bolyai University, 30 Fantanele St., 400294 Cluj-Napoca, Romania;
| | - Jose M. Palomo
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC, c/Marie Curie 2, 28049 Madrid, Spain; (C.O.-N.); (N.L.-G.)
| |
Collapse
|
16
|
Luque-Jacobo CM, Cespedes-Loayza AL, Echegaray-Ugarte TS, Cruz-Loayza JL, Cruz I, de Carvalho JC, Goyzueta-Mamani LD. Biogenic Synthesis of Copper Nanoparticles: A Systematic Review of Their Features and Main Applications. Molecules 2023; 28:4838. [PMID: 37375393 DOI: 10.3390/molecules28124838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Nanotechnology is an innovative field of study that has made significant progress due to its potential versatility and wide range of applications, precisely because of the development of metal nanoparticles such as copper. Nanoparticles are bodies composed of a nanometric cluster of atoms (1-100 nm). Biogenic alternatives have replaced their chemical synthesis due to their environmental friendliness, dependability, sustainability, and low energy demand. This ecofriendly option has medical, pharmaceutical, food, and agricultural applications. When compared to their chemical counterparts, using biological agents, such as micro-organisms and plant extracts, as reducing and stabilizing agents has shown viability and acceptance. Therefore, it is a feasible alternative for rapid synthesis and scaling-up processes. Several research articles on the biogenic synthesis of copper nanoparticles have been published over the past decade. Still, none provided an organized, comprehensive overview of their properties and potential applications. Thus, this systematic review aims to assess research articles published over the past decade regarding the antioxidant, antitumor, antimicrobial, dye removal, and catalytic activities of biogenically synthesized copper nanoparticles using the scientific methodology of big data analytics. Plant extract and micro-organisms (bacteria and fungi) are addressed as biological agents. We intend to assist the scientific community in comprehending and locating helpful information for future research or application development.
Collapse
Affiliation(s)
- Cristina M Luque-Jacobo
- Sustainable Innovative Biomaterials Department, Le Qara Research Center, Arequipa 04000, Peru
| | | | | | | | - Isemar Cruz
- Sustainable Innovative Biomaterials Department, Le Qara Research Center, Arequipa 04000, Peru
| | - Júlio Cesar de Carvalho
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná-Polytechnic Center, Curitiba 81531-980, Brazil
| | - Luis Daniel Goyzueta-Mamani
- Sustainable Innovative Biomaterials Department, Le Qara Research Center, Arequipa 04000, Peru
- Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José s/n-Umacollo, Arequipa 04000, Peru
| |
Collapse
|
17
|
Exploring the potential of [F. oxysporum/PSCO11Cu7]BNC as a novel copper-Fusarium oxysporum bio-hybrid nanocomposite for wastewater treatment. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
18
|
Asmat-Campos D, de Oca-Vásquez GM, Rojas-Jaimes J, Delfín-Narciso D, Juárez-Cortijo L, Nazario-Naveda R, Batista Menezes D, Pereira R, de la Cruz MS. Cu 2O nanoparticles synthesized by green and chemical routes, and evaluation of their antibacterial and antifungal effect on functionalized textiles. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 37:e00785. [PMID: 36785536 PMCID: PMC9918746 DOI: 10.1016/j.btre.2023.e00785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
The potential for the application of metal-containing nanomaterials at the nanoscale promotes the opportunity to search for new methods for their elaboration, with special attention to those sustainable methods. In response to these challenges, we have investigated a new method for green synthesis of cuprous oxide nanoparticles (Cu2O NPs) using Myrciaria dubia juice as an organic reductant and, comparing it with chemical synthesis, evaluating in both cases the influence of the volume of the organic (juice) and chemical (ascorbic acid) reductants, for which a large number of techniques such as spectrophotometry, EDX spectrometry, TEM, SEM, DLS, FTIR spectroscopy have been used. Likewise, the nanomaterial with better morphological characteristics, stability, and size homogeneity has been applied in the functionalization of textiles by means of in situ and post-synthesis impregnation methods. The success of the synthesis process has been demonstrated by the antimicrobial activity (bacteria and fungi) of textiles impregnated with Cu2O NPs.
Collapse
Affiliation(s)
- David Asmat-Campos
- Universidad Privada del Norte, Dirección de Investigación, Innovación & Responsabilidad Social, Trujillo, Perú,Grupo de Investigación en Ciencias Aplicadas y Nuevas Tecnologías, Universidad Privada del Norte, Trujillo, Perú,Corresponding author.
