1
|
He X, Peng L, Zhou L, Liu H, Hao Y, Li Y, Lv Z, Zeng B, Guo X, Guo R. A biphasic drug-releasing microneedle with ROS scavenging and angiogenesis for the treatment of diabetic ulcers. Acta Biomater 2024; 189:270-285. [PMID: 39362454 DOI: 10.1016/j.actbio.2024.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
Diabetic ulcers are one of the common complications in diabetic patients. Delayed wound healing is associated with persistent pro-inflammatory M1 polarization, reduced angiogenesis and increased reactive oxygen species (ROS) in the microenvironment. Wound healing consists of multiple phases and therefore requires treatment tailored to each phase. In this study, a biphasic drug-releasing microneedle (MN) was fabricated to achieve early ROS scavenging and late accelerated angiogenesis to promote wound healing. Vascular endothelial growth factor (VEGF) was first encapsulated in methacryloylated sulfonated chitosan (SCSMA) microspheres (V@MP), and then V@MP was loaded into hyaluronic acid (HA) microneedles along with cerium dioxide nanoparticles (CONPs). Rapid dissolution of HA rapidly releases the CONPs to clear ROS, whereas the V@MP stays in the wound. SCSMA slow degradation prolongs the release of VEGF, thereby promoting angiogenesis. In vitro and in vivo studies have shown that this biphasic drug-releasing smart microneedle improves cell proliferation and migration, effectively scavenges ROS, promotes angiogenesis and tissue regeneration, and synergistically promotes M2 macrophage polarization. It provides a new delivery mode for nano-enzymes and growth factors that could be multifunctional and synergistic in the treatment of diabetic ulcers. STATEMENT OF SIGNIFICANCE: In our study, we present a microneedle (V@MP/C@MN) that can release drugs biphasically, which showed good repair ability in diabetic ulcer model. Large amounts of CONPs were rapidly released to alleviate oxidative stress during the inflammation of the wound, and V@MP stayed in the wound for a long period of time to release VEGF and promote angiogenesis in the late stage of wound healing. The results indicated that V@MP/C@MN could promote cell proliferation and migration, effectively scavenge ROS, promote angiogenesis and tissue regeneration, and synergistically promote M2 macrophage polarization, which could play a multifunctional and synergistic role in the treatment of diabetic ulcers.
Collapse
Affiliation(s)
- Xinyue He
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Lianghong Peng
- Department of Ophthalmology, General Hospital of Southern Theater Command, PLA, Guangzhou 510010, China
| | - Liming Zhou
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Huiling Liu
- Head Department of Oral and Maxillofacial Surgery, Leiden University Medical Centre, Amsterdam, De Boelelaan 1117, the Netherlands
| | - Yifan Hao
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Yuhan Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Zijin Lv
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Baohui Zeng
- Department of Ultrasound, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
| | - Xinmin Guo
- Department of Ultrasound, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China.
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Ireland N, Chen YH, Tsai CSJ. Potential Penetration of Engineered Nanoparticles under Practical Use of Protective Clothing Fabrics. ACS CHEMICAL HEALTH & SAFETY 2024; 31:393-403. [PMID: 39328503 PMCID: PMC11423406 DOI: 10.1021/acs.chas.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/29/2024] [Accepted: 07/10/2024] [Indexed: 09/28/2024]
Abstract
The commercial application of engineered nanoparticles (ENPs) has rapidly increased as their unique properties are useful to improve many products. ENPs, however, can pose a major health risk to workers through exposure routes such as inhalation and dermal contact. Research is lacking on the protective nature of lab coats when challenged with ENPs. This study investigated multiwalled carbon nanotubes (CNTs), carbon black (CB), and nano aluminum oxide (Al2O3) penetration through four types of lab coat fabrics (cotton, polypropylene, polyester cotton, and Tyvek). Penetration efficiency was determined with direct reading instruments. The front and back of contaminated fabric swatches were further assessed with microscopy analysis to determine fabric structure with contaminated and penetrated particle morphology and level of fabric contamination. Fabric thickness, porosity, structure, surface chemistry, and ENP characteristics such as shape, morphology, and hydrophobicity were assessed to determine the mechanisms behind particle capture on the four common fabrics. CNTs penetrated all fabrics significantly less than the other ENPs. CNT average penetration across all fabrics was 1.83% compared to 15.74 and 11.65% for CB and Al2O3, respectively. This can be attributed to their fiber shape and larger agglomerates than those of other ENPs. Tyvek fabric was found to be the most protective against CB and Al2O3 penetration, with an average penetration of 0.06 and 0.11%, respectively, while polypropylene was the least protective with an average penetration of 40.36 and 15.77%, respectively. Tyvek was the most nonporous fabric with a porosity of 0.50, as well as the most hydrophobic fabric, explaining the low penetration across all three ENPs. Polypropylene is the most porous fabric with a porosity of 0.77, making it the least protective against ENPs. We conclude that porosity, fabric structure, and thickness are more important fabric characteristics to consider when discussing particle penetration through protective clothing fabrics than surface chemistry.
