1
|
Dowdall N, Hoare T. β-1,3 Glucan Microparticles & Nanoparticles: Fabrication Methods & Applications in Immunomodulation & Targeted Drug Delivery. Adv Healthc Mater 2025:e2501006. [PMID: 40302314 DOI: 10.1002/adhm.202501006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/17/2025] [Indexed: 05/02/2025]
Abstract
Innate immune cells such as macrophages and dendritic cells play major roles in the progression of many cancerous, fibrotic, and autoimmune diseases, often due to environmental cues that skew these cells toward a phenotype that progresses or exacerbates the disease state. As such, a growing focus in treating such diseases is placed on exploiting the high plasticity of these cells to modify or reverse their pro-disease phenotypes using immunomodulatory materials. β-1,3 glucans are one such type of material that has exhibited diverse immunomodulatory effects on immune cells, including the mitigation or reversal of the adverse effects of dysregulated immune cells. In this review, we outline various fabrication techniques to produce β-1,3 glucan-derived microparticles and nanoparticles and discuss the diverse particle properties that can be obtained by tuning glucan chemistry, fabrication method, and formulation components. Furthermore, the immunomodulatory applications of β-1,3 glucan particles are highlighted with a focus on immune cell targeting, modulation, and the delivery of small molecule and macromolecular therapeutics.
Collapse
Affiliation(s)
- Nate Dowdall
- Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario, L8S 4L8, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario, L8S 4L8, Canada
| |
Collapse
|
2
|
Dündar A, Yalçın P, Arslan N, Acay H, Hatipoğlu A, Boğa M, Karahan S, Yaprak B. Effect of Pleurotus ostreatus Water Extract Consumption on Blood Parameters and Cytokine Values in Healthy Volunteers. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:645-652. [PMID: 38935369 DOI: 10.1080/27697061.2024.2369781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE Our aim in this study is, does 29-day regular consumption of Pleurotus ostreatus water extract by volunteer individuals who meet the study criteria have an effect on blood and cytokine values? METHOD In accordance with the purpose of the study, volunteers were asked to consume 100 ml of the extract every morning for 29 days. Three tubes of blood samples were taken from the volunteers on the 15th and 29th days of the study. Biochemical and hematological analysis of the blood samples were performed and immunomodulatory effects through cytokines were examined. The values obtained from 3 tubes of blood obtained from volunteers before the use of mushroom extract were used as control. The chemical composition and β-glucan content of 100 ml of mushroom water extract were also analyzed. RESULT IL-4, IL-6, IL-10 and IL-13 could not be detected because the values were below the lowest standard value. TNF-α, IFN-γ and IL-1β 15th and 29th day values decreased compared to the 1st day (control) values (p < 0.05). However, there was no significant difference observed between the 15th and 29th day. No abnormalities were observed in biochemical and hematological values. Also, the β-glucan content of extract was found 38.12 mg/100 ml. CONCLUSION The frequency range of kidney and liver function test results confirmed that P. osreatus is a reliable food source. Considering the cytokine values these results indicate that P. ostreatus water extract has an anti-inflammatory effect. As no significant difference was observed in 29 days of use, it is thought that 15 days of daily consumption of the extract may be sufficient for the anti-inflammatory effect to occur. However, a large number of qualified clinical trials are needed to support the issue.
Collapse
Affiliation(s)
- Abdurrahman Dündar
- Department of Medical Services and Techniques, Vocational Higher School of Health Services, Mardin, Turkey
| | - Pınar Yalçın
- Department of Biology, Graduate Education Institute, Mardin Artuklu University, Mardin, Turkey
- Şehit İlhan Varank Secondary School, Mardin, Turkey
| | - Nurgül Arslan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Dicle University, Diyarbakır, Turkey
| | - Hilal Acay
- Department of Nutrition and Dietetics, Faculty of Health Science, Mardin Artuklu University, Mardin, Turkey
| | - Abdulkerim Hatipoğlu
- Department of Nutrition and Dietetics, Faculty of Health Science, Mardin Artuklu University, Mardin, Turkey
| | - Mehmet Boğa
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakır, Turkey
- Dicle University Health Sciences Application and Research Center (DÜSAM), Diyarbakır, Turkey
| | - Selim Karahan
- Department of Pharmacology, Faculty of Medicine, Mardin Artuklu University, Mardin, Turkey
| | - Bülent Yaprak
- Department of Internal Medical Sciences, Turgut Özal Faculty of Medicine, Yesilyurt, Turkey
| |
Collapse
|
3
|
Bedard S, Roxborough E, O'Neill E, Mangal V. The biomolecules of Euglena gracilis: Harnessing biology for natural solutions to future problems. Protist 2024; 175:126044. [PMID: 38823247 DOI: 10.1016/j.protis.2024.126044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/05/2024] [Accepted: 05/16/2024] [Indexed: 06/03/2024]
Abstract
Over the past decade, the autotrophic and heterotrophic protist Euglena gracilis (E. gracilis) has gained popularity across the studies of environmental science, biosynthesis experiments, and nutritional substitutes. The unique physiology and versatile metabolism of E. gracilis have been a recent topic of interest to many researchers who continue to understand the complexity and possibilities of using E. gracilis biomolecule production. In this review, we present a comprehensive representation of recent literature outlining the various uses of biomolecules derived from E. gracilis across the fields of natural product biosynthesis, as a nutritional substitute, and as bioremediation tools. In addition, we highlight effective strategies for altering metabolite production using abiotic stressors and growth conditions. To better understand metabolite biosynthesis and its role in E. gracilis, integrated studies involving genomics, metabolomics, and proteomics should be considered. Together, we show how the ongoing advancements in E. gracilis related research continue to broaden applications in the biosynthetic sector and highlight future works that would strengthen our understanding of overall Euglena metabolism.
Collapse
Affiliation(s)
- S Bedard
- Department of Chemistry, Brock University. 1812 Sir Isaac Brock Way, St. Catherines, Ontario L2S 3A1, Canada
| | - E Roxborough
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - E O'Neill
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - V Mangal
- Department of Chemistry, Brock University. 1812 Sir Isaac Brock Way, St. Catherines, Ontario L2S 3A1, Canada.
| |
Collapse
|
4
|
Zhong C, Nidetzky B. Bottom-Up Synthesized Glucan Materials: Opportunities from Applied Biocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400436. [PMID: 38514194 DOI: 10.1002/adma.202400436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/05/2024] [Indexed: 03/23/2024]
Abstract
Linear d-glucans are natural polysaccharides of simple chemical structure. They are comprised of d-glucosyl units linked by a single type of glycosidic bond. Noncovalent interactions within, and between, the d-glucan chains give rise to a broad variety of macromolecular nanostructures that can assemble into crystalline-organized materials of tunable morphology. Structure design and functionalization of d-glucans for diverse material applications largely relies on top-down processing and chemical derivatization of naturally derived starting materials. The top-down approach encounters critical limitations in efficiency, selectivity, and flexibility. Bottom-up approaches of d-glucan synthesis offer different, and often more precise, ways of polymer structure control and provide means of functional diversification widely inaccessible to top-down routes of polysaccharide material processing. Here the natural and engineered enzymes (glycosyltransferases, glycoside hydrolases and phosphorylases, glycosynthases) for d-glucan polymerization are described and the use of applied biocatalysis for the bottom-up assembly of specific d-glucan structures is shown. Advanced material applications of the resulting polymeric products are further shown and their important role in the development of sustainable macromolecular materials in a bio-based circular economy is discussed.
Collapse
Affiliation(s)
- Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, 8010, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, 8010, Austria
- Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, Graz, 8010, Austria
| |
Collapse
|
5
|
Sugihara N, Okada Y, Tomioka A, Ito S, Tanemoto R, Nishii S, Mizoguchi A, Inaba K, Hanawa Y, Horiuchi K, Wada A, Akita Y, Higashiyama M, Kurihara C, Komoto S, Tomita K, Hokari R. Probiotic Yeast from Miso Ameliorates Stress-Induced Visceral Hypersensitivity by Modulating the Gut Microbiota in a Rat Model of Irritable Bowel Syndrome. Gut Liver 2024; 18:465-475. [PMID: 37291901 PMCID: PMC11096913 DOI: 10.5009/gnl220100] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 12/18/2022] [Accepted: 01/26/2023] [Indexed: 06/10/2023] Open
Abstract
Background/Aims Recent studies indicate that probiotics, which have attracted attention as a treatment for irritable bowel syndrome, affect intestinal homeostasis. In this study, we investigated whether Zygosaccharomyces sapae (strain I-6), a probiotic yeast isolated from miso (a traditional Japanese fermented food), could improve irritable bowel syndrome symptoms. Methods Male Wistar rats were exposed to water avoidance stress (WAS). The number of defecations during WAS and the visceral hypersensitivity before and after WAS were evaluated using colorectal distension. Tight junction changes were assessed by Western blotting. Some rats were fed with strain I-6 or β-glucan from strain I-6. Changes in the intestinal microbiota were analyzed. The effect of fecal microbiota transplantation after WAS was evaluated similarly. Caco-2 cells were stimulated with interleukin-1β and tight junction changes were investigated after coculture with strain I-6. Results The increased number of stool pellets and visceral hypersensitivity induced by WAS were suppressed by administering strain I-6. The decrease in tight junction protein occludin by WAS was reversed by the administration of strain I-6. β-Glucan from strain I-6 also suppressed those changes induced by WAS. In the rat intestinal microbiota, treatment with strain I-6 altered the β-diversity and induced changes in bacterial occupancy. Upon fecal microbiota transplantation, some symptoms caused by WAS were ameliorated. Conclusions These results suggest that traditional fermented foods such as miso in Japan are valuable sources of probiotic yeast candidates, which may be useful for preventing and treating stress-induced visceral hypersensitivity.
Collapse
Affiliation(s)
- Nao Sugihara
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Yoshikiyo Okada
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Akira Tomioka
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Suguru Ito
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Rina Tanemoto
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Shin Nishii
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Akinori Mizoguchi
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Kenichi Inaba
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Yoshinori Hanawa
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Kazuki Horiuchi
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Akinori Wada
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Yoshihiro Akita
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Masaaki Higashiyama
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Chie Kurihara
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Shunsuke Komoto
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Kengo Tomita
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
6
|
Zavadinack M, Cantu-Jungles TM, Abreu H, Ozturk OK, Cordeiro LMC, de Freitas RA, Hamaker BR, Iacomini M. (1 → 3),(1 → 6) and (1 → 3)-β-D-glucan physico-chemical features drive their fermentation profile by the human gut microbiota. Carbohydr Polym 2024; 327:121678. [PMID: 38171663 DOI: 10.1016/j.carbpol.2023.121678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Mushroom polysaccharides consist of a unique set of polymers that arrive intact in the human large intestine becoming available for fermentation by resident gut bacteria with potential benefits to the host. Here we have obtained four glucans from two mushrooms (Pholiota nameko and Pleurotus pulmonarius) under different extraction conditions and their fermentation profile by human gut bacteria in vitro was evaluated. These glucans were isolated and characterized as (1 → 3),(1 → 6)-β-D-glucans varying in branching pattern and water-solubility. An aliquot of each (1 → 3),(1 → 6)-β-D-glucan was subjected to controlled smith degradation process in order to obtain a linear (1 → 3)-β-D-glucan from each fraction. The four β-D-glucans demonstrated different water solubilities and molar mass ranging from 2.2 × 105 g.mol-1 to 1.9 × 106 g.mol-1. In vitro fermentation of the glucans by human gut microbiota showed they induced different short chain fatty acid production (52.0-97.0 mM/50 mg carbohydrates), but an overall consistent high propionate amount (28.5-30.3 % of total short chain fatty acids produced). All glucans promoted Bacteroides uniformis, whereas Anaerostipes sp. and Bacteroides ovatus promotion was strongly driven by the β-D-glucans solubility and/or branching pattern, highlighting the importance of β-D-glucan discrete structures to their fermentation by the human gut microbiota.