| | | | - Jesús Rojas-Jaimes
- Universidad Privada del Norte, Dirección de Investigación, Innovación & Responsabilidad Social, Trujillo, Perú,Facultad de Ciencias de la Salud, Universidad Privada del Norte, Av. El Sol 461, San Juan de Lurigancho, Lima, 15434, Perú
| | - Daniel Delfín-Narciso
- Grupo de Investigación en Ciencias Aplicadas y Nuevas Tecnologías, Universidad Privada del Norte, Trujillo, Perú
| | - Luisa Juárez-Cortijo
- Grupo de Investigación en Ciencias Aplicadas y Nuevas Tecnologías, Universidad Privada del Norte, Trujillo, Perú
| | - Renny Nazario-Naveda
- Grupo de Investigación en Ciencias Aplicadas y Nuevas Tecnologías, Universidad Privada del Norte, Trujillo, Perú,Universidad Autónoma del Perú, Lima, Perú
| | - Diego Batista Menezes
- Laboratorio Nacional de Nanotecnología, Centro Nacional de Alta Tecnología, 10109 Pavas, San José, Costa Rica
| | - Reinaldo Pereira
- Laboratorio Nacional de Nanotecnología, Centro Nacional de Alta Tecnología, 10109 Pavas, San José, Costa Rica
| | | |
Collapse
|
19
|
Chand Mali S, Dhaka A, Sharma S, Trivedi R. Review on biogenic synthesis of copper nanoparticles and its potential applications. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
20
|
Garg R, Rani P, Garg R, Khan MA, Khan NA, Khan AH, Américo-Pinheiro JHP. Biomedical and catalytic applications of agri-based biosynthesized silver nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119830. [PMID: 35926739 DOI: 10.1016/j.envpol.2022.119830] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/29/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Nanotechnology has been recognized as the emerging field for the synthesis, designing, and manipulation of particle structure at the nanoscale. Its rapid development is also expected to revolutionize industries such as applied physics, mechanics, chemistry, and electronics engineering with suitably tailoring various nanomaterials. Inorganic nanoparticles such as silver nanoparticles (Ag-NPs) have garnered more interest with their diverse applications. In correspondence to green chemistry, researchers prioritize green synthetic techniques over conventional ones due to their eco-friendly and sustainable potential. Green-synthesized NPs have proven more beneficial than those synthesized by conventional methods because of capping by secondary metabolites. The present study reviews the various means being used by the researchers for the green synthesis of Ag-NPs. The morphological characteristics of these NPs as obtained from numerous characterization techniques have been explored. The potential applications of bio-synthesized Ag-NPs viz. Antimicrobial, antioxidant, catalytic, and water remediation along with the plausible mechanisms have been discussed. In addition, toxicity analysis and biomedical applications of these NPs have also been reviewed to provide a detailed overview. The study signifies that biosynthesized Ag-NPs can be efficiently used for various applications in the biomedical and industrial sectors as an environment-friendly and efficient tool.
Collapse
Affiliation(s)
- Rajni Garg
- Department of Chemistry, University School of Sciences, Rayat-Bahra University, Mohali, Punjab, 140104, India
| | - Priya Rani
- Department of Chemistry, University School of Sciences, Rayat-Bahra University, Mohali, Punjab, 140104, India
| | - Rishav Garg
- Department of Civil Engineering, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, 201310, India
| | - Mohammad Amir Khan
- Department of Civil Engineering, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, 201310, India
| | - Nadeem Ahmad Khan
- Civil Engineering Department, Faculty of Engineering, Jamia Millia Islamia University, New Delhi, India
| | - Afzal Husain Khan
- Civil Engineering Department, College of Engineering, Jazan University, P.O. Box. 706, Jazan, 45142, Saudi Arabia
| | | |
Collapse
|
21
|
Prasathkumar M, Sakthivel C, Becky R, Dhrisya C, Prabha I, Sadhasivam S. Phytofabrication of cost-effective selenium nanoparticles from edible and non-edible plant materials of Senna auriculata: Characterization, antioxidant, antidiabetic, antimicrobial, biocompatibility, and wound healing. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Selvam K, Albasher G, Alamri O, Sudhakar C, Selvankumar T, Vijayalakshmi S, Vennila L. Enhanced photocatalytic activity of novel Canthium coromandelicum leaves based copper oxide nanoparticles for the degradation of textile dyes. ENVIRONMENTAL RESEARCH 2022; 211:113046. [PMID: 35300965 DOI: 10.1016/j.envres.2022.113046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
The present study focused to synthesize the copper oxide nanoparticles (CuONPs) using novel Canthium coromandelicum leaves in a cost-effective, easy, and sustainable approach. The obtained Canthium coromandelicum-copper oxide nanoparticles (CC-CuONPs) were characterized using UV-Visible spectroscopy, FT-IR analysis, FESEM, HR-TEM imaging, and XRD study. The XRD pattern verified the development of crystalline CC-CuONPs with an average size of 33 nm. The biosynthesized CC-CuONPs were roughly spherical, according to HR-TEM and FESEM analyses. FT-IR research verified the existence of functional groups involved in CC-CuONPs production. Cu and O2 have high-energy signals of 78.32% and 12.78%, respectively, according to data from EDX. The photocatalytic evaluation showed that synthesized CC-CuONPs have the efficiency of degrading methylene blue (MB) and methyl orange (MO) by 91.32%, 89.35% respectively. The findings showed that biosynthesized CC-CuONPs might effectively remove contaminants in an environmentally acceptable manner.
Collapse
Affiliation(s)
- Kandasamy Selvam
- PG & Research Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal, 637 501, Tamil Nadu, India.
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ohoud Alamri
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Chinnappan Sudhakar
- PG & Research Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal, 637 501, Tamil Nadu, India
| | - Thangaswamy Selvankumar
- PG & Research Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal, 637 501, Tamil Nadu, India
| | - Selvakumar Vijayalakshmi
- Food Science and Biotechnology, School of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Lakshmanan Vennila
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| |
Collapse
|
23
|
Different antibacterial and photocatalyst functions for herbal and bacterial synthesized silver and copper/copper oxide nanoparticles/nanocomposites: A review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Luthfikasari R, Patil TV, Patel DK, Dutta SD, Ganguly K, Espinal MM, Lim KT. Plant-Actuated Micro-Nanorobotics Platforms: Structural Designs, Functional Prospects, and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201417. [PMID: 35801427 DOI: 10.1002/smll.202201417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Plants are anatomically and physiologically different from humans and animals; however, there are several possibilities to utilize the unique structures and physiological systems of plants and adapt them to new emerging technologies through a strategic biomimetic approach. Moreover, plants provide safe and sustainable results that can potentially solve the problem of mass-producing practical materials with hazardous and toxic side effects, particularly in the biomedical field, which requires high biocompatibility. In this review, it is investigated how micro-nanostructures available in plants (e.g., nanoparticles, nanofibers and their composites, nanoporous materials, and natural micromotors) are adapted and utilized in the design of suitable materials for a micro-nanorobot platform. How plants' work on micro- and nanoscale systems (e.g., surface roughness, osmotically induced movements such as nastic and tropic, and energy conversion and harvesting) that are unique to plants, can provide functionality on the platform and become further prospective resources are examined. Furthermore, implementation across organisms and fields, which is promising for future practical applications of the plant-actuated micro-nanorobot platform, especially on biomedical applications, is discussed. Finally, the challenges following its implementation in the micro-nanorobot platform are also presented to provide advanced adaptation in the future.
Collapse
Affiliation(s)
- Rachmi Luthfikasari
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisiplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Dinesh K Patel
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Maria Mercedes Espinal
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisiplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
25
|
Nguyen NTT, Nguyen LM, Nguyen TTT, Liew RK, Nguyen DTC, Tran TV. Recent advances on botanical biosynthesis of nanoparticles for catalytic, water treatment and agricultural applications: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154160. [PMID: 35231528 DOI: 10.1016/j.scitotenv.2022.154160] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Green synthesis of nanoparticles using plant extracts minimizes the usage of toxic chemicals or energy. Here, we concentrate on the green synthesis of nanoparticles using natural compounds from plant extracts and their applications in catalysis, water treatment and agriculture. Polyphenols, flavonoid, rutin, quercetin, myricetin, kaempferol, coumarin, and gallic acid in the plant extracts engage in the reduction and stabilization of green nanoparticles. Ten types of nanoparticles involving Ag, Au, Cu, Pt, CuO, ZnO, MgO, TiO2, Fe3O4, and ZrO2 with emphasis on their formation mechanism are illuminated. We find that green nanoparticles serve as excellent, and recyclable catalysts for reduction of nitrophenols and synthesis of organic compounds with high yields of 83-100% and at least 5 recycles. Many emerging pollutants such as synthetic dyes, antibiotics, heavy metal and oils are effectively mitigated (90-100%) using green nanoparticles. In agriculture, green nanoparticles efficiently immobilize toxic compounds in soil. They are also sufficient nanopesticides to kill harmful larvae, and nanoinsecticides against dangerous vectors of pathogens. As potential nanofertilizers and nanoagrochemicals, green nanoparticles will open a revolution in green agriculture for sustainable development.
Collapse
Affiliation(s)
- Ngoan Thi Thao Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Luan Minh Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Rock Keey Liew
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; NV WESTERN PLT, No. 208B, Jalan Macalister, Georgetown 10400, Pulau Pinang, Malaysia
| | - Duyen Thi Cam Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| |
Collapse
|
26
|
Chompunut L, Wanaporn T, Anupong W, Narayanan M, Alshiekheid M, Sabour A, Karuppusamy I, Lan Chi NT, Shanmuganathan R. Synthesis of copper nanoparticles from the aqueous extract of Cynodon dactylon and evaluation of its antimicrobial and photocatalytic properties. Food Chem Toxicol 2022; 166:113245. [PMID: 35728723 DOI: 10.1016/j.fct.2022.113245] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/25/2022] [Accepted: 06/15/2022] [Indexed: 10/18/2022]
Abstract
The copper nanoparticles (CuNPs) synthesizing potential of Cynodon dactylon aqueous leaf extract and their antibacterial as well as dye degradation potentials were investigated. The synthesized CuNPs was initially characterized by gradual colour change from dark brown to blue in colour and then found absorbance peak at 469 nm. Furthermore, the SEM and DLS analyses showed that biosynthesized CuNPs were spherical in shaped and size ranging from 120 to 129 nm. The FTIR spectrum confirmed the presence of flavonoids, alkaloids, terpenoids, and phenols, which involved in the reduction, capping, and stabilization of CuNPs. This green synthesized CuNPs also demonstrated remarkable antibacterial activity against the bacterial pathogens such as Escherichia coli, Bacillus subtilis and Staphylococcus aureus and Klebsiella pneumoniae. This green synthesized CuNPs exhibited considerable dye degrading potential in the following order as methyl organge > methyl red > Erichrome black T dyes in the presence of sunlight through photocatalytic degradation process. These results conclude that C. dactylon aqueous leaf extract mediated nanoparticles possess remarkable antibacterial and dye degrading potential.