Collapse
Affiliation(s)
- Natalie Ireland
- Department of Environmental
Health Sciences, Fielding School of Public Health, University of California, Los Angeles, California 90095, United States
| | - Yi-Hsuan Chen
- Department of Environmental
Health Sciences, Fielding School of Public Health, University of California, Los Angeles, California 90095, United States
| | - Candace Su-Jung Tsai
- Department of Environmental
Health Sciences, Fielding School of Public Health, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
3
|
Huang C, Liu X, Wu Q, Cao J, Zhu X, Wang X, Song Y. Cardiovascular toxic effects of nanoparticles and corresponding molecular mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124360. [PMID: 38871171 DOI: 10.1016/j.envpol.2024.124360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
Rapid advancements in nanotechnology have been integrated into various disciplines, leading to an increased prevalence of nanoparticle exposure. The widespread utilization of nanomaterials and heightened levels of particulate pollution have prompted government departments to intensify their focus on assessing the safety of nanoparticles (NPs). The cardiovascular system, crucial for maintaining human health, has emerged as vulnerable to damage from nanoparticle exposure. A mounting body of evidence indicates that interactions can occur when NPs come into contact with components of the cardiovascular system, contributing to adverse cardiovascular disease (CVD). However, the underlying molecular mechanisms driving these events remain elusive. This work provides a comprehensive review of recent advance on nanoparticle-induced adverse cardiovascular events and offers insight into the associated molecular mechanisms. Finally, the influencing factors of NPs-induced cardiovascular toxicity are discussed.
Collapse
Affiliation(s)
- Chunfeng Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuting Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingchun Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianzhong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangyu Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Lai X, Wang M, Zhang Z, Chen S, Tan X, Liu W, Liang H, Li L, Shao L. ZNPs reduce epidermal mechanical strain resistance by promoting desmosomal cadherin endocytosis via mTORC1-TFEB-BLOC1S3 axis. J Nanobiotechnology 2024; 22:312. [PMID: 38840221 PMCID: PMC11151536 DOI: 10.1186/s12951-024-02519-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Zinc oxide nanoparticles (ZNPs) are widely used in sunscreens and nanomedicines, and it was recently confirmed that ZNPs can penetrate stratum corneum into deep epidermis. Therefore, it is necessary to determine the impact of ZNPs on epidermis. In this study, ZNPs were applied to mouse skin at a relatively low concentration for one week. As a result, desmosomes in epidermal tissues were depolymerized, epidermal mechanical strain resistance was reduced, and the levels of desmosomal cadherins were decreased in cell membrane lysates and increased in cytoplasmic lysates. This finding suggested that ZNPs promote desmosomal cadherin endocytosis, which causes desmosome depolymerization. In further studies, ZNPs were proved to decrease mammalian target of rapamycin complex 1 (mTORC1) activity, activate transcription factor EB (TFEB), upregulate biogenesis of lysosome-related organelle complex 1 subunit 3 (BLOC1S3) and consequently promote desmosomal cadherin endocytosis. In addition, the key role of mTORC1 in ZNP-induced decrease in mechanical strain resistance was determined both in vitro and in vivo. It can be concluded that ZNPs reduce epidermal mechanical strain resistance by promoting desmosomal cadherin endocytosis via the mTORC1-TFEB-BLOC1S3 axis. This study helps elucidate the biological effects of ZNPs and suggests that ZNPs increase the risk of epidermal fragmentation.
Collapse
Affiliation(s)
- Xuan Lai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Menglei Wang
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhen Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Suya Chen
- Hospital of Stomatology, Guanghua school of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiner Tan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Wenjing Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Huimin Liang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Li Li
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Longquan Shao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
5
|
Dzyhovskyi V, Romani A, Pula W, Bondi A, Ferrara F, Melloni E, Gonelli A, Pozza E, Voltan R, Sguizzato M, Secchiero P, Esposito E. Characterization Methods for Nanoparticle-Skin Interactions: An Overview. Life (Basel) 2024; 14:599. [PMID: 38792620 PMCID: PMC11122446 DOI: 10.3390/life14050599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Research progresses have led to the development of different kinds of nanoplatforms to deliver drugs through different biological membranes. Particularly, nanocarriers represent a precious means to treat skin pathologies, due to their capability to solubilize lipophilic and hydrophilic drugs, to control their release, and to promote their permeation through the stratum corneum barrier. A crucial point in the development of nano-delivery systems relies on their characterization, as well as in the assessment of their interaction with tissues, in order to predict their fate under in vivo administration. The size of nanoparticles, their shape, and the type of matrix can influence their biodistribution inside the skin strata and their cellular uptake. In this respect, an overview of some characterization methods employed to investigate nanoparticles intended for topical administration is presented here, namely dynamic light scattering, zeta potential, scanning and transmission electron microscopy, X-ray diffraction, atomic force microscopy, Fourier transform infrared and Raman spectroscopy. In addition, the main fluorescence methods employed to detect the in vitro nanoparticles interaction with skin cell lines, such as fluorescence-activated cell sorting or confocal imaging, are described, considering different examples of applications. Finally, recent studies on the techniques employed to determine the nanoparticle presence in the skin by ex vivo and in vivo models are reported.
Collapse
Affiliation(s)
- Valentyn Dzyhovskyi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (V.D.); (A.R.); (E.M.); (E.P.)
| | - Arianna Romani
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (V.D.); (A.R.); (E.M.); (E.P.)
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA) Centre, University of Ferrara, 44121 Ferrara, Italy;
| | - Walter Pula
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (W.P.); (A.B.); (F.F.); (M.S.)
| | - Agnese Bondi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (W.P.); (A.B.); (F.F.); (M.S.)
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (W.P.); (A.B.); (F.F.); (M.S.)
| | - Elisabetta Melloni
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (V.D.); (A.R.); (E.M.); (E.P.)
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA) Centre, University of Ferrara, 44121 Ferrara, Italy;
| | - Arianna Gonelli
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Elena Pozza
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (V.D.); (A.R.); (E.M.); (E.P.)
| | - Rebecca Voltan
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA) Centre, University of Ferrara, 44121 Ferrara, Italy;
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (W.P.); (A.B.); (F.F.); (M.S.)
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (V.D.); (A.R.); (E.M.); (E.P.)