Collapse
Affiliation(s)
- Matheus Zavadinack
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, CEP 81531-980, Brazil
| | - Thaisa M Cantu-Jungles
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Hellen Abreu
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, CEP 81531-980, Brazil
| | - Oguz K Ozturk
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Lucimara M C Cordeiro
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, CEP 81531-980, Brazil
| | - Rilton A de Freitas
- Department of Pharmacy Federal University of Paraná, Curitiba, PR CEP 80210-170, Brazil
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Marcello Iacomini
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, CEP 81531-980, Brazil.
| |
Collapse
|
7
|
Dong QQ, Wu Q, Lu Y, Shi Y, Yang KD, Xu XL, Chen W. Exploring β-glucan as a micro-nano system for oral delivery targeted the colon. Int J Biol Macromol 2023; 253:127360. [PMID: 37827417 DOI: 10.1016/j.ijbiomac.2023.127360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
The critical role of oral colon-specific delivery systems (OCDDS) is important for delivering active agents to the colon and rectum specifically via the oral route. The use of micro/nanostructured OCDDS further improves drug stability, bioavailability, and retention time, leading to enhanced therapeutic effects. However, designing micro/nanoscale OCDDSs is challenging due to pH changes, enzymatic degradation, and systemic absorption and metabolism. Biodegradable natural polysaccharides are a promising solution to these problems, and β-glucan is one of the most promising natural polysaccharides due to its unique structural features, conformational flexibility, and specific processing properties. This review covers the diverse chemical structures of β-glucan, its benefits (biocompatibility, easy modification, and colon-specific degradation), and various β-glucan-based micro/nanosized OCDDSs, as well as their drawbacks. The potential of β-glucan offers exciting new opportunities for colon-specific drug delivery.
Collapse
Affiliation(s)
- Qing-Qing Dong
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China; Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Qian Wu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China
| | - Yi Lu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China
| | - Yi Shi
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China
| | - Ke-Da Yang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China.
| | - Wei Chen
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China.
| |
Collapse
|
8
|
Gao X, Homayoonfal M. Exploring the anti-cancer potential of Ganoderma lucidum polysaccharides (GLPs) and their versatile role in enhancing drug delivery systems: a multifaceted approach to combat cancer. Cancer Cell Int 2023; 23:324. [PMID: 38104078 PMCID: PMC10724890 DOI: 10.1186/s12935-023-03146-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023] Open
Abstract
There has been a growing global interest in the potential health benefits of edible natural bioactive products in recent years. Ganoderma lucidum, a medicinal mushroom, has gained attention for its decadent array of therapeutic and pharmaceutical compounds. Notably, G. lucidum exhibits significant anti-cancer effects against various cancer types. Polysaccharides, a prominent component in G. lucidum, are pivotal in conferring its diverse biological and medicinal properties. The primary focus of this study was to investigate the anti-cancer activities of G. lucidum polysaccharides (GLPs), with particular attention to their potential to mitigate chemotherapy-associated toxicity and enhance targeted drug delivery. Our findings reveal that GLPs exhibit anti-cancer effects through diverse mechanisms, including cytotoxicity, antioxidative properties, apoptosis induction, reactive oxygen species (ROS) generation, and anti-proliferative effects. Furthermore, the potential of GLPs-based nanoparticles (NPs) as delivery vehicles for bioactive constituents was explored. These GLPs-based NPs are designed to target various cancer tissues, enhancing the biological activity of encapsulated compounds. As such, GLPs derived from G. lucidum represent a promising avenue for inhibiting cancer progression, minimizing chemotherapy-related side effects, and supporting their utilization in combination therapies as natural adjuncts.
Collapse
Affiliation(s)
- Xiaoli Gao
- Department of Life Science, Lyuliang University, Lyuliang, 033001, Shanxi, China.
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. of Iran.
| |
Collapse
|
9
|
Liu L, Feng J, Jiang S, Zhou S, Yan M, Zhang Z, Wang W, Liu Y, Zhang J. Anti-inflammatory and intestinal microbiota modulation properties of Ganoderma lucidum β-d-glucans with different molecular weight in an ulcerative colitis model. Int J Biol Macromol 2023; 251:126351. [PMID: 37597635 DOI: 10.1016/j.ijbiomac.2023.126351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/11/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
This study systematically investigated the therapeutic effects and the corresponding mechanisms of β-D-glucans from Ganoderma lucidum (G. lucidum) with different molecular weights (Mws) on ulcerative colitis (UC). Results showed that three β-d-glucans (GLPS, GLPN and GLPW) from G. lucidum with different Mws exhibited the significant activities on the reduction of typical symptoms of UC by regulating inflammatory cytokine levels, modulating intestinal immunity, improving intestinal microbiota and metabolism of short-chain fatty acids (SCFAs) in the dextran sulfate sodium (DSS)-induced mice model. Among them, the effects of the microwave assisted degraded fraction (GLPW) mainly containing two fractions with smaller Mw (1.33 × 104 and 3.51 × 103 g/mol) on the regulation of inflammatory factors and SCFAs metabolism were found to be comparable to those of GLPN with medium Mw (3.49 × 104 g/mol), and superior to those of GLPS with large Mw (2.42 × 106 g/mol). The effect of GLPW on regulation of intestinal microbiota was even better than that of GLPN. These findings suggested that lowering Mw by means of physical degradation could improve the anti-inflammatory activities of G. lucidum β-d-glucans. The analysis of anti-inflammatory mechanism also provided a feasible and theoretical basis for potential use of degraded β-d-glucans in the prevention and treatment of UC.
Collapse
Affiliation(s)
- Liping Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Jie Feng
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Siqi Jiang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Shuai Zhou
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| | - Mengqiu Yan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Wenhan Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| | - Jingsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| |
Collapse
|
10
|
Schiavone M, François JM, Zerbib D, Capp JP. Emerging relevance of cell wall components from non-conventional yeasts as functional ingredients for the food and feed industry. Curr Res Food Sci 2023; 7:100603. [PMID: 37840697 PMCID: PMC10568300 DOI: 10.1016/j.crfs.2023.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023] Open
Abstract
Non-conventional yeast species, or non-Saccharomyces yeasts, are increasingly recognized for their involvement in fermented foods. Many of them exhibit probiotic characteristics that are mainly due to direct contacts with other cell types through various molecular components of their cell wall. The biochemical composition and/or the molecular structure of the cell wall components are currently considered the primary determinant of their probiotic properties. Here we first present the techniques that are used to extract and analyze the cell wall components of food industry-related non-Saccharomyces yeasts. We then review the current understanding of the cell wall composition and structure of each polysaccharide from these yeasts. Finally, the data exploring the potential beneficial role of their cell wall components, which could be a source of innovative functional ingredients, are discussed. Such research would allow the development of high value-added products and provide the food industry with novel inputs beyond the well-established S. cerevisiae.
Collapse
Affiliation(s)
- Marion Schiavone
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Lallemand SAS, Blagnac, France
| | - Jean M. François
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Toulouse White Biotechnology (TWB), UMS INRAE/INSA/CNRS, Toulouse, France
| | - Didier Zerbib
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Jean-Pascal Capp
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
11
|
Ota T, Saburi W, Komba S, Mori H. Chemical synthesis of oligosaccharide derivatives with partial structure of β1-3/1-6 glucan, using monomeric units for the formation of β1-3 and β1-6 glucosidic linkages. Biosci Biotechnol Biochem 2023; 87:1111-1121. [PMID: 37407435 DOI: 10.1093/bbb/zbad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
β1-3/1-6 Glucans, known for their diverse structures, comprise a β1-3-linked main chain and β1-6-linked short branches. Laminarin, a β1-3/1-6 glucan extracted from brown seaweed, for instance, includes β1-6 linkages even in the main chain. The diverse structures provide various beneficial functions for the glucan. To investigate the relationship between structure and functionality, and to enable the characterization of β1-3/1-6 glucan-metabolizing enzymes, oligosaccharides containing the exact structures of β1-3/1-6 glucans are required. We synthesized the monomeric units for the synthesis of β1-3/1-6 mixed-linked glucooligosaccharides. 2-(Trimethylsilyl)ethyl 2-O-benzoyl-4,6-O-benzylidene-β-d-glucopyranoside served as an acceptor in the formation of β1-3 linkages. Phenyl 2-O-benzoyl-4,6-O-benzylidene-3-O-(tert-butyldiphenylsilyl)-1-thio-β-d-glucopyranoside and phenyl 2,3-di-O-benzoyl-4,6-di-O-levulinyl-1-thio-β-d-glucopyranoside acted as donors, synthesizing acceptors suitable for the formation of β1-3- and β1-6-linkages, respectively. These were used to synthesize a derivative of Glcβ1-6Glcβ1-3Glcβ1-3Glc, demonstrating that the proposed route can be applied to synthesize the main chain of β-glucan, with the inclusion of both β1-3 and β1-6 linkages.
Collapse
Affiliation(s)
- Tomoya Ota
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Wataru Saburi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shiro Komba
- Institute of Food Research, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Haruhide Mori
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
12
|
S NA, Thara SS, Soni KB, Sindura KP, J KP. Expression profiling of laccase and β-glucan synthase genes in Pleurotus ostreatus during different developmental stages. Mol Biol Rep 2023; 50:7205-7213. [PMID: 37418082 DOI: 10.1007/s11033-023-08556-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/30/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Pleurotus ostreatus, commonly known as the oyster mushroom, is a saprophytic fungus with many applications in biotechnology and medicine. This mushroom is a rich source of proteins, polysaccharides, and bioactive compounds that have been shown to possess anticancer, antioxidant, and immunomodulatory properties. In this study, we investigated the expression profile of laccase (POXA3) and β-glucan synthase (FKS) genes during different developmental stages in two strains of P. ostreatus. METHODS AND RESULTS Cultural and morphological studies of the two strains were studied. DMR P115 strain recorded faster mycelial growth compared to the HUC strain. However, both strains produced white, thick fluffy mycelial growth with radiating margin. Morphological characteristics of the mushroom fruiting body were also higher in the DMR P115 strain. The expression of these genes was analyzed using quantitative real-time PCR (qPCR) and the results were compared to those of the reference gene β-actin. The expression of laccase (POXA3) was higher in the mycelial stage of DMR P115 and HUC strains indicating its role in the fruiting body development and substrate degradation. The expression of β-glucan synthase (FKS) was upregulated in the mycelium and mature fruiting body of the DMR P115 strain. In contrast, there was only significant upregulation in the mycelial stage of the HUC strain, which indicates its role in cell wall formation and the immunostimulatory properties of that strain. CONCLUSION The results deepen the understanding of the molecular mechanism of the fruiting body development in P. ostreatus and can be used as a foundation for future lines of research related to strain improvement of P. ostreatus.