Collapse
Affiliation(s)
- Lumsangkul Chompunut
- Department of Animal and Aquatic Science, Faculty of Agriculture, Chiang Mai University, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Tapingkae Wanaporn
- Department of Animal and Aquatic Science, Faculty of Agriculture, Chiang Mai University, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wongchai Anupong
- Department of Agricultural Economy and Development, Faculty of Agriculture, Chiang Mai University, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Mathiyazhagan Narayanan
- Division of Research and Innovations, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602 105, Tamil Nadu, India
| | - Maha Alshiekheid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Amal Sabour
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Indira Karuppusamy
- Research Center for Strategic Materials, Corrosion Resistant Steel Group, National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Rajasree Shanmuganathan
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
27
|
Guru Bharathi B, Lalitha K, Shivakumar MS. Biosynthesis of copper nanoparticles using symbiotic bacterium Xenorhabdus sp, isolated from entomopathogenic nematode and its antimicrobial and insecticidal activity against Spodoptera litura. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2078359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Kandhasamy Lalitha
- Molecular Entomology Laboratory, Department of Biotechnology, Periyar University, Salem, Tamil Nadu, India
| | | |
Collapse
|
28
|
Bio-inspired Synthesis of Metal and Metal Oxide Nanoparticles: The Key Role of Phytochemicals. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02276-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Ayadi Hassan S, Ghadam P, Abdi Ali A. One step green synthesis of Cu nanoparticles by the aqueous extract of Juglans regia green husk: assessing its physicochemical, environmental and biological activities. Bioprocess Biosyst Eng 2022; 45:605-618. [PMID: 35129667 DOI: 10.1007/s00449-022-02691-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/12/2022] [Indexed: 11/30/2022]
Abstract
Juglans regia (J. regia) green husk is an abundant agricultural waste. In this study, an economical, rapid and green synthetic route was introduced for the biosynthesis of copper nanoparticles (CuNPs) by applying the aqueous extract of J. regia green husk at the ambient conditions. Ultra Violet-Visible (UV-Visible) analysis revealed that the Surface Plasmon Resonance (SPR) of the CuNP was 212 nm. The average hydrodynamic and metallic core diameters of the CuNPs were about 53-28 nm, respectively. X-ray Diffraction (XRD) analysis presented that the CuNPs were amorphous. The CuNPs exhibited the highest free radical 1,1-diphenyl-2-picryl-hydrazyl (DPPH) scavenging efficiency. These nanoparticles (NPs) showed antibacterial, antifungal and antibiofilm properties. They presented photocatalytic activity against Methyl Orange (MO). Besides, the potential of these NPs for the fast and precise colorimetric detection of Hg2+ was remarkable. The biosynthesized CuNPs are introduced as a multifunctional nanomaterial with various applications in medicine and environmental cases. The CuNPs were produced through an environmentally green process by the aqueous extract of dried J. regia green husk at the ambient condition. The CuNPs confirmed that this type of nanomaterial is a multifunctional agent with significant antibacterial, antifungal, antibiofilm, antioxidant, photocatalytic activities. Besides, it is a promising colorimetric sensor for the detection of Hg2+ in an aqueous complex media.
Collapse
Affiliation(s)
- Sona Ayadi Hassan
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Parinaz Ghadam
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Ahya Abdi Ali
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| |
Collapse
|
30
|
Majeed M, Hakeem KR, Rehman RU. Synergistic effect of plant extract coupled silver nanoparticles in various therapeutic applications- present insights and bottlenecks. CHEMOSPHERE 2022; 288:132527. [PMID: 34637861 DOI: 10.1016/j.chemosphere.2021.132527] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/07/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The phytocomponent conjugated silver nanoparticles (AgNPs) have been extensively explored for various therapeutic applications such as antimicrobial, antioxidant, anticancer, anti-inflammatory, antidiabetic and anticoagulant effects. The bio-conjugation of Ag-based nanomaterial with plant extracts reduces their toxicity to biological systems and enhances their therapeutic effectiveness. The diversity of phytochemicals or capping agents provided by the plant extracts and the small size and large surface area of AgNPs permits maximum adsorption of these capping agents onto their surfaces that further promote the therapeutic performance of phytoconjugated AgNPs in various biomedical applications. The mechanistic action involved in antimicrobial and anticancer functions of AgNPs is mainly dependent on the induction of reactive oxygen species (ROS) resulting in cellular apoptosis and necrosis. This review summarizes the recent studies of various plant extract assisted synthesis of AgNPs, potential biomedical applications with the possible mechanism of action and major shortcomings affecting their therapeutic efficacy.
Collapse
Affiliation(s)
- Mahak Majeed
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190005, India
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Princess Dr Najla Bint Saud Al- Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Reiaz Ul Rehman
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190005, India.
| |
Collapse
|
31
|
Hong GB, Wang JF, Chuang KJ, Cheng HY, Chang KC, Ma CM. Preparing Copper Nanoparticles and Flexible Copper Conductive Sheets. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:360. [PMID: 35159705 PMCID: PMC8840540 DOI: 10.3390/nano12030360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023]
Abstract
Nanotechnology is used in a wide range of fields, including medicine, cosmetics, and new material development, and is one of the most popular technologies in the field of flexible electronic products. For the present work, the chemical reduction method with environmentally friendly reducing agents was used to synthesize copper nanoparticles (CuNPs) with good dispersibility. The CuNPs were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and ultraviolet-visible spectrophotometry (UV-vis). After the CuNPs were formed, the solvent, polymers, and additives were added to form copper ink. Finally, the prepared copper inks were applied to flexible polyethylene terephthalate (PET) substrate under low sintering temperature and the effects of sintering time and different concentrations of sintering agent on resistivity were investigated. The results show that the copper nanoparticles synthesized by secondary reduction were smaller, more uniform, and better dispersed than those formed by primary reduction. Ethylene glycol has reducing effects under high temperatures; therefore, the CuNPs formed using the mixed solvent were small and well dispersed. The copper ink was applied on the PET substrate, treated with a formic acid aqueous solution, and sintered at 130 °C for 60 min, and its resistivity was about 1.67 × 10-3 Ω cm. The proposed synthesizing method is expected to have potential applications in the flexible electronic products field.
Collapse
Affiliation(s)
- Gui-Bing Hong
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan; (G.-B.H.); (J.-F.W.)
| | - Jia-Fang Wang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan; (G.-B.H.); (J.-F.W.)
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei 11490, Taiwan
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11490, Taiwan
| | - Hsiu-Yueh Cheng
- Department of Nursing, St. Mary’s Junior College of Medicine, Nursing and Management, Yi-Lan 26647, Taiwan; (H.-Y.C.); (K.-C.C.)
| | - Kai-Chau Chang
- Department of Nursing, St. Mary’s Junior College of Medicine, Nursing and Management, Yi-Lan 26647, Taiwan; (H.-Y.C.); (K.-C.C.)
| | - Chih-Ming Ma
- Department of Cosmetic Application and Management, St. Mary’s Junior College of Medicine, Nursing and Management, Yi-Lan 26647, Taiwan
| |
Collapse
|
32
|
Sharma P, Goyal D, Chudasama B. Antibacterial Activity of Colloidal Copper Nanoparticles against Gram-negative (Escherichia coli and Proteus vulgaris) Bacteria. Lett Appl Microbiol 2022; 74:695-706. [PMID: 35034356 DOI: 10.1111/lam.13655] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/15/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Abstract
Antibacterial activities of as-synthesized nanoparticles have gained attention in past few years due to rapid phylogenesis of pathogens developing multi-drug resistance (MDR). Antibacterial activity of Copper nanoparticles (CuNPs) on surrogate pathogenic Gram-negative bacteria Escherichia coli (MTCC No. 739) and Proteus vulgaris (MTCC No. 426) was evaluated under culture conditions. Three sets of colloidal CuNPs were synthesized by chemical reduction method with per batch yield of 0.2 g, 0.3 g and 0.4 g. As-synthesized CuNPs possess identical plasmonic properties and have similar hydrodynamic particle sizes (11-14 nm). Antibacterial activities of CuNPs were evaluated by MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration) tests, cytoplasmic leakage and ROS (reactive oxygen species) assays. MIC and MBC tests revealed dose dependence bactericidal action. Growth curves of E. coli show faster growth inhibition along with higher cytoplasmic leakage than that of P. vulgaris. This might be because of increased membrane permeability of E. coli. CuNPs - microorganism interaction induces oxidative stress generated by ROS (reactive oxygen species). Leakage of cytoplasmic components, loss of membrane permeability and ROS generation are the primary causes of CuNPs induced bacterial cell death. As-synthesized CuNPs exhibiting promising antibacterial activities and could be a promising candidate for novel antibacterial agents.
Collapse
Affiliation(s)
- Purnima Sharma
- Department Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004, India.,School of Physics and Materials Science, Thapar Institute of Engineering and Technology, Patiala, 147004, India
| | - Dinesh Goyal
- Department Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004, India
| | - Bhupendra Chudasama
- School of Physics and Materials Science, Thapar Institute of Engineering and Technology, Patiala, 147004, India.,Thapar-VT Center of Excellence in Emerging Materials (CEEMS), Thapar Institute of Engineering and Technology, Patiala, 147004, India
| |
Collapse
|
33
|
Ozimek J, Pielichowski K. Recent Advances in Polyurethane/POSS Hybrids for Biomedical Applications. Molecules 2021; 27:molecules27010040. [PMID: 35011280 PMCID: PMC8746980 DOI: 10.3390/molecules27010040] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 11/16/2022] Open
Abstract
Advanced organic-inorganic materials-composites, nanocomposites, and hybrids with various compositions offer unique properties required for biomedical applications. One of the most promising inorganic (nano)additives are polyhedral oligomeric silsesquioxanes (POSS); their biocompatibility, non-toxicity, and phase separation ability that modifies the material porosity are fundamental properties required in modern biomedical applications. When incorporated, chemically or physically, into polyurethane matrices, they substantially change polymer properties, including mechanical properties, surface characteristics, and bioactivity. Hence, this review is dedicated to POSS-PU composites that have recently been developed for applications in the biomedical field. First, different modes of POSS incorporation into PU structure have been presented, then recent developments of PU/POSS hybrids as bio-active composites for scaffolds, cardiovascular stents, valves, and membranes, as well as in bio-imaging and cancer treatment, have been described. Finally, characterization and methods of modification routes of polyurethane-based materials with silsesquioxanes were presented.
Collapse
|
34
|
Chen X, Fu J, Li J, Chen B, Yang L, Li Z. Green synthesis of submicron copper powder with narrow particle size distribution via a simple methanol thermal reduction. Dalton Trans 2021; 50:17301-17307. [PMID: 34787164 DOI: 10.1039/d1dt03464b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this work, submicron copper powder with narrow particle size distribution was synthesized via a simple methanol thermal reduction method without using any surfactants. Smaller copper powder with narrower particle size distribution could be realized by increasing the reaction temperature. Submicron copper powder with an average particle size of 206.6 nm and a particle size distribution of 100-300 nm could be obtained when the reaction temperature was 200 °C. Methyl formate was the only organic product found in the reaction. No organic products could be realized when the reaction temperature increased to 180 °C and above, which was environmentally friendly and was conducive to the subsequent copper powder extraction and washing. The synthesis of submicron copper powder via methanol thermal reduction was found to be a top-down process, which was beneficial for ultrafine copper powder production via wet chemical approaches.
Collapse
Affiliation(s)
- Xiaoping Chen
- Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China.
| | - Jiaqi Fu
- Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China.
| | - Jiangang Li
- Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China.
| | - Bohong Chen
- Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China.
| | - Lei Yang
- Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China.
| | - Zhichun Li
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| |
Collapse
|
35
|
Jayeoye TJ, Eze FN, Olatunde OO, Singh S, Zuo J, Olatunji OJ. Multifarious Biological Applications and Toxic Hg 2+ Sensing Potentiality of Biogenic Silver Nanoparticles Based on Securidaca inappendiculata Hassk Stem Extract. Int J Nanomedicine 2021; 16:7557-7574. [PMID: 34803379 PMCID: PMC8597655 DOI: 10.2147/ijn.s325996] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/27/2021] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION The use of environmentally benign resources for nanoparticles synthesis is consistently pushed to the front burner in a bid to ensure and enhance environmental protection and beneficiation. In this light, application of different plant parts for the reduction and stabilization of nanoparticles is gaining popularity. MATERIALS AND METHODS In this contribution, we have exploited Securidaca inappendiculata stem extract (SISE), as the reducing and stabilizing agent for room temperature synthesis of highly stable and dispersed AgNPs. The major bioactive compounds in SISE were profiled using an ultra-high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UHPLC-MS-QTOF-MS). RESULTS AND DISCUSSION SISE could reduce silver salts to its nanoparticles almost instantaneously with a maximum absorption spectrum at 423 nm, under the optimal conditions. The fabricated SISE AgNPs was extensively characterized using FTIR, TEM, SEM, XRD, EDS, Zeta analysis/DLS and TGA/DTG analysis. SISE AgNPs with average particles size between 10-15 nm and a zeta potential value of -19.5 ± 1.8 mV was obtained. It was investigated for in-vitro biological applications by carrying out, antimicrobial, antioxidant, hemolytic, cytotoxicity and antidiabetic assays. It was found that SISE AgNPs exhibited potent antimicrobial capacity against some food borne microbes, good antioxidant property, while also demonstrating high biocompatibility. Moreover, with a view to extending further the applications SISE AgNPs, it was tested as a colorimetric nanoprobe for Hg2+ detection in aqueous environment, where good linearity between 0.10 and 10.0 μM, with a detection limit of 26.5 nM, were obtained. The practicality of the probe was investigated by carrying out Hg2+ detection in water sample, with good accuracy and precision. DISCUSSION Overall, this work introduced a new stabilizer for biocompatible AgNPs with far-reaching applications.
Collapse
Affiliation(s)
- Titilope John Jayeoye
- Department of Chemistry, Faculty of Physical Science, Alex-Ekwueme Federal University Ndufu-Alike, Abakalilki, Ebonyi State, Nigeria
| | - Fredrick Nwude Eze
- Faculty of Pharmaceutical Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
- Drug Delivery System Excellence of Center, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Oladipupo Odunayo Olatunde
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB, R3T 6C5, Canada
| | - Sudarshan Singh
- Food Technology and Innovation Research Center of Excellence, Institute of Research and Innovation, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Jian Zuo
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241001, People’s Republic of China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241001, People’s Republic of China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241001, People’s Republic of China
| | - Opeyemi Joshua Olatunji
- Faculty of Thai Traditional Medicine, Prince of Songkla University, Hat Yai, 90110, Thailand
| |
Collapse
|
36
|
Tortella G, Rubilar O, Fincheira P, Pieretti JC, Duran P, Lourenço IM, Seabra AB. Bactericidal and Virucidal Activities of Biogenic Metal-Based Nanoparticles: Advances and Perspectives. Antibiotics (Basel) 2021; 10:783. [PMID: 34203129 PMCID: PMC8300690 DOI: 10.3390/antibiotics10070783] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 12/14/2022] Open
Abstract
Much progress has been achieved in the preparation and application of engineered nanoparticles (NPs) in the field of medicine, mainly for antibacterial and antiviral applications. In the war against bacteria and viruses, besides traditional antibiotics and antiviral drugs, metal-based nanoparticles, such as silver (AgNPs), copper (CuNPs), copper oxides (CuO-NPs), iron oxide (FeO-NPs), zinc oxide (ZnO-NPs), and titanium oxide (TiO2-NPs) have been used as potent antimicrobial agents. These nanoparticles can be synthesized by traditional methods, such as chemical and physical routes, or more recently by biogenic processes. A great variety of macro and microorganisms can be successfully used as reducing agents of metal salt precursors in the biogenic synthesis of metal-based NPs for antimicrobial activity. Depending on the nature of the biological agent, NPs with different sizes, aggregation states, morphology, surface coatings and charges can be obtained, leading to different antimicrobial effects. Considering the drug resistance to traditional therapies, the development of versatile nanomaterials with potent antimicrobial effects is under intensive investigation. In this sense, this review presents and discusses the recent progress in the preparation and application of metal-based nanoparticles biogenically synthesized for antibacterial and antivirus applications. The strength and limitations are critically discussed.
Collapse
Affiliation(s)
- Gonzalo Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile; (O.R.); (P.F.)
- Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile; (O.R.); (P.F.)
- Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| | - Paola Fincheira
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile; (O.R.); (P.F.)
| | - Joana C. Pieretti
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André 09210-580, Brazil; (J.C.P.); (I.M.L.); (A.B.S.)
| | - Paola Duran
- Biocontrol Research Laboratory, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Isabella M. Lourenço
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André 09210-580, Brazil; (J.C.P.); (I.M.L.); (A.B.S.)
| | - Amedea B. Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André 09210-580, Brazil; (J.C.P.); (I.M.L.); (A.B.S.)
| |
Collapse
|
37
|
Behzad F, Sefidgar E, Samadi A, Lin W, Pouladi I, Pi J. An overview of zinc oxide nanoparticles produced by plant extracts for anti-tuberculosis treatments. Curr Med Chem 2021; 29:86-98. [PMID: 34126883 DOI: 10.2174/0929867328666210614122109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 11/22/2022]
Abstract
Tuberculosis (TB), induced by Mycobacterium tuberculosis (MTB), is a fatal infectious disease that kills millions of lives worldwide. The emergence of drug-resistant and multidrug-resistant cases is regarded as one of the most challenging threats to TB control due to the low cure rate. Therefore, TB and drug-resistant TB epidemics urge us to explore more effective therapies. The increasing knowledge of nanotechnology has extended to some nanomedicines for disease treatment in the clinic, which also provides novel possibilities for nano-based medicines for TB treatment. Zinc oxide nanoparticles (ZnO NPs) have gained increasing attention for anti-bacterial uses based on their strong ability to induce reactive oxidative species (ROS) and release bactericidal Zinc ions (Zn2+), which are expected to act as novel strategies for TB and drug-resistant TB treatment. Some active herbal medicines from plant extracts have been widely reported to show attractive anti-bacterial activity for infectious treatment, including TB. Here, we summarize the synthesis of ZnO NPs using plant extracts (green synthesized ZnO NPs) and further discuss their potentials for anti-TB treatments. This is the first review article discussing the anti-TB activity of ZnO NPs produced using plant extracts, which might contribute to the further applications of green synthesized ZnO NPs for anti-TB and drug-resistant TB treatment.
Collapse
Affiliation(s)
- Farahnaz Behzad
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Erfan Sefidgar
- Department of Biological Sciences٫ Institute for Advanced Studies in Basic Sciences٫ Zanjan, Iran
| | - Azam Samadi
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Wensen Lin
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| | - Iman Pouladi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Jiang Pi
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| |
Collapse
|
38
|
Moreira RC, Oliveira JH, Libel GP, Amaral PE, Pereira EC, Siqueira VL, Grassi MF, Radovanovic E. Modified polystyrene spheres/graphene oxide decorated with silver nanoparticles as bactericidal material. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Biogenic Nanoparticles: Synthesis, Characterisation and Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062598] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanotechnology plays a big part in our modern daily lives, ranging from the biomedical sector to the energy sector. There are different physicochemical and biological methods to synthesise nanoparticles towards multiple applications. Biogenic production of nanoparticles through the utilisation of microorganisms provides great advantages over other techniques and is increasingly being explored. This review examines the process of the biogenic synthesis of nanoparticles mediated by microorganisms such as bacteria, fungi and algae, and their applications. Microorganisms offer a disparate environment for nanoparticle synthesis. Optimum production and minimum time to obtain the desired size and shape, to improve the stability of nanoparticles and to optimise specific microorganisms for specific applications are the challenges to address, however. Numerous applications of biogenic nanoparticles in medicine, environment, drug delivery and biochemical sensors are discussed.
Collapse
|
40
|
Ruddaraju LK, Veerla SC, Kolapalli VRM, Pallela PNVK, Padavala VS, Pammi SVN. Green-synthesized copper oxide nanostructures for potential multifaceted biomedical applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj01509e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The novelty of the present work is the in-vitro and in vivo nano-antibitoic combinational therapy along with in vitro anti-cancer and biocompatibility activities of green synthesized CuO NLs.
Collapse
Affiliation(s)
- Lakshmi Kalyani Ruddaraju
- Department of Pharmaceutics, Shri Vishnu College of Pharmacy, Vishnupur, Bhimavaram – 534202, Andhra Pradesh, India
| | - Sarath Chandra Veerla
- Nanomaterials for Photovoltaics and Biomaterials Laboratory (NPBL), Department of Humanities and Basic Sciences (Physics), Godavari Institute of Engineering and Technology (Autonomous), Rajahmundry – 533296, Andhra Pradesh, India
| | | | | | - Veerabhadra Swamy Padavala
- Department of Pharmaceutics, Shri Vishnu College of Pharmacy, Vishnupur, Bhimavaram – 534202, Andhra Pradesh, India
| | - S. V. N. Pammi
- Department of Basic Sciences & Humanities, GMR Institute of Technology (GMRIT), GMR Nagar, Rajam – 532 127, Srikakulam District, Andhra Pradesh, India
| |
Collapse
|
41
|
Silva A, Silva SA, Lourenço-Lopes C, Jimenez-Lopez C, Carpena M, Gullón P, Fraga-Corral M, Domingues VF, Barroso MF, Simal-Gandara J, Prieto MA. Antibacterial Use of Macroalgae Compounds against Foodborne Pathogens. Antibiotics (Basel) 2020; 9:E712. [PMID: 33080894 PMCID: PMC7603221 DOI: 10.3390/antibiotics9100712] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/18/2022] Open
Abstract
The search for food resources is a constant in human history. Nowadays, the search for natural and safe food supplies is of foremost importance. Accordingly, there is a renewed interest in eco-friendly and natural products for substitution of synthetic additives. In addition, microbial contamination of food products during their obtaining and distribution processes is still a sanitary issue, and an important target for the food industry is to avoid food contamination and its related foodborne illnesses. These diseases are fundamentally caused by certain microorganisms listed in this review and classified according to their Gram negative or positive character. Algae have proven to possess high nutritional value and a wide variety of biological properties due to their content in active compounds. Among these capabilities, macroalgae are recognized for having antimicrobial properties. Thus, the present paper revises the actual knowledge of microbial contaminants in the food industry and proposes antimicrobial algal compounds against those pathogenic bacteria responsible for food contamination as valuable molecules for its growth inhibition. The capacity of algae extracts to inhibit some major food pathogen growth was assessed. Moreover, the main applications of these compounds in the food industry were discussed while considering their favorable effects in terms of food safety and quality control.
Collapse
Affiliation(s)
- Aurora Silva
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (A.S.); (C.L.-L.); (C.J.-L.); (M.C.); (P.G.); (M.F.-C.)
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (V.F.D.); (M.F.B.)
| | - Sofia A. Silva
- Departamento de Química, Universidade de Aveiro, 3810-168 Aveiro, Portugal;
| | - C. Lourenço-Lopes
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (A.S.); (C.L.-L.); (C.J.-L.); (M.C.); (P.G.); (M.F.-C.)
| | - C. Jimenez-Lopez
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (A.S.); (C.L.-L.); (C.J.-L.); (M.C.); (P.G.); (M.F.-C.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - M. Carpena
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (A.S.); (C.L.-L.); (C.J.-L.); (M.C.); (P.G.); (M.F.-C.)
| | - P. Gullón
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (A.S.); (C.L.-L.); (C.J.-L.); (M.C.); (P.G.); (M.F.-C.)
| | - M. Fraga-Corral
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (A.S.); (C.L.-L.); (C.J.-L.); (M.C.); (P.G.); (M.F.-C.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - V. F. Domingues
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (V.F.D.); (M.F.B.)
| | - M. Fátima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (V.F.D.); (M.F.B.)
| | - J. Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (A.S.); (C.L.-L.); (C.J.-L.); (M.C.); (P.G.); (M.F.-C.)
| | - M. A. Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (A.S.); (C.L.-L.); (C.J.-L.); (M.C.); (P.G.); (M.F.-C.)
| |
Collapse
|