1
|
Golubchikov DO, Petrov AK, Popkov VA, Evdokimov PV, Putlayev VI. Advances in the Fabrication of Polycaprolactone-Based Composite Scaffolds for Bone Tissue Engineering: From Chemical Composition to Scaffold Architecture. ACS Biomater Sci Eng 2025. [PMID: 40382718 DOI: 10.1021/acsbiomaterials.5c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Thermoplastic polymer-based materials, which feature essential biological properties and opportunities to implement the cutting-edge additive manufacturing technologies aimed at obtaining high-precision 3D models, have attracted intense interest for porous and bioresorbable bone tissue implants development. Among the wide range of materials, polycaprolactone was found to provide a balance between the biodegradation rate and biocompatibility with various tissues. Recent advances in the fabrication of polymer-polymer and polymer-inorganic composites have opened new ways to improve biological and mechanical outcomes and expanded the range of applications for bone and cartilage restoration, including the development of conductive composites for electrostimulation. While the chemical composition of the manufactured scaffolds played a vital role in their general biological performance and biocompatibility with bone tissue, the micropattern and roughness of the surface were shown to be additional stimuli for stem cell differentiation. More challenges came from the fabrication technique suitable for the proposed scaffold design. Here we summarize the key challenges and advances in fabrication and approaches to the optimization of certain chemical, morphological, or geometrical parameters of polycaprolactone-based scaffolds for bone tissue engineering applications.
Collapse
Affiliation(s)
- Daniil O Golubchikov
- Department of Materials Science, Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander K Petrov
- Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow 119991, Russia
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vasily A Popkov
- Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow 119991, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Pavel V Evdokimov
- Department of Materials Science, Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Valery I Putlayev
- Department of Materials Science, Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
2
|
Ranat K, Phan H, Ellythy S, Kenter M, Akkouch A. Advancements in Musculoskeletal Tissue Engineering: The Role of Melt Electrowriting in 3D-Printed Scaffold Fabrication. J Funct Biomater 2025; 16:163. [PMID: 40422828 DOI: 10.3390/jfb16050163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/28/2025] Open
Abstract
Musculoskeletal tissue injuries of the bone, cartilage, ligaments, tendons, and skeletal muscles are among the most common injuries experienced in medicine and become increasingly problematic in cases of significant tissue damage, such as nonunion bone defects and volumetric muscle loss. Current gold standard treatment options for musculoskeletal injuries, although effective, have limited capability to fully restore native tissue structure and function. To overcome this challenge, three-dimensional (3D) printing techniques have emerged as promising therapeutic options for tissue regeneration. Melt electrowriting (MEW), a recently developed advanced 3D printing technique, has gained significant traction in the field of tissue regeneration because of its ability to fabricate complex customizable scaffolds via high-precision microfiber deposition. The tailorability at microscale levels offered by MEW allows for enhanced recapitulation of the tissue microenvironment. Here, we survey the recent contributions of MEW in advancing musculoskeletal tissue engineering. More specifically, we briefly discuss the principles and technical aspects of MEW, provide an overview of current printers on the market, review in-depth the latest biomedical applications in musculoskeletal tissue regeneration, and, lastly, examine the limitations of MEW and offer future perspectives.
Collapse
Affiliation(s)
- Kunal Ranat
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49008, USA
| | - Hong Phan
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49008, USA
| | - Suhaib Ellythy
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49008, USA
| | - Mitchell Kenter
- Department of Surgical Services, Division of Medical Engineering, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49008, USA
| | - Adil Akkouch
- Department of Surgical Services, Division of Medical Engineering, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49008, USA
- Department of Surgical Services, Division of Orthopaedic Surgery, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49008, USA
| |
Collapse
|
3
|
Tang H, Wang T, Zhang P, Yang K. Guided tissue regeneration with a gelatin and polycaprolactone composite membrane for repairing oral soft tissue defects: A prospective, single-blinded, randomized trial. J Prosthet Dent 2025; 133:1221-1228. [PMID: 39955202 DOI: 10.1016/j.prosdent.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 02/17/2025]
Abstract
STATEMENT OF PROBLEM Clinical trials comparing outcomes of the guided tissue regeneration membrane (TRM), fabricated from gelatin and polycaprolactone via electronspinning technology, with collagen membrane for repairing oral soft tissue defects are lacking. PURPOSE The purpose of this clinical trial was to evaluate the efficacy and safety of TRM compared with collagen membrane in reconstructing oral soft tissue defects. MATERIAL AND METHODS This prospective, single-blinded, randomized, noninferiority trial involved 48 participants with oral lesions who were randomized (1:1) into 2 groups: surgery + TRM or surgery + collagen membrane. The primary endpoint was to establish a noninferiority margin of -10% regarding Grade A healing rates 1 month ±7 days after surgery between groups. Secondary endpoints included instrument performance, Grade A healing rate at 10 ±3 days and 3 months ±7 days after surgery, time to achieve Grade A healing, surgical area satisfaction and wound contraction at 10 ±3 days, 1 month ±7 days, and 3 months ±7 days after surgery. Adverse events were assessed to evaluate the safety of TRM. The independent samples t test was used for continuous variables between groups, and the Fisher exact test or chi-squared test was used for categorical variables (α=.05). RESULTS The Grade A healing rate was 100% in both groups at 1 month ±7 days after surgery in the full-analysis and per-protocol sets. The 95% confidence interval of the rate difference (0%) was -5% to +5%, within the predefined noninferiority margin of -10%, indicating that TRM was not inferior to collagen membrane. No significant differences in secondary endpoints were found between groups (P>.05). Adverse events rates were also similar between groups (serious adverse events: 3 [12.50%] for TRM and 1 [4.17%] for collagen membrane, P=.609; overall adverse events: 7 [29.17%] for TRM and 4 [16.67%] for collagen membrane, P=.303). CONCLUSIONS TRM demonstrated noninferiority to collagen membrane for reconstructing oral soft tissue defects.
Collapse
Affiliation(s)
- Hong Tang
- Doctoral student, Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Ting Wang
- Graduate student, Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Pan Zhang
- Graduate student, Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Kai Yang
- Professor, Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
4
|
Mustafa FE, Lee BK. Improved Mechanical Stability and Regulated Gentamicin-Release of Polyvinyl Alcohol/Chitosan Nanofiber Membranes via Heat Treatment. J Biomed Mater Res A 2025; 113:e37905. [PMID: 40156174 DOI: 10.1002/jbm.a.37905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/04/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
For wound dressing applications, nanofiber membranes must have adequate mechanical strength when cultured in vitro for cell ingrowth and matrix production, and the ability to withstand stresses in vivo. Moreover, effective polymeric drug carriers must also regulate and prolong drug release while preserving drug stability. This study addresses these requirements by utilizing heat treatment (100°C for 2 h) to improve the mechanical stability and regulated drug-release characteristics of electrospun gentamicin-loaded polyvinyl alcohol/chitosan (PVA/CS) nanofiber membranes. Electrospinning solutions with varying gentamicin concentrations produced defect-free and uniform nanofibers. The nanofiber membranes were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, and tensile testing, and their in vitro biodegradation and drug-release behavior were investigated. Tensile results revealed that heat treatment improved the mechanical strength of PVA and PVA/CS nanofibers, with gentamicin-loaded samples maintaining stability post-treatment. Gentamicin in the heat-treated nanofiber membranes exhibited controlled drug-release profiles, with reduced initial burst release and sustained release for 25 h. Furthermore, drug release was found to occur through the Fickian diffusion mechanism based on the Korsmeyer-Peppas model. These findings demonstrate that heat treatment is effective for achieving mechanical stability and regulated drug release, making it a safe alternative to chemical cross-linking for the biomedical applications of drug-loaded PVA/CS nanofiber membranes.
Collapse
Affiliation(s)
- Faizan E Mustafa
- School of Mechanical Engineering, Chonnam National University, Gwangju, Republic of Korea
| | - Bong-Kee Lee
- School of Mechanical Engineering, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
5
|
Zhuang Y, Wu D, Zhou L, Liu B, Zhao X, Yang J, Liu W, Wang Z, Zheng Y, Shi X. Electrospun Biomimetic Periosteum Promotes Diabetic Bone Defect Regeneration through Regulating Macrophage Polarization and Sequential Drug Release. ACS Biomater Sci Eng 2025; 11:1690-1704. [PMID: 39908041 DOI: 10.1021/acsbiomaterials.4c02095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The inadequate vascularization and abnormal immune microenvironment in the diabetic bone defect region present a significant challenge to osteogenic regulation. Inspired by the distinctive characteristics of healing staged in diabetic bone defects and the structure-function relationship in the natural periosteum, we fabricated an electrospun bilayer biomimetic periosteum (Bilayer@E) to promote regeneration of diabetic bone defects. Here, the inner layer of biomimetic periosteum was fabricated using coaxial electrospinning fibers, with a shell incorporating zinc oxide nanoparticles (ZnO NPs) and a core containing silicon dioxide nanoparticles (SiO2 NPs) mimicking the cambium of periosteum; the outer layer consisted of randomly aligned electrospun fibers loaded with deferoxamine (DFO), simulating the fibrous layer of periosteum; finally, epigallocatechin-3-gallate (EGCG) was coated onto the bilayer membrane to obtain Bilayer@E. The presence of EGCG on the Bilayer@E surface efficiently triggers a phenotypic transition in macrophages, shifting them from an M1 proinflammatory state to an M2 anti-inflammatory state. Moreover, the sequential release of ZnO NPs, DFO, and SiO2 NPs exhibits antimicrobial characteristics while coordinating angiogenesis and promoting osteogenic mineralization in cells. Importantly, the biomimetic periosteum shows strong in vivo bone tissue and periosteal regeneration properties in diabetic rats. The integration of sequential drug release and immunomodulation, tailored to meet the specific healing requirements during bone regeneration, offers new insights for advancing the application of biomaterials in this field.
Collapse
Affiliation(s)
- Yu Zhuang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Dingwei Wu
- Department of Orthopedics, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, China
| | - Lvyang Zhou
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Boyuan Liu
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Xingkai Zhao
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Wenge Liu
- Department of Orthopedics, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, China
| | - Zhenyu Wang
- Department of Orthopedics, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, China
| | - Yunquan Zheng
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| |
Collapse
|
6
|
Chaka KT, Cao K, Tesfaye T, Qin X. Nanomaterial-functionalized electrospun scaffolds for tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:371-413. [PMID: 39259663 DOI: 10.1080/09205063.2024.2399909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Tissue engineering has emerged as a biological alternative aimed at sustaining, rehabilitating, or enhancing the functionality of tissues that have experienced partial or complete loss of their operational capabilities. The distinctive characteristics of electrospun nanofibrous structures, such as their elevated surface-area-to-volume ratio, specific pore sizes, and fine fiber diameters, make them suitable as effective scaffolds in tissue engineering, capable of mimicking the functions of the targeted tissue. However, electrospun nanofibers, whether derived from natural or synthetic polymers or their combinations, often fall short of replicating the multifunctional attributes of the extracellular matrix (ECM). To address this, nanomaterials (NMs) are integrated into the electrospun polymeric matrix through various functionalization techniques to enhance their multifunctional properties. Incorporation of NMs into electrospun nanofibrous scaffolds imparts unique features, including a high surface area, superior mechanical properties, compositional variety, structural adaptability, exceptional porosity, and enhanced capabilities for promoting cell migration and proliferation. This review provides a comprehensive overview of the various types of NMs, the methodologies used for their integration into electrospun nanofibrous scaffolds, and the recent advancements in NM-functionalized electrospun nanofibrous scaffolds aimed at regenerating bone, cardiac, cartilage, nerve, and vascular tissues. Moreover, the main challenges, limitations, and prospects in electrospun nanofibrous scaffolds are elaborated.
Collapse
Affiliation(s)
- Kilole Tesfaye Chaka
- Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Kai Cao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Tamrat Tesfaye
- Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Xiaohong Qin
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| |
Collapse
|
7
|
Wang Z, Xu J, Zhu J, Fang H, Lei W, Qu X, Cheng YY, Li X, Guan Y, Wang H, Song K. Osteochondral Tissue Engineering: Scaffold Materials, Fabrication Techniques and Applications. Biotechnol J 2025; 20:e202400699. [PMID: 39865414 DOI: 10.1002/biot.202400699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/28/2025]
Abstract
Osteochondral damage, caused by trauma, tumors, or degenerative diseases, presents a major challenge due to the limited self-repair capacity of the tissue. Traditional treatments often result in significant trauma and unpredictable outcomes. Recent advances in bone/cartilage tissue engineering, particularly in scaffold materials and fabrication technologies, offer promising solutions for osteochondral regeneration. This review highlights the selection and design of scaffolds using natural and synthetic materials such as collagen, chitosan (Cs), and polylactic acid (PLA), alongside inorganic components like bioactive glass and nano-hydroxyapatite (nHAp). Key fabrication techniques-freeze-drying, electrospinning, and 3D printing-have improved scaffold porosity and mechanical properties. Special focus is placed on the design of multiphasic scaffolds that mimic natural tissue structures, promoting cell adhesion and differentiation and supporting the regeneration of cartilage and subchondral bone. In addition, the current obstacles and future directions for regenerating damaged osteochondral tissues will be discussed.
Collapse
Affiliation(s)
- Zhenyu Wang
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Jie Xu
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Jingjing Zhu
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Huan Fang
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Wanyu Lei
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Xinrui Qu
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Broadway, Australia
| | - Xiangqin Li
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Yanchun Guan
- Department of Rheumatology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hongfei Wang
- Department of Orthopedics, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Kedong Song
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
8
|
Chen X, Zhang X, Sun J, Zhang R, Liang X, Long J, Yao J, Chen X, Wang H, Zhang Y, Leng J, Lu R. Near-Field Direct Writing Based on Piezoelectric Micromotion for the Programmable Manufacturing of Serpentine Structures. MICROMACHINES 2024; 15:1478. [PMID: 39770231 PMCID: PMC11727834 DOI: 10.3390/mi15121478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025]
Abstract
Serpentine microstructures offer excellent physical properties, making them highly promising in applications in stretchable electronics and tissue engineering. However, existing fabrication methods, such as electrospinning and lithography, face significant challenges in producing microscale serpentine structures that are cost-effective, efficient, and controllable. These methods often struggle with achieving precise control over fiber morphology and scalability. In this study, we developed a near-field direct writing (NFDW) technique incorporating piezoelectric micromotion to enable the precise fabrication of serpentine micro-/nanofibers by incorporating micromotion control with macroscopic movement. Modifying the fiber structure allowed for adjustments to the mechanical properties, including tunable extensibility and distinct characteristics. Through the control of the frequency and amplitude of the piezoelectric signal, the printing errors were reduced to below 9.48% in the cycle length direction and 6.33% in the peak height direction. A predictive model for the geometrical extensibility of serpentine structures was derived from Legendre's incomplete elliptic integral of the second kind and incorporated an error correction factor, which significantly reduced the calculation errors in predicting geometric elongation, by 95.85%. The relationship between microstructure bending and biomimetic non-linear mechanical behavior was explored through tensile testing. By controlling the input electrical signals, highly ordered serpentine microstructures were successfully fabricated, demonstrating potential for use in biomimetic mechanical scaffolds.
Collapse
Affiliation(s)
- Xun Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China; (X.C.); (X.Z.); (J.S.); (R.Z.); (J.Y.); (X.C.); (H.W.); (Y.Z.); (J.L.)
- School of Electromechnical Engineering, Guangdong University of Technology, Guangzhou 510006, China;
| | - Xuanzhi Zhang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China; (X.C.); (X.Z.); (J.S.); (R.Z.); (J.Y.); (X.C.); (H.W.); (Y.Z.); (J.L.)
- School of Electromechnical Engineering, Guangdong University of Technology, Guangzhou 510006, China;
| | - Jianfeng Sun
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China; (X.C.); (X.Z.); (J.S.); (R.Z.); (J.Y.); (X.C.); (H.W.); (Y.Z.); (J.L.)
- School of Electromechnical Engineering, Guangdong University of Technology, Guangzhou 510006, China;
| | - Rongguang Zhang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China; (X.C.); (X.Z.); (J.S.); (R.Z.); (J.Y.); (X.C.); (H.W.); (Y.Z.); (J.L.)
- School of Electromechnical Engineering, Guangdong University of Technology, Guangzhou 510006, China;
| | - Xuanyang Liang
- School of Electromechnical Engineering, Guangdong University of Technology, Guangzhou 510006, China;
| | - Jiecai Long
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China; (X.C.); (X.Z.); (J.S.); (R.Z.); (J.Y.); (X.C.); (H.W.); (Y.Z.); (J.L.)
- School of Electromechnical Engineering, Guangdong University of Technology, Guangzhou 510006, China;
| | - Jingsong Yao
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China; (X.C.); (X.Z.); (J.S.); (R.Z.); (J.Y.); (X.C.); (H.W.); (Y.Z.); (J.L.)
- School of Electromechnical Engineering, Guangdong University of Technology, Guangzhou 510006, China;
| | - Xin Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China; (X.C.); (X.Z.); (J.S.); (R.Z.); (J.Y.); (X.C.); (H.W.); (Y.Z.); (J.L.)
- School of Electromechnical Engineering, Guangdong University of Technology, Guangzhou 510006, China;
| | - Han Wang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China; (X.C.); (X.Z.); (J.S.); (R.Z.); (J.Y.); (X.C.); (H.W.); (Y.Z.); (J.L.)
- School of Electromechnical Engineering, Guangdong University of Technology, Guangzhou 510006, China;
| | - Yu Zhang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China; (X.C.); (X.Z.); (J.S.); (R.Z.); (J.Y.); (X.C.); (H.W.); (Y.Z.); (J.L.)
- School of Electromechnical Engineering, Guangdong University of Technology, Guangzhou 510006, China;
| | - Jiewu Leng
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China; (X.C.); (X.Z.); (J.S.); (R.Z.); (J.Y.); (X.C.); (H.W.); (Y.Z.); (J.L.)
- School of Electromechnical Engineering, Guangdong University of Technology, Guangzhou 510006, China;
| | - Renquan Lu
- Guangdong Provincial Key Laboratory of Intelligent Decision and Cooperative Control, School of Automation, Guangdong University of Technology, Guangzhou 510006, China;
| |
Collapse
|
9
|
Lai Y, Xiao X, Huang Z, Duan H, Yang L, Yang Y, Li C, Feng L. Photocrosslinkable Biomaterials for 3D Bioprinting: Mechanisms, Recent Advances, and Future Prospects. Int J Mol Sci 2024; 25:12567. [PMID: 39684279 DOI: 10.3390/ijms252312567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
Constructing scaffolds with the desired structures and functions is one of the main goals of tissue engineering. Three-dimensional (3D) bioprinting is a promising technology that enables the personalized fabrication of devices with regulated biological and mechanical characteristics similar to natural tissues/organs. To date, 3D bioprinting has been widely explored for biomedical applications like tissue engineering, drug delivery, drug screening, and in vitro disease model construction. Among different bioinks, photocrosslinkable bioinks have emerged as a powerful choice for the advanced fabrication of 3D devices, with fast crosslinking speed, high resolution, and great print fidelity. The photocrosslinkable biomaterials used for light-based 3D printing play a pivotal role in the fabrication of functional constructs. Herein, this review outlines the general 3D bioprinting approaches related to photocrosslinkable biomaterials, including extrusion-based printing, inkjet printing, stereolithography printing, and laser-assisted printing. Further, the mechanisms, advantages, and limitations of photopolymerization and photoinitiators are discussed. Next, recent advances in natural and synthetic photocrosslinkable biomaterials used for 3D bioprinting are highlighted. Finally, the challenges and future perspectives of photocrosslinkable bioinks and bioprinting approaches are envisaged.
Collapse
Affiliation(s)
- Yushang Lai
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiong Xiao
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziwei Huang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongying Duan
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liping Yang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuchu Yang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chenxi Li
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Feng
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Orozco-Osorio YA, Gaita-Anturi AV, Ossa-Orozco CP, Arias-Acevedo M, Uribe D, Paucar C, Vasquez AF, Saldarriaga W, Ramirez JG, Lopera A, García C. Utilization of Additive Manufacturing Techniques for the Development of a Novel Scaffolds with Magnetic Properties for Potential Application in Enhanced Bone Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402419. [PMID: 39004887 DOI: 10.1002/smll.202402419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Indexed: 07/16/2024]
Abstract
This study focuses on designing and evaluating scaffolds with essential properties for bone regeneration, such as biocompatibility, macroporous geometry, mechanical strength, and magnetic responsiveness. The scaffolds are made using 3D printing with acrylic resin and iron oxides synthesized through solution combustion. Utilizing triply periodic minimal surfaces (TPMS) geometry and mask stereolithography (MSLA) printing, the scaffolds achieve precise geometrical features. The mechanical properties are enhanced through resin curing, and magnetite particles from synthesized nanoparticles and alluvial magnetite are added for magnetic properties. The scaffolds show a balance between stiffness, porosity, and magnetic responsiveness, with maximum compression strength between 4.8 and 9.2 MPa and Young's modulus between 58 and 174 MPa. Magnetic properties such as magnetic coercivity, remanence, and saturation are measured, with the best results from scaffolds containing synthetic iron oxides at 1% weight. The viscosity of the mixtures used for printing is between 350 and 380 mPas, and contact angles between 90° and 110° are achieved. Biocompatibility tests indicate the potential for clinical trials, though further research is needed to understand the impact of magnetic properties on cellular interactions and optimize scaffold design for specific applications. This integrated approach offers a promising avenue for the development of advanced materials capable of promoting enhanced bone regeneration.
Collapse
Affiliation(s)
| | | | | | - María Arias-Acevedo
- Instituto Tecnológico Metropolitano, Calle 73 #76A-354, Campus Robledo, Medellín, Antioquia, 50034, Colombia
| | - Diego Uribe
- Instituto Tecnológico Metropolitano, Calle 73 #76A-354, Campus Robledo, Medellín, Antioquia, 50034, Colombia
| | - Carlos Paucar
- Universidad Nacional de Colombia sede Medellín, Carrera 65 # 59A-100, Medellin, Antioquia, 050034, Colombia
| | | | - Wilmer Saldarriaga
- Universidad Nacional de Colombia sede Medellín, Carrera 65 # 59A-100, Medellin, Antioquia, 050034, Colombia
| | | | - Alex Lopera
- Grupo de Nanoestructuras y Física Aplicada (NANOUPAR), Universidad Nacional de Colombia, La Paz, 202017, Colombia
| | - Claudia García
- Universidad Nacional de Colombia sede Medellín, Carrera 65 # 59A-100, Medellin, Antioquia, 050034, Colombia
| |
Collapse
|
11
|
Liu Z, Jia J, Lei Q, Wei Y, Hu Y, Lian X, Zhao L, Xie X, Bai H, He X, Si L, Livermore C, Kuang R, Zhang Y, Wang J, Yu Z, Ma X, Huang D. Electrohydrodynamic Direct-Writing Micro/Nanofibrous Architectures: Principle, Materials, and Biomedical Applications. Adv Healthc Mater 2024; 13:e2400930. [PMID: 38847291 DOI: 10.1002/adhm.202400930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/21/2024] [Indexed: 07/05/2024]
Abstract
Electrohydrodynamic (EHD) direct-writing has recently gained attention as a highly promising additive manufacturing strategy for fabricating intricate micro/nanoscale architectures. This technique is particularly well-suited for mimicking the extracellular matrix (ECM) present in biological tissue, which serves a vital function in facilitating cell colonization, migration, and growth. The integration of EHD direct-writing with other techniques has been employed to enhance the biological performance of scaffolds, and significant advancements have been made in the development of tailored scaffold architectures and constituents to meet the specific requirements of various biomedical applications. Here, a comprehensive overview of EHD direct-writing is provided, including its underlying principles, demonstrated materials systems, and biomedical applications. A brief chronology of EHD direct-writing is provided, along with an examination of the observed phenomena that occur during the printing process. The impact of biomaterial selection and architectural topographic cues on biological performance is also highlighted. Finally, the major limitations associated with EHD direct-writing are discussed.
Collapse
Affiliation(s)
- Zhengjiang Liu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Jinqiao Jia
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Qi Lei
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- Shanxi-Zheda Institute of advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- Shanxi-Zheda Institute of advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China
| | - Yinchun Hu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- Shanxi-Zheda Institute of advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China
| | - Xiaojie Lian
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- Shanxi-Zheda Institute of advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China
| | - Liqin Zhao
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- Shanxi-Zheda Institute of advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China
| | - Xin Xie
- Xellar Biosystems, Cambridge, MA, 02458, USA
| | - Haiqing Bai
- Xellar Biosystems, Cambridge, MA, 02458, USA
| | - Xiaomin He
- Xellar Biosystems, Cambridge, MA, 02458, USA
| | - Longlong Si
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Carol Livermore
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Rong Kuang
- Zhejiang Institute for Food and Drug Control, Hangzhou, 310000, P. R. China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| | - Jiucun Wang
- Human Phenome Institute, Fudan University, Shanghai, 200433, P. R. China
| | - Zhaoyan Yu
- Shandong Public Health Clinical Center, Shandong University, Jinan, 250000, P. R. China
| | - Xudong Ma
- Cytori Therapeutics LLC., Shanghai, 201802, P. R. China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- Shanxi-Zheda Institute of advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China
| |
Collapse
|
12
|
Lai X, Huang J, Huang S, Wang J, Zheng Y, Luo Y, Tang L, Gao B, Tang Y. Antibacterial and Osteogenic Dual-Functional Micronano Composite Scaffold Fabricated via Melt Electrowriting and Solution Electrospinning for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37707-37721. [PMID: 39001812 DOI: 10.1021/acsami.4c07400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
The utilization of micronano composite scaffolds has been extensively demonstrated to confer the superior advantages in bone repair compared to single nano- or micron-sized scaffolds. Nevertheless, the enhancement of bioactivities within these composite scaffolds remains challenging. In this study, we propose a novel approach to combine melt electrowriting (MEW) and solution electrospinning (SES) techniques for the fabrication of a composite scaffold incorporating hydroxyapatite (HAP), an osteogenic component, and roxithromycin (ROX), an antibacterial active component. Scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) confirmed the hierarchical architecture of the nanofiber-microgrid within the scaffold, as well as the successful loading of HAP and ROX. The incorporation of HAP enhanced the water absorption capacity of the composite scaffold, thus promoting cell adhesion and proliferation, as well as osteogenic differentiation. Furthermore, ROX resulted in effective antibacterial capability without any observable cytotoxicity. Finally, the scaffolds were applied to a rat calvarial defect model, and the results demonstrated that the 20% HAP group exhibited superior new bone formation without causing adverse reactions. Therefore, our findings present a promising strategy for designing and fabricating bioactive scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Xiangjie Lai
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jun Huang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, China
| | - Shunfen Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, China
| | - Jiyuan Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yongsheng Zheng
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, China
- Department of Orthopedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yuli Luo
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Linjun Tang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Botao Gao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, China
| | - Yadong Tang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
13
|
Bian S, Hu X, Zhu H, Du W, Wang C, Wang L, Hao L, Xiang Y, Meng F, Hu C, Wu Z, Wang J, Pan X, Guan M, Lu WW, Zhao X. 3D Bioprinting of Artificial Skin Substitute with Improved Mechanical Property and Regulated Cell Behavior through Integrating Patterned Nanofibrous Films. ACS NANO 2024; 18:18503-18521. [PMID: 38941540 DOI: 10.1021/acsnano.4c04088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Three-dimensional (3D) bioprinting has advantages for constructing artificial skin tissues in replicating the structures and functions of native skin. Although many studies have presented improved effect of printing skin substitutes in wound healing, using hydrogel inks to fabricate 3D bioprinting architectures with complicated structures, mimicking mechanical properties, and appropriate cellular environments is still challenging. Inspired by collagen nanofibers withstanding stress and regulating cell behavior, a patterned nanofibrous film was introduced to the printed hydrogel scaffold to fabricate a composite artificial skin substitute (CASS). The artificial dermis was printed using gelatin-hyaluronan hybrid hydrogels containing human dermal fibroblasts with gradient porosity and integrated with patterned nanofibrous films simultaneously, while the artificial epidermis was formed by seeding human keratinocytes upon the dermis. The collagen-mimicking nanofibrous film effectively improved the tensile strength and fracture resistance of the CASS, making it sewable for firm implantation into skin defects. Meanwhile, the patterned nanofibrous film also provided the biological cues to guide cell behavior. Consequently, CASS could effectively accelerate the regeneration of large-area skin defects in mouse and pig models by promoting re-epithelialization and collagen deposition. This research developed an effective strategy to prepare composite bioprinting architectures for enhancing mechanical property and regulating cell behavior, and CASS could be a promising skin substitute for treating large-area skin defects.
Collapse
Affiliation(s)
- Shaoquan Bian
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaohua Hu
- Department of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, P. R. China
| | - Hao Zhu
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Weili Du
- Department of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, P. R. China
| | - Chenmin Wang
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Liangliang Wang
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Liuzhi Hao
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuming Xiang
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Fengzhen Meng
- Institute of Clinical Translation and Regenerative Medicine, People's Hospital of Baoan District, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, P. R. China
| | - Chengwei Hu
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhiyun Wu
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jing Wang
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Xiaohua Pan
- Institute of Clinical Translation and Regenerative Medicine, People's Hospital of Baoan District, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, P. R. China
| | - Min Guan
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - William Weijia Lu
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- The University of Hong Kong, Hong Kong 999077, P. R. China
- Materials Innovation Institute for Life Sciences and Energy, The University of Hong Kong Shenzhen Institute of Research and Innovation, Shenzhen 518057, P. R. China
| | - Xiaoli Zhao
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
14
|
Ye X, Zhang E, Huang Y, Tian F, Xue J. 3D-printed electrospun fibres for wound healing. Wound Repair Regen 2024; 32:195-207. [PMID: 37753874 DOI: 10.1111/wrr.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/09/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
Abstract
Wound management for acute and chronic wounds has become a serious clinical problem worldwide, placing considerable pressure on public health systems. Owing to the high-precision, adjustable pore structure, and repeatable manufacturing process, 3D-printed electrospun fibre (3DP-ESF) has attracted widespread attention for fabricating wound dressing. In addition, in comparison with 2D electrospun fibre membranes fabricated by traditional electrospinning, the 3D structures provide additional guidance on cell behaviour. In this perspective article, we first summarise the basic manufacturing principles and methods to fabricate 3DP-ESF. Then, we discuss the function of 3DP-ESF in manipulating the different stages of wound healing, including anti-bacteria, anti-inflammation, and promotion of cell migration and proliferation, as well as the construction of tissue-engineered scaffolds. In the end, we provide the current challenge faced by 3DP-ESF in the application of skin wound regeneration and its promising future directions.
Collapse
Affiliation(s)
- Xilin Ye
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, People's Republic of China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Enshuo Zhang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, People's Republic of China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Yaqin Huang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, People's Republic of China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Feng Tian
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, People's Republic of China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Jiajia Xue
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, People's Republic of China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, People's Republic of China
| |
Collapse
|
15
|
Nitschke BM, Beltran FO, Hahn MS, Grunlan MA. Trends in bioactivity: inducing and detecting mineralization of regenerative polymeric scaffolds. J Mater Chem B 2024; 12:2720-2736. [PMID: 38410921 PMCID: PMC10935659 DOI: 10.1039/d3tb02674d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024]
Abstract
Due to limitations of biological and alloplastic grafts, regenerative engineering has emerged as a promising alternative to treat bone defects. Bioactive polymeric scaffolds are an integral part of such an approach. Bioactivity importantly induces hydroxyapatite mineralization that promotes osteoinductivity and osseointegration with surrounding bone tissue. Strategies to confer bioactivity to polymeric scaffolds utilize bioceramic fillers, coatings and surface treatments, and additives. These approaches can also favorably impact mechanical and degradation properties. A variety of fabrication methods are utilized to prepare scaffolds with requisite morphological features. The bioactivity of scaffolds may be evaluated with a broad set of techniques, including in vitro (acellular and cellular) and in vivo methods. Herein, we highlight contemporary and emerging approaches to prepare and assess scaffold bioactivity, as well as existing challenges.
Collapse
Affiliation(s)
- Brandon M Nitschke
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Felipe O Beltran
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Mariah S Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
16
|
Hong W, Lian Z, Jiang H, Chen J, Zhang Z, Ni Z. Progress in advanced electrospun membranes for CO 2 capture: Feedstock, design, and trend. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120026. [PMID: 38184873 DOI: 10.1016/j.jenvman.2024.120026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/04/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
The emission of large amounts of carbon dioxide has caused serious environmental problems and hindered the construction of a green and low-carbon society. Efficient carbon dioxide capture has become an important means to slow down global climate warming and achieve effective utilization of carbon dioxide. Membranes synthesized by electrospinning technology are becoming promising carbon capture materials due to their unique characteristics. This review describes the features of membranes prepared from available raw materials and presents their application performances in carbon capture. The preparation methods of various types of membrane materials with excellent capture performance are summarized, and the effects of electrospinning parameters on electrospun fibers are systematically analyzed. Furthermore, recommendations and expectations for further development of electrospun membranes for carbon capture applications are given. These works provide important references for an in-depth understanding of the development status of electrospun membranes in the field of carbon capture and for expanding future research.
Collapse
Affiliation(s)
- Wenpeng Hong
- School of Energy and Power Engineering, Northeast Electric Power University, Jilin, 132012, PR China
| | - Zhengru Lian
- School of Energy and Power Engineering, Northeast Electric Power University, Jilin, 132012, PR China
| | - Haifeng Jiang
- School of Energy and Power Engineering, Northeast Electric Power University, Jilin, 132012, PR China.
| | - Jie Chen
- Center of Analysis and Measurement, Jilin Institute of Chemical Technology, Jilin, 132022, PR China
| | - Zongyuan Zhang
- School of Energy and Power Engineering, Northeast Electric Power University, Jilin, 132012, PR China
| | - Zhenjia Ni
- School of Energy and Power Engineering, Northeast Electric Power University, Jilin, 132012, PR China
| |
Collapse
|
17
|
Shi Y, Tao W, Yang W, Wang L, Qiu Z, Qu X, Dang J, He J, Fan H. Calcium phosphate coating enhances osteointegration of melt electrowritten scaffold by regulating macrophage polarization. J Nanobiotechnology 2024; 22:47. [PMID: 38297240 PMCID: PMC10829397 DOI: 10.1186/s12951-024-02310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/26/2024] [Indexed: 02/02/2024] Open
Abstract
The osteoimmune microenvironment induced by implants plays a significant role in bone regeneration. It is essential to efficiently and timely switch the macrophage phenotype from M1 to M2 for optimal bone healing. This study examined the impact of a calcium phosphate (CaP) coating on the physiochemical properties of highly ordered polycaprolactone (PCL) scaffolds fabricated using melt electrowritten (MEW). Additionally, it investigated the influence of these scaffolds on macrophage polarization and their immunomodulation on osteogenesis. The results revealed that the CaP coated PCL scaffold exhibited a rougher surface topography and higher hydrophilicity in comparison to the PCL scaffold without coating. Besides, the surface morphology of the coating and the release of Ca2+ from the CaP coating were crucial in regulating the transition of macrophages from M1 to M2 phenotypes. They might activate the PI3K/AKT and cAMP-PKA pathways, respectively, to facilitate M2 polarization. In addition, the osteoimmune microenvironment induced by CaP coated PCL could not only enhance the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) in vitro but also promote the bone regeneration in vivo. Taken together, the CaP coating can be employed to control the phenotypic switching of macrophages, thereby creating a beneficial immunomodulatory microenvironment that promotes bone regeneration.
Collapse
Affiliation(s)
- Yubo Shi
- Department of Orthopedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Weidong Tao
- Department of Orthopedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wenjing Yang
- Xijing 986 Hospital Department, The Fourth Military Medical University, Xi'an, China
| | - Lei Wang
- Department of Orthopedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhennan Qiu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China
- Rapid Manufacturing Research Center of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoli Qu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China
- Rapid Manufacturing Research Center of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Jingyi Dang
- Department of Orthopedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China
- Rapid Manufacturing Research Center of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Hongbin Fan
- Department of Orthopedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
18
|
Manjit M, Kumar M, Kumar K, Dhondale MR, Jha A, Bharti K, Rain Z, Prakash P, Mishra B. Fabrication of dual drug-loaded polycaprolactone-gelatin composite nanofibers for full thickness diabetic wound healing. Ther Deliv 2023. [PMID: 38124684 DOI: 10.4155/tde-2023-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Aim: Design of moxifloxacin and ornidazole co-loaded polycaprolactone and gelatin nanofiber dressing for diabetic wounds. Materials & methods: The composite nanofibers were prepared using electrospinning technique and characterized for in vitro drug release, antibacterial activity, laser doppler and in vivo wound healing. Results: The optimized nanofiber demonstrated an interconnected bead free nanofiber with average diameter <200 nm. The in vitro drug release & antimicrobial studies revealed that optimized nanofiber provided drug release for >120 h, thereby inhibiting growth of Escherichia coli and Stapyhlococcus aureus. An in vivo wound closure study on diabetic rats found that optimized nanofiber group had a significantly higher wound closure rate than marketed formulation. Conclusion: The nanofiber provided prolonged drug release and accelerated wound healing, making it a promising candidate for diabetic wound care.
Collapse
Affiliation(s)
- Manjit Manjit
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Manish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Krishan Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Madhukiran R Dhondale
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Abhishek Jha
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Kanchan Bharti
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Zinnu Rain
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Pradyot Prakash
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
19
|
Lizarazo-Fonseca L, Correa-Araujo L, Prieto-Abello L, Camacho-Rodríguez B, Silva-Cote I. In vitro and in vivo evaluation of electrospun poly (ε-caprolactone)/collagen scaffolds and Wharton's jelly mesenchymal stromal cells (hWJ-MSCs) constructs as potential alternative for skin tissue engineering. Regen Ther 2023; 24:11-24. [PMID: 37284730 PMCID: PMC10239703 DOI: 10.1016/j.reth.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/08/2023] [Accepted: 05/20/2023] [Indexed: 06/08/2023] Open
Abstract
Dermal substitutes bear a high clinical demand because of their ability to promote the healing process of cutaneous wounds by reducing the healing time the appearance and improving the functionality of the repaired tissue. Despite the increasing development of dermal substitutes, most of them are only composed of biological or biosynthetic matrices. This demonstrates the need for new developments focused on using scaffolds with cells (tissue construct) that promote the production of factors for biological signaling, wound coverage, and general support of the tissue repair process. Here, we fabricate by electrospinning two scaffolds: poly(ε-caprolactone) (PCL) as a control and poly(ε-caprolactone)/collagen type I (PCol) in a ratio lower collagen than previously reported, 19:1, respectively. Then, characterize their physicochemical and mechanical properties. As we bear in mind the creation of a biologically functional construct, we characterize and assess in vitro the implications of seeding human Wharton's jelly mesenchymal stromal cells (hWJ-MSCs) on both scaffolds. Finally, to determine the potential functionality of the constructs in vivo, their efficiency was evaluated in a porcine biomodel. Our findings demonstrated that collagen incorporation in the scaffolds produces fibers with similar diameters to those in the human native extracellular matrix, increases wettability, and enhances the presence of nitrogen on the scaffold surface, improving cell adhesion and proliferation. These synthetic scaffolds improved the secretion of factors by hWJ-MSCs involved in skin repair processes such as b-FGF and Angiopoietin I and induced its differentiation towards epithelial lineage, as shown by the increased expression of Involucrin and JUP. In vivo experiments confirmed that lesions treated with the PCol/hWJ-MSCs constructs might reproduce a morphological organization that seems relatively equivalent to normal skin. These results suggest that the PCol/hWJ-MSCs construct is a promising alternative for skin lesions repair in the clinic.
Collapse
Affiliation(s)
| | | | | | | | - Ingrid Silva-Cote
- Corresponding author. Secretaría Distrital de Salud, Carrera 32 # 12-81, Bogotá, Colombia
| |
Collapse
|
20
|
Xing J, Zhang M, Liu X, Wang C, Xu N, Xing D. Multi-material electrospinning: from methods to biomedical applications. Mater Today Bio 2023; 21:100710. [PMID: 37545561 PMCID: PMC10401296 DOI: 10.1016/j.mtbio.2023.100710] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/03/2023] [Accepted: 06/16/2023] [Indexed: 08/08/2023] Open
Abstract
Electrospinning as a versatile, simple, and cost-effective method to engineer a variety of micro or nanofibrous materials, has contributed to significant developments in the biomedical field. However, the traditional electrospinning of single material only can produce homogeneous fibrous assemblies with limited functional properties, which oftentimes fails to meet the ever-increasing requirements of biomedical applications. Thus, multi-material electrospinning referring to engineering two or more kinds of materials, has been recently developed to enable the fabrication of diversified complex fibrous structures with advanced performance for greatly promoting biomedical development. This review firstly gives an overview of multi-material electrospinning modalities, with a highlight on their features and accessibility for constructing different complex fibrous structures. A perspective of how multi-material electrospinning opens up new opportunities for specific biomedical applications, i.e., tissue engineering and drug delivery, is also offered.
Collapse
Affiliation(s)
- Jiyao Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Miao Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Nannan Xu
- School of Computer Science and Technology, Ocean University of China, Qingdao, 266000, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
21
|
Naseri M, Hedayatnazari A, Tayebi L. PGS/Gelatin Nanocomposite Electrospun Wound Dressing. JOURNAL OF COMPOSITES SCIENCE 2023; 7:237. [PMID: 38646461 PMCID: PMC11031268 DOI: 10.3390/jcs7060237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Infectious diabetic wounds can result in severe injuries or even death. Biocompatible wound dressings offer one of the best ways to treat these wounds, but creating a dressing with a suitable hydrophilicity and biodegradation rate can be challenging. To address this issue, we used the electrospinning method to create a wound dressing composed of poly(glycerol sebacate) (PGS) and gelatin (Gel). We dissolved the PGS and Gel in acetic acid (75 v/v%) and added EDC/NHS solution as a crosslinking agent. Our measurements revealed that the scaffolds' fiber diameter ranged from 180.2 to 370.6 nm, and all the scaffolds had porosity percentages above 70%, making them suitable for wound healing applications. Additionally, we observed a significant decrease (p < 0.05) in the contact angle from 110.8° ± 4.3° for PGS to 54.9° ± 2.1° for PGS/Gel scaffolds, indicating an improvement in hydrophilicity of the blend scaffold. Furthermore, our cell viability evaluations demonstrated a significant increase (p < 0.05) in cultured cell growth and proliferation on the scaffolds during the culture time. Our findings suggest that the PGS/Gel scaffold has potential for wound healing applications.
Collapse
Affiliation(s)
- Mahyar Naseri
- School of Dentistry, Marquette University, Milwaukee, WI 53233, USA
| | - Aysan Hedayatnazari
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI 53233, USA
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI 53233, USA
| |
Collapse
|
22
|
Zhang G, Li W, Yu M, Huang H, Wang Y, Han Z, Shi K, Ma L, Yu Z, Zhu X, Peng Z, Xu Y, Li X, Hu S, He J, Li D, Xi Y, Lan H, Xu L, Tang M, Xiao M. Electric-Field-Driven Printed 3D Highly Ordered Microstructure with Cell Feature Size Promotes the Maturation of Engineered Cardiac Tissues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206264. [PMID: 36782337 PMCID: PMC10104649 DOI: 10.1002/advs.202206264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Engineered cardiac tissues (ECTs) derived from human induced pluripotent stem cells (hiPSCs) are viable alternatives for cardiac repair, patient-specific disease modeling, and drug discovery. However, the immature state of ECTs limits their clinical utility. The microenvironment fabricated using 3D scaffolds can affect cell fate, and is crucial for the maturation of ECTs. Herein, the authors demonstrate an electric-field-driven (EFD) printed 3D highly ordered microstructure with cell feature size to promote the maturation of ECTs. The simulation and experimental results demonstrate that the EFD jet microscale 3D printing overcomes the jet repulsion without any prior requirements for both conductive and insulating substrates. Furthermore, the 3D highly ordered microstructures with a fiber diameter of 10-20 µm and spacing of 60-80 µm have been fabricated by maintaining a vertical jet, achieving the largest ratio of fiber diameter/spacing of 0.29. The hiPSCs-derived cardiomyocytes formed ordered ECTs with their sarcomere growth along the fiber and developed synchronous functional ECTs inside the 3D-printed scaffold with matured calcium handling compared to the 2D coverslip. Therefore, the EFD jet 3D microscale printing process facilitates the fabrication of scaffolds providing a suitable microenvironment to promote the maturation of ECTs, thereby showing great potential for cardiac tissue engineering.
Collapse
Affiliation(s)
- Guangming Zhang
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520P. R. China
| | - Wenhai Li
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520P. R. China
| | - Miao Yu
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalMedical CollegeSoochow UniversitySuzhou215000P. R. China
| | - Hui Huang
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520P. R. China
| | - Yaning Wang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalMedical CollegeSoochow UniversitySuzhou215000P. R. China
| | - Zhifeng Han
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520P. R. China
| | - Kai Shi
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520P. R. China
| | - Lingxuan Ma
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520P. R. China
| | - Zhihao Yu
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520P. R. China
| | - Xiaoyang Zhu
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520P. R. China
| | - Zilong Peng
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520P. R. China
| | - Yue Xu
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalMedical CollegeSoochow UniversitySuzhou215000P. R. China
| | - Xiaoyun Li
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalMedical CollegeSoochow UniversitySuzhou215000P. R. China
| | - Shijun Hu
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalMedical CollegeSoochow UniversitySuzhou215000P. R. China
| | - Jiankang He
- State Key Laboratory for Manufacturing System EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Dichen Li
- State Key Laboratory for Manufacturing System EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Yongming Xi
- Department of Spinal SurgeryThe Affilliated Hosepital of Qingdao UniversityQingdao266003P. R. China
| | - Hongbo Lan
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520P. R. China
| | - Lin Xu
- Yantai Affiliated HospitalBinzhou Medical UniversityYantai264100P. R. China
- Institute of Rehabilitation EngineeringBinzhou Medical UniversityYantai264100P. R. China
| | - Mingliang Tang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalMedical CollegeSoochow UniversitySuzhou215000P. R. China
- Co‐innovation Center of NeuroregenerationNantong UniversityNantong226001P. R. China
| | - Miao Xiao
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalMedical CollegeSoochow UniversitySuzhou215000P. R. China
| |
Collapse
|
23
|
Liu H, Gong Y, Zhang K, Ke S, Wang Y, Wang J, Wang H. Recent Advances in Decellularized Matrix-Derived Materials for Bioink and 3D Bioprinting. Gels 2023; 9:gels9030195. [PMID: 36975644 PMCID: PMC10048399 DOI: 10.3390/gels9030195] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
As an emerging 3D printing technology, 3D bioprinting has shown great potential in tissue engineering and regenerative medicine. Decellularized extracellular matrices (dECM) have recently made significant research strides and have been used to create unique tissue-specific bioink that can mimic biomimetic microenvironments. Combining dECMs with 3D bioprinting may provide a new strategy to prepare biomimetic hydrogels for bioinks and hold the potential to construct tissue analogs in vitro, similar to native tissues. Currently, the dECM has been proven to be one of the fastest growing bioactive printing materials and plays an essential role in cell-based 3D bioprinting. This review introduces the methods of preparing and identifying dECMs and the characteristic requirements of bioink for use in 3D bioprinting. The most recent advances in dECM-derived bioactive printing materials are then thoroughly reviewed by examining their application in the bioprinting of different tissues, such as bone, cartilage, muscle, the heart, the nervous system, and other tissues. Finally, the potential of bioactive printing materials generated from dECM is discussed.
Collapse
Affiliation(s)
- Huaying Liu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100091, China
| | - Yuxuan Gong
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100091, China
| | - Kaihui Zhang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100091, China
- College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Shen Ke
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100091, China
| | - Yue Wang
- National Institutes for Food and Drug Control, Beijing 102629, China
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Correspondence: (J.W.); (H.W.)
| | - Haibin Wang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100091, China
- Correspondence: (J.W.); (H.W.)
| |
Collapse
|
24
|
Uhljar LÉ, Ambrus R. Electrospinning of Potential Medical Devices (Wound Dressings, Tissue Engineering Scaffolds, Face Masks) and Their Regulatory Approach. Pharmaceutics 2023; 15:417. [PMID: 36839739 PMCID: PMC9965305 DOI: 10.3390/pharmaceutics15020417] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
Electrospinning is the simplest and most widely used technology for producing ultra-thin fibers. During electrospinning, the high voltage causes a thin jet to be launched from the liquid polymer and then deposited onto the grounded collector. Depending on the type of the fluid, solution and melt electrospinning are distinguished. The morphology and physicochemical properties of the produced fibers depend on many factors, which can be categorized into three groups: process parameters, material properties, and ambient parameters. In the biomedical field, electrospun nanofibers have a wide variety of applications ranging from medication delivery systems to tissue engineering scaffolds and soft electronics. Many of these showed promising results for potential use as medical devices in the future. Medical devices are used to cure, prevent, or diagnose diseases without the presence of any active pharmaceutical ingredients. The regulation of conventional medical devices is strict and carefully controlled; however, it is not yet properly defined in the case of nanotechnology-made devices. This review is divided into two parts. The first part provides an overview on electrospinning through several examples, while the second part focuses on developments in the field of electrospun medical devices. Additionally, the relevant regulatory framework is summarized at the end of this paper.
Collapse
Affiliation(s)
| | - Rita Ambrus
- Faculty of Pharmacy, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary
| |
Collapse
|
25
|
Hamdan N, Khodir WKWA, Hamid SA, Nasir MHM, Hamzah AS, Cruz-Maya I, Guarino V. PCL/Gelatin/Graphene Oxide Electrospun Nanofibers: Effect of Surface Functionalization on In Vitro and Antibacterial Response. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:488. [PMID: 36770449 PMCID: PMC9921190 DOI: 10.3390/nano13030488] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
The emergence of resistance to pathogenic bacteria has resulted from the misuse of antibiotics used in wound treatment. Therefore, nanomaterial-based agents can be used to overcome these limitations. In this study, polycaprolactone (PCL)/gelatin/graphene oxide electrospun nanofibers (PGO) are functionalized via plasma treatment with the monomeric groups diallylamine (PGO-M1), acrylic acid (PGO-M2), and tert-butyl acrylate (PGO-M3) to enhance the action against bacteria cells. The surface functionalization influences the morphology, surface wettability, mechanical properties, and thermal stability of PGO nanofibers. PGO-M1 and PGO-M2 exhibit good antibacterial activity against Staphylococcus aureus and Escherichia coli, whereas PGO-M3 tends to reduce their antibacterial properties compared to PGO nanofibers. The highest proportion of dead bacteria cells is found on the surface of hydrophilic PGO-M1, whereas live cells are colonized on the surface of hydrophobic PGO-M3. Likewise, PGO-M1 shows a good interaction with L929, which is confirmed by the high levels of adhesion and proliferation with respect to the control. All the results confirm that surface functionalization can be strategically used as a tool to engineer PGO nanofibers with controlled antibacterial properties for the fabrication of highly versatile devices suitable for different applications (e.g., health, environmental pollution).
Collapse
Affiliation(s)
- Nazirah Hamdan
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Wan Khartini Wan Abdul Khodir
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
- SYNTOF, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Shafida Abd Hamid
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
- SYNTOF, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Mohd Hamzah Mohd Nasir
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Ahmad Sazali Hamzah
- Institute of Science, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| | - Iriczalli Cruz-Maya
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad.20, V.le J.F.Kennedy 54, 80125 Naples, Italy
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad.20, V.le J.F.Kennedy 54, 80125 Naples, Italy
| |
Collapse
|
26
|
Lv Y, Wu W, Liu Z, Zheng G, Wang L, Che X. Bilayer nanofibrous wound dressing prepared by electrospinning containing gallic acid and quercetin with improved biocompatibility, antibacterial, and antioxidant effects. Pharm Dev Technol 2023; 28:18-29. [PMID: 36546710 DOI: 10.1080/10837450.2022.2160734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTEIVES The purpose of this study was to prepare an antibacterial, antioxidant, and biocompatible bilayer nanofibrous wound dressing by using electrospinning. METHODS The micromorphology and bilayer structure characteristics of the GA-Qe-PVP-PCL nanofibers were analyzed by SEM. The physicochemical characteristics were analyzed by XRD and FTIR. The uptake, mechanical properties, water contact angle, water vapor transmission and in vitro drug release were evaluated. In addition, the effect of antibacterial, antioxidant and biocompatability of the nanofibers were evaluated, respectively. RESULTS The SEM results showed that the GA-Qe-PVP-PCL nanofibers had a smooth surface, no beading phenomenon, and a prominent bilayer structure. The diameter and porosity of the drug-loading layer and waterproof support layer of the nanofibers were 842 ± 302 nm, 242 ± 50 nm, and 88.56 ± 1.67%, 94.49 ± 1.57%, respectively. Moreover, the water uptake, mechanical properties, water contact angle, and water vapor transmission showed ideal performance. The results of in vitro drug release indicated that GA and Qe were both released rapidly, which was conducive to accelerating wound healing. The GA-Qe-PVP-PCL nanofibers exhibited antibacterial effects against both bacteria as well as high antioxidant activity. Additionally, the GA-Qe-PVP-PCL nanofibers possessed good compatibility, could promote the proliferation, adhesion, and migration of L929 fibroblast cells. CONCLUSION The nanofibers we developed met the requirements of ideal materials for wound dressing, which makes the nanofibers the potential to be a wound dressing for wound care.
Collapse
Affiliation(s)
- Yuanju Lv
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wenli Wu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zemei Liu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Guangyan Zheng
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lihong Wang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xin Che
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
27
|
Sharma D, Banerjee A, Bhattacharyya J, Satapathy BK. Structurally stable and surface-textured polylactic acid/copolymer/poly (ε-caprolactone) blend-based electrospun constructs with tunable hydroxyapatite responsiveness. Colloids Surf B Biointerfaces 2023; 221:112969. [DOI: 10.1016/j.colsurfb.2022.112969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
|
28
|
Wang Y, Yu DG, Liu Y, Liu YN. Progress of Electrospun Nanofibrous Carriers for Modifications to Drug Release Profiles. J Funct Biomater 2022; 13:jfb13040289. [PMID: 36547549 PMCID: PMC9787859 DOI: 10.3390/jfb13040289] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Electrospinning is an advanced technology for the preparation of drug-carrying nanofibers that has demonstrated great advantages in the biomedical field. Electrospun nanofiber membranes are widely used in the field of drug administration due to their advantages such as their large specific surface area and similarity to the extracellular matrix. Different electrospinning technologies can be used to prepare nanofibers of different structures, such as those with a monolithic structure, a core-shell structure, a Janus structure, or a porous structure. It is also possible to prepare nanofibers with different controlled-release functions, such as sustained release, delayed release, biphasic release, and targeted release. This paper elaborates on the preparation of drug-loaded nanofibers using various electrospinning technologies and concludes the mechanisms behind the controlled release of drugs.
Collapse
Affiliation(s)
- Ying Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
- Correspondence: (D.-G.Y.); (Y.-N.L.)
| | - Yang Liu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Long Teng Road, Shanghai 201620, China
| | - Ya-Nan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence: (D.-G.Y.); (Y.-N.L.)
| |
Collapse
|
29
|
Elyaderani AK, De Lama-Odría MDC, del Valle LJ, Puiggalí J. Multifunctional Scaffolds Based on Emulsion and Coaxial Electrospinning Incorporation of Hydroxyapatite for Bone Tissue Regeneration. Int J Mol Sci 2022; 23:ijms232315016. [PMID: 36499342 PMCID: PMC9738225 DOI: 10.3390/ijms232315016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Tissue engineering is nowadays a powerful tool to restore damaged tissues and recover their normal functionality. Advantages over other current methods are well established, although a continuous evolution is still necessary to improve the final performance and the range of applications. Trends are nowadays focused on the development of multifunctional scaffolds with hierarchical structures and the capability to render a sustained delivery of bioactive molecules under an appropriate stimulus. Nanocomposites incorporating hydroxyapatite nanoparticles (HAp NPs) have a predominant role in bone tissue regeneration due to their high capacity to enhance osteoinduction, osteoconduction, and osteointegration, as well as their encapsulation efficiency and protection capability of bioactive agents. Selection of appropriated polymeric matrices is fundamental and consequently great efforts have been invested to increase the range of properties of available materials through copolymerization, blending, or combining structures constituted by different materials. Scaffolds can be obtained from different processes that differ in characteristics, such as texture or porosity. Probably, electrospinning has the greater relevance, since the obtained nanofiber membranes have a great similarity with the extracellular matrix and, in addition, they can easily incorporate functional and bioactive compounds. Coaxial and emulsion electrospinning processes appear ideal to generate complex systems able to incorporate highly different agents. The present review is mainly focused on the recent works performed with Hap-loaded scaffolds having at least one structural layer composed of core/shell nanofibers.
Collapse
Affiliation(s)
- Amirmajid Kadkhodaie Elyaderani
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
| | - María del Carmen De Lama-Odría
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
| | - Luis J. del Valle
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
- Correspondence: (L.J.d.V.); (J.P.)
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer Baldiri i Reixac 11-15, 08028 Barcelona, Spain
- Correspondence: (L.J.d.V.); (J.P.)
| |
Collapse
|
30
|
Bhushan S, Singh S, Maiti TK, Sharma C, Dutt D, Sharma S, Li C, Tag Eldin EM. Scaffold Fabrication Techniques of Biomaterials for Bone Tissue Engineering: A Critical Review. Bioengineering (Basel) 2022; 9:728. [PMID: 36550933 PMCID: PMC9774188 DOI: 10.3390/bioengineering9120728] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/27/2022] Open
Abstract
Bone tissue engineering (BTE) is a promising alternative to repair bone defects using biomaterial scaffolds, cells, and growth factors to attain satisfactory outcomes. This review targets the fabrication of bone scaffolds, such as the conventional and electrohydrodynamic techniques, for the treatment of bone defects as an alternative to autograft, allograft, and xenograft sources. Additionally, the modern approaches to fabricating bone constructs by additive manufacturing, injection molding, microsphere-based sintering, and 4D printing techniques, providing a favorable environment for bone regeneration, function, and viability, are thoroughly discussed. The polymers used, fabrication methods, advantages, and limitations in bone tissue engineering application are also emphasized. This review also provides a future outlook regarding the potential of BTE as well as its possibilities in clinical trials.
Collapse
Affiliation(s)
- Sakchi Bhushan
- Department of Paper Technology, IIT Roorkee, Saharanpur 247001, India
| | - Sandhya Singh
- Department of Paper Technology, IIT Roorkee, Saharanpur 247001, India
| | - Tushar Kanti Maiti
- Department of Polymer and Process Engineering, IIT Roorkee, Saharanpur 247001, India
| | - Chhavi Sharma
- Department of Polymer and Process Engineering, IIT Roorkee, Saharanpur 247001, India
| | - Dharm Dutt
- Department of Paper Technology, IIT Roorkee, Saharanpur 247001, India
| | - Shubham Sharma
- Mechanical Engineering Department, University Center for Research & Development, Chandigarh University, Mohali 140413, India
- School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Changhe Li
- School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China
| | | |
Collapse
|
31
|
Novel structural designs of 3D-printed osteogenic graft for rapid angiogenesis. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00212-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Nifant’ev I, Besprozvannykh V, Shlyakhtin A, Tavtorkin A, Legkov S, Chinova M, Arutyunyan I, Soboleva A, Fatkhudinov T, Ivchenko P. Chain-End Functionalization of Poly(ε-caprolactone) for Chemical Binding with Gelatin: Binary Electrospun Scaffolds with Improved Physico-Mechanical Characteristics and Cell Adhesive Properties. Polymers (Basel) 2022; 14:4203. [PMID: 36236153 PMCID: PMC9570970 DOI: 10.3390/polym14194203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Composite biocompatible scaffolds, obtained using the electrospinning (ES) technique, are highly promising for biomedical application thanks to their high surface area, porosity, adjustable fiber diameter, and permeability. However, the combination of synthetic biodegradable (such as poly(ε-caprolactone) PCL) and natural (such as gelatin Gt) polymers is complicated by the problem of low compatibility of the components. Previously, this problem was solved by PCL grafting and/or Gt cross-linking after ES molding. In the present study, composite fibrous scaffolds consisting of PCL and Gt were fabricated by the electrospinning (ES) method using non-functionalized PCL1 or NHS-functionalized PCL2 and hexafluoroisopropanol as a solvent. To provide covalent binding between PCL2 and Gt macromolecules, NHS-functionalized methyl glutarate was synthesized and studied in model reactions with components of spinning solution. It was found that selective formation of amide bonds, which provide complete covalent bonding of Gt in PCL/Gt composite, requires the presence of weak acid. With the use of the optimized ES method, fibrous mats with different PCL/Gt ratios were prepared. The sample morphology (SEM), hydrolytic resistance (FT-IR), cell adhesion and viability (MTT assay), cell penetration (fluorescent microscopy), and mechanical characteristics of the samples were studied. PCL2-based films with a Gt content of 20 wt% have demonstrated the best set of properties.
Collapse
Affiliation(s)
- Ilya Nifant’ev
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Pr., 119991 Moscow, Russia
- Chemistry Department, M.V. Lomonosov Moscow State University, 1–3 Leninskie Gory, 119991 Moscow, Russia
- Chemistry Department, National Research University Higher School of Economics, 20 Miasnitskaya Street, 101000 Moscow, Russia
| | - Victoria Besprozvannykh
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Pr., 119991 Moscow, Russia
- Chemistry Department, National Research University Higher School of Economics, 20 Miasnitskaya Street, 101000 Moscow, Russia
| | - Andrey Shlyakhtin
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Pr., 119991 Moscow, Russia
- Chemistry Department, M.V. Lomonosov Moscow State University, 1–3 Leninskie Gory, 119991 Moscow, Russia
| | - Alexander Tavtorkin
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Pr., 119991 Moscow, Russia
| | - Sergei Legkov
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Pr., 119991 Moscow, Russia
| | - Maria Chinova
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Pr., 119991 Moscow, Russia
| | - Irina Arutyunyan
- Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparin Street, 117997 Moscow, Russia
- Institute of Medicine, Peoples’ Friendship University of Russia, Miklukho-Maklaya 6 Street, 117198 Moscow, Russia
| | - Anna Soboleva
- Institute of Medicine, Peoples’ Friendship University of Russia, Miklukho-Maklaya 6 Street, 117198 Moscow, Russia
- Research Institute of Human Morphology, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Timur Fatkhudinov
- Institute of Medicine, Peoples’ Friendship University of Russia, Miklukho-Maklaya 6 Street, 117198 Moscow, Russia
- Research Institute of Human Morphology, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Pavel Ivchenko
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Pr., 119991 Moscow, Russia
- Chemistry Department, M.V. Lomonosov Moscow State University, 1–3 Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
33
|
Chinnappan BA, Krishnaswamy M, Xu H, Hoque ME. Electrospinning of Biomedical Nanofibers/Nanomembranes: Effects of Process Parameters. Polymers (Basel) 2022; 14:3719. [PMID: 36145868 PMCID: PMC9504486 DOI: 10.3390/polym14183719] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Nanotechnology has attracted great attention from researchers in modern science because nanomaterials have innovative and superior physical, chemical, and biological properties, and they can be altered and modified accordingly. As particles get smaller, their surface area increases compared to their volume. Electrospinning is one of the advanced techniques to produce ultrathin nanofibers and membranes, and it is one of the best ways to create continuous nanomaterials with variable biological, chemical, and physical properties. The produced fibers can be utilized in various domains such as wound dressing, drug release, enzyme immobilization, etc. This review examines the biomedical nanofibers/membranes produced by electrospinning techniques to investigate the effects of process parameters (e.g., solution characteristics, applied voltage, and ambient conditions) on nanofiber characteristics (physical, chemical, and mechanical properties). The solution parameters like (i) optimum concentration, (ii) higher molecular weight, and (iii) higher conductivity produce uniform nanofibers, smoother nanofibers, and a smaller and more uniform fiber diameter, respectively. In addition, process parameters such as (i) higher voltage and (ii) slower flow rate produce more polymer ejection from the nozzle and enhance the smoother fiber production, respectively. The optimum tip-to-collector distance is considered to be 13-15 cm. The ambient conditions such as (i) higher humidity and (ii) higher temperature produce thicker and thinner nanofibers, respectively. The controlled parameters through optimization process determine the size and quality of the fibers. The effects of each parameter are discussed in this review. The applications of nanofibers are also discussed.
Collapse
Affiliation(s)
- Balaji Ayyanar Chinnappan
- Department of Mechanical Engineering, Coimbatore Institute of Technology Coimbatore, Tamilnadu 641014, India
| | - Marimuthu Krishnaswamy
- Department of Mechanical Engineering, Coimbatore Institute of Technology Coimbatore, Tamilnadu 641014, India
| | - Huaizhong Xu
- Department of Biobased Materials Science, Kyoto Institute of Technology (KIT), Matsugasaki Hashikamicho, Sakyo-ku, Kyoto 606-8585, Japan
| | - Md Enamul Hoque
- Department of Biomedical Engineering, Military Institute of Science and Technology (MIST), Dhaka 1216, Bangladesh
| |
Collapse
|
34
|
Loewner S, Heene S, Baroth T, Heymann H, Cholewa F, Blume H, Blume C. Recent advances in melt electro writing for tissue engineering for 3D printing of microporous scaffolds for tissue engineering. Front Bioeng Biotechnol 2022; 10:896719. [PMID: 36061443 PMCID: PMC9428513 DOI: 10.3389/fbioe.2022.896719] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Melt electro writing (MEW) is a high-resolution 3D printing technique that combines elements of electro-hydrodynamic fiber attraction and melts extrusion. The ability to precisely deposit micro- to nanometer strands of biocompatible polymers in a layer-by-layer fashion makes MEW a promising scaffold fabrication method for all kinds of tissue engineering applications. This review describes possibilities to optimize multi-parametric MEW processes for precise fiber deposition over multiple layers and prevent printing defects. Printing protocols for nonlinear scaffolds structures, concrete MEW scaffold pore geometries and printable biocompatible materials for MEW are introduced. The review discusses approaches to combining MEW with other fabrication techniques with the purpose to generate advanced scaffolds structures. The outlined MEW printer modifications enable customizable collector shapes or sacrificial materials for non-planar fiber deposition and nozzle adjustments allow redesigned fiber properties for specific applications. Altogether, MEW opens a new chapter of scaffold design by 3D printing.
Collapse
Affiliation(s)
- Sebastian Loewner
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
- *Correspondence: Sebastian Loewner,
| | - Sebastian Heene
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Timo Baroth
- Institute of Microelectronic Systems, Leibniz University Hannover, Hannover, Germany
| | - Henrik Heymann
- Institute of Microelectronic Systems, Leibniz University Hannover, Hannover, Germany
| | - Fabian Cholewa
- Institute of Microelectronic Systems, Leibniz University Hannover, Hannover, Germany
| | - Holger Blume
- Institute of Microelectronic Systems, Leibniz University Hannover, Hannover, Germany
| | - Cornelia Blume
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
35
|
Sharma D, Dhingra S, Banerjee A, Saha S, Bhattacharyya J, Satapathy BK. Designing suture-proof cell-attachable copolymer-mediated and curcumin- β-cyclodextrin inclusion complex loaded aliphatic polyester-based electrospun antibacterial constructs. Int J Biol Macromol 2022; 216:397-413. [DOI: 10.1016/j.ijbiomac.2022.06.204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 12/16/2022]
|
36
|
Ji Y, Song W, Xu L, Yu DG, Annie Bligh SW. A Review on Electrospun Poly(amino acid) Nanofibers and Their Applications of Hemostasis and Wound Healing. Biomolecules 2022; 12:794. [PMID: 35740919 PMCID: PMC9221312 DOI: 10.3390/biom12060794] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/28/2022] [Accepted: 06/04/2022] [Indexed: 02/07/2023] Open
Abstract
The timely and effective control and repair of wound bleeding is a key research issue all over the world. From traditional compression hemostasis to a variety of new hemostatic methods, people have a more comprehensive understanding of the hemostatic mechanism and the structure and function of different types of wound dressings. Electrospun nanofibers stand out with nano size, high specific surface area, higher porosity, and a variety of complex structures. They are high-quality materials that can effectively promote wound hemostasis and wound healing because they can imitate the structural characteristics of the skin extracellular matrix (ECM) and support cell adhesion and angiogenesis. At the same time, combined with amino acid polymers with good biocompatibility not only has high compatibility with the human body but can also be combined with a variety of drugs to further improve the effect of wound hemostatic dressing. This paper summarizes the application of different amino acid electrospun wound dressings, analyzes the characteristics of different materials in preparation and application, and looks forward to the development of directions of poly(amino acid) electrospun dressings in hemostasis.
Collapse
Affiliation(s)
- Yuexin Ji
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.J.); (W.S.); (L.X.)
| | - Wenliang Song
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.J.); (W.S.); (L.X.)
| | - Lin Xu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.J.); (W.S.); (L.X.)
| | - Deng-Guang Yu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.J.); (W.S.); (L.X.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| | - Sim Wan Annie Bligh
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong 999077, China
| |
Collapse
|
37
|
Bone Mineralization in Electrospun-Based Bone Tissue Engineering. Polymers (Basel) 2022; 14:polym14102123. [PMID: 35632005 PMCID: PMC9146582 DOI: 10.3390/polym14102123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Increasing the demand for bone substitutes in the management of bone fractures, including osteoporotic fractures, makes bone tissue engineering (BTE) an ideal strategy for solving the constant shortage of bone grafts. Electrospun-based scaffolds have gained popularity in BTE because of their unique features, such as high porosity, a large surface-area-to-volume ratio, and their structural similarity to the native bone extracellular matrix (ECM). To imitate native bone mineralization through which bone minerals are deposited onto the bone matrix, a simple but robust post-treatment using a simulated body fluid (SBF) has been employed, thereby improving the osteogenic potential of these synthetic bone grafts. This study highlights recent electrospinning technologies that are helpful in creating more bone-like scaffolds, and addresses the progress of SBF development. Biomineralized electrospun bone scaffolds are also reviewed, based on the importance of bone mineralization in bone regeneration. This review summarizes the potential of SBF treatments for conferring the biphasic features of native bone ECM architectures onto electrospun-based bone scaffolds.
Collapse
|
38
|
Wang C, Liu J, Lin M, Zhang R, Li Y, Li Y, Zou Q. Extrusion deposition 3D printed PCL/gel/n-HA composite scaffold for bone regeneration. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2042291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Chenxin Wang
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, China
| | - Jie Liu
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, China
| | - Mingyue Lin
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, China
| | - Rui Zhang
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, China
| | - Yufan Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, China
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, China
| | - Qin Zou
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Xiong J, Wang H, Lan X, Wang Y, Wang Z, Bai J, Ou W, Cai N, Wang W, Tang Y. Fabrication of bioinspired grid-crimp micropatterns by melt electrospinning writing for bone-ligament interface study. Biofabrication 2022; 14. [PMID: 35021164 DOI: 10.1088/1758-5090/ac4ac8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/12/2022] [Indexed: 11/11/2022]
Abstract
Many strategies have been adopted to engineer bone-ligament interface, which is of great value to both the tissue regeneration and the mechanism understanding underlying interface regeneration. However, how to recapitulate the complexity and heterogeneity of the native bone-ligament interface including the structural, cellular and mechanical gradients is still challenging. In this work, a bioinspired grid-crimp micropattern fabricated by melt electrospinning writing (MEW) was proposed to mimic the native structure of bone-ligament interface. The printing strategy of crimped fiber micropattern was developed and the processing parameters were optimized, which were used to mimic the crimp structure of the collagen fibrils in ligament. The guidance effect of the crimp angle and fiber spacing on the orientation of fibroblasts was studied, and both of them showed different levels of cell alignment effect.. MEW grid micropatterns with different fiber spacings were fabricated as bone region. Both the alkaling phosphatase activity and calcium mineralization results demonstrated the higher osteoinductive ability of the MEW grid structures, especially for that with smaller fiber spacing. The combined grid-crimp micropatterns were applied for the co-culture of fibroblasts and osteoblasts. The results showed that more cells were observed to migrate into the in-between interface region for the pattern with smaller fiber spacing, suggested the faster migration speed of cells. Finally, a cylindrical triphasic scaffold was successfully generated by rolling the grid-crimp micropatterns up, showing both structural and mechanical similarity to the native bone-ligament interface. In summary, the proposed strategy is reliable to fabricate grid-crimp triphasic micropatterns with controllable structural parameters to mimic the native bone-to-ligament structure, and the generated 3D scaffold shows great potential for the further bone-ligament interface tissue engineering.
Collapse
Affiliation(s)
- Junjie Xiong
- Guangdong University of Technology, Higher Education Mega Center, Guangzhou, 510006, CHINA
| | - Han Wang
- Guangdong University of Technology, Higher Education Mega Center, Guangzhou, 510006, CHINA
| | - Xingzi Lan
- Guangdong University of Technology, Higher Education Mega Center, Guangzhou, 510006, CHINA
| | - Yaqi Wang
- Guangdong University of Technology, Higher Education Mega Center, Guangzhou, 510006, CHINA
| | - Zixu Wang
- Guangdong University of Technology, Higher Education Mega Center, Guangzhou, 510006, CHINA
| | - Jianfu Bai
- Guangdong University of Technology, Higher Education Mega Center, Guangzhou, 510006, CHINA
| | - Weicheng Ou
- Guangdong University of Technology, Higher Education Mega Center, Guangzhou, 510006, CHINA
| | - Nian Cai
- Guangdong University of Technology, Higher Education Mega Center, Guangzhou, Guangdong, 510006, CHINA
| | - Wenlong Wang
- Guangzhou University, Higher Education Mega Center, Guangzhou, 510006, CHINA
| | - Yadong Tang
- Guangdong University of Technology, Higher Education Mega Center, Guangzhou, 510006, CHINA
| |
Collapse
|