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA) Centre, University of Ferrara, 44121 Ferrara, Italy;
| | - Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (W.P.); (A.B.); (F.F.); (M.S.)
| |
Collapse
|
6
|
Khairnar P, Phatale V, Shukla S, Tijani AO, Hedaoo A, Strauss J, Verana G, Vambhurkar G, Puri A, Srivastava S. Nanocarrier-Integrated Microneedles: Divulging the Potential of Novel Frontiers for Fostering the Management of Skin Ailments. Mol Pharm 2024; 21:2118-2147. [PMID: 38660711 DOI: 10.1021/acs.molpharmaceut.4c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The various kinds of nanocarriers (NCs) have been explored for the delivery of therapeutics designed for the management of skin manifestations. The NCs are considered as one of the promising approaches for the skin delivery of therapeutics attributable to sustained release and enhanced skin penetration. Despite the extensive applications of the NCs, the challenges in their delivery via skin barrier (majorly stratum corneum) have persisted. To overcome all the challenges associated with the delivery of NCs, the microneedle (MN) technology has emerged as a beacon of hope. Programmable drug release, being painless, and its minimally invasive nature make it an intriguing strategy to circumvent the multiple challenges associated with the various drug delivery systems. The integration of positive traits of NCs and MNs boosts therapeutic effectiveness by evading stratum corneum, facilitating the delivery of NCs through the skin and enhancing their targeted delivery. This review discusses the barrier function of skin, the importance of MNs, the types of MNs, and the superiority of NC-loaded MNs. We highlighted the applications of NC-integrated MNs for the management of various skin ailments, combinational drug delivery, active targeting, in vivo imaging, and as theranostics. The clinical trials, patent portfolio, and marketed products of drug/NC-integrated MNs are covered. Finally, regulatory hurdles toward benchtop-to-bedside translation, along with promising prospects needed to scale up NC-integrated MN technology, have been deliberated. The current review is anticipated to deliver thoughtful visions to researchers, clinicians, and formulation scientists for the successful development of the MN-technology-based product by carefully optimizing all the formulation variables.
Collapse
Affiliation(s)
- Pooja Khairnar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Vivek Phatale
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Shalini Shukla
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Akeemat O Tijani
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee 37614, United States
| | - Aachal Hedaoo
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Jordan Strauss
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee 37614, United States
| | - Gabrielle Verana
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee 37614, United States
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee 37614, United States
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| |
Collapse
|
7
|
Zhao H, Zhao H, Li M, Tang Y, Xiao X, Cai Y, He F, Huang H, Zhang Y, Li J. Twin defect-rich Pt ultrathin nanowire nanozymes alleviate inflammatory skin diseases by scavenging reactive oxygen species. Redox Biol 2024; 70:103055. [PMID: 38290385 PMCID: PMC10844124 DOI: 10.1016/j.redox.2024.103055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
Nanozymes with superior antioxidant properties offer new hope for treating oxidative stress-related inflammatory skin diseases. However, lacking sufficient catalytic activity or having complex material designs limit the application of current metallic nanozymes in inflammatory skin diseases. Here, we report a simple and effective twin-defect platinum nanowires (Pt NWs) enzyme with multiple mimetic enzymes and broad-spectrum ROS scavenging capability for the treatment of inflammatory skin diseases in mice (including psoriasis and rosacea). Pt NWs with simultaneous superoxide dismutase, glutathione peroxidase and catalase mimetic enzyme properties exhibit cytoprotective effects against ROS-mediated damage at extremely low doses and significantly improve treatment outcomes in psoriasis- and rosacea-like mice. Meanwhile, these ultrasmall sizes of Pt NWs allow the nanomaterials to effectively penetrate the skin and do not produce significant biotoxicity. Therefore, Pt NWs have potential applications in treating diseases related to oxidative stress or inflammation.
Collapse
Affiliation(s)
- He Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Han Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Mengfan Li
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Yan Tang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xin Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yisheng Cai
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Fanping He
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hongwen Huang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
8
|
Loh JM, Lim YJL, Tay JT, Cheng HM, Tey HL, Liang K. Design and fabrication of customizable microneedles enabled by 3D printing for biomedical applications. Bioact Mater 2024; 32:222-241. [PMID: 37869723 PMCID: PMC10589728 DOI: 10.1016/j.bioactmat.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/22/2023] [Accepted: 09/30/2023] [Indexed: 10/24/2023] Open
Abstract
Microneedles (MNs) is an emerging technology that employs needles ranging from 10 to 1000 μm in height, as a minimally invasive technique for various procedures such as therapeutics, disease monitoring and diagnostics. The commonly used method of fabrication, micromolding, has the advantage of scalability, however, micromolding is unable to achieve rapid customizability in dimensions, geometries and architectures, which are the pivotal factors determining the functionality and efficacy of the MNs. 3D printing offers a promising alternative by enabling MN fabrication with high dimensional accuracy required for precise applications, leading to improved performance. Furthermore, enabled by its customizability and one-step process, there is propitious potential for growth for 3D-printed MNs especially in the field of personalized and on-demand medical devices. This review provides an overview of considerations for the key parameters in designing MNs, an introduction on the various 3D-printing techniques for fabricating this new generation of MNs, as well as highlighting the advancements in biomedical applications facilitated by 3D-printed MNs. Lastly, we offer some insights into the future prospects of 3D-printed MNs, specifically its progress towards translation and entry into market.
Collapse
Affiliation(s)
- Jia Min Loh
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yun Jie Larissa Lim
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jin Ting Tay
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | | | - Hong Liang Tey
- National Skin Centre (NSC), Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Yong Loo Ling School of Medicine, National University of Singapore, Singapore
- Skin Research Institute of Singapore, Singapore
| | - Kun Liang
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
- Skin Research Institute of Singapore, Singapore
| |
Collapse
|
9
|
Dey N, Mohny FP, Betsy Reshma G, Rao D, Ganguli M, Santhiya D. Bioinspired synthesis of bioactive glass nanocomposites for hyaluronic acid delivery to bone and skin. Int J Biol Macromol 2023; 253:127262. [PMID: 37813216 DOI: 10.1016/j.ijbiomac.2023.127262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
In this study, we present nanocomposites of bioactive glass (BG) and hyaluronic acid (HA) (nano-BGHA) for effective delivery of HA to skin and bone. The synthesis of the nanocomposites has been carried out through the bio-inspired method, which is a modification of the traditional Stober's synthesis as it avoids using ethanol, ammonia, synthetic surfactants, or high-temperature calcination. This environmentally friendly, bio-inspired route allowed the synthesis of mesoporous nanocomposites with an average hydrodynamic radius of ∼190 nm and an average net surface charge of ∼-21 mV. Most nanocomposites are amorphous and bioactive in nature with over 70 % cellular viability for skin and bone cell lines even at high concentrations, along with high cellular uptake (90-100 %). Furthermore, the nanocomposites could penetrate skin cells in a transwell set-up and artificial human skin membrane (StratM®), thus depicting an attractive strategy for the delivery of HA to the skin. The purpose of the study is to develop nanocomposites of HA and BG that can have potential applications in non-invasive treatments that require the delivery of high molecular weight HA such as in the case of osteoarthritis, sports injury treatments, eye drops, wound healing, and some anticancer treatments, if further investigated. The presence of BG further enhances the range to bone-related applications. Additionally, the nanocomposites can have potential cosmeceutical applications where HA is abundantly used, for instance in moisturizers, dermal fillers, shampoos, anti-wrinkle creams, etc.
Collapse
Affiliation(s)
- Namit Dey
- Delhi Technological University, Shahbad Daulatpur, Delhi, India
| | - Franklin Pulikkottil Mohny
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road Campus, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - G Betsy Reshma
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road Campus, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divya Rao
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road Campus, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Munia Ganguli
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road Campus, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Deenan Santhiya
- Delhi Technological University, Shahbad Daulatpur, Delhi, India.
| |
Collapse
|
10
|
Ko J, Lee MJ, Jeong W, Choi S, Shin E, An YH, Kim HJ, Lee UJ, Kim BG, Kwak SY, Hwang NS. Single-Walled Carbon Nanotube-Guided Topical Skin Delivery of Tyrosinase to Prevent Photoinduced Damage. ACS NANO 2023; 17:20473-20491. [PMID: 37793020 DOI: 10.1021/acsnano.3c06846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
When the skin is exposed to ultraviolet radiation (UV), it leads to the degradation of the extracellular matrix (ECM) and results in inflammation. Subsequently, melanocytes are triggered to induce tyrosinase-mediated melanin synthesis, protecting the skin. Here, we introduce a proactive approach to protect the skin from photodamage via the topical delivery of Streptomyces avermitilis-derived tyrosinase (SaTy) using single-walled carbon nanotube (SWNT). Utilizing a reverse electrodialysis (RED) battery, we facilitated the delivery of SaTy-SWNT complexes up to depths of approximately 300 μm, as analyzed by using confocal Raman microscopy. When applied to ex vivo porcine skin and in vivo albino mouse skin, SaTy-SWNT synthesized melanin, resulting in 4-fold greater UV/vis absorption at 475 nm than in mice without SaTy-SWNT. The synthesized melanin efficiently absorbed UV light and alleviated skin inflammation. In addition, the densification of dermal collagen, achieved through SaTy-mediated cross-linking, reduced photoinduced wrinkles by 66.3% in the affected area. Our findings suggest that SWNT-mediated topical protein delivery holds promise in tissue engineering applications.
Collapse
Affiliation(s)
- Junghyeon Ko
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Min Jeong Lee
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Woojin Jeong
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Subin Choi
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Eunhye Shin
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Hyeon An
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
- BioMax/N-Bio Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeon-Jin Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Uk-Jae Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- BioMax/N-Bio Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- BioMax/N-Bio Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Seon-Yeong Kwak
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- BioMax/N-Bio Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
- BioMax/N-Bio Institute, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
11
|
Morowvat MH, Kazemi K, Jaberi MA, Amini A, Gholami A. Biosynthesis and Antimicrobial Evaluation of Zinc Oxide Nanoparticles Using Chlorella vulgaris Biomass against Multidrug-Resistant Pathogens. MATERIALS (BASEL, SWITZERLAND) 2023; 16:842. [PMID: 36676578 PMCID: PMC9863921 DOI: 10.3390/ma16020842] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The rampant increase in antibiotic resistance has created a global barrier to the treatment of multidrug-resistant infections. Biogenic synthesis of nanomaterials is a novel approach to producing nanostructures with biological resources. Algae are known to be clean, nontoxic, cost-beneficial, and environmentally acceptable. Chlorella vulgaris is a popular microalga for its broad applications in food, supplements, pharmaceuticals, and cosmetics. In this study, we used Chlorella vulgaris biomass lyophilized powder as our green resource for the biosynthesis ZnONPs. Chlorella vulgaris culture was harvested at the end of the logarithmic phase, and the biomass was lyophilized. ZnONPs were synthesized using lyophilized biomass and 20 mM zinc acetate dihydrate at a temperature of 70 °C and continuous stirring in a water bath overnight. At the end of the reaction, UV-Vis absorption of colloidal suspension proved the synthesis of ZnONPs. The physicochemical characteristics of nanoparticles were analyzed using FTIR, DLS, TEM, and XRD. Based on FTIR spectra. The antibacterial activity of green synthesized nanostructures was evaluated against methicillin-resistant staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). The synthesized ZnONPs have oxygen-containing groups on the surface that show the synthesized nanoparticles' stabilization. The Zeta potential was -27.4 mV, and the mean particle size was measured as 33.4 nanometers. Biogenic ZnONPs produced in this method have a notable size distribution and excellent surface energy, which can have vast applications like antimicrobial potential in pharmaceuticals as topical forms. Additionally, in order to evaluate the antimicrobial activity of ZnO nanoparticles, we used MRSA and VRE strains and the results showed the anti-MRSA activity at 400 and 625 μg mL-1, respectively. Thus, these biogenic ZnO nanoparticles revealed a substantial antibacterial effect against multidrug-resistant pathogens, associated with several serious systemic infections, and have the potential as an antimicrobial agent for further study.
Collapse
Affiliation(s)
- Mohammad Hossein Morowvat
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz P.O. Box 71468-64685, Iran
| | - Kimia Kazemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz P.O. Box 71468-64685, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz P.O. Box 71468-64685, Iran
| | - Maral Ansari Jaberi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz P.O. Box 71468-64685, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz P.O. Box 71468-64685, Iran
| | - Abbas Amini
- Department of Mechanical Engineering, Australian University (AU)-Kuwait, Mishref, Safat 13015, Kuwait
- Center for Infrastructure Engineering, Western Sydney University, Penrith, NSW 2751, Australia
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz P.O. Box 71468-64685, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz P.O. Box 71468-64685, Iran
| |
Collapse
|
12
|
Nanoparticles for Topical Application in the Treatment of Skin Dysfunctions-An Overview of Dermo-Cosmetic and Dermatological Products. Int J Mol Sci 2022; 23:ijms232415980. [PMID: 36555619 PMCID: PMC9780930 DOI: 10.3390/ijms232415980] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Nanomaterials (NM) arouse interest in various fields of science and industry due to their composition-tunable properties and the ease of modification. They appear currently as components of many consumer products such as sunscreen, dressings, sports clothes, surface-cleaning agents, computer devices, paints, as well as pharmaceutical and cosmetics formulations. The use of NPs in products for topical applications improves the permeation/penetration of the bioactive compounds into deeper layers of the skin, providing a depot effect with sustained drug release and specific cellular and subcellular targeting. Nanocarriers provide advances in dermatology and systemic treatments. Examples are a non-invasive method of vaccination, advanced diagnostic techniques, and transdermal drug delivery. The mechanism of action of NPs, efficiency of skin penetration, and potential threat to human health are still open and not fully explained. This review gives a brief outline of the latest nanotechnology achievements in products used in topical applications to prevent and treat skin diseases. We highlighted aspects such as the penetration of NPs through the skin (influence of physical-chemical properties of NPs, the experimental models for skin penetration, methods applied to improve the penetration of NPs through the skin, and methods applied to investigate the skin penetration by NPs). The review summarizes various therapies using NPs to diagnose and treat skin diseases (melanoma, acne, alopecia, vitiligo, psoriasis) and anti-aging and UV-protectant nano-cosmetics.
Collapse
|
13
|
Cong Y, Baimanov D, Zhou Y, Chen C, Wang L. Penetration and translocation of functional inorganic nanomaterials into biological barriers. Adv Drug Deliv Rev 2022; 191:114615. [PMID: 36356929 DOI: 10.1016/j.addr.2022.114615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
With excellent physicochemical properties, inorganic nanomaterials (INMs) have exhibited a series of attractive applications in biomedical fields. Biological barriers prevent successful delivery of nanomedicine in living systems that limits the development of nanomedicine especially for sufficient delivery of drugs and effective therapy. Numerous researches have focused on overcoming these biological barriers and homogeneity of organisms to enhance therapeutic efficacy, however, most of these strategies fail to resolve these challenges. In this review, we present the latest progress about how INMs interact with biological barriers and penetrate these barriers. We also summarize that both native structure and components of biological barriers and physicochemical properties of INMs contributed to the penetration capacity. Knowledge about the relationship between INMs structure and penetration capacity will guide the design and application of functional and efficient nanomedicine in the future.
Collapse
Affiliation(s)
- Yalin Cong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China & Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Didar Baimanov
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China & Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China; Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, PR China
| | - Yunlong Zhou
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, PR China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China & Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; GBA Research Innovation Institute for Nanotechnology, Guangzhou 510700, Guangdong, PR China; Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China & Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
14
|
de Aguiar DBDS, de Aguiar DJM, de Paula JDFP, Cintho OM. Obtaining Ultrafine Dispersions of Silver Particles in Poly(vinyl Alcohol) Matrix Using Mechanical Alloying. Polymers (Basel) 2022; 14:3588. [PMID: 36080663 PMCID: PMC9460001 DOI: 10.3390/polym14173588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Mechanical alloying was performed to obtain a composite material with a homogeneous dispersion of silver particles in a poly(vinyl alcohol) (PVA) matrix. Silver is a bactericidal material, and PVA is a widely used biocompatible polymer. Therefore, this mix can lead to a potentially functional biomaterial. This study focuses on the combination of both materials, processed by mechanical alloying, which has a promising application potential. The silver (Ag) used was ultrafine, measuring between 200 and 400 nanometers, produced from silver nitrate (AgNO3) redox. The Attritor high-energy, water-cooled ball mill was used to mill PVA for 4 h, at 600 rpm speed rotation and 38:1 power milling. Mechanical alloying was demonstrated to cause particle refinement in PVA with a timespan of 1 h. A slight additional particle decrease occurred for long-time milling. A milling time of 4 h was used to disperse the silver particles in the polymer matrix homogeneously. Hot pressing films were produced from the obtained dispersion powders. The microstructural features were studied using several material characterization techniques. Antimicrobial Susceptibility Tests (AST), conducted in an in-vitro assay, showed a hydrophilic character of the films and a protection against bacterial growth, making the process a promising path for the production of surface protective polymeric films.
Collapse
Affiliation(s)
| | | | | | - Osvaldo Mitsuyuki Cintho
- Departamento de Engenharia de Materiais (DEMA), State University of Ponta Grossa, Ponta Grossa 84030–900, PR, Brazil
| |
Collapse
|
15
|
Gold nanoparticles for skin drug delivery. Int J Pharm 2022; 625:122122. [PMID: 35987319 DOI: 10.1016/j.ijpharm.2022.122122] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/02/2022] [Accepted: 08/13/2022] [Indexed: 02/01/2023]
Abstract
Nanoparticle-based drug carriers are being pursued intensely to overcome the skin barrier and improve even hydrophilic or macromolecular drug delivery into or across the skin efficiently. Over the past few years, the application of gold nanoparticles as a novel kind of drug carrier for skin drug delivery has attracted increasing attention because of their unique properties and versatility. In this review, we summarized the possible factors contributing to the penetration behaviors of gold nanoparticles, including size, surface chemistry, and shape. Drug loading, release, and penetration patterns were captured towards implicating the design of gold nanoparticles for dermal or transdermal drug delivery. Physical methods applicable for future enhancing the delivery efficacy of GNPs were also presented, which mainly included microneedles and iontophoresis. As a promising "drug", the inherent activities of GNPs were finally discussed, especially regarding their application in the treatment of skin disease. Thus, this paper provided a comprehensive review of the use of gold nanoparticles for skin drug delivery, which would help the design of multifunctional systems for skin drug delivery based on gold nanoparticles.
Collapse
|
16
|
Smutná T, Dumková J, Kristeková D, Laštovičková M, Jedličková A, Vrlíková L, Dočekal B, Alexa L, Kotasová H, Pelková V, Večeřa Z, Křůmal K, Petráš J, Coufalík P, Všianský D, Záchej S, Pinkas D, Vondráček J, Hampl A, Mikuška P, Buchtová M. Macrophage-mediated tissue response evoked by subchronic inhalation of lead oxide nanoparticles is associated with the alteration of phospholipases C and cholesterol transporters. Part Fibre Toxicol 2022; 19:52. [PMID: 35922858 PMCID: PMC9351260 DOI: 10.1186/s12989-022-00494-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/19/2022] [Indexed: 12/01/2022] Open
Abstract
Background Inhalation of lead oxide nanoparticles (PbO NPs), which are emitted to the environment by high-temperature technological processes, heavily impairs target organs. These nanoparticles pass through the lung barrier and are distributed via the blood into secondary target organs, where they cause numerous pathological alterations. Here, we studied in detail, macrophages as specialized cells involved in the innate and adaptive immune response in selected target organs to unravel their potential involvement in reaction to subchronic PbO NP inhalation. In this context, we also tackled possible alterations in lipid uptake in the lungs and liver, which is usually associated with foam macrophage formation. Results The histopathological analysis of PbO NP exposed lung revealed serious chronic inflammation of lung tissues. The number of total and foam macrophages was significantly increased in lung, and they contained numerous cholesterol crystals. PbO NP inhalation induced changes in expression of phospholipases C (PLC) as enzymes linked to macrophage-mediated inflammation in lungs. In the liver, the subchronic inhalation of PbO NPs caused predominantly hyperemia, microsteatosis or remodeling of the liver parenchyma, and the number of liver macrophages also significantly was increased. The gene and protein expression of a cholesterol transporter CD36, which is associated with lipid metabolism, was altered in the liver. The amount of selected cholesteryl esters (CE 16:0, CE 18:1, CE 20:4, CE 22:6) in liver tissue was decreased after subchronic PbO NP inhalation, while total and free cholesterol in liver tissue was slightly increased. Gene and protein expression of phospholipase PLCβ1 and receptor CD36 in human hepatocytes were affected also in in vitro experiments after acute PbO NP exposure. No microscopic or serious functional kidney alterations were detected after subchronic PbO NP exposure and CD68 positive cells were present in the physiological mode in its interstitial tissues. Conclusion Our study revealed the association of increased cholesterol and lipid storage in targeted tissues with the alteration of scavenger receptors and phospholipases C after subchronic inhalation of PbO NPs and yet uncovered processes, which can contribute to steatosis in liver after metal nanoparticles exposure. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00494-7.
Collapse
Affiliation(s)
- Tereza Smutná
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic
| | - Jana Dumková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Daniela Kristeková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Markéta Laštovičková
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - Adriena Jedličková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic
| | - Lucie Vrlíková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic
| | - Bohumil Dočekal
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - Lukáš Alexa
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - Hana Kotasová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Vendula Pelková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Zbyněk Večeřa
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - Kamil Křůmal
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - Jiří Petráš
- Department of Cytokinetics, Institute of Biophysics, v.v.i., Czech Academy of Sciences, 612 65, Brno, Czech Republic
| | - Pavel Coufalík
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - Dalibor Všianský
- Department of Geological Sciences, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | | | - Dominik Pinkas
- Electron Microscopy Core Facility of the Microscopy Centre, Institute of Molecular Genetics, v.v.i., Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics, v.v.i., Czech Academy of Sciences, 612 65, Brno, Czech Republic
| | - Aleš Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Pavel Mikuška
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic. .,Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
17
|
Alkilani AZ, Nasereddin J, Hamed R, Nimrawi S, Hussein G, Abo-Zour H, Donnelly RF. Beneath the Skin: A Review of Current Trends and Future Prospects of Transdermal Drug Delivery Systems. Pharmaceutics 2022; 14:1152. [PMID: 35745725 PMCID: PMC9231212 DOI: 10.3390/pharmaceutics14061152] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The ideal drug delivery system has a bioavailability comparable to parenteral dosage forms but is as convenient and easy to use for the patient as oral solid dosage forms. In recent years, there has been increased interest in transdermal drug delivery (TDD) as a non-invasive delivery approach that is generally regarded as being easy to administer to more vulnerable age groups, such as paediatric and geriatric patients, while avoiding certain bioavailability concerns that arise from oral drug delivery due to poor absorbability and metabolism concerns. However, despite its many merits, TDD remains restricted to a select few drugs. The physiology of the skin poses a barrier against the feasible delivery of many drugs, limiting its applicability to only those drugs that possess physicochemical properties allowing them to be successfully delivered transdermally. Several techniques have been developed to enhance the transdermal permeability of drugs. Both chemical (e.g., thermal and mechanical) and passive (vesicle, nanoparticle, nanoemulsion, solid dispersion, and nanocrystal) techniques have been investigated to enhance the permeability of drug substances across the skin. Furthermore, hybrid approaches combining chemical penetration enhancement technologies with physical technologies are being intensively researched to improve the skin permeation of drug substances. This review aims to summarize recent trends in TDD approaches and discuss the merits and drawbacks of the various chemical, physical, and hybrid approaches currently being investigated for improving drug permeability across the skin.
Collapse
Affiliation(s)
- Ahlam Zaid Alkilani
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (J.N.); (S.N.); (G.H.); (H.A.-Z.)
| | - Jehad Nasereddin
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (J.N.); (S.N.); (G.H.); (H.A.-Z.)
| | - Rania Hamed
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan;
| | - Sukaina Nimrawi
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (J.N.); (S.N.); (G.H.); (H.A.-Z.)
| | - Ghaid Hussein
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (J.N.); (S.N.); (G.H.); (H.A.-Z.)
| | - Hadeel Abo-Zour
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (J.N.); (S.N.); (G.H.); (H.A.-Z.)
| | - Ryan F. Donnelly
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK;
| |
Collapse
|
18
|
Glassy-like Metal Oxide Particles Embedded on Micrometer Thicker Alginate Films as Promising Wound Healing Nanomaterials. Int J Mol Sci 2022; 23:ijms23105585. [PMID: 35628396 PMCID: PMC9142123 DOI: 10.3390/ijms23105585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 11/29/2022] Open
Abstract
Micrometer-thicker, biologically responsive nanocomposite films were prepared starting from alginate-metal alkoxide colloidal solution followed by sol-gel chemistry and solvent removal through evaporation-induced assembly. The disclosed approach is straightforward and highly versatile, allowing the entrapment and growth of a set of glassy-like metal oxide within the network of alginate and their shaping as crake-free transparent and flexible films. Immersing these films in aqueous medium triggers alginate solubilization, and affords water-soluble metal oxides wrapped in a biocompatible carbohydrate framework. Biological activity of the nano-composites films was also studied including their hemolytic activity, methemoglobin, prothrombin, and thrombine time. The effect of the films on fibroblasts and keratinocytes of human skin was also investigated with a special emphasis on the role played by the incorporated metal oxide. This comparative study sheds light on the crucial biological response of the ceramic phase embedded inside of the films, with titanium dioxide being the most promising for wound healing purposes.
Collapse
|
19
|
Zhang Y, Hu M, Zhang W, Zhang X. Construction of tellurium-doped mesoporous bioactive glass nanoparticles for bone cancer therapy by promoting ROS-mediated apoptosis and antibacterial activity. J Colloid Interface Sci 2021; 610:719-730. [PMID: 34848060 DOI: 10.1016/j.jcis.2021.11.122] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/05/2021] [Accepted: 11/21/2021] [Indexed: 02/07/2023]
Abstract
The commonly used treatment methods for bone cancer include chemotherapy, surgery and radiotherapy, but there are disadvantages such as nonspecific distribution, high toxicity of chemotherapy drugs, implantable infections and low monitoring. Nanoparticles are the new development direction of nanomedicine in cancer treatment. Structural characteristics of nanoparticles make it an excellent model for targeting and penetrating cancer-induced abnormal cell growth. In this study, a kind of novel and interesting tellurium ion doped mesoporous bioactive glasses (Te-MBG) nanoparticles were successfully synthesized by a simple sol-gel method, which had uniform spherical morphology (≈ 500 nm), high surface area (> 300 m2/g) and mesopore volume (> 0.30 cm3/g). Results found that Te doping does not affect the mineralization and degradation of the MBG nanoparticles. Meanwhile, compared to the undoped MBG, Te doped MBG not merely had the ability to promote MG63 cell apoptosis to inhibit bone cancer growth by ROS-mediated, but also had significant antibacterial activity. This all depends on the concentration of Te doping. It can be seen that Te-MBG nanoparticles can not only potentially fill bone defects caused by bone cancer removal, but also induce cancer cell apoptosis by tellurium release inducing reactive oxygen species (ROS) excessive production to inhibit bone cancer formation. This study provides a feasible strategy for the development of Te-MBG nanoparticles as well as their evaluation and basic research for bone cancer therapy.
Collapse
Affiliation(s)
- Ying Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China.
| | - Meng Hu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Xiaona Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| |
Collapse
|
20
|
Human Skin Permeation Enhancement Using PLGA Nanoparticles Is Mediated by Local pH Changes. Pharmaceutics 2021; 13:pharmaceutics13101608. [PMID: 34683901 PMCID: PMC8538358 DOI: 10.3390/pharmaceutics13101608] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022] Open
Abstract
The steady improvement and optimization of transdermal permeation is a constant and challenging pharmaceutical task. In this study the influence of poly(lactide-co-glycolide) (PLGA) nanoparticles on the dermal permeation of the anti-inflammatory drug flufenamic acid (FFA) was investigated. For this aim, different vehicles under non-buffered and buffered conditions and different skin models (human heat separated epidermis and reconstructed human epidermis equivalents) were tested. Permeation experiments were performed using static Franz diffusion cells under infinite dosing conditions. Already the presence of drug-free nanoparticles increased drug permeation across the skin. Drug permeation was even enhanced when applying drug-loaded nanoparticles. In contrast, buffered vehicles with different pH values (pH 5.4–7.4) revealed the influence of the pH on the permeation of FFA. The change of the surrounding pH of the biodegradable nanoparticulate system was demonstrated and visualized using pH-sensitive fluorescent probes. While a potential contribution of hair follicles could be ruled out, our data suggest that the enhanced permeation of FFA through human skin in the presence of PLGA nanoparticles is mediated by a locally decreased pH during hydrolytic degradation of this polymer. This hypothesis is supported by the observation that skin permeation of the weak base caffeine was not affected.
Collapse
|
21
|
Roberts MS, Cheruvu HS, Mangion SE, Alinaghi A, Benson HA, Mohammed Y, Holmes A, van der Hoek J, Pastore M, Grice JE. Topical drug delivery: History, percutaneous absorption, and product development. Adv Drug Deliv Rev 2021; 177:113929. [PMID: 34403750 DOI: 10.1016/j.addr.2021.113929] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
Topical products, widely used to manage skin conditions, have evolved from simple potions to sophisticated delivery systems. Their development has been facilitated by advances in percutaneous absorption and product design based on an increasingly mechanistic understanding of drug-product-skin interactions, associated experiments, and a quality-by-design framework. Topical drug delivery involves drug transport from a product on the skin to a local target site and then clearance by diffusion, metabolism, and the dermal circulation to the rest of the body and deeper tissues. Insights have been provided by Quantitative Structure Permeability Relationships (QSPR), molecular dynamics simulations, and dermal Physiologically Based PharmacoKinetics (PBPK). Currently, generic product equivalents of reference-listed products dominate the topical delivery market. There is an increasing regulatory interest in understanding topical product delivery behavior under 'in use' conditions and predicting in vivo response for population variations in skin barrier function and response using in silico and in vitro findings.
Collapse
|
22
|
Thanigaivel S, Vickram A, Anbarasu K, Gulothungan G, Nanmaran R, Vignesh D, Rohini K, Ravichandran V. Ecotoxicological assessment and dermal layer interactions of nanoparticle and its routes of penetrations. Saudi J Biol Sci 2021; 28:5168-5174. [PMID: 34466094 PMCID: PMC8380995 DOI: 10.1016/j.sjbs.2021.05.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 11/26/2022] Open
Abstract
Our review focused on nanomaterials-based toxicity evaluation and its exposure to the human and aquatic animals when it was leached and contaminated in the environment. Ecotoxicological assessment and its mechanism mainly affect the skin covering layers and its preventive barriers that protect the foreign particles' skin. Nanoscale materials are essential in the medical field, especially in biomedical and commercial applications such as nanomedicine and drug delivery, mainly in therapeutic treatments. However, various commercial formulations of pharmaceutical drugs are manufactured through a series of clinical trials. The role of such drugs and their metabolites has not met the requirement of an individual's need at the early stage of the treatments except few drugs and medicines with minimal or no side effects. Therefore, biology and medicines are taken up the advantages of nano scaled drugs and formulations for the treatment of various diseases. The present study identifies and analyses the different nanoparticles and their chemical components on the skin and their effects due to penetration. There are advantageous factors available to facilitate positive and negative contact between dermal layers. It creates a new agenda for an established application that is mainly based on skin diseases.
Collapse
Affiliation(s)
- S. Thanigaivel
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Chennai, Tamil Nadu, India
| | - A.S. Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Chennai, Tamil Nadu, India
| | - K. Anbarasu
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Chennai, Tamil Nadu, India
| | - G. Gulothungan
- Department of Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Chennai, Tamil Nadu, India
| | - R. Nanmaran
- Department of Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Chennai, Tamil Nadu, India
| | - D. Vignesh
- Department of Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Chennai, Tamil Nadu, India
| | | | - V. Ravichandran
- Unit of Pharmaceutical Chemistry, Faculty of Pharmacy, AIMST University, Malaysia
- Corresponding author at: Head of Unit, Unit of Pharmaceutical Chemistry, Faculty of Pharmacy, AIMST University, Malaysia.
| |
Collapse
|
23
|
Yuan A, Xia F, Bian Q, Wu H, Gu Y, Wang T, Wang R, Huang L, Huang Q, Rao Y, Ling D, Li F, Gao J. Ceria Nanozyme-Integrated Microneedles Reshape the Perifollicular Microenvironment for Androgenetic Alopecia Treatment. ACS NANO 2021; 15:13759-13769. [PMID: 34279913 DOI: 10.1021/acsnano.1c05272] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Androgenetic alopecia (AGA) is highly prevalent in current society but lacks effective treatments. The dysregulation of the hair follicle niche induced by excessive reactive oxygen species (ROS) and insufficient vascularization in the perifollicular microenvironment is the leading cause of AGA. Herein, we designed a ceria nanozyme (CeNZ)-integrated microneedles patch (Ce-MNs) that can alleviate oxidative stress and promote angiogenesis simultaneously to reshape the perifollicular microenvironment for AGA treatment. On the basis of the excellent mechanical strength of Ce-MNs, the encapsulated CeNZs with catalase- and superoxide-mimic activities can be efficiently delivered into skin to scavenge excessive ROS. Moreover, the mechanical stimulation induced by the administration of MNs can remodel the microvasculature in the balