1
|
Fiedler B, Jami M, Chilukuri SV, Ghali A, Phillips T, Shahzad Ahmed A. Space flight missions over 6 months significantly increase the risk of shoulder pathology and rotator cuff tears. JSES Int 2025; 9:380-384. [PMID: 40182271 PMCID: PMC11962601 DOI: 10.1016/j.jseint.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Background The purpose of this study was to determine risk of shoulder injury in astronauts returning from space flight and highlight the need for further exploration of risk factors and preventative strategies. Methods Using The Lifetime Surveillance of Astronaut Health epidemiology database at National Aeronautics and Space Administration, a retrospective cohort study was conducted to assess the effect of space flight mission duration on rate of shoulder injury among astronauts. Inclusion criteria were all astronauts who participated in space flight regardless of age or space flight mission time. Exclusion criteria were all injuries occurring greater than 5 years following return to Earth. Patient demographics were compared between injured and noninjured cohorts with stratification by shoulder pathology. Results Of total 242 astronauts, 22 sustained a shoulder injury (9.09%) and 220 did not sustain a shoulder injury (90.91%). Average age of the noninjured cohort was 46 years and average age of the shoulder pathology cohort was 48 years. There were 8 rotator cuff tears, 5 cases of shoulder impingement, 5 shoulder contusions, and 4 rotator cuff sprains/strains. Compared to the noninjured cohort, incidence of all shoulder pathology was significantly associated with space flight missions greater than 6 months (P < .001). Rotator cuff tears in isolation, as well as rotator cuff and impingement pathology combined, were significantly associated with greater than 6 months in space flight (P < .001). Conclusion Space flight missions greater than 6 months were associated with increased risk of shoulder injury, especially rotator cuff tears. However, specific aspects of space flight that increase risk remain understudied. Shoulder injuries upon return to gravitational environments have the potential to negatively impact astronaut health and possibly jeopardize mission success, particularly as upper-extremity mobility is vital in the microgravity environment of space.
Collapse
Affiliation(s)
- Benjamin Fiedler
- Baylor College of Medicine, Joseph Barnhart Department of Orthopedic Surgery, Houston, TX, USA
| | - Meghana Jami
- Baylor College of Medicine, Joseph Barnhart Department of Orthopedic Surgery, Houston, TX, USA
| | - Srikhar V. Chilukuri
- Baylor College of Medicine, Joseph Barnhart Department of Orthopedic Surgery, Houston, TX, USA
| | - Abdullah Ghali
- Baylor College of Medicine, Joseph Barnhart Department of Orthopedic Surgery, Houston, TX, USA
| | - Todd Phillips
- Baylor College of Medicine, Joseph Barnhart Department of Orthopedic Surgery, Houston, TX, USA
| | - Adil Shahzad Ahmed
- Baylor College of Medicine, Joseph Barnhart Department of Orthopedic Surgery, Houston, TX, USA
| |
Collapse
|
2
|
Grigorev K, Nelson TM, Overbey EG, Houerbi N, Kim J, Najjar D, Damle N, Afshin EE, Ryon KA, Thierry-Mieg J, Thierry-Mieg D, Melnick AM, Mateus J, Mason CE. Direct RNA sequencing of astronaut blood reveals spaceflight-associated m6A increases and hematopoietic transcriptional responses. Nat Commun 2024; 15:4950. [PMID: 38862496 PMCID: PMC11166648 DOI: 10.1038/s41467-024-48929-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/17/2024] [Indexed: 06/13/2024] Open
Abstract
The advent of civilian spaceflight challenges scientists to precisely describe the effects of spaceflight on human physiology, particularly at the molecular and cellular level. Newer, nanopore-based sequencing technologies can quantitatively map changes in chemical structure and expression at single molecule resolution across entire isoforms. We perform long-read, direct RNA nanopore sequencing, as well as Ultima high-coverage RNA-sequencing, of whole blood sampled longitudinally from four SpaceX Inspiration4 astronauts at seven timepoints, spanning pre-flight, day of return, and post-flight recovery. We report key genetic pathways, including changes in erythrocyte regulation, stress induction, and immune changes affected by spaceflight. We also present the first m6A methylation profiles for a human space mission, suggesting a significant spike in m6A levels immediately post-flight. These data and results represent the first longitudinal long-read RNA profiles and RNA modification maps for each gene for astronauts, improving our understanding of the human transcriptome's dynamic response to spaceflight.
Collapse
Affiliation(s)
- Kirill Grigorev
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Theodore M Nelson
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Eliah G Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Center for STEM, University of Austin, Austin, TX, USA
- BioAstra, Inc, New York, NY, USA
| | - Nadia Houerbi
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Deena Najjar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Namita Damle
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Evan E Afshin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Krista A Ryon
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Jean Thierry-Mieg
- National Center for Biotechnology Information (NCBI), National Library of Medicine, NIH, Bethesda, MD, 20894, USA
| | - Danielle Thierry-Mieg
- National Center for Biotechnology Information (NCBI), National Library of Medicine, NIH, Bethesda, MD, 20894, USA
| | - Ari M Melnick
- Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jaime Mateus
- Space Exploration Technologies Corporation (SpaceX), Hawthorne, CA, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
- WorldQuant Initiative for Quantitative Prediction, New York, NY, USA.
| |
Collapse
|
3
|
Blottner D, Moriggi M, Trautmann G, Furlan S, Block K, Gutsmann M, Torretta E, Barbacini P, Capitanio D, Rittweger J, Limper U, Volpe P, Gelfi C, Salanova M. Nitrosative Stress in Astronaut Skeletal Muscle in Spaceflight. Antioxidants (Basel) 2024; 13:432. [PMID: 38671880 PMCID: PMC11047620 DOI: 10.3390/antiox13040432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Long-duration mission (LDM) astronauts from the International Space Station (ISS) (>180 ISS days) revealed a close-to-normal sarcolemmal nitric oxide synthase type-1 (NOS1) immunoexpression in myofibers together with biochemical and quantitative qPCR changes in deep calf soleus muscle. Nitro-DIGE analyses identified functional proteins (structural, metabolic, mitochondrial) that were over-nitrosylated post- vs. preflight. In a short-duration mission (SDM) astronaut (9 ISS days), s-nitrosylation of a nodal protein of the glycolytic flux, specific proteins in tricarboxylic acid (TCA) cycle, respiratory chain, and over-nitrosylation of creatine kinase M-types as signs of impaired ATP production and muscle contraction proteins were seen. S-nitrosylation of serotransferrin (TF) or carbonic anhydrase 3 (CA3b and 3c) represented signs of acute response microgravity muscle maladaptation. LDM nitrosoprofiles reflected recovery of mitochondrial activity, contraction proteins, and iron transporter TF as signs of muscle adaptation to microgravity. Nitrosated antioxidant proteins, alcohol dehydrogenase 5/S-nitrosoglutathione reductase (ADH5/GSNOR), and selenoprotein thioredoxin reductase 1 (TXNRD1) levels indicated signs of altered redox homeostasis and reduced protection from nitrosative stress in spaceflight. This work presents a novel spaceflight-generated dataset on s-nitrosylated muscle protein signatures from astronauts that helps both to better understand the structural and molecular networks associated to muscular nitrosative stress and to design countermeasures to dysfunction and impaired performance control in human spaceflight missions.
Collapse
Affiliation(s)
- Dieter Blottner
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany; (G.T.); (K.B.); (M.G.); (M.S.)
- NeuroMuscular System and Signaling Group, Center of Space Medicine and Extreme Environments, 10115 Berlin, Germany
| | - Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (M.M.); (P.B.); (D.C.); (C.G.)
| | - Gabor Trautmann
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany; (G.T.); (K.B.); (M.G.); (M.S.)
| | - Sandra Furlan
- C.N.R. Neuroscience Institute, I-35121 Padova, Italy;
| | - Katharina Block
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany; (G.T.); (K.B.); (M.G.); (M.S.)
| | - Martina Gutsmann
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany; (G.T.); (K.B.); (M.G.); (M.S.)
| | - Enrica Torretta
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Via R. Galeazzi 4, 20161 Milan, Italy;
| | - Pietro Barbacini
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (M.M.); (P.B.); (D.C.); (C.G.)
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (M.M.); (P.B.); (D.C.); (C.G.)
| | - Joern Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (J.R.); (U.L.)
| | - Ulrich Limper
- Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (J.R.); (U.L.)
- Anesthesiology and Intensive Care Medicine, Merheim Medical Center, Witten/Herdecke University, 51109 Cologne, Germany
| | - Pompeo Volpe
- Department of Biomedical Sciences, Università di Padova, I-35121 Padova, Italy;
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (M.M.); (P.B.); (D.C.); (C.G.)
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Via R. Galeazzi 4, 20161 Milan, Italy;
| | - Michele Salanova
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany; (G.T.); (K.B.); (M.G.); (M.S.)
- NeuroMuscular System and Signaling Group, Center of Space Medicine and Extreme Environments, 10115 Berlin, Germany
| |
Collapse
|
4
|
Grassi M, Von Der Straten F, Pearce C, Lee J, Mider M, Mittag U, Sies W, Mulder E, Daumer M, Rittweger J. Changes in real-world walking speed following 60-day bed-rest. NPJ Microgravity 2024; 10:6. [PMID: 38216584 PMCID: PMC10786829 DOI: 10.1038/s41526-023-00342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/11/2023] [Indexed: 01/14/2024] Open
Abstract
The aim of this work was to explore whether real-world walking speed (RWS) would change as a consequence of 60-day bed-rest. The main hypothesis was that daily RWS would decrease after the bed-rest, with a subsequent recovery during the first days of re-ambulation. Moreover, an exploratory analysis was done in order to understand whether there is an agreement between the loss in RWS after bed-rest and the loss in the maximum oxygen uptake capacity (VO2max), or the loss in maximal vertical jump power (JUMP) respectively. Twenty-four subjects were randomly assigned to one of three groups: a continuous artificial gravity group, an intermittent artificial gravity group, or a control group. The fitted linear mixed effects model showed a significant decrease (p < 0.001) of RWS after the 60-day bed-rest and a subsequent increase (p < 0.001) of RWS during the 14-day recovery period in the study facility. No or little agreement was found between the loss in RWS and the loss in VO2max capacity or the loss in maximal vertical jumping power (RWS vs. VO2max: p = 0.81, RWS vs. JUMP: p = 0.173). Decreased RWS after bed-rest, with a follow-up recovery was observed for all three groups, regardless of the training intervention. This suggests that RWS, also in these settings, was able to reflect a de-conditioning and follow-up recovery process.
Collapse
Affiliation(s)
- Marcello Grassi
- Sylvia Lawry Center for Multiple Sclerosis Research e.V., Munich, Germany
- Institute of Aerospace Medicine, Department of Muscle and Bone Metabolism, German Aerospace Center, Cologne, Germany
| | - Fiona Von Der Straten
- TUM School for Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Charlotte Pearce
- TUM School for Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Jessica Lee
- Institute of Aerospace Medicine, Department of Muscle and Bone Metabolism, German Aerospace Center, Cologne, Germany
| | | | - Uwe Mittag
- Institute of Aerospace Medicine, Department of Muscle and Bone Metabolism, German Aerospace Center, Cologne, Germany
| | - Wolfram Sies
- Institute of Aerospace Medicine, Department of Muscle and Bone Metabolism, German Aerospace Center, Cologne, Germany
| | - Edwin Mulder
- Institute of Aerospace Medicine, Department of Muscle and Bone Metabolism, German Aerospace Center, Cologne, Germany
| | - Martin Daumer
- Sylvia Lawry Center for Multiple Sclerosis Research e.V., Munich, Germany
- TUM School for Computation, Information and Technology, Technical University of Munich, Munich, Germany
- Trium Analysis Online GmbH, Munich, Germany
| | - Jörn Rittweger
- Institute of Aerospace Medicine, Department of Muscle and Bone Metabolism, German Aerospace Center, Cologne, Germany.
- Department of Pediatrics and Adolescent Medicine, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
5
|
Role of SIRT3 in Microgravity Response: A New Player in Muscle Tissue Recovery. Cells 2023; 12:cells12050691. [PMID: 36899828 PMCID: PMC10000945 DOI: 10.3390/cells12050691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Life on Earth has evolved in the presence of a gravity constraint. Any change in the value of such a constraint has important physiological effects. Gravity reduction (microgravity) alters the performance of muscle, bone and, immune systems among others. Therefore, countermeasures to limit such deleterious effects of microgravity are needed considering future Lunar and Martian missions. Our study aims to demonstrate that the activation of mitochondrial Sirtuin 3 (SIRT3) can be exploited to reduce muscle damage and to maintain muscle differentiation following microgravity exposure. To this effect, we used a RCCS machine to simulate microgravity on ground on a muscle and cardiac cell line. During microgravity, cells were treated with a newly synthesized SIRT3 activator, called MC2791 and vitality, differentiation, ROS and, autophagy/mitophagy were measured. Our results indicate that SIRT3 activation reduces microgravity-induced cell death while maintaining the expression of muscle cell differentiation markers. In conclusion, our study demonstrates that SIRT3 activation could represent a targeted molecular strategy to reduce muscle tissue damage caused by microgravity.
Collapse
|
6
|
Are Skeletal Muscle Changes during Prolonged Space Flights Similar to Those Experienced by Frail and Sarcopenic Older Adults? LIFE (BASEL, SWITZERLAND) 2022; 12:life12122139. [PMID: 36556504 PMCID: PMC9781047 DOI: 10.3390/life12122139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Microgravity exposure causes several physiological and psychosocial alterations that challenge astronauts' health during space flight. Notably, many of these changes are mostly related to physical inactivity influencing different functional systems and organ biology, in particular the musculoskeletal system, dramatically resulting in aging-like phenotypes, such as those occurring in older persons on Earth. In this sense, sarcopenia, a syndrome characterized by the loss in muscle mass and strength due to skeletal muscle unloading, is undoubtedly one of the most critical aging-like adverse effects of microgravity and a prevalent problem in the geriatric population, still awaiting effective countermeasures. Therefore, there is an urgent demand to identify clinically relevant biological markers and to underline molecular mechanisms behind these effects that are still poorly understood. From this perspective, a lesson from Geroscience may help tailor interventions to counteract the adverse effects of microgravity. For instance, decades of studies in the field have demonstrated that in the older people, the clinical picture of sarcopenia remarkably overlaps (from a clinical and biological point of view) with that of frailty, primarily when referred to the physical function domain. Based on this premise, here we provide a deeper understanding of the biological mechanisms of sarcopenia and frailty, which in aging are often considered together, and how these converge with those observed in astronauts after space flight.
Collapse
|
7
|
Al KF, Chmiel JA, Stuivenberg GA, Reid G, Burton JP. Long-Duration Space Travel Support Must Consider Wider Influences to Conserve Microbiota Composition and Function. Life (Basel) 2022; 12:1163. [PMID: 36013342 PMCID: PMC9409767 DOI: 10.3390/life12081163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/03/2022] Open
Abstract
The microbiota is important for immune modulation, nutrient acquisition, vitamin production, and other aspects for long-term human health. Isolated model organisms can lose microbial diversity over time and humans are likely the same. Decreasing microbial diversity and the subsequent loss of function may accelerate disease progression on Earth, and to an even greater degree in space. For this reason, maintaining a healthy microbiome during spaceflight has recently garnered consideration. Diet, lifestyle, and consumption of beneficial microbes can shape the microbiota, but the replenishment we attain from environmental exposure to microbes is important too. Probiotics, prebiotics, fermented foods, fecal microbiota transplantation (FMT), and other methods of microbiota modulation currently available may be of benefit for shorter trips, but may not be viable options to overcome the unique challenges faced in long-term space travel. Novel fermented food products with particular impact on gut health, immune modulation, and other space-targeted health outcomes are worthy of exploration. Further consideration of potential microbial replenishment to humans, including from environmental sources to maintain a healthy microbiome, may also be required.
Collapse
Affiliation(s)
- Kait F. Al
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (K.F.A.); (J.A.C.); (G.A.S.); (G.R.)
| | - John A. Chmiel
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (K.F.A.); (J.A.C.); (G.A.S.); (G.R.)
| | - Gerrit A. Stuivenberg
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (K.F.A.); (J.A.C.); (G.A.S.); (G.R.)
| | - Gregor Reid
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (K.F.A.); (J.A.C.); (G.A.S.); (G.R.)
- Department of Surgery, University of Western Ontario, London, ON N6A 4V2, Canada
- Lawson Health Research Institute, London, ON N6A 4V2, Canada
| | - Jeremy P. Burton
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (K.F.A.); (J.A.C.); (G.A.S.); (G.R.)
- Department of Surgery, University of Western Ontario, London, ON N6A 4V2, Canada
- Lawson Health Research Institute, London, ON N6A 4V2, Canada
| |
Collapse
|
8
|
Arshad I, Ferrè ER. Express: Cognition in Zero Gravity: Effects of Non-Terrestrial Gravity on Human Behaviour. Q J Exp Psychol (Hove) 2022; 76:979-994. [PMID: 35786100 PMCID: PMC10119906 DOI: 10.1177/17470218221113935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As humanity prepares for deep space exploration, understanding the impact of spaceflight on bodily physiology is critical. While the effects of non-terrestrial gravity on the body are well established, little is known about its impact on human behaviour and cognition. Astronauts often describe dramatic alterations in sensorimotor functioning, including orientation, postural control and balance. Changes in cognitive functioning as well as in socio-affective processing have also been observed. Here we have reviewed the key literature and explored the impact of non-terrestrial gravity across three key functional domains: sensorimotor, cognition, and socio-affective processing. We have proposed a neuroanatomical model to account for the effects of non-terrestrial gravity in these domains. Understanding the impact of non-terrestrial gravity on human behaviour has never been more timely and it will help mitigate against risks in both commercial and non-commercial spaceflight.
Collapse
Affiliation(s)
- Iqra Arshad
- Department of Psychology, Royal Holloway University of London, Egham, UK 3162
| | - Elisa Raffaella Ferrè
- Department of Psychological Sciences, Birkbeck University of London, London, UK 3162
| |
Collapse
|
9
|
Ekman R, Green DA, Scott JPR, Huerta Lluch R, Weber T, Herssens N. Introducing the Concept of Exercise Holidays for Human Spaceflight - What Can We Learn From the Recovery of Bed Rest Passive Control Groups. Front Physiol 2022; 13:898430. [PMID: 35874509 PMCID: PMC9307084 DOI: 10.3389/fphys.2022.898430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
In an attempt to counteract microgravity-induced deconditioning during spaceflight, exercise has been performed in various forms on the International Space Station (ISS). Despite significant consumption of time and resources by daily exercise, including around one third of astronauts' energy expenditure, deconditioning-to variable extents-are observed. However, in future Artemis/Lunar Gateway missions, greater constraints will mean that the current high volume and diversity of ISS in-flight exercise will be impractical. Thus, investigating both more effective and efficient multi-systems countermeasure approaches taking into account the novel mission profiles and the associated health and safety risks will be required, while also reducing resource requirements. One potential approach is to reduce mission exercise volume by the introduction of exercise-free periods, or "exercise holidays". Thus, we hypothesise that by evaluating the 'recovery' of the no-intervention control group of head-down-tilt bed rest (HDTBR) campaigns of differing durations, we may be able to define the relationship between unloading duration and the dynamics of functional recovery-of interest to future spaceflight operations within and beyond Low Earth Orbit (LEO)-including preliminary evaluation of the concept of exercise holidays. Hence, the aim of this literature study is to collect and investigate the post-HDTBR recovery dynamics of current operationally relevant anthropometric outcomes and physiological systems (skeletal, muscular, and cardiovascular) of the passive control groups of HDTBR campaigns, mimicking a period of 'exercise holidays', thereby providing a preliminary evaluation of the concept of 'exercise holidays' for spaceflight, within and beyond LEO. The main findings were that, although a high degree of paucity and inconsistency of reported recovery data is present within the 18 included studies, data suggests that recovery of current operationally relevant outcomes following HDTBR without exercise-and even without targeted rehabilitation during the recovery period-could be timely and does not lead to persistent decrements differing from those experienced following spaceflight. Thus, evaluation of potential exercise holidays concepts within future HDTBR campaigns is warranted, filling current knowledge gaps prior to its potential implementation in human spaceflight exploration missions.
Collapse
Affiliation(s)
- Robert Ekman
- Riga Stradins University, Faculty of Medicine, Riga, Latvia
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
| | - David A. Green
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- Centre of Human and Applied Physiological Sciences, King’s College London, London, United Kingdom
- KBR GmbH, Cologne, Germany
| | - Jonathon P. R. Scott
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- Institut Médecine Physiologie Spatiale (MEDES), Toulouse, France
| | - Roger Huerta Lluch
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - Tobias Weber
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - Nolan Herssens
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- MOVANT, Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
10
|
Cope H, Willis CR, MacKay MJ, Rutter LA, Toh LS, Williams PM, Herranz R, Borg J, Bezdan D, Giacomello S, Muratani M, Mason CE, Etheridge T, Szewczyk NJ. Routine omics collection is a golden opportunity for European human research in space and analog environments. PATTERNS 2022; 3:100550. [PMID: 36277820 PMCID: PMC9583032 DOI: 10.1016/j.patter.2022.100550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Hughes L, Hackney KJ, Patterson SD. Optimization of Exercise Countermeasures to Spaceflight Using Blood Flow Restriction. Aerosp Med Hum Perform 2022; 93:32-45. [PMID: 35063054 DOI: 10.3357/amhp.5855.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION: During spaceflight missions, astronauts work in an extreme environment with several hazards to physical health and performance. Exposure to microgravity results in remarkable deconditioning of several physiological systems, leading to impaired physical condition and human performance, posing a major risk to overall mission success and crew safety. Physical exercise is the cornerstone of strategies to mitigate physical deconditioning during spaceflight. Decades of research have enabled development of more optimal exercise strategies and equipment onboard the International Space Station. However, the effects of microgravity cannot be completely ameliorated with current exercise countermeasures. Moreover, future spaceflight missions deeper into space require a new generation of spacecraft, which will place yet more constraints on the use of exercise by limiting the amount, size, and weight of exercise equipment and the time available for exercise. Space agencies are exploring ways to optimize exercise countermeasures for spaceflight, specifically exercise strategies that are more efficient, require less equipment, and are less time-consuming. Blood flow restriction exercise is a low intensity exercise strategy that requires minimal equipment and can elicit positive training benefits across multiple physiological systems. This method of exercise training has potential as a strategy to optimize exercise countermeasures during spaceflight and reconditioning in terrestrial and partial gravity environments. The possible applications of blood flow restriction exercise during spaceflight are discussed herein.Hughes L, Hackney KJ, Patterson SD. Optimization of exercise countermeasures to spaceflight using blood flow restriction. Aerosp Med Hum Perform. 2021; 93(1):32-45.
Collapse
|
12
|
Changes in Exosomal miRNA Composition in Thyroid Cancer Cells after Prolonged Exposure to Real Microgravity in Space. Int J Mol Sci 2021; 22:ijms222312841. [PMID: 34884646 PMCID: PMC8657878 DOI: 10.3390/ijms222312841] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
As much as space travel and exploration have been a goal since humankind looked up to the stars, the challenges coming with it are manifold and difficult to overcome. Therefore, researching the changes the human organism undergoes following exposure to weightlessness, on a cellular or a physiological level, is imperative to reach the goal of exploring space and new planets. Building on the results of our CellBox-1 experiment, where thyroid cancer cells were flown to the International Space Station, we are now taking advantage of the newest technological opportunities to gain more insight into the changes in cell–cell communication of these cells. Analyzing the exosomal microRNA composition after several days of microgravity might elucidate some of the proteomic changes we have reported earlier. An array scan of a total of 754 miRNA targets revealed more than 100 differentially expressed miRNAs in our samples, many of which have been implicated in thyroid disease in other studies.
Collapse
|
13
|
Kamimura D, Tanaka Y, Hasebe R, Murakami M. Bidirectional communication between neural and immune systems. Int Immunol 2021; 32:693-701. [PMID: 31875424 DOI: 10.1093/intimm/dxz083] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
The immune and nervous systems share many features, including receptor and ligand expression, enabling efficient communication between the two. Accumulating evidence suggests that the communication is bidirectional, with the neural system regulating immune cell functions and vice versa. Steroid hormones from the hypothalamus-pituitary-adrenal gland axis are examples of systemic regulators for this communication. Neural reflexes describe regional regulation mechanisms that are a historically new concept that helps to explain how the neural and body systems including immune system communicate. Several recently identified neural reflexes, including the inflammatory reflex and gateway reflex, significantly impact the activation status of the immune system and are associated with inflammatory diseases and disorders. Either pro-inflammatory or anti-inflammatory effects can be elicited by these neural reflexes. On the other hand, the activities of immune cells during inflammation, for example the secretion of inflammatory mediators, can affect the functions of neuronal systems via neural reflexes and modulate biological outputs via specific neural pathways. In this review article, we discuss recent advances in the understanding of bidirectional neuro-immune interactions, with a particular focus on neural reflexes.
Collapse
Affiliation(s)
- Daisuke Kamimura
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, Japan
| | - Yuki Tanaka
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, Japan
| | - Rie Hasebe
- Biomedical Animal Research Laboratory, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, Japan
| | - Masaaki Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, Japan
| |
Collapse
|
14
|
Rosa-Caldwell ME, Mortreux M, Kaiser UB, Sung DM, Bouxsein ML, Dunlap KR, Greene NP, Rutkove SB. The oestrous cycle and skeletal muscle atrophy: Investigations in rodent models of muscle loss. Exp Physiol 2021; 106:2472-2488. [PMID: 34569104 DOI: 10.1113/ep089962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/20/2021] [Indexed: 01/21/2023]
Abstract
NEW FINDINGS What is the central question of this study? Is the oestrous cycle affected during disuse atrophies and, if so, how are oestrous cycle changes related to musculoskeletal outcomes? What is the main finding and its importance? Rodent oestrous cycles were altered during disuse atrophy, which was correlated with musculoskeletal outcomes. However, the oestrous cycle did not appear to be changed by Lewis lung carcinoma, which resulted in no differences in muscle size in comparison to healthy control animals. These findings suggest a relationship between the oestrous cycle and muscle size during atrophic pathologies. ABSTRACT Recent efforts have focused on improving our understanding of female muscle physiology during exposure to muscle atrophic stimuli. A key feature of female rodent physiology is the oestrous cycle. However, it is not known how such stimuli interact with the oestrous cycle to influence muscle health. In this study, we investigated the impact of muscle atrophic stimuli on the oestrous cycle and how these alterations are correlated with musculoskeletal outcomes. A series of experiments were performed in female rodents, including hindlimb unloading (HU), HU followed by 24 h of reloading, HU combined with dexamethasone treatment, and Lewis lung carcinoma. The oestrous cycle phase was assessed throughout each intervention and correlated with musculoskeletal outcomes. Seven or 14 days of HU increased the duration in dioestrus or metoestrus (D/M; low hormones) and was negatively correlated with gastrocnemius mass. Time spent in D/M was also negatively correlated with changes in grip strength and bone density after HU, and with muscle recovery 24 h after the cessation of HU. The addition of dexamethasone strengthened these relationships between time in D/M and reduced musculoskeletal outcomes. However, in animals with Lewis lung carcinoma, oestrous cyclicity did not differ from that of control animals, and time spent in D/M was not correlated with either gastrocnemius mass or tumour burden. In vitro experiments suggested that enhanced protein synthesis induced by estrogen might protect against muscle atrophy. In conclusion, muscle atrophic insults are correlated with changes in the oestrous cycle, which are associated with deterioration in musculoskeletal outcomes. The magnitude of oestrous cycle alterations depends on the atrophic stimuli.
Collapse
Affiliation(s)
- Megan E Rosa-Caldwell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, USA
| | - Marie Mortreux
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Dong-Min Sung
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Mary L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Kirsten R Dunlap
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, USA
| | - Nicholas P Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, USA
| | - Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Paul AM, Overbey EG, da Silveira WA, Szewczyk N, Nishiyama NC, Pecaut MJ, Anand S, Galazka JM, Mao XW. Immunological and hematological outcomes following protracted low dose/low dose rate ionizing radiation and simulated microgravity. Sci Rep 2021; 11:11452. [PMID: 34075076 PMCID: PMC8169688 DOI: 10.1038/s41598-021-90439-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/10/2021] [Indexed: 11/09/2022] Open
Abstract
Using a ground-based model to simulate spaceflight [21-days of single-housed, hindlimb unloading (HLU) combined with continuous low-dose gamma irradiation (LDR, total dose of 0.04 Gy)], an in-depth survey of the immune and hematological systems of mice at 7-days post-exposure was performed. Collected blood was profiled with a hematology analyzer and spleens were analyzed by whole transcriptome shotgun sequencing (RNA-sequencing). The results revealed negligible differences in immune differentials. However, hematological system analyses of whole blood indicated large disparities in red blood cell differentials and morphology, suggestive of anemia. Murine Reactome networks indicated majority of spleen cells displayed differentially expressed genes (DEG) involved in signal transduction, metabolism, cell cycle, chromatin organization, and DNA repair. Although immune differentials were not changed, DEG analysis of the spleen revealed expression profiles associated with inflammation and dysregulated immune function persist to 1-week post-simulated spaceflight. Additionally, specific regulation pathways associated with human blood disease gene orthologs, such as blood pressure regulation, transforming growth factor-β receptor signaling, and B cell differentiation were noted. Collectively, this study revealed differential immune and hematological outcomes 1-week post-simulated spaceflight conditions, suggesting recovery from spaceflight is an unremitting process.
Collapse
Affiliation(s)
- Amber M Paul
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA. .,Universities Space Research Association, Columbia, MD, 21046, USA. .,Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114, USA.
| | - Eliah G Overbey
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Willian A da Silveira
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Institute for Global Food Security (IGFS), Queen's University, Belfast, BT9 5DL, Northern Ireland, UK
| | - Nathaniel Szewczyk
- Ohio Musculoskeletal and Neurological Institute and Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Nina C Nishiyama
- Division of Biomedical Engineering Sciences (BMES), Department of Basic Sciences, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Michael J Pecaut
- Division of Biomedical Engineering Sciences (BMES), Department of Basic Sciences, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Sulekha Anand
- Department of Biological Sciences, San Jose University, San Jose, CA, 95192, USA
| | - Jonathan M Galazka
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Xiao Wen Mao
- Division of Biomedical Engineering Sciences (BMES), Department of Basic Sciences, Loma Linda University, Loma Linda, CA, 92354, USA
| |
Collapse
|
16
|
The effects of exposure to microgravity and reconditioning of the lumbar multifidus and anterolateral abdominal muscles: implications for people with LBP. Spine J 2021; 21:477-491. [PMID: 32966906 DOI: 10.1016/j.spinee.2020.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/02/2020] [Accepted: 09/16/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT One of the primary changes in the neuromuscular system in response to microgravity is skeletal muscle atrophy, which occurs especially in muscles that maintain posture while being upright on Earth. Reduced size of paraspinal and abdominal muscles has been documented after spaceflight. Exercises are undertaken on the International Space Station (ISS) during and following space flight to remediate these effects. Understanding the adaptations which occur in trunk muscles in response to microgravity could inform the development of specific countermeasures, which may have applications for people with conditions on Earth such as low back pain (LBP). PURPOSE The aim of this study was to examine the changes in muscle size and function of the lumbar multifidus (MF) and anterolateral abdominal muscles (1) in response to exposure to 6 months of microgravity on the ISS and (2) in response to a 15-day reconditioning program on Earth. DESIGN Prospective longitudinal series. PATIENT SAMPLE Data were collected from five astronauts who undertook seven long-duration missions on the ISS. OUTCOME MEASURES For the MF muscle, measures included cross-sectional area (CSA) and linear measures to assess voluntary isometric contractions at vertebral levels L2 to L5. For the abdominal muscles, the thickness of the transversus abdominis (TrA), obliquus internus abdominis (IO) and obliquus externus abdominis (EO) muscles at rest and on contraction were measured. METHODS Ultrasound imaging of trunk muscles was conducted at four timepoints (preflight, postflight, mid-reconditioning, and post reconditioning). Data were analyzed using multilevel linear models to estimate the change in muscle parameters of interest across three time periods. RESULTS Beta-coefficients (estimates of the expected change in the measure across the specified time period, adjusted for the baseline measurement) indicated that the CSA of the MF muscles decreased significantly at all lumbar vertebral levels (except L2) in response to exposure to microgravity (L3=12.6%; L4=6.1%, L5=10.3%; p<.001), and CSAs at L3-L5 vertebral levels increased in the reconditioning period (p<.001). The thickness of the TrA decreased by 34.1% (p<.017), IO decreased by 15.4% (p=.04), and the combination of anterolateral abdominal muscles decreased by 16.2% (p<.001) between pre- and postflight assessment and increased (TrA<0.008; combined p=.035) during the postreconditioning period. Results showed decreased contraction of the MF muscles at the L2 (from 12.8% to 3.4%; p=.007) and L3 (from 12.2% to 5%; p=.032) vertebral levels following exposure to microgravity which increased (L2, p=.046) after the postreconditioning period. Comparison with preflight measures indicated that there were no residual changes in muscle size and function after the postreconditioning period, apart from CSA of MF at L2, which remained 15.3% larger than preflight values (p<.001). CONCLUSIONS In-flight exercise countermeasures mitigated, but did not completely prevent, changes in the size and function of the lumbar MF and anterolateral abdominal muscles. Many of the observed changes in size and control of the MF and abdominal muscles that occurred in response to prolonged exposure to microgravity paralleled those seen in people with LBP or exposed to prolonged bed rest on Earth. Daily individualized postflight reconditioning, which included both motor control training and weight-bearing exercises with an emphasis on retraining strength and endurance to re-establish normal postural alignment with respect to gravity, restored the decreased size and control of the MF (at the L3-L5 vertebral levels) and anterolateral abdominal muscles. Drawing parallels between changes which occur to the neuromuscular system in microgravity and which exercises best recover muscle size and function could help health professionals tailor improved interventions for terrestrial populations. Results suggested that the principles underpinning the exercises developed for astronauts following prolonged exposure to microgravity (emphasizing strength and endurance training to re-establish normal postural alignment and distribution of load with respect to gravity) can also be applied for people with chronic LBP, as the MF and anterolateral abdominal muscles were affected in similar ways in both populations. The results may also inform the development of new astronaut countermeasures targeting the MF and abdominal muscles.
Collapse
|
17
|
Wise PM, Neviani P, Riwaldt S, Corydon TJ, Wehland M, Braun M, Krüger M, Infanger M, Grimm D. Changes in Exosome Release in Thyroid Cancer Cells after Prolonged Exposure to Real Microgravity in Space. Int J Mol Sci 2021; 22:ijms22042132. [PMID: 33669943 PMCID: PMC7924847 DOI: 10.3390/ijms22042132] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Space travel has always been the man’s ultimate destination. With the ability of spaceflight though, came the realization that exposure to microgravity has lasting effects on the human body. To counteract these, many studies were and are undertaken, on multiple levels. Changes in cell growth, gene, and protein expression have been described in different models on Earth and in space. Extracellular vesicles, and in particular exosomes, are important cell-cell communicators, being secreted from almost all the cells and therefore, are a perfect target to further investigate the underlying reasons of the organism’s adaptations to microgravity. Here, we studied supernatants harvested from the CellBox-1 experiment, which featured human thyroid cancer cells flown to the International Space Station during the SpaceX CRS-3 cargo mission. The initial results show differences in the number of secreted exosomes, as well as in the distribution of subpopulations in regards to their surface protein expression. Notably, alteration of their population regarding the tetraspanin surface expression was observed. This is a promising step into a new area of microgravity research and will potentially lead to the discovery of new biomarkers and pathways of cellular cross-talk.
Collapse
Affiliation(s)
- Petra M. Wise
- The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, 4650 Sunset Blvd, Los Angeles, CA 90027, USA; (P.M.W.); (P.N.)
| | - Paolo Neviani
- The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, 4650 Sunset Blvd, Los Angeles, CA 90027, USA; (P.M.W.); (P.N.)
| | - Stefan Riwaldt
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (S.R.); (M.W.); (M.K.); (M.I.)
| | - Thomas Juhl Corydon
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus C, Denmark;
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (S.R.); (M.W.); (M.K.); (M.I.)
- Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen" (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Markus Braun
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Raumfahrtmanagement Bonn-Oberkassel, 53227 Bonn, Germany;
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (S.R.); (M.W.); (M.K.); (M.I.)
- Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen" (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (S.R.); (M.W.); (M.K.); (M.I.)
- Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen" (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (S.R.); (M.W.); (M.K.); (M.I.)
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus C, Denmark;
- Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen" (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
- Correspondence: ; Tel.: +45-21379702
| |
Collapse
|
18
|
Gabel L, Liphardt AM, Hulme PA, Heer M, Zwart SR, Sibonga JD, Smith SM, Boyd SK. Pre-flight exercise and bone metabolism predict unloading-induced bone loss due to spaceflight. Br J Sports Med 2021; 56:196-203. [PMID: 33597120 PMCID: PMC8862023 DOI: 10.1136/bjsports-2020-103602] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 02/02/2023]
Abstract
ObjectivesBone loss remains a primary health concern for astronauts, despite in-flight exercise. We examined changes in bone microarchitecture, density and strength before and after long-duration spaceflight in relation to biochemical markers of bone turnover and exercise.MethodsSeventeen astronauts had their distal tibiae and radii imaged before and after space missions to the International Space Station using high-resolution peripheral quantitative CT. We estimated bone strength using finite element analysis and acquired blood and urine biochemical markers of bone turnover before, during and after spaceflight. Pre-flight exercise history and in-flight exercise logs were obtained. Mixed effects models examined changes in bone and biochemical variables and their relationship with mission duration and exercise.ResultsAt the distal tibia, median cumulative losses after spaceflight were −2.9% to −4.3% for bone strength and total volumetric bone mineral density (vBMD) and −0.8% to −2.6% for trabecular vBMD, bone volume fraction, thickness and cortical vBMD. Mission duration (range 3.5–7 months) significantly predicted bone loss and crewmembers with higher concentrations of biomarkers of bone turnover before spaceflight experienced greater losses in tibia bone strength and density. Lower body resistance training volume (repetitions per week) increased 3–6 times in-flight compared with pre-spaceflight. Increases in training volume predicted preservation of tibia bone strength and trabecular vBMD and thickness.ConclusionsFindings highlight the fundamental relationship between mission duration and bone loss. Pre-flight markers of bone turnover and exercise history may identify crewmembers at greatest risk of bone loss due to unloading and may focus preventative measures.
Collapse
Affiliation(s)
- Leigh Gabel
- Department of Radiology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Anna-Maria Liphardt
- Department of Internal Medicine, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nurnberg and Universitätsklinikum Erlangen, Erlangen, Bavaria, Germany
| | - Paul A Hulme
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Martina Heer
- Department of Nutrition and Food Science, University of Bonn, Bonn, Nordrhein-Westfalen, Germany
| | - Sara R Zwart
- Department of Preventive Medicine and Population Health, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Jean D Sibonga
- Human Health and Performance Directorate, NASA Lyndon B Johnson Space Center, Houston, Texas, USA
| | - Scott M Smith
- Human Health and Performance Directorate, NASA Lyndon B Johnson Space Center, Houston, Texas, USA
| | - Steven K Boyd
- Department of Radiology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
19
|
Semple C, Riveros D, Sung DM, Nagy JA, Rutkove SB, Mortreux M. Using Electrical Impedance Myography as a Biomarker of Muscle Deconditioning in Rats Exposed to Micro- and Partial-Gravity Analogs. Front Physiol 2020; 11:557796. [PMID: 33041858 PMCID: PMC7522465 DOI: 10.3389/fphys.2020.557796] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
As astronauts prepare to undertake new extra-terrestrial missions, innovative diagnostic tools are needed to better assess muscle deconditioning during periods of weightlessness and partial gravity. Electrical impedance myography (EIM) has been used to detect muscle deconditioning in rodents exposed to microgravity during spaceflight or using the standard ground-based model of hindlimb unloading via tail suspension (HU). Here, we used EIM to assess muscle changes in animals exposed to two new models: hindlimb suspension using a pelvic harness (HLS) and a partial weight-bearing (PWB) model that mimics partial gravity (including Lunar and Martian gravities). We also used a simple needle array electrode in lieu of surface or ex vivo EIM approaches previously employed. Our HLS results confirmed earlier findings obtained after spaceflight and tail suspension. Indeed, one EIM measure (i.e., phase-slope) that was previously reported as highly sensitive, was significantly decreased after HLS (day 0: 14.60 ± 0.97, day 7: 11.03 ± 0.81, and day 14: 10.13 ± 0.55 | Deg/MHz|, p < 0.0001), and was associated with a significant decrease in muscle grip force. Although EIM parameters such as 50 kHz phase, reactance, and resistance remained variable over 14 days in PWB animals, we identified major PWB-dependent effects at 7 days. Moreover, the data at both 7 and 14 days correlated to previously observed changes in rear paw grip force using the same PWB model. In conclusion, our data suggest that EIM has the potential to serve as biomarker of muscle deconditioning during exposure to both micro- and partial- gravity during future human space exploration.
Collapse
Affiliation(s)
- Carson Semple
- Department of Neurology, Harvard Medical School - Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Daniela Riveros
- Department of Neurology, Harvard Medical School - Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Dong-Min Sung
- Department of Neurology, Harvard Medical School - Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Janice A Nagy
- Department of Neurology, Harvard Medical School - Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Seward B Rutkove
- Department of Neurology, Harvard Medical School - Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Marie Mortreux
- Department of Neurology, Harvard Medical School - Beth Israel Deaconess Medical Center, Boston, MA, United States
| |
Collapse
|
20
|
Sjöberg M, Berg HE, Norrbrand L, Andersen MS, Gutierrez-Farewik EM, Sundblad P, Eiken O. Influence of gravity on biomechanics in flywheel squat and leg press. Sports Biomech 2020; 22:767-783. [PMID: 32500840 DOI: 10.1080/14763141.2020.1761993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Resistance exercise on Earth commonly involves both body weight and external load. When developing exercise routines and devices for use in space, the absence of body weight is not always adequately considered. This study compared musculoskeletal load distribution during two flywheel resistance knee-extension exercises, performed in the direction of (vertical squat; S) or perpendicular to (horizontal leg press; LP) the gravity vector. Eleven participants performed these two exercises at a given submaximal load. Motion analysis and musculoskeletal modelling were used to compute joint loads and to simulate a weightless situation. The flywheel load was more than twice as high in LP as in S (p < 0.001). Joint moments and forces were greater during LP than during S in the ankle, hip and lower back (p < 0.01) but were similar in the knee. In the simulated weightless situation, hip and lower-back loadings in S were higher than corresponding values at Earth gravity (p ≤ 0.01), whereas LP joint loads did not increase. The results suggest that LP is a better terrestrial analogue than S for knee-extension exercise in weightlessness and that the magnitude and direction of gravity during resistance exercise should be considered when designing and evaluating countermeasure exercise routines and devices for space.
Collapse
Affiliation(s)
- Maria Sjöberg
- Division of Environmental Physiology, Swedish Aerospace Physiology Centre, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Solna, Sweden
| | - Hans E. Berg
- Department of Orthopaedic Surgery, Division for Orthopedics and Biotechnology, CLINTEC, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lena Norrbrand
- Division of Environmental Physiology, Swedish Aerospace Physiology Centre, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Solna, Sweden
| | - Michael S. Andersen
- Department of Materials and Production, Aalborg University, Aalborg, Denmark
| | | | - Patrik Sundblad
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ola Eiken
- Division of Environmental Physiology, Swedish Aerospace Physiology Centre, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Solna, Sweden
| |
Collapse
|
21
|
Bosutti A, Mulder E, Zange J, Bühlmeier J, Ganse B, Degens H. Effects of 21 days of bed rest and whey protein supplementation on plantar flexor muscle fatigue resistance during repeated shortening contractions. Eur J Appl Physiol 2020; 120:969-983. [PMID: 32130485 PMCID: PMC7181505 DOI: 10.1007/s00421-020-04333-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 02/07/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE Space flight and bed rest (BR) lead to a rapid decline in exercise capacity. Whey protein plus potassium bicarbonate diet-supplementation (NUTR) could attenuate this effect by improving oxidative metabolism. We evaluated the impact of 21-day BR and NUTR on fatigue resistance of plantar flexor muscles (PF) during repeated shortening contractions, and whether any change was related to altered energy metabolism and muscle oxygenation. METHODS Ten healthy men received a standardized isocaloric diet with (n = 5) or without (n = 5) NUTR. Eight bouts of 24 concentric plantar flexions (30 s each bout) with 20 s rest between bouts were employed. PF muscle size was assessed by means of peripheral quantitative computed tomography. PF muscle volume was assessed with magnetic resonance imaging. PF muscle force, contraction velocity, power and surface electromyogram signals were recorded during each contraction, as well as energy metabolism (31P nuclear magnetic resonance spectroscopy) and oxygenation (near-infrared spectroscopy). Cardiopulmonary parameters were measured during an incremental cycle exercise test. RESULTS BR caused 10-15% loss of PF volume that was partly recovered 3 days after re-ambulation, as a consequence of fluid redistribution. Unexpectedly, PF fatigue resistance was not affected by BR or NUTR. BR induced a shift in muscle metabolism toward glycolysis and some signs of impaired muscle oxygen extraction. NUTR did not attenuate the BR-induced-shift in energy metabolism. CONCLUSIONS Twenty-one days' BR did not impair PF fatigue resistance, but the shift to glycolytic metabolism and indications of impaired oxygen extraction may be early signs of developing reduced muscle fatigue resistance.
Collapse
Affiliation(s)
- Alessandra Bosutti
- Department of Life Sciences, and Centre for Neuroscience B.R.A.I.N, University of Trieste, Via A. Fleming 22, 34127, Trieste, Italy.
| | - Edwin Mulder
- Institute of Aerospace Medicine, German Aerospace Center DLR, Cologne, Germany
| | - Jochen Zange
- Institute of Aerospace Medicine, German Aerospace Center DLR, Cologne, Germany
| | - Judith Bühlmeier
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bergita Ganse
- Department of Life Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UK
| | - Hans Degens
- Department of Life Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UK.
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania.
- University of Medicine and Pharmacy of Targu Mures, Târgu Mureș, Rumania.
| |
Collapse
|
22
|
Abstract
The systemic regulation of immune reactions by the nervous system is well studied and depends on the release of hormones. Some regional regulations of immune reactions, on the other hand, depend on specific neural pathways. Better understanding of these regulations will expand therapeutic applications for neuroimmune and organ-to-organ functional interactions. Here, we discuss one regional neuroimmune interaction, the gateway reflex, which converts specific neural inputs into local inflammatory outputs in the CNS. Neurotransmitters released by the inputs stimulate specific blood vessels to express chemokines, which serve as a gateway for immune cells to extravasate into the target organ such as the brain or spinal cord. Several types of gateway reflexes have been reported, and each controls distinct CNS blood vessels to form gateways that elicit local inflammation, particularly in the presence of autoreactive immune cells. For example, neural stimulation by gravity creates the initial entry point to the CNS by CNS-reactive pathogenic CD4+ T cells at the dorsal vessels of fifth lumbar spinal cord, while pain opens the gateway at the ventral side of blood vessels in the spinal cord. In addition, it was recently found that local inflammation by the gateway reflex in the brain triggers the activation of otherwise resting neural circuits to dysregulate organ functions in the periphery including the upper gastrointestinal tract and heart. Therefore, the gateway reflex represents a novel bidirectional neuroimmune interaction that regulates organ functions and could be a promising target for bioelectric medicine.
Collapse
Affiliation(s)
- D Kamimura
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - M Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
23
|
Maffiuletti NA, Green DA, Vaz MA, Dirks ML. Neuromuscular Electrical Stimulation as a Potential Countermeasure for Skeletal Muscle Atrophy and Weakness During Human Spaceflight. Front Physiol 2019; 10:1031. [PMID: 31456697 PMCID: PMC6700209 DOI: 10.3389/fphys.2019.01031] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/26/2019] [Indexed: 01/25/2023] Open
Abstract
Human spaceflight is associated with a substantial loss of skeletal muscle mass and muscle strength. Neuromuscular electrical stimulation (NMES) evokes involuntary muscle contractions, which have the potential to preserve or restore skeletal muscle mass and neuromuscular function during and/or post spaceflight. This assumption is largely based on evidence from terrestrial disuse/immobilization studies without the use of large exercise equipment that may not be available in spaceflight beyond the International Space Station. In this mini-review we provide an overview of the rationale and evidence for NMES based on the terrestrial state-of-the-art knowledge, compare this to that used in orbit, and in ground-based analogs in order to provide practical recommendations for implementation of NMES in future space missions. Emphasis will be placed on knee extensor and plantar flexor muscles known to be particularly susceptible to deconditioning in space missions.
Collapse
Affiliation(s)
| | - David A Green
- Space Medicine Team, HRE-OM, European Astronaut Centre, European Space Agency, Cologne, Germany.,KBRwyle, Wyle Laboratories GmbH, Cologne, Germany.,King's College London, Centre for Human & Applied Physiological Sciences (CHAPS), London, United Kingdom
| | - Marco Aurelio Vaz
- Exercise Research Laboratory (LAPEX), Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marlou L Dirks
- Department of Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
24
|
Hides J, Hodges P, Lambrecht G. State-of-the-Art Exercise Concepts for Lumbopelvic and Spinal Muscles - Transferability to Microgravity. Front Physiol 2019; 10:837. [PMID: 31333494 PMCID: PMC6620527 DOI: 10.3389/fphys.2019.00837] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/17/2019] [Indexed: 12/19/2022] Open
Abstract
Low back pain (LBP) is the leading cause of disability worldwide. Over the last three decades, changes to key recommendations in clinical practice guidelines for management of LBP have placed greater emphasis on self-management and utilization of exercise programs targeting improvements in function. Recommendations have also suggested that physical treatments for persistent LBP should be tailored to the individual. This mini review will draw parallels between changes, which occur to the neuromuscular system in microgravity and conditions such as LBP which occur on Earth. Prolonged exposure to microgravity is associated with both LBP and muscle atrophy of the intrinsic muscles of the spine, including the lumbar multifidus. The finding of atrophy of spinal muscles has also commonly been reported in terrestrial LBP sufferers. Studying astronauts provides a unique perspective and valuable model for testing the effectiveness of exercise interventions, which have been developed on Earth. One such approach is motor control training, which is a broad term that can include all the sensory and motor aspects of spinal motor function. There is evidence to support the use of this exercise approach, but unlike changes seen in muscles of LBP sufferers on Earth, the changes induced by exposure to microgravity are rapid, and are relatively consistent in nature. Drawing parallels between changes which occur to the neuromuscular system in the absence of gravity and which exercises best restore size and function could help health professionals tailor improved interventions for terrestrial populations.
Collapse
Affiliation(s)
- Julie Hides
- School of Allied Health Sciences, Griffith University, Nathan, QLD, Australia.,Mater Back Stability Research Clinic, Mater Health, South Brisbane, QLD, Australia
| | - Paul Hodges
- School of Health and Rehabilitation Sciences, NHMRC Centre of Clinical Research Excellence on Spinal Pain, Injury and Health, The University of Queensland, Brisbane, QLD, Australia
| | - Gunda Lambrecht
- European Space Agency Space-Medicine Office, European Astronaut Centre, Cologne, Germany.,Germany Praxis fur Physiotherapie und Osteopathische Techniken, Siegburg, Germany
| |
Collapse
|
25
|
Koryak YA. Architectural and functional specifics of the human triceps surae muscle in vivo and its adaptation to microgravity. J Appl Physiol (1985) 2019; 126:880-893. [DOI: 10.1152/japplphysiol.00634.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Long-term exposure to microgravity (μG) is known to reduce the strength of a skeletal muscle contraction and the level of general physical performance in humans, while little is known about its effect on muscle architecture. Architectural and contractile properties of the triceps surae (TS) muscle were determined in vivo for male cosmonauts in response ( n = 8) to a spaceflight (213.0 ± 30.5 days). The maximal voluntary contraction (MVC), tetanic tension ( Ро), and voluntary and electrically evoked contraction times and force deficiency (Pd) were determined. The ankle was positioned at 15° dorsiflexion (−15°) and 0, 15, and 30° plantar flexion, with the knee set at 90°. At each position, longitudinal ultrasonic images of the medial (MG) and lateral (LG) gastrocnemius and soleus (SOL) muscles were obtained while the subject was relaxed. After a spaceflight, MVC and Pо decreased by 42 and 26%, respectively, and Pd increased by 50%. The rate of tension of a voluntary contraction substantially reduced but evoked contractions remained unchanged. In the passive condition, fiber length ( Lf) changed from 43, 57, and 35 mm (knee, 0°; ankle, −15°) to 34, 38, and 25 mm (knee, 0°; ankle, 30°) for MG, LG, and SOL, respectively, and Θf changed from 27, 21, and 23° (knee, 0°; ankle, −15°) to 43, 29, and 34° (knee, 0°; ankle, 30°) for MG, LG, and SOL, respectively. Different Lf and Θf, and their changes after spaceflight, might be related to differences in force-producing capabilities of the muscles and elastic characteristics of tendons and aponeuroses. NEW & NOTEWORTHY The present work was the first to combine measuring the fiber length and pennation angle (ultrasound imaging) as main determinants of mechanical force production and evaluating the muscle function after a long-duration spaceflight. The results demonstrate that muscles with different functional roles may differently respond to unloading, and this circumstance is important to consider when planning rehabilitation after unloading of any kind, paying particular attention to postural muscles.
Collapse
Affiliation(s)
- Yuri A. Koryak
- State Scientific Center of the Russian Federation, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
26
|
Gateway reflex: Local neuroimmune interactions that regulate blood vessels. Neurochem Int 2018; 130:104303. [PMID: 30273641 DOI: 10.1016/j.neuint.2018.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/28/2018] [Indexed: 02/06/2023]
Abstract
Neuroimmunology is a research field that intersects neuroscience and immunology, with the larger aim of gaining significant insights into the pathophysiology of chronic inflammatory diseases such as multiple sclerosis. Conventional studies in this field have so far mainly dealt with immune responses in the nervous system (i.e. neuroinflammation) or systemic immune regulation by the release of glucocorticoids. On the other hand, recently accumulating evidence has indicated bidirectional interactions between specific neural activations and local immune responses. Here we discuss one such local neuroimmune interaction, the gateway reflex. The gateway reflex represents a mechanism that translates specific neural stimulations into local inflammatory outcomes by changing the state of specific blood vessels to allow immune cells to extravasate, thus forming the gateway. Several types of gateway reflex have been identified, and each regulates distinct blood vessels to create gateways for immune cells that induce local inflammation. The gateway reflex represents a novel therapeutic strategy for neuroinflammation and is potentially applicable to other inflammatory diseases in peripheral organs.
Collapse
|
27
|
Ramachandran V, Dalal S, Scheuring RA, Jones JA. Musculoskeletal Injuries in Astronauts: Review of Pre-flight, In-flight, Post-flight, and Extravehicular Activity Injuries. CURRENT PATHOBIOLOGY REPORTS 2018. [DOI: 10.1007/s40139-018-0172-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Kamimura D, Ohki T, Arima Y, Murakami M. Gateway reflex: neural activation-mediated immune cell gateways in the central nervous system. Int Immunol 2018; 30:281-289. [DOI: 10.1093/intimm/dxy034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/12/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- Daisuke Kamimura
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | - Takuto Ohki
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | - Yasunobu Arima
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | - Masaaki Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| |
Collapse
|
29
|
Cromer WE, Zawieja DC. Acute exposure to space flight results in evidence of reduced lymph Transport, tissue fluid Shifts, and immune alterations in the rat gastrointestinal system. LIFE SCIENCES IN SPACE RESEARCH 2018; 17:74-82. [PMID: 29753416 DOI: 10.1016/j.lssr.2018.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/09/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
Space flight causes a number of alterations in physiological systems, changes in the immunological status of subjects, and altered interactions of the host to environmental stimuli. We studied the effect of space flight on the lymphatic system of the gastrointestinal tract which is responsible for lipid transport and immune surveillance which includes the host interaction with the gut microbiome. We found that there were signs of tissue damage present in the space flown animals that was lacking in ground controls (epithelial damage, crypt morphological changes, etc.). Additionally, morphology of the lymphatic vessels in the tissue suggested a collapsed state at time of harvest and there was a profound change in the retention of lipid in the villi of the ileum. Contrary to our assumptions there was a reduction in tissue fluid volume likely associated with other fluid shifts described. The reduction of tissue fluid volume in the colon and ileum is a likely contributing factor to the state of the lymphatic vessels and lipid transport issues observed. There were also associated changes in the number of MHC-II+ immune cells in the colon tissue, which along with reduced lymphatic competence would favor immune dysfunction in the tissue. These findings help expand our understanding of the effects of space flight on various organ systems. It also points out potential issues that have not been closely examined and have to potential for the need of countermeasure development.
Collapse
Affiliation(s)
- W E Cromer
- Department of Medical Physiology, Texas A&M University Health Science Center, United States.
| | - D C Zawieja
- Department of Medical Physiology, Texas A&M University Health Science Center, United States
| |
Collapse
|
30
|
|
31
|
Zhao J, Ma H, Wu L, Cao L, Yang Q, Dong H, Wang Z, Ma J, Li Z. The influence of simulated microgravity on proliferation and apoptosis in U251 glioma cells. In Vitro Cell Dev Biol Anim 2017; 53:744-751. [PMID: 28707224 DOI: 10.1007/s11626-017-0178-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 06/07/2017] [Indexed: 12/18/2022]
Abstract
Several studies have indicated that microgravity can influence cellular progression, proliferation, and apoptosis in tumor cell lines. In this study, we observed that simulated microgravity inhibited proliferation and induced apoptosis in U251 malignant glioma (U251MG) cells. Furthermore, expression of the apoptosis-associated proteins, p21 and insulin-like growth factor binding protein-2 (IGFBP-2), was upregulated and downregulated, respectively, following exposure to simulated microgravity. These findings indicate that simulated microgravity inhibits proliferation while inducing apoptosis of U251MG cells. The associated effects appear to be mediated by inhibition of IGFBP-2 expression and stimulation of p21 expression. This suggests that simulated microgravity might represent a promising method to discover new targets for glioma therapeutic strategy.
Collapse
Affiliation(s)
- Jiao Zhao
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - He Ma
- Department of Histology and Embryology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Leitao Wu
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Liang Cao
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qianqian Yang
- Department of Histology and Embryology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Haijun Dong
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zongren Wang
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jing Ma
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Zhen Li
- Department of Histology and Embryology, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
32
|
Tascher G, Brioche T, Maes P, Chopard A, O'Gorman D, Gauquelin-Koch G, Blanc S, Bertile F. Proteome-wide Adaptations of Mouse Skeletal Muscles during a Full Month in Space. J Proteome Res 2017; 16:2623-2638. [PMID: 28590761 DOI: 10.1021/acs.jproteome.7b00201] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The safety of space flight is challenged by a severe loss of skeletal muscle mass, strength, and endurance that may compromise the health and performance of astronauts. The molecular mechanisms underpinning muscle atrophy and decreased performance have been studied mostly after short duration flights and are still not fully elucidated. By deciphering the muscle proteome changes elicited in mice after a full month aboard the BION-M1 biosatellite, we observed that the antigravity soleus incurred the greatest changes compared with locomotor muscles. Proteomics data notably suggested mitochondrial dysfunction, metabolic and fiber type switching toward glycolytic type II fibers, structural alterations, and calcium signaling-related defects to be the main causes for decreased muscle performance in flown mice. Alterations of the protein balance, mTOR pathway, myogenesis, and apoptosis were expected to contribute to muscle atrophy. Moreover, several signs reflecting alteration of telomere maintenance, oxidative stress, and insulin resistance were found as possible additional deleterious effects. Finally, 8 days of recovery post flight were not sufficient to restore completely flight-induced changes. Thus in-depth proteomics analysis unraveled the complex and multifactorial remodeling of skeletal muscle structure and function during long-term space flight, which should help define combined sets of countermeasures before, during, and after the flight.
Collapse
Affiliation(s)
- Georg Tascher
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-670000 Strasbourg, France.,Centre National d'Etudes Spatiales, CNES , 75039 Paris, France
| | - Thomas Brioche
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| | - Pauline Maes
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-670000 Strasbourg, France
| | - Angèle Chopard
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| | - Donal O'Gorman
- National Institute for Cellular Biotechnology and the School of Health and Human Performance, Dublin City University , Dublin 9, Ireland
| | | | - Stéphane Blanc
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-670000 Strasbourg, France
| | - Fabrice Bertile
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-670000 Strasbourg, France
| |
Collapse
|
33
|
Stokes M, Evetts S, Hides J. Terrestrial neuro-musculoskeletal rehabilitation and astronaut reconditioning: Reciprocal knowledge transfer. Musculoskelet Sci Pract 2017; 27 Suppl 1:S1-S4. [PMID: 28173927 DOI: 10.1016/j.math.2016.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/02/2016] [Accepted: 10/04/2016] [Indexed: 11/17/2022]
Affiliation(s)
- Maria Stokes
- Faculty of Health Sciences, University of Southampton, UK; Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, UK.
| | - Simon Evetts
- SeaSpace Research Limited, Colchester, UK; Faculty of Health and Life Sciences, Northumbria University, UK
| | - Julie Hides
- Centre for Musculoskeletal Research, Mary MacKillop Institute for Health Research, Australian Catholic University, Brisbane, Australia; Mater/ACU Back Stability Research Clinic, Mater Health Services, Brisbane, Australia
| |
Collapse
|
34
|
Hides J, Lambrecht G, Ramdharry G, Cusack R, Bloomberg J, Stokes M. Parallels between astronauts and terrestrial patients - Taking physiotherapy rehabilitation "To infinity and beyond". Musculoskelet Sci Pract 2017; 27 Suppl 1:S32-S37. [PMID: 28279266 DOI: 10.1016/j.msksp.2016.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/29/2016] [Accepted: 11/06/2016] [Indexed: 12/31/2022]
Abstract
Exposure to the microgravity environment induces physiological changes in the cardiovascular, musculoskeletal and sensorimotor systems in healthy astronauts. As space agencies prepare for extended duration missions, it is difficult to predict the extent of the effects that prolonged exposure to microgravity will have on astronauts. Prolonged bed rest is a model used by space agencies to simulate the effects of spaceflight on the human body, and bed rest studies have provided some insights into the effects of immobilisation and inactivity. Whilst microgravity exposure is confined to a relatively small population, on return to Earth, the physiological changes seen in astronauts parallel many changes routinely seen by physiotherapists on Earth in people with low back pain (LBP), muscle wasting diseases, exposure to prolonged bed rest, elite athletes and critically ill patients in intensive care. The medical operations team at the European Space Agency are currently involved in preparing astronauts for spaceflight, advising on exercises whilst astronauts are on the International Space Station, and reconditioning astronauts following their return. There are a number of parallels between this role and contemporary roles performed by physiotherapists working with elite athletes and muscle wasting conditions. This clinical commentary will draw parallels between changes which occur to the neuromuscular system in the absence of gravity and conditions which occur on Earth. Implications for physiotherapy management of astronauts and terrestrial patients will be discussed.
Collapse
Affiliation(s)
- Julie Hides
- Centre for Musculoskeletal Research, Mary MacKillop Institute for Health Research, Australian Catholic University, Brisbane 4102, Australia; Mater/ACU Back Stability Research Clinic, Mater Health Services, South Brisbane, QLD 4101, Australia.
| | - Gunda Lambrecht
- European Space Agency Space-Medicine Office, European Astronaut Centre, Linder Hoehe, 51147 Cologne, Germany; Germany Praxis fur Physiotherapie und Osteopathische Techniken, Kaiserstrasse 34, 53721 Siegburg, Germany
| | - Gita Ramdharry
- Faculty of Health, Social Science and Education, Kingston University/St George's University of London, London SW17 0RE, UK
| | - Rebecca Cusack
- Critical Care Research Area, Southampton NIHR Respiratory Biomedical Research Unit, University Hospital NHS Foundation Trust, Southampton SO16 6YD, UK; Integrative Physiology and Critical Illness Group, Faculty of Medicine, University of Southampton, UK
| | - Jacob Bloomberg
- Neuroscience Laboratories, NASA/Johnson Space Center, Houston, TX, USA
| | - Maria Stokes
- Faculty of Health Sciences, University of Southampton Highfield Campus, Southampton, SO17 1BJ, UK; Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, UK
| |
Collapse
|