Collapse
Affiliation(s)
- Nesma A S
- Department of Plant Biotechnology, College of Agriculture, Kerala Agricultural University, Vellayani, Thiruvananthapuram, 695 522, Kerala, India
| | - Susha S Thara
- Department of Plant Pathology, College of Agriculture, Kerala Agricultural University, Vellayani, Thiruvananthapuram, 695 522, Kerala, India.
| | - K B Soni
- Department of Plant Biotechnology, College of Agriculture, Kerala Agricultural University, Vellayani, Thiruvananthapuram, 695 522, Kerala, India
| | - K P Sindura
- Department of Plant Biotechnology, College of Agriculture, Kerala Agricultural University, Vellayani, Thiruvananthapuram, 695 522, Kerala, India
| | - Krishnapriya P J
- Department of Plant Pathology, College of Agriculture, Kerala Agricultural University, Vellayani, Thiruvananthapuram, 695 522, Kerala, India
| |
Collapse
|
13
|
Cigarroa-Ruiz LA, Toledo-Solís FJ, Frías-Gómez SA, Guerrero-Zárate R, Camarillo-Coop S, Alvarez-Villagómez CS, Peña-Marín ES, Galaviz MA, Martínez-García R, Álvarez-González CA. Addition of β-glucans in diets for tropical gar (Atractosteus tropicus) larvae: effects on growth, digestive enzymes and gene expression of intestinal epithelial integrity and immune system. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:613-626. [PMID: 37311916 DOI: 10.1007/s10695-023-01207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/24/2023] [Indexed: 06/15/2023]
Abstract
The effect of β-glucans 1,3/1,6 from Saccharomyces cerevisiae yeast at different inclusion percentages (0.0, 0.2, 0.4, 0.6, and 0.8%) in the diet for tropical gar (Atractosteus tropicus) larvae was evaluated on growth, digestive enzyme activity and, relative expression of the immune system genes. The bioassay started on the third day after hatching (DAH) and lasted 21 days, using a total of 1500 larvae of 0.055 ± 0.008 g and, a total length of 2.46 ± 0.26 cm. Larviculture was carried out in a recirculation system with 15 tanks of 70 L using a density of 100 organisms per experimental unit. No significant differences in larval growth were observed by the inclusion of β-glucans (p > 0.05). Digestive enzymes showed changes in lipase and trypsin activities, presenting higher values in fish fed 0.6% and 0.8% β-glucans diets compared to the other treatments (p < 0.05). Leucine-aminopeptidase, chymotrypsin, acid phosphatase, and alkaline phosphatase activity showed higher activities in larvae fed with a 0.4% β-glucan diet compared to the control group. The relative expression of intestinal membrane integrity (mucin 2) muc-2, (occludins) occ, (nucleotide-binding oligomerization domain) nod-2, and immune system lys (lysosome) genes showed over-expression in larvae fed the 0.4% β-glucan diet to the rest of the treatments (p < 0.05). The inclusion of β-glucans at 0.4-0.6% in diets for A. tropicus larvae could improve larviculture, as effects on the increase in the activity of several digestive enzymes and the expression of genes of the immune system.
Collapse
Affiliation(s)
- L A Cigarroa-Ruiz
- Laboratorio de Fisiología en Recursos Acuáticos, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), 0.5 Km Carretera Villahermosa-Cárdenas, 86000, Villahermosa, Tabasco, México
| | - F J Toledo-Solís
- Centro de Investigaciones Costeras, Universidad de Ciencias y Artes de Chiapas (UNICACH), Calle Juan José Calzada S/N, 30500, Tonalá, Chiapas, Mexico.
| | - S A Frías-Gómez
- Laboratorio de Producción Acuícola FES Iztacala, Barrio de los Héroes, Av. De Los Barrios 1, Los Reyes Ixtacala, 54090, Tlalnepantla de Baz, Mexico
| | - R Guerrero-Zárate
- Laboratorio de Fisiología en Recursos Acuáticos, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), 0.5 Km Carretera Villahermosa-Cárdenas, 86000, Villahermosa, Tabasco, México
| | - S Camarillo-Coop
- Laboratorio de Fisiología en Recursos Acuáticos, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), 0.5 Km Carretera Villahermosa-Cárdenas, 86000, Villahermosa, Tabasco, México
| | - C S Alvarez-Villagómez
- Laboratorio de Fisiología en Recursos Acuáticos, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), 0.5 Km Carretera Villahermosa-Cárdenas, 86000, Villahermosa, Tabasco, México
| | - E S Peña-Marín
- Autónoma de Baja California (UABC), Instituto de Investigaciones Oceanológicas, Universidad, Carr. Transpeninsular 3917, 22870, Ensenada, Baja California, Mexico
| | - M A Galaviz
- Facultad de Ciencias Marinas, Autónoma de Baja California (UABC), Universidad, PO Box 76, 22860, Ensenada, Baja California, Mexico
| | - R Martínez-García
- Laboratorio de Fisiología en Recursos Acuáticos, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), 0.5 Km Carretera Villahermosa-Cárdenas, 86000, Villahermosa, Tabasco, México
| | - C A Álvarez-González
- Laboratorio de Fisiología en Recursos Acuáticos, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), 0.5 Km Carretera Villahermosa-Cárdenas, 86000, Villahermosa, Tabasco, México.
| |
Collapse
|
14
|
Fernandes A, Rodrigues PM, Pintado M, Tavaria FK. A systematic review of natural products for skin applications: Targeting inflammation, wound healing, and photo-aging. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154824. [PMID: 37119762 DOI: 10.1016/j.phymed.2023.154824] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/04/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Every day the skin is constantly exposed to several harmful factors that induce oxidative stress. When the cells are incapable to maintain the balance between antioxidant defenses and reactive oxygen species, the skin no longer can keep its integrity and homeostasis. Chronic inflammation, premature skin aging, tissue damage, and immunosuppression are possible consequences induced by sustained exposure to environmental and endogenous reactive oxygen species. Skin immune and non-immune cells together with the microbiome are essential to efficiently trigger skin immune responses to stress. For this reason, an ever-increasing demand for novel molecules capable of modulating immune functions in the skin has risen the level of their development, particularly in the field of natural product-derived molecules. PURPOSE In this review, we explore different classes of molecules that showed evidence in modulate skin immune responses, as well as their target receptors and signaling pathways. Moreover, we describe the role of polyphenols, polysaccharides, fatty acids, peptides, and probiotics as possible treatments for skin conditions, including wound healing, infection, inflammation, allergies, and premature skin aging. METHODS Literature was searched, analyzed, and collected using databases, including PubMed, Science Direct, and Google Scholar. The search terms used included "Skin", "wound healing", "natural products", "skin microbiome", "immunomodulation", "anti-inflammatory", "antioxidant", "infection", "UV radiation", "polyphenols", "polysaccharides", "fatty acids", "plant oils", "peptides", "antimicrobial peptides", "probiotics", "atopic dermatitis", "psoriasis", "auto-immunity", "dry skin", "aging", etc., and several combinations of these keywords. RESULTS Natural products offer different solutions as possible treatments for several skin conditions. Significant antioxidant and anti-inflammatory activities were reported, followed by the ability to modulate immune functions in the skin. Several membrane-bound immune receptors in the skin recognize diverse types of natural-derived molecules, promoting different immune responses that can improve skin conditions. CONCLUSION Despite the increasing progress in drug discovery, several limiting factors need future clarification. Understanding the safety, biological activities, and precise mechanisms of action is a priority as well as the characterization of the active compounds responsible for that. This review provides directions for future studies in the development of new molecules with important pharmaceutical and cosmeceutical value.
Collapse
Affiliation(s)
- A Fernandes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - P M Rodrigues
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - M Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - F K Tavaria
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
15
|
Fotschki J, Ogrodowczyk AM, Wróblewska B, Juśkiewicz J. Side Streams of Vegetable Processing and Its Bioactive Compounds Support Microbiota, Intestine Milieu, and Immune System. Molecules 2023; 28:molecules28114340. [PMID: 37298819 DOI: 10.3390/molecules28114340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The industry of vegetable processing generates large amounts of by-products, which often emerge seasonally and are susceptible to microbial degradation. Inadequate management of this biomass results in the loss of valuable compounds that are found in vegetable by-products that can be recovered. Considering the possibility of using waste, scientists are trying to reuse discarded biomass and residues to create a product of higher value than those processed. The by-products from the vegetable industry can provide an added source of fibre, essential oils, proteins, lipids, carbohydrates, and bioactive compounds, such as phenolics. Many of these compounds have bioactive properties, such as antioxidative, antimicrobial, and anti-inflammatory activity, which could be used, especially in the prevention or treatment of lifestyle diseases connected with the intestinal milieu, including dysbiosis and immune-mediated diseases resulting in inflammation. This review summarises the key aspects of the health-promoting value of by-products and their bioactive compounds derived from fresh or processed biomass and extracts. In this paper, the relevance of side streams as a source of beneficial compounds with the potential for promoting health is considered, particularly their impact on the microbiota, immune system, and gut milieu because all of these fields interact closely to affect host nutrition, prevent chronic inflammation, and provide resistance to some pathogens.
Collapse
Affiliation(s)
- Joanna Fotschki
- Department of Immunology and Food Microbiology, Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Anna M Ogrodowczyk
- Department of Immunology and Food Microbiology, Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Barbara Wróblewska
- Department of Immunology and Food Microbiology, Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Jerzy Juśkiewicz
- Department of Biological Functions of Food, Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| |
Collapse
|
16
|
Tacchini M, Sacchetti G, Guerrini A, Paganetto G. Mycochemicals against Cancer Stem Cells. Toxins (Basel) 2023; 15:360. [PMID: 37368660 DOI: 10.3390/toxins15060360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Since ancient times, mushrooms have been considered valuable allies of human well-being both from a dietary and medicinal point of view. Their essential role in several traditional medicines is explained today by the discovery of the plethora of biomolecules that have shown proven efficacy for treating various diseases, including cancer. Numerous studies have already been conducted to explore the antitumoural properties of mushroom extracts against cancer. Still, very few have reported the anticancer properties of mushroom polysaccharides and mycochemicals against the specific population of cancer stem cells (CSCs). In this context, β-glucans are relevant in modulating immunological surveillance against this subpopulation of cancer cells within tumours. Small molecules, less studied despite their spread and assortment, could exhibit the same importance. In this review, we discuss several pieces of evidence of the association between β-glucans and small mycochemicals in modulating biological mechanisms which are proven to be involved with CSCs development. Experimental evidence and an in silico approach are evaluated with the hope of contributing to future strategies aimed at the direct study of the action of these mycochemicals on this subpopulation of cancer cells.
Collapse
Affiliation(s)
- Massimo Tacchini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Gianni Sacchetti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandra Guerrini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Guglielmo Paganetto
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
17
|
Esquivel SV, Bhatt HN, Diwan R, Habib A, Lee WY, Khatun Z, Nurunnabi M. β-Glucan and Fatty Acid Based Mucoadhesive Carrier for Gastrointestinal Tract Specific Local and Sustained Drug Delivery. Biomolecules 2023; 13:768. [PMID: 37238639 PMCID: PMC10216773 DOI: 10.3390/biom13050768] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The oral route is considered the most convenient route of drug administration for both systemic and local delivery. Besides stability and transportation, another unmet but important issue regarding oral medication is retention duration within the specific region of the gastrointestinal (GI) tract. We hypothesize that an oral vehicle that can adhere and maintain retention within the stomach for a longer duration can be more effective to treat stomach-related diseases. Therefore, in this project, we developed a carrier that is highly specific to the stomach and maintains its retention for a longer duration. We developed a vehicle composed of β-Glucan And Docosahexaenoic Acid (GADA) to observe its affinity and specificity to the stomach. GADA forms a spherical-shaped particle with negative zeta potential values that vary based on the feed ratio of docosahexaenoic acid. Docosahexaenoic acid is an omega-3 fatty acid that has transporters and receptors throughout the GI tract, such as CD36, plasma membrane-associated fatty acid-binding protein (FABP (pm)), and a family of fatty acid transport proteins (FATP1-6). The in vitro studies and characterization data showed that GADA has the capability to carry a payload of hydrophobic molecules and specifically deliver the payload to the GI tract, exert its therapeutic effects, and help to maintain stability for more than 12 h in the gastric and intestinal fluid. The particle size and surface plasmon resonance (SPR) data showed that GADA has a strong binding affinity with mucin in the presence of simulated gastric fluids. We observed a comparatively higher drug release of lidocaine in gastric juice than that in intestinal fluids, demonstrating the influence of the pH values of the media on drug-release kinetics. In vivo and ex vivo imaging of mice demonstrated that GADA maintains its retention within the stomach for at least 4 hr. This stomach-specific oral vehicle holds strong promise to translate various injectable therapeutic drugs to oral form upon further optimizations.
Collapse
Affiliation(s)
- Stephanie Vargas Esquivel
- Aerospace Center (cSETR), University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Aerospace & Mechanical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Himanshu N. Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA
- Biomedical Engineering Program, College of Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Rimpy Diwan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA
- Biomedical Engineering Program, College of Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Ahsan Habib
- Department of Chemistry and Biochemistry, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Wen-Yee Lee
- Department of Chemistry and Biochemistry, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Zehedina Khatun
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Md Nurunnabi
- Aerospace Center (cSETR), University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA
- Biomedical Engineering Program, College of Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
18
|
Pradhan J, Sahu S, Das BK. Protective Effects of Chlorella vulgaris Supplemented Diet on Antibacterial Activity and Immune Responses in Rohu Fingerlings, Labeo rohita (Hamilton), Subjected to Aeromonas hydrophila Infection. Life (Basel) 2023; 13:life13041028. [PMID: 37109557 PMCID: PMC10145045 DOI: 10.3390/life13041028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/09/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The current study focuses on the antibacterial activity and potential efficiency of dietary supplements of Chlorella vulgaris on the immune response, improved growth performance, and disease resistance of Labeo rohita fingerlings against Aeromonas hydrophila infection. Crude ethanolic extract of Chlorella and partially purified fractions of the extract were tested against two selected fish pathogens using the disc diffusion method. A total number of 360 rohu fingerlings (25 ± 2 g) were allocated to 4 treatments for 90 days. They were fed with an experimental diet containing Chlorella powder (0, 0.1, 0.5, and 1.0 g Kg-1 of a basic diet). To evaluate the non-specific immunity parameters including serum bactericidal, lysozyme activity, superoxide anion production, and biochemical and haematological indices, the fish were sampled at day 30, 60, 90, and after bacterial challenge. Mortalities of the fish were observed over 10 days post challenge with A. hydrophila. The protein and globulin levels of the treatment group were significantly higher after being treated with Chlorella than those of the control group. The total blood-cell count and haemoglobin content were also increased in the algal-diet-treated group. Among all the experimental diets, the 0.5 g Kg-1Chlorella fed group of fish showed significantly (p < 0.05) increased serum bactericidal activity and superoxide anion production when compared with the control group on day 90. Maximum lysozyme activity (750.00 ± 3.27) was noticed in the 1.0 g Kg-1 diet fed group on day 30. The Chlorella treated group exhibited a better growth performance of the fish. The maximum survivability (86.5%) was recorded in the 1.0 g Kg-1 diet fed group at the end of the 10-day fish exposure to A. hydrophila. These results suggest that the optimum dietary Chlorella supplementation could be 0.5-1.0 g Kg-1 of the diet, which stimulates immunity and protects L. rohita from A. hydrophila infection.
Collapse
Affiliation(s)
| | | | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore 700120, West Bengal, India
| |
Collapse
|
19
|
Rašeta M, Mišković J, Čapelja E, Zapora E, Petrović Fabijan A, Knežević P, Karaman M. Do Ganoderma Species Represent Novel Sources of Phenolic Based Antimicrobial Agents? Molecules 2023; 28:3264. [PMID: 37050027 PMCID: PMC10096548 DOI: 10.3390/molecules28073264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Ganoderma species have been recognized as potential antimicrobial (AM) agents and have been used in traditional Chinese medicine (TCM) for a long time. The aim of this study is to examine the AM potential of autochthonous Ganoderma species (G. applanatum, G. lucidum, G. pfeifferi and G. resinaceum) from Serbia. The extraction of fungal material was prepared in different solvents (ethanol-EtOH, water-H2O, chloroform-CHCl3). Antibacterial activity (ABA) was determined using disk-diffusion, agar-well diffusion, and micro-dilution method, while for antifungal properties disk-diffusion and pour plate method were applied. Antiviral activity was tested on model DNA virus LK3 and determined by plaque assay. Statistical PCA analysis was applied for detection of correlation effects of phenolics and AM activities, while LC-MS/MS was performed for phenolics quantification. G. resinaceum CHCl3 extract expressed the most potent ABA against P. aeruginosa (MIC = 6.25 mg/mL), probably due to presence of flavonoids and 2,5-dihydroxybenzoic acid. Among H2O extracts, the highest ABA was determined for G. pfeifferi against both E. coli and S. aureus (21 and 19 mm, respectively). EtOH extracts of G. pfeifferi and G. resinaceum were the most effective against A. niger (23.8 and 20.15 mm, respectively), with special impact of phenolic acids and flavonoid isorhamnetin, while C. albicans showed the lowest susceptibility. The most potent antiviral inhibitor was G. lucidum (70.73% growth inhibition) due to the high amount of phenolic acids. To the best of our knowledge, this is the first report of a methodical AM profile of G. pfeifferi and G. resinaceum from the Balkan region including PCA analysis.
Collapse
Affiliation(s)
- Milena Rašeta
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Jovana Mišković
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Eleonora Čapelja
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Ewa Zapora
- Institute of Forest Sciences, Białystok University of Technology, Wiejska 45E, 15-351 Białystok, Poland
| | - Aleksandra Petrović Fabijan
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia
| | - Petar Knežević
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Maja Karaman
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| |
Collapse
|
20
|
Rousta N, Aslan M, Yesilcimen Akbas M, Ozcan F, Sar T, Taherzadeh MJ. Effects of fungal based bioactive compounds on human health: Review paper. Crit Rev Food Sci Nutr 2023; 64:7004-7027. [PMID: 36794421 DOI: 10.1080/10408398.2023.2178379] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Since the first years of history, microbial fermentation products such as bread, wine, yogurt and vinegar have always been noteworthy regarding their nutritional and health effects. Similarly, mushrooms have been a valuable food product in point of both nutrition and medicine due to their rich chemical components. Alternatively, filamentous fungi, which can be easier to produce, play an active role in the synthesis of some bioactive compounds, which are also important for health, as well as being rich in protein content. Therefore, this review presents some important bioactive compounds (bioactive peptides, chitin/chitosan, β-glucan, gamma-aminobutyric acid, L-carnitine, ergosterol and fructooligosaccharides) synthesized by fungal strains and their health benefits. In addition, potential probiotic- and prebiotic fungi were researched to determine their effects on gut microbiota. The current uses of fungal based bioactive compounds for cancer treatment were also discussed. The use of fungal strains in the food industry, especially to develop innovative food production, has been seen as promising microorganisms in obtaining healthy and nutritious food.
Collapse
Affiliation(s)
- Neda Rousta
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Melissa Aslan
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Ferruh Ozcan
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | | |
Collapse
|
21
|
Eswar K, Mukherjee S, Ganesan P, Kumar Rengan A. Immunomodulatory Natural Polysaccharides: An Overview of the Mechanisms Involved. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
22
|
Berovic M, Zhong JJ. Advances in Production of Medicinal Mushrooms Biomass in Solid State and Submerged Bioreactors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 184:125-161. [PMID: 36592190 DOI: 10.1007/10_2022_208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Production of mushroom fruit bodies using farming technology could hardly meet the increasing demand of the world market. During the last several decades, there have been various basic and applied studies on fungal physiology, metabolism, process engineering, and (pre)clinical studies. The fundamental aspects of solid-state cultivation of various kinds of medicinal mushroom mycelia in various types of bioreactors were established. Solid-state cultivation of medicinal mushrooms for their biomass and bioactive metabolites production appear very suitable for veterinary use. Development of comprehensive submerged technologies using stirred tank and airlift bioreactors is the most promising technology for fast and large-scale production of medicinal fungi biomass and their pharmaceutically active products for human need. The potentials initiate the development of new drugs and some of the most attractive over-the-counter human and veterinary remedies. This article is to overview the engineering achievements in solid state and submerged cultivations of medicinal mushrooms in bioreactors.
Collapse
Affiliation(s)
- Marin Berovic
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia.
| | - Jian-Jiang Zhong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and Laboratory of Molecular Biochemical Engineering and Advanced Fermentation Technology, Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
23
|
Effect of Immunomodulation in Turkeys Infected with Haemorrhagic Enteritis Virus on the Percentage of CD4 + and CD8α + T Lymphocyte Subpopulations Synthesising IFN-γ. J Vet Res 2022; 66:537-547. [PMID: 36846033 PMCID: PMC9944994 DOI: 10.2478/jvetres-2022-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Haemorrhagic enteritis virus (HEV) is a common turkey pathogen which suppresses the immune function. The immunosuppressive potential of both field and vaccine strains of HEV makes it necessary to seek substances which can limit or prevent this phenomenon. The aim of the presented work was to investigate the effect of two immunomodulators in the immune response of HEV-infected turkeys. The immunomodulators were synthetic methisoprinol and a natural preparation containing 34.2% β-glucans (β-1,3/1,6) and 12% mannan oligosaccharides (MOS). Material and Methods The synthetic immunomodulator was administered to female Big 6 turkey chicks at a dose of 200 mg/kg b.w. in drinking water i) for 3 days before, ii) for 5 days after, or iii) for 3 days before, on the day of infection, and for 5 days after experimental HEV infection in turkeys. The natural counterpart was also given to female Big 6 turkey chicks at a dose of 500 g/tonne of feed i) for 14 days before, ii) for 5 days after, or iii) for 14 days before, on the day of infection, and for 5 days after infection. Their effect was evaluated on the synthesis of interferon gamma (IFN-γ) by splenic CD4+ and CD8α+ T cells in response to mitogen stimulation in vitro. Samples were taken 3, 5 and 7 days after infection and analysed by intracellular cytokine staining assay. Results Methisoprinol was shown to increase the CD4+IFN-γ+ and CD8α+IFN-γ+ T cell count in these birds over the same cell count in control turkeys. A similar effect was obtained in turkeys that received the natural immunomodulator. Conclusion The evaluated immunomodulators may be used to attenuate the effects of immunosuppression in HEV-infected turkeys.
Collapse
|
24
|
Chakraborty S, Devi Rajeswari V. Biomedical aspects of beta-glucan on glucose metabolism and its role on primary gene PIK3R1. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
25
|
Rummell LM, Steele MA, Templeman JR, Yohe TT, Akhtar N, Lambie JG, Singh P, Asquith T, Verbrugghe A, Pearson W, Shoveller AK. A proof of principle study investigating the effects of supplemental concentrated brewer's yeast on markers of gut permeability, inflammation, and fecal metabolites in healthy non-challenged adult sled dogs. J Anim Sci 2022; 100:skac281. [PMID: 36029013 PMCID: PMC9645558 DOI: 10.1093/jas/skac281] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Yeast-derived β-glucans impact immunity, though their effects on gut permeability and inflammation are less understood. Most research has investigated other components of the yeast cell wall, such as the prebiotic mannan- and fructo-oligosaccharides. The objective of this study was to assess the effects of feeding a concentrated yeast product on markers of inflammation (serum amyloid A [SAA] and haptoglobin [Hp]) and oxidative status (malondialdehyde [MDA]), fecal products of fermentation, and gut permeability. Nineteen privately owned domestic Siberian huskies, and one Alaskan husky (9 females: 5 intact, 4 spayed; 11 males: 3 intact, 8 neutered), with an average age of 4.8 ± 2.6 yr and body weight (BW) of 25.6 ± 4.1 kg, were used in this study. Dogs were blocked and randomly allocated to one of two diet groups. Ten dogs received a dry extruded diet. The other 10 received the same diet top dressed with yeast for a daily β-glucan dose of 7 mg/kg BW for 10 wk. Fecal collection, for evaluation of fecal metabolites, and scoring occurred weekly. Gut permeability was assessed using the chromium-labeled ethylenediamine tetra-acetic acid (Cr-EDTA) and iohexol markers prior to the initiation of dietary treatment and after 10 wk of treatment. Blood samples were collected premarker administration and 0.5, 1, 2, 3, 4, 5, and 6 h postadministration. Fasting concentrations of SAA, Hp, and MDA were measured on weeks -1, 2, 4, and 8. Incremental area under the curve (I-AUC) was calculated for serum iohexol and Cr-EDTA concentrations. All data were analyzed using PROC GLIMMIX of SAS with dog as random effect, and week as fixed effect and repeated measure. Dogs receiving treatment tended to have decreased I-AUC of Iohexol (P = 0.10) and Cr-EDTA (P = 0.06) between baseline and cessation of treatment compared to the change over time in I-AUC for control (Ctl) dogs. Treatment dogs had lower Hp concentrations (P ≤ 0.05) than Ctl. There were no differences between treatments for SAA and MDA concentrations (P > 0.05). Fecal arabinose concentrations were greater in treatment (Trt) dogs (P ≤ 0.05) compared to Ctl, though no other fecal metabolites were affected by treatment. There was no difference in the relative frequency of defecations scored at any fecal score between Trt and Ctl dogs, and mean score did not differ between groups (P > 0.10). These data suggest that concentrated brewer's yeast may have the potential to reduce gut permeability without impacting inflammatory status and markers of health in adult dogs.
Collapse
Affiliation(s)
- Lindsey M Rummell
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Michael A Steele
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - James R Templeman
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Primal Pet Foods, Primal Pet Group, Fairfield, CA, 94534USA
| | - Taylor T Yohe
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Nadeem Akhtar
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jocelyn G Lambie
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Pawanpreet Singh
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | - Adronie Verbrugghe
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1Canada
| | - Wendy Pearson
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Anna K Shoveller
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
26
|
Tieu S, Charchoglyan A, Wagter-Lesperance L, Karimi K, Bridle BW, Karrow NA, Mallard BA. Immunoceuticals: Harnessing Their Immunomodulatory Potential to Promote Health and Wellness. Nutrients 2022; 14:4075. [PMID: 36235727 PMCID: PMC9571036 DOI: 10.3390/nu14194075] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/07/2022] Open
Abstract
Knowledge that certain nutraceuticals can modulate the immune system is not new. These naturally occurring compounds are known as immunoceuticals, which is a novel term that refers to products and systems that naturally improve an individual's immuno-competence. Examples of immunoceuticals include vitamin D3, mushroom glycans, flavonols, quercetin, omega-3 fatty acids, carotenoids, and micronutrients (e.g., zinc and selenium), to name a few. The immune system is a complex and highly intricate system comprising molecules, cells, tissues, and organs that are regulated by many different genetic and environmental factors. There are instances, such as pathological conditions, in which a normal immune response is suboptimal or inappropriate and thus augmentation or tuning of the immune response by immunoceuticals may be desired. With infectious diseases, cancers, autoimmune disorders, inflammatory conditions, and allergies on the rise in both humans and animals, the importance of the use of immunoceuticals to prevent, treat, or augment the treatment of these conditions is becoming more evident as a natural and often economical approach to support wellness. The global nutraceuticals market, which includes immunoceuticals, is a multi-billion-dollar industry, with a market size value of USD 454.55 billion in 2021, which is expected to reach USD 991.09 billion by 2030. This review will provide an overview of the immune system, the importance of immunomodulation, and defining and testing for immunocompetence, followed by a discussion of several key immunoceuticals with clinically proven and evidence-based immunomodulatory properties.
Collapse
Affiliation(s)
- Sophie Tieu
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Armen Charchoglyan
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada
- Advanced Analysis Centre, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Lauri Wagter-Lesperance
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Khalil Karimi
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Byram W. Bridle
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada
| | - Bonnie A. Mallard
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
27
|
Liu Y, Tang Q, Feng J, Liu J, Tang C, Yan M, Zhou S, Liu L, Zhou J, Zhang J. Effects of molecular weight on intestinal anti-inflammatory activities of β-D-glucan from Ganoderma lucidum. Front Nutr 2022; 9:1028727. [PMID: 36245525 PMCID: PMC9557179 DOI: 10.3389/fnut.2022.1028727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
To investigate the influence of molecular weight (Mw) on the anti-inflammatory activity of β-D-glucan from Ganoderma lucidum, ultrasonic irradiation was applied to treat the β-D-glucan (GLP, 2.42 × 106 g/mol) solution to obtain two degraded fractions with molecular weight of 6.53 × 105 g/mol (GLPC) and 3.49 × 104 g/mol (GLPN). Structural analysis proved that the degraded fractions possessed similar repeated units with the original β-D-glucan. The in vitro anti-inflammatory activity studies showed that all fractions could significantly inhibit LPS-induced expression of cytokines including TNF-α, IL-8, MIF and MCP-1 in Caco-2 cells at certain concentrations. Moreover, GLPC and GLPN exhibited better anti-inflammatory activity than GLPC. The intestinal anti-inflammatory activity evaluated by dextran sulfate sodium (DSS)—induced colitis mice model showed that intragastric administration of GLPN (lower Mw fraction) could significantly recover inflamed tissues of mice. Compared with GLP and GLPC, GLPN exhibited stronger ability to inhibit the secretion of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6). The results revealed that Mw of β-D-glucan influenced its anti-inflammatory activity and decreasing of Mw would improve the activity, which provided evidence for the potential use of β-D-glucan from G. lucidum as anti-colitis ingredients.
Collapse
Affiliation(s)
- Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Ministry of Agriculture, Shanghai, China
- Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, China
- National Engineering Research Center of Edible Fungi, Shanghai, China
| | - Qingjiu Tang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Ministry of Agriculture, Shanghai, China
- Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, China
- National Engineering Research Center of Edible Fungi, Shanghai, China
| | - Jie Feng
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Ministry of Agriculture, Shanghai, China
- Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, China
- National Engineering Research Center of Edible Fungi, Shanghai, China
| | - Jing Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Ministry of Agriculture, Shanghai, China
- Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, China
- National Engineering Research Center of Edible Fungi, Shanghai, China
| | - Chuanhong Tang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Ministry of Agriculture, Shanghai, China
- Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, China
- National Engineering Research Center of Edible Fungi, Shanghai, China
| | - Mengqiu Yan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Ministry of Agriculture, Shanghai, China
- Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, China
- National Engineering Research Center of Edible Fungi, Shanghai, China
| | - Shuai Zhou
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Ministry of Agriculture, Shanghai, China
- Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, China
- National Engineering Research Center of Edible Fungi, Shanghai, China
| | - Liping Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Ministry of Agriculture, Shanghai, China
- Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, China
- National Engineering Research Center of Edible Fungi, Shanghai, China
| | - Jing Zhou
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Ministry of Agriculture, Shanghai, China
- Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, China
- National Engineering Research Center of Edible Fungi, Shanghai, China
- Shanghai Baixin Bio-Tech Co., Ltd., Shanghai, China
| | - Jingsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Ministry of Agriculture, Shanghai, China
- Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, China
- National Engineering Research Center of Edible Fungi, Shanghai, China
- *Correspondence: Jingsong Zhang
| |
Collapse
|
28
|
Current Uses of Mushrooms in Cancer Treatment and Their Anticancer Mechanisms. Int J Mol Sci 2022; 23:ijms231810502. [PMID: 36142412 PMCID: PMC9504980 DOI: 10.3390/ijms231810502] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer is the leading cause of mortality worldwide. Various chemotherapeutic drugs have been extensively used for cancer treatment. However, current anticancer drugs cause severe side effects and induce resistance. Therefore, the development of novel and effective anticancer agents with minimal or no side effects is important. Notably, natural compounds have been highlighted as anticancer drugs. Among them, many researchers have focused on mushrooms that have biological activities, including antitumor activity. The aim of this review is to discuss the anticancer potential of different mushrooms and the underlying molecular mechanisms. We provide information regarding the current clinical status and possible modes of molecular actions of various mushrooms and mushroom-derived compounds. This review will help researchers and clinicians in designing evidence-based preclinical and clinical studies to test the anticancer potential of mushrooms and their active compounds in different types of cancers.
Collapse
|
29
|
Xiao R, Zeng J, Bressler EM, Lu W, Grinstaff MW. Synthesis of bioactive (1→6)-β-glucose branched poly-amido-saccharides that stimulate and induce M1 polarization in macrophages. Nat Commun 2022; 13:4661. [PMID: 35945224 PMCID: PMC9363418 DOI: 10.1038/s41467-022-32346-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 07/27/2022] [Indexed: 11/25/2022] Open
Abstract
β-Glucans are of significant interest due to their potent antitumor and immunomodulatory activities. Nevertheless, the difficulty in purification, structural heterogenicity, and limited solubility impede the development of structure-property relationships and translation to therapeutic applications. Here, we report the synthesis of a new class of (1→6)-β-glucose-branched poly-amido-saccharides (PASs) as β-glucan mimetics by ring-opening polymerization of a gentiobiose-based disaccharide β-lactam and its copolymerization with a glucose-based β-lactam, followed by post-polymerization deprotection. The molecular weight (Mn) and frequency of branching (FB) of PASs is readily tuned by adjusting monomer-to-initiator ratio and mole fraction of gentiobiose-lactam in copolymerization. Branched PASs stimulate mouse macrophages, and enhance production of pro-inflammatory cytokines in a FB-, dose-, and Mn-dependent manner. The stimulation proceeds via the activation of NF-κB/AP-1 pathway in a Dectin-1-dependent manner, similar to natural β-glucans. The lead PAS significantly polarizes primary human macrophages towards M1 phenotype compared to other β-glucans such as lentinan, laminarin, and curdlan.
Collapse
Affiliation(s)
- Ruiqing Xiao
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Shenzhen Middle School, Shenzhen, GD, 518001, China
| | - Jialiu Zeng
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Eric M Bressler
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Wei Lu
- Tosoh Bioscience LLC, King of Prussia, PA, 19406, USA
| | - Mark W Grinstaff
- Department of Chemistry, Boston University, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
30
|
Stojanova M, Pantić M, Karadelev M, Ivanovski V, Nikšić M. Determination of biological activity of suillus granulatus mushroom extracts. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
31
|
Valková V, Ďúranová H, Falcimaigne-Cordin A, Rossi C, Nadaud F, Nesterenko A, Moncada M, Orel M, Ivanišová E, Chlebová Z, Gabríny L, Kačániová M. Impact of Freeze- and Spray-Drying Microencapsulation Techniques on β-Glucan Powder Biological Activity: A Comparative Study. Foods 2022; 11:2267. [PMID: 35954036 PMCID: PMC9368466 DOI: 10.3390/foods11152267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
The study compares the impact of freeze- and spray-drying (FD, SD) microencapsulation methods on the content of β-glucan, total polyphenols (TP), total flavonoids (TF), phenolic acids (PA), and antioxidant activity (AA) in commercially β-glucan powder (Pleurotus ostreatus) using maltodextrin as a carrier. Morphology (scanning electron microscopy- SEM), yield, moisture content (MC), and water activity (aw) were also evaluated in the samples. Our examinations revealed significant structural differences between powders microencapsulated by the drying methods. As compared to non-encapsulated powder, the SD powder with yield of 44.38 ± 0.55% exhibited more reduced (p < 0.05) values for aw (0.456 ± 0.001) and MC (8.90 ± 0.44%) than the FD one (yield: 27.97 ± 0.33%; aw: 0.506 ± 0.002; MC: 11.30 ± 0.28%). In addition, the highest values for β-glucan content (72.39 ± 0.38%), TPC (3.40 ± 0.17 mg GAE/g), and TFC (3.07 ± 0.29 mg QE/g) have been detected in the SD powder. Our results allow for the conclusion that the SD microencapsulation method using maltodextrin seems to be more powerful in terms of the β-glucan powder yield and its contents of β-glucan, TP, and TF as compared to the FD technique.
Collapse
Affiliation(s)
- Veronika Valková
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (V.V.); (H.Ď.); (M.O.); (Z.C.); (L.G.)
| | - Hana Ďúranová
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (V.V.); (H.Ď.); (M.O.); (Z.C.); (L.G.)
| | - Aude Falcimaigne-Cordin
- Enzyme and Cell Engineering, UPJV, CNRS, Université de Technologie de Compiègne, Centre de Recherche Royallieu-CS 60319-60 203 CEDEX, 60200 Compiègne, France; (A.F.-C.); (C.R.)
| | - Claire Rossi
- Enzyme and Cell Engineering, UPJV, CNRS, Université de Technologie de Compiègne, Centre de Recherche Royallieu-CS 60319-60 203 CEDEX, 60200 Compiègne, France; (A.F.-C.); (C.R.)
| | - Frédéric Nadaud
- Service d’Analyse Physico-Chimique, Université de Technologie de Compiègne, Centre de recherche Royallieu-CS 60319-60 203 CEDEX, 60200 Compiègne, France;
| | - Alla Nesterenko
- Integrated Transformations of Renewable Matter, ESCOM, Université de Technologie de Compiègne, Centre de Recherche Royallieu-CS 60319-60 203 CEDEX, 60200 Compiègne, France;
| | - Marvin Moncada
- Department of Food, Bioprocessing, and Nutrition Science, Nord Carolina State University, Raleigh, NC 27606, USA;
| | - Mykola Orel
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (V.V.); (H.Ď.); (M.O.); (Z.C.); (L.G.)
| | - Eva Ivanišová
- Institute of Food Sciences, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia;
| | - Zuzana Chlebová
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (V.V.); (H.Ď.); (M.O.); (Z.C.); (L.G.)
| | - Lucia Gabríny
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (V.V.); (H.Ď.); (M.O.); (Z.C.); (L.G.)
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- Department of Bioenergy, Food Technology and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza Str., 35-601 Rzeszow, Poland
| |
Collapse
|
32
|
Chugh RM, Mittal P, MP N, Arora T, Bhattacharya T, Chopra H, Cavalu S, Gautam RK. Fungal Mushrooms: A Natural Compound With Therapeutic Applications. Front Pharmacol 2022; 13:925387. [PMID: 35910346 PMCID: PMC9328747 DOI: 10.3389/fphar.2022.925387] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Fungi are extremely diverse in terms of morphology, ecology, metabolism, and phylogeny. Approximately, 130 medicinal activities like antitumor, immunomodulation, antioxidant, radical scavenging, cardioprotective and antiviral actions are assumed to be produced by the various varieties of medicinal mushrooms. The polysaccharides, present in mushrooms like β-glucans, micronutrients, antioxidants like glycoproteins, triterpenoids, flavonoids, and ergosterols can help establish natural resistance against infections and toxins.. Clinical trials have been performed on mushrooms like Agaricus blazei Murrill Kyowa for their anticancer effect, A. blazei Murrill for its antihypertensive and cardioprotective effects, and some other mushrooms had also been evaluated for their neurological effects. The human evaluation dose studies had been also performed and the toxicity dose was evaluated from the literature for number of mushrooms. All the mushrooms were found to be safe at a dose of 2000 mg/kg but some with mild side effects. The safety and therapeutic effectiveness of the fungal mushrooms had shifted the interest of biotechnologists toward fungal nanobiotechnology as the drug delivery system due to the vast advantages of nanotechnology systems. In complement to the vital nutritional significance of medicinal mushrooms, numerous species have been identified as sources of bioactive chemicals. Moreover, there are unanswered queries regarding its safety, efficacy, critical issues that affect the future mushroom medicine development, that could jeopardize its usage in the twenty-first century.
Collapse
Affiliation(s)
- Rishi Man Chugh
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas, KS, United States
| | - Pooja Mittal
- School of Pharmaceutical Sciences, RIMT University, Mandi Gobindgarh, Punjab, India
| | - Namratha MP
- CHRIST (Deemed to be University), Bangalore, India
| | - Tanu Arora
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas, KS, United States
| | - Tanima Bhattacharya
- Innovation, Incubation and Industry (i-cube) Laboratory, Techno India NJR Institute of Technology, Udaipur, India
- College of Chemistry and Chemical Engineering, Hubei University, Hubei, China
- *Correspondence: Tanima Bhattacharya, ; Simona Cavalu, ; Rupesh K. Gautam,
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
- *Correspondence: Tanima Bhattacharya, ; Simona Cavalu, ; Rupesh K. Gautam,
| | - Rupesh K. Gautam
- MM School of Pharmacy, MM University, Sadopur-Ambala, India
- *Correspondence: Tanima Bhattacharya, ; Simona Cavalu, ; Rupesh K. Gautam,
| |
Collapse
|
33
|
Suflet DM, Popescu I, Pelin IM, David G, Serbezeanu D, Rîmbu CM, Daraba OM, Enache AA, Bercea M. Phosphorylated Curdlan Gel/Polyvinyl Alcohol Electrospun Nanofibres Loaded with Clove Oil with Antibacterial Activity. Gels 2022; 8:gels8070439. [PMID: 35877524 PMCID: PMC9319135 DOI: 10.3390/gels8070439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Fibrous membranes based on natural polymers obtained by the electrospinning technique are a great choice for wound dressings. In order to promote an efficient wound repair, and to avoid antibiotics, antibacterial plant extracts can be incorporated. In the present work, the new electrospun nanofibre membranes based on monobasic phosphate curdlan (PCurd) and polyvinyl alcohol (PVA) were obtained for the first time. To establish the adequate mixing ratio for electrospinning, the behaviour of the PCurd and PVA mixture was studied by viscometry and rheology. In order to confer antimicrobial activity with the nanofibre membrane, clove essential oil (CEO) was incorporated into the electrospun solution. Well-defined and drop-free nanofibres with a diameter between 157 nm and 110 nm were obtained. The presence of CEO in the obtained nanofibres was confirmed by ATR–FTIR spectroscopy, by the phenolic and flavonoid contents, and by the antioxidant activity of the membranes. In physiological conditions, CEO was released from the membrane after 24 h. The in vivo antimicrobial tests showed a good inhibitory activity against E. coli and higher activity against S. aureus. Furthermore, the viability cell test showed the lack of cytotoxicity of the nanofibre membrane with and without CEO, confirming its potential use in wound treatment.
Collapse
Affiliation(s)
- Dana M. Suflet
- Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania; (I.P.); (I.M.P.); (D.S.); (M.B.)
- Correspondence:
| | - Irina Popescu
- Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania; (I.P.); (I.M.P.); (D.S.); (M.B.)
| | - Irina M. Pelin
- Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania; (I.P.); (I.M.P.); (D.S.); (M.B.)
| | - Geta David
- Department of Natural and Synthetic Polymers, Gh. Asachi Technical University, Bd. D. Mangeron 73, 700050 Iasi, Romania;
| | - Diana Serbezeanu
- Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania; (I.P.); (I.M.P.); (D.S.); (M.B.)
| | - Cristina M. Rîmbu
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, Aleea Mihail Sadoveanu 8, 700489 Iasi, Romania;
| | - Oana M. Daraba
- Faculty of Medical Dentistry, Apollonia University, Pacurari 11, 700511 Iasi, Romania;
| | - Alin A. Enache
- ApelLaser S.A., Str. Vanatorilor 25, Ilfov, 077135 Mogosoaia, Romania;
| | - Maria Bercea
- Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania; (I.P.); (I.M.P.); (D.S.); (M.B.)
| |
Collapse
|
34
|
Sivanesan I, Muthu M, Gopal J, Oh JW. Mushroom Polysaccharide-Assisted Anticarcinogenic Mycotherapy: Reviewing Its Clinical Trials. Molecules 2022; 27:molecules27134090. [PMID: 35807336 PMCID: PMC9267963 DOI: 10.3390/molecules27134090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
Of the biologically active components, polysaccharides play a crucial role of high medical and pharmaceutical significance. Mushrooms have existed for a long time, dating back to the time of the Ancient Egypt and continue to be well explored globally and experimented with in research as well as in national and international cuisines. Mushroom polysaccharides have slowly become valuable sources of nutraceuticals which have been able to treat various diseases and disorders in humans. The application of mushroom polysaccharides for anticancer mycotherapy is what is being reviewed herein. The widespread health benefits of mushroom polysaccharides have been highlighted and the significant inputs of mushroom-based polysaccharides in anticancer clinical trials have been presented. The challenges and limitation of mushroom polysaccharides into this application and the gaps in the current application areas that could be the future direction have been discussed.
Collapse
Affiliation(s)
- Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea;
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India; (M.M.); (J.G.)
| | - Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India; (M.M.); (J.G.)
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
- Correspondence: ; Tel.: +82-2-2049-6271; Fax: +82-2-455-1044
| |
Collapse
|
35
|
Rastall RA, Diez-Municio M, Forssten SD, Hamaker B, Meynier A, Moreno FJ, Respondek F, Stah B, Venema K, Wiese M. Structure and function of non-digestible carbohydrates in the gut microbiome. Benef Microbes 2022; 13:95-168. [PMID: 35729770 DOI: 10.3920/bm2021.0090] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Together with proteins and fats, carbohydrates are one of the macronutrients in the human diet. Digestible carbohydrates, such as starch, starch-based products, sucrose, lactose, glucose and some sugar alcohols and unusual (and fairly rare) α-linked glucans, directly provide us with energy while other carbohydrates including high molecular weight polysaccharides, mainly from plant cell walls, provide us with dietary fibre. Carbohydrates which are efficiently digested in the small intestine are not available in appreciable quantities to act as substrates for gut bacteria. Some oligo- and polysaccharides, many of which are also dietary fibres, are resistant to digestion in the small intestines and enter the colon where they provide substrates for the complex bacterial ecosystem that resides there. This review will focus on these non-digestible carbohydrates (NDC) and examine their impact on the gut microbiota and their physiological impact. Of particular focus will be the potential of non-digestible carbohydrates to act as prebiotics, but the review will also evaluate direct effects of NDC on human cells and systems.
Collapse
Affiliation(s)
- R A Rastall
- Department of Food and Nutritional Sciences, The University of Reading, P.O. Box 226, Whiteknights, Reading, RG6 6AP, United Kingdom
| | - M Diez-Municio
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - S D Forssten
- IFF Health & Biosciences, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - B Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907-2009, USA
| | - A Meynier
- Nutrition Research, Mondelez France R&D SAS, 6 rue René Razel, 91400 Saclay, France
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - F Respondek
- Tereos, Zoning Industriel Portuaire, 67390 Marckolsheim, France
| | - B Stah
- Human Milk Research & Analytical Science, Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands.,Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - K Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, St. Jansweg 20, 5928 RC Venlo, the Netherlands
| | - M Wiese
- Department of Microbiology and Systems Biology, TNO, Utrechtseweg 48, 3704 HE, Zeist, the Netherlands
| |
Collapse
|
36
|
Mycochemical profile and health-promoting effects of morel mushroom Morchella esculenta (L.) - A review. Food Res Int 2022; 159:111571. [DOI: 10.1016/j.foodres.2022.111571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 11/21/2022]
|
37
|
β-Glucans from Yeast—Immunomodulators from Novel Waste Resources. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105208] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
β-glucans are a large class of complex polysaccharides with bioactive properties, including immune modulation. Natural sources of these compounds include yeast, oats, barley, mushrooms, and algae. Yeast is abundant in various processes, including fermentation, and they are often discarded as waste products. The production of biomolecules from waste resources is a growing trend worldwide with novel waste resources being constantly identified. Yeast-derived β-glucans may assist the host’s defence against infections by influencing neutrophil and macrophage inflammatory and antibacterial activities. β-glucans were long regarded as an essential anti-cancer therapy and were licensed in Japan as immune-adjuvant therapy for cancer in 1980 and new mechanisms of action of these molecules are constantly emerging. This paper outlines yeast β-glucans’ immune-modulatory and anti-cancer effects, production and extraction, and their availability in waste streams.
Collapse
|
38
|
Bezerra LS, Magnani M, Pimentel TC, de Oliveira JCPL, Freire FMDS, de Almeida AJPO, Rezende MSDA, Gonçalves IGA, de Medeiros IA, Veras RC. Yeast carboxymethyl-glucan improves endothelial function and inhibits platelet aggregation in spontaneously hypertensive rats. Food Funct 2022; 13:5406-5415. [PMID: 35474367 DOI: 10.1039/d1fo03492h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carboxymethyl-glucan is a semi-synthetic derivative of β-D-glucan, a polysaccharide widely found in several natural sources, such as yeast, fungi, and cereals. This compound has beneficial effects on health and is considered an important immunomodulator. However, studies exploring carboxymethyl-glucan bioactivity in cardiovascular health remain lacking, mainly in hypertension. Thus, this study sought to expand understanding of the effects of carboxymethyl-glucan on vascular and platelet functions in a hypertensive animal model. Spontaneously hypertensive rats and their normotensive Wistar-Kyoto controls were assigned to five groups: control, carboxymethyl-glucan (60 mg kg-1), control spontaneously hypertensive rats, spontaneously hypertensive rats carboxymethyl-glucan (20 mg kg-1), and spontaneously hypertensive rats carboxymethyl-glucan (60 mg kg-1). Animals were treated for four weeks with carboxymethyl-glucan at doses of 20 and 60 mg kg-1 orally, and control rats received saline as a placebo. Vascular reactivity, platelet aggregation, and reactive oxygen species production were evaluated at the end of treatment. The results showed that carboxymethyl-glucan improved vascular function and reduced platelet aggregation, mainly at a 60 mg kg-1 dose. However, despite these effects, there was no reduction in levels of reactive oxygen species. These findings suggested that carboxymethyl-glucan modulates endothelial function. It also acts as a platelet antiaggregant, which is an interesting resource for managing hypertension and its thrombotic complications.
Collapse
Affiliation(s)
- Lorena Soares Bezerra
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba, Campus I, 58059-900, João Pessoa, Paraíba, Brazil.
| | - Marciane Magnani
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba, Campus I, 58059-900, João Pessoa, Paraíba, Brazil. .,Department of Food Engineering, Federal University of Paraíba (UFPB), Brazil
| | | | | | | | - Arthur José Pontes Oliveira de Almeida
- Post-Graduate Program in Development and Technological Innovation in Medicines, Health Sciences Center, Federal University of Paraíba, Campus I, 58059-900, João Pessoa, Paraíba - Brazil
| | - Mathania Silva de Almeida Rezende
- Post-Graduate Program in Bioactive Natural and Synthetic Products, Health Sciences Center, Federal University of Paraíba, Campus I, 58059-900, João Pessoa, Paraíba - Brazil
| | | | - Isac Almeida de Medeiros
- Department of Pharmaceutical Sciences, Health Sciences Center, UFPB, Campus I, 58059-900, João Pessoa, Paraíba - Brazil.,Post-Graduate Program in Bioactive Natural and Synthetic Products, Health Sciences Center, Federal University of Paraíba, Campus I, 58059-900, João Pessoa, Paraíba - Brazil
| | - Robson Cavalcante Veras
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba, Campus I, 58059-900, João Pessoa, Paraíba, Brazil. .,Department of Pharmaceutical Sciences, Health Sciences Center, UFPB, Campus I, 58059-900, João Pessoa, Paraíba - Brazil
| |
Collapse
|
39
|
Bhambri A, Srivastava M, Mahale VG, Mahale S, Karn SK. Mushrooms as Potential Sources of Active Metabolites and Medicines. Front Microbiol 2022; 13:837266. [PMID: 35558110 PMCID: PMC9090473 DOI: 10.3389/fmicb.2022.837266] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Background Mushrooms exist as an integral and vital component of the ecosystem and are very precious fungi. Mushrooms have been traditionally used in herbal medicines for many centuries. Scope and Approach There are a variety of medicinal mushrooms mentioned in the current work such as Agaricus, Amanita, Calocybe, Cantharellus, Cordyceps, Coprinus, Cortinarius, Ganoderma, Grifola, Huitlacoche, Hydnum, Lentinus, Morchella, Pleurotus, Rigidoporus, Tremella, Trametes sp., etc., which play a vital role in various diseases because of several metabolic components and nutritional values. Medicinal mushrooms can be identified morphologically on the basis of their size, color (white, black, yellow, brown, cream, pink and purple-brown, etc.), chemical reactions, consistency of the stalk and cap, mode of attachment of the gills to the stalk, and spore color and mass, and further identified at a molecular level by Internal Transcribed Spacer (ITS) regions of gene sequencing. There are also other methods that have recently begun to be used for the identification of mushrooms such as high-pressure liquid chromatography (HPLC), nuclear magnetic resonance spectroscopy (NMR), microscopy, thin-layer chromatography (TLC), DNA sequencing, gas chromatography-mass spectrometry (GC-MS), chemical finger printing, ultra-performance liquid chromatography (UPLC), fourier transform infrared spectroscopy (FTIR), liquid chromatography quadrupole time-of-flight mass spectrometry (LCMS-TOF) and high-performance thin-layer chromatography (HPTLC). Lately, the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) technique is also used for the identification of fungi. Key Finding and Conclusion Medicinal mushrooms possess various biological activities like anti-oxidant, anti-cancer, anti-inflammatory, anti-aging, anti-tumor, anti-viral, anti-parasitic, anti-microbial, hepatoprotective, anti-HIV, anti-diabetic, and many others that will be mentioned in this article. This manuscript will provide future direction, action mechanisms, applications, and the recent collective information of medicinal mushrooms. In addition to many unknown metabolites and patented active metabolites are also included.
Collapse
Affiliation(s)
- Anne Bhambri
- Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh University, Dehradun, India
| | | | | | | | - Santosh Kumar Karn
- Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh University, Dehradun, India
| |
Collapse
|
40
|
Zhang Y, Liu X, Zhao J, Wang J, Song Q, Zhao C. The phagocytic receptors of β-glucan. Int J Biol Macromol 2022; 205:430-441. [PMID: 35202631 DOI: 10.1016/j.ijbiomac.2022.02.111] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022]
Abstract
Phagocytosis is a cellular process maintaining tissue balance and plays an essential role in initiating the innate immune response. The process of phagocytosis was triggered by the binding of pathogen-associated molecular patterns (PAMP) with their cell surface receptors on the phagocytes. These receptors not only perform phagocytic functions, but also bridge the gap between extracellular and intracellular communication, leading to signal transduction and the production of inflammatory mediators, which are crucial for clearing the invading pathogens and maintaining cell homeostasis. For the past few years, the application of β-glucan comes down to immunoregulation and anti-tumor territory. As a well-known PAMP, β-glucan is one of the most abundant polysaccharides in nature. By binding to specific receptors on immune cells and activating intracellular signal transduction pathways, it causes phagocytosis and promotes the release of cytokines. Further retrieval and straightening out literature related to β-glucan phagocytic receptors will help better elucidate their immunomodulatory functions. This review attempts to summarize physicochemical properties and specific processes involved in β-glucan induced phagocytosis, its phagocytic receptors, and cascade events triggered by β-glucan at the cellular and molecular levels.
Collapse
Affiliation(s)
- Yazhuo Zhang
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China
| | - Xinning Liu
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China
| | - Jun Zhao
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266100, China
| | - Jie Wang
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China
| | - Qiaoling Song
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266100, China
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266100, China.
| |
Collapse
|
41
|
Gamma-Irradiation-Induced Degradation of the Water-Soluble Polysaccharide from Auricularia polytricha and Its Anti-Hypercholesterolemic Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031110. [PMID: 35164371 PMCID: PMC8838432 DOI: 10.3390/molecules27031110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
Abstract
The water-soluble polysaccharides (APPs) isolated from the edible mushroom Auricularia polytricha were irradiated by γ-ray at doses of 10, 100, and 1000 kGy. The effect of gamma irradiation on the degradation of the polysaccharide was investigated. After irradiation treatment, the viscosity and molecular weight of APPs decreased with the increase in the irradiation dose. The changes in the enthalpy of APPs after irradiation treatment were observed. Meanwhile, SEM showed that R-APPs were crushed into fragments and the surfaces became smooth and wrinkled after irradiation. In further spectrum analysis, it was found that the glycoside bonds of the polysaccharides were broken and accompanied by the formation of double bonds. This suggested that gamma irradiation could cause the depolymerization and oxidation of polysaccharides. In addition, irradiated APPs could reduce the body weight of hyperlipidemia mice. The levels of serum and liver TC, TG, and serum LDH-c significantly decreased in hyperlipidemia mice after treatment by irradiated APPs. It indicated that gamma irradiation significantly improved the anti-hypolipidemic activity of APPs. The relationship between the physicochemical properties and hypolipidemic activity of polysaccharides was interpreted, which provides a theoretical basis for the further development of APP products. Gamma irradiation is a viable technology for macromolecular modification for degradation.
Collapse
|
42
|
Panda SK, Sahoo G, Swain SS, Luyten W. Anticancer Activities of Mushrooms: A Neglected Source for Drug Discovery. Pharmaceuticals (Basel) 2022; 15:176. [PMID: 35215289 PMCID: PMC8876642 DOI: 10.3390/ph15020176] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 01/08/2023] Open
Abstract
Approximately 270 species of mushrooms have been reported as potentially useful for human health. However, few mushrooms have been studied for bioactive compounds that can be helpful in treating various diseases. Like other natural regimens, the mushroom treatment appears safe, as could be expected from their long culinary and medicinal use. This review aims to provide a critical discussion on clinical trial evidence for mushrooms to treat patients with diverse types of cancer. In addition, the review also highlights the identified bioactive compounds and corresponding mechanisms of action among the explored mushrooms. Furthermore, it also discusses mushrooms with anticancer properties, demonstrated either in vitro and/or in vivo models, which have never been tested in clinical studies. Several mushrooms have been tested in phase I or II clinical trials, mostly for treating breast cancer (18.6%), followed by colorectal (14%) and prostate cancer (11.6%). The majority of clinical studies were carried out with just 3 species: Lentinula edodes (22.2%), Coriolus versicolor, and Ganoderma lucidum (both 13.9%); followed by two other species: Agaricus bisporus and Grifola frondosa (both 11.1%). Most in vitro cell studies use breast cancer cell lines (43.9%), followed by lung (14%) and colorectal cancer cell lines (13.1%), while most in vivo animal studies are performed in mice tumor models (58.7%). Although 32 species of mushrooms at least show some promise for the treatment of cancer, only 11 species have been tested clinically thus far. Moreover, most clinical studies have investigated fewer numbers of patients, and have been limited to phase III or IV. Therefore, despite the promising preclinical and clinical data publication, more solid scientific efforts are required to clarify the therapeutic value of mushrooms in oncology.
Collapse
Affiliation(s)
- Sujogya Kumar Panda
- Center of Environment, Climate Change and Public Health, RUSA 2.0, Utkal University, Bhubaneswar 751004, India
- Department of Zoology, Utkal University, Bhubaneswar 751004, India;
- Department of Biology, KU Leuven, 3000 Leuven, Belgium;
| | - Gunanidhi Sahoo
- Department of Zoology, Utkal University, Bhubaneswar 751004, India;
| | - Shasank S. Swain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar 751023, India;
| | - Walter Luyten
- Department of Biology, KU Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
43
|
Proteins and polysaccharides from vegetative mycelium of medicinal basidiomycete Lentinus edodes display cytotoxicity towards human and animal cancer cell lines. Int J Biol Macromol 2022; 195:398-411. [PMID: 34921890 DOI: 10.1016/j.ijbiomac.2021.12.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/24/2021] [Accepted: 12/08/2021] [Indexed: 11/20/2022]
Abstract
Detection and study of biologically active compounds seems a promising area of research in cancer diagnostics and therapies. The glycoprotein and polysaccharide fractions showing high cytotoxicity towards several human and animal cancer cell lines: A549, Hep-2, HeLa, С6 and SPEV-2 were isolated from basidiomycete Lentinus edodes vegetative mycelium and fruiting body and further characterized. It was found that water-soluble glycoprotein fractions caused the most significant, 70-100% inhibition of metabolic activity of SPЕV-2, А549 and С6 cell lines. The effective concentrations of glycoprotein fractions reducing the viability of cancer cell lines were determined. The protein and subunit composition of fractions was studied; the highly active galactose-specific lectins were found to be present in these fractions. Comparative analysis of transcriptomes of L. edodes vegetative mycelium, fruiting body and primordium revealed the presence of carbohydrate-binding glycoproteins (lectins) specific for each stage of basidiomycete morphogenesis. Histological examination revealed some morphological indicators of immune system activation and the absence of toxic effect on gastro-intestinal mucosa of animals at peroral administration of fungal glycoprotein fractions. Fungal protein and, in particular, lectin preparations derived from L. еdodes vegetative mycelium might be considered as novel prospective tools in cancer diagnostics and therapies.
Collapse
|
44
|
Carloto ACM, Bortoleti BTDS, Rodrigues ACJ, Silva TF, Tomiotto-Pellissier F, Bidóia DL, Gonçalves MD, Assolini JP, Dekker RFH, Barbosa-Dekker AM, Costa IN, Conchon-Costa I, Miranda-Sapla MM, Pavanelli WR. Botryosphaeran, [(1 → 3)(1 → 6)-β-D-glucan], induces apoptosis-like death in promastigotes of Leishmania amazonensis, and exerts a leishmanicidal effect on infected macrophages by activating NF-kB and producing pro-inflammatory molecules. Chem Biol Interact 2022; 351:109713. [PMID: 34699765 DOI: 10.1016/j.cbi.2021.109713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022]
Abstract
Leishmaniasis is an infectious-parasitic disease caused by the protozoan Leishmania spp. The available treatments are based upon expensive drugs bearing adverse side-effects. The search for new therapeutic alternatives that present a more effective action without causing adverse effects to the patient is therefore important. The objective of this study was to evaluate the in vitro effect of botryosphaeran, a (1 → 3)(1 → 6)-β-D-glucan, on the promastigote and intracellular amastigote forms of Leishmania amazonensis. The direct activity of botryosphaeran on promastigote forms was evaluated in vitro and inhibited proliferation, the IC50 7 μg/mL in 48 h was calculated. After 48 h treatment, botryosphaeran induced nitric oxide production (NO), caused mitochondrial membrane hyperpolarization, increased reactive oxygen species (ROS), and accumulation of lipid vesicles in promastigotes, resulting in apoptosis, necrosis and autophagy, and was accompanied by morphological and ultrastructural changes. The range of concentrations used did not alter the viability of peritoneal macrophages from BALB/c mice and erythrocytes of sheep. Botryosphaeran was able to reduce the number of infected macrophages and the number of amastigotes per macrophage at 12.5 μg/mL (50.75% ± 6.48), 25 μg/mL (55.66% ± 3.93) and 50 μg/mL (72.9% ± 6.98), and IC50 9.3 μg/mL (±0.66) for intracellular amastigotes forms. The leishmanicidal effect was due to activation of NF-κB and promoted an increase in pro-inflammatory cytokines (TNF-α and IL-6), iNOS and microbial-derived ROS and NO, in addition to decreasing the levels of SOD. Based upon the data obtained, we infer that botryosphaeran exerted an active leishmanicidal and immunomodulatory effect, acting on promastigotes through autophagic, apoptotic and necrosis processes, and in the intracellular amastigote form, through the action of ROS and NO.
Collapse
Affiliation(s)
- Amanda Cristina Machado Carloto
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil.
| | - Bruna Taciane da Silva Bortoleti
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil; Gonçalo Moniz Institute (FIOCRUZ/Bahia), 40296-710, Salvador, Bahia, Brazil
| | - Ana Carolina Jacob Rodrigues
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil; Carlos Chagas Institute (ICC/FIOCRUZ/Paraná), 81310-020, Curitiba, Paraná, Brazil
| | - Taylon Felipe Silva
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Fernanda Tomiotto-Pellissier
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil; Department of Medical Pathology, Health Sciences Sector, Federal University of Paraná, 80060-240, Curitiba, Paraná, Brazil
| | - Danielle Lazarin Bidóia
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Manoela Daiele Gonçalves
- Biotransformation and Phytochemistry Laboratory, Chemistry Department, Exact Sciences Center, State University of Londrina, 86057-970, Londrina, Paraná, Brazil
| | - João Paulo Assolini
- Alto Vale University of Rio Do Peixe, 89500-000, Caçador, Santa Catarina, Brazil
| | - Robert F H Dekker
- Postgradute Program in Environmental Engineering, Paraná Technological University, Londrina Campus, 86036-370, Londrina, Paraná, Brazil; Beta-Glucan Pharmaceuticals EIRELI, Lote 24A, Zirconia Block, Paraná Technological University, Londrina Campus, Avenue João Miguel Caram 731, 86036-700, Londrina, Paraná, Brazil
| | - Aneli M Barbosa-Dekker
- Postgradute Program in Environmental Engineering, Paraná Technological University, Londrina Campus, 86036-370, Londrina, Paraná, Brazil; Beta-Glucan Pharmaceuticals EIRELI, Lote 24A, Zirconia Block, Paraná Technological University, Londrina Campus, Avenue João Miguel Caram 731, 86036-700, Londrina, Paraná, Brazil
| | - Idessania Nazareth Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Ivete Conchon-Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Milena Menegazzo Miranda-Sapla
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Wander Rogério Pavanelli
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil.
| |
Collapse
|
45
|
Abdelhamid L, Luo XM. Diet and Hygiene in Modulating Autoimmunity During the Pandemic Era. Front Immunol 2022; 12:749774. [PMID: 35069526 PMCID: PMC8766844 DOI: 10.3389/fimmu.2021.749774] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
The immune system is an efficiently toned machinery that discriminates between friends and foes for achieving both host defense and homeostasis. Deviation of immune recognition from foreign to self and/or long-lasting inflammatory responses results in the breakdown of tolerance. Meanwhile, educating the immune system and developing immunological memory are crucial for mounting defensive immune responses while protecting against autoimmunity. Still to elucidate is how diverse environmental factors could shape autoimmunity. The emergence of a world pandemic such as SARS-CoV-2 (COVID-19) not only threatens the more vulnerable individuals including those with autoimmune conditions but also promotes an unprecedented shift in people's dietary approaches while urging for extraordinary hygiene measures that likely contribute to the development or exacerbation of autoimmunity. Thus, there is an urgent need to understand how environmental factors modulate systemic autoimmunity to better mitigate the incidence and or severity of COVID-19 among the more vulnerable populations. Here, we discuss the effects of diet (macronutrients and micronutrients) and hygiene (the use of disinfectants) on autoimmunity with a focus on systemic lupus erythematosus.
Collapse
Affiliation(s)
- Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Department of Microbiology, College of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
46
|
Fischer S, Stegmann F, Gnanapragassam VS, Lepenies B. From structure to function – Ligand recognition by myeloid C-type lectin receptors. Comput Struct Biotechnol J 2022; 20:5790-5812. [DOI: 10.1016/j.csbj.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022] Open
|
47
|
Tofalo R, Suzzi G, Perpetuini G. Discovering the Influence of Microorganisms on Wine Color. Front Microbiol 2021; 12:790935. [PMID: 34925298 PMCID: PMC8678073 DOI: 10.3389/fmicb.2021.790935] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/15/2021] [Indexed: 01/08/2023] Open
Abstract
Flavor, composition and quality of wine are influenced by microorganisms present on the grapevine surface which are transferred to the must during vinification. The microbiota is highly variable with a prevalence of non-Saccharomyces yeasts, whereas Saccharomyces cerevisiae is present at low number. For wine production an essential step is the fermentation carried out by different starter cultures of S. cerevisiae alone or in mixed fermentation with non-Saccharomyces species that produce wines with significant differences in chemical composition. During vinification wine color can be influenced by yeasts interacting with anthocyanin. Yeasts can influence wine phenolic composition in different manners: direct interactions—cell wall adsorption or enzyme activities—and/or indirectly—production of primary and secondary metabolites and fermentation products. Some of these characteristics are heritable trait in yeast and/or can be strain dependent. For this reason, the stability, aroma, and color of wines depend on strain/strains used during must fermentation. Saccharomyces cerevisiae or non-Saccharomyces can produce metabolites reacting with anthocyanins and favor the formation of vitisin A and B type pyranoanthocyanins, contributing to color stability. In addition, yeasts affect the intensity and tonality of wine color by the action of β-glycosidase on anthocyanins or anthocyanidase enzymes or by the pigments adsorption on the yeast cell wall. These activities are strain dependent and are characterized by a great inter-species variability. Therefore, they should be considered a target for yeast strain selection and considered during the development of tailored mixed fermentations to improve wine production. In addition, some lactic acid bacteria seem to influence the color of red wines affecting anthocyanins’ profile. In fact, the increase of the pH or the ability to degrade pyruvic acid and acetaldehyde, as well as anthocyanin adsorption by bacterial cells are responsible for color loss during malolactic fermentation. Lactic acid bacteria show different adsorption capacity probably because of the variable composition of the cell walls. The aim of this review is to offer a critical overview of the roles played by wine microorganisms in the definition of intensity and tonality of wines’ color.
Collapse
Affiliation(s)
- Rosanna Tofalo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Giovanna Suzzi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Giorgia Perpetuini
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
48
|
Wu J, Yang Z, Yang X, Chen X, Zhang H, Zhan X. Synthesis of branched β-1,3-glucan oligosaccharide with narrow degree of polymerization by fungi co-cultivation. Carbohydr Polym 2021; 273:118582. [PMID: 34560984 DOI: 10.1016/j.carbpol.2021.118582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/30/2022]
Abstract
The large molecular weight and poor water solubility of β-1,3-glucan impede its potential applications. In this study, the β-1,3-glucan producing fungi and Trichoderma harzianum capable of secreting endo-β-1,3-glucanase were co-cultivated to produce branched β-1,3-glucan oligosaccharides (bOβGs) by fermentation with Sclerotium rolfsii and Schizophyllum commune. The highest bOβG yields from S. rolfsii in flasks were 4.53 and 9.94 g/L in a 7 L fermenter. Structural analysis proved that bOβG from S. rolfsii had a narrow degree of polymerization of 5-12, whereas bOβG from S. commune had a degree of polymerization of 5-15. Antioxidant tests showed that both bOβGs had remarkable DPPH radical scavenging activity and hydroxyl radical scavenging activity, and the activity of bOβG from S. commune was better than that of bOβG from S. rolfsii. In addition, bOβGs could promote the secretion of NO by mouse macrophages and increase the production of TNF-α, IL-1β, and IL-6 in RAW264.7.
Collapse
Affiliation(s)
- Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Zelin Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xuechen Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaotian Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hongtao Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
49
|
Chun S, Gopal J, Muthu M. Antioxidant Activity of Mushroom Extracts/Polysaccharides-Their Antiviral Properties and Plausible AntiCOVID-19 Properties. Antioxidants (Basel) 2021; 10:1899. [PMID: 34943001 PMCID: PMC8750169 DOI: 10.3390/antiox10121899] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Mushrooms have been long accomplished for their medicinal properties and bioactivity. The ancients benefitted from it, even before they knew that there was more to mushrooms than just the culinary aspect. This review addresses the benefits of mushrooms and specifically dwells on the positive attributes of mushroom polysaccharides. Compared to mushroom research, mushroom polysaccharide-based reports were observed to be significantly less frequent. This review highlights the antioxidant properties and mechanisms as well as consolidates the various antioxidant applications of mushroom polysaccharides. The biological activities of mushroom polysaccharides are also briefly discussed. The antiviral properties of mushrooms and their polysaccharides have been reviewed and presented. The lacunae in implementation of the antiviral benefits into antiCOVID-19 pursuits has been highlighted. The need for expansion and extrapolation of the knowns of mushrooms to extend into the unknown is emphasized.
Collapse
Affiliation(s)
| | | | - Manikandan Muthu
- Department of Environmental Health Science, Konkuk University, Seoul 143-701, Korea; (S.C.); (J.G.)
| |
Collapse
|
50
|
Mirończuk-Chodakowska I, Kujawowicz K, Witkowska AM. Beta-Glucans from Fungi: Biological and Health-Promoting Potential in the COVID-19 Pandemic Era. Nutrients 2021; 13:3960. [PMID: 34836215 PMCID: PMC8623785 DOI: 10.3390/nu13113960] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Beta-glucans comprise a group of polysaccharides of natural origin found in bacteria, algae, and plants, e.g., cereal seeds, as well as microfungi and macrofungi (mushrooms), which are characterized by diverse structures and functions. They are known for their metabolic and immunomodulatory properties, including anticancer, antibacterial, and antiviral. Recent reports suggest a potential of beta-glucans in the prevention and treatment of COVID-19. In contrast to β-glucans from other sources, β-glucans from mushrooms are characterized by β-1,3-glucans with short β-1,6-side chains. This structure is recognized by receptors located on the surface of immune cells; thus, mushroom β-glucans have specific immunomodulatory properties and gained BRM (biological response modifier) status. Moreover, mushroom beta-glucans also owe their properties to the formation of triple helix conformation, which is one of the key factors influencing the bioactivity of mushroom beta-glucans. This review summarizes the latest findings on biological and health-promoting potential of mushroom beta-glucans for the treatment of civilization and viral diseases, with particular emphasis on COVID-19.
Collapse
Affiliation(s)
- Iwona Mirończuk-Chodakowska
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (K.K.); (A.M.W.)
| | | | | |
Collapse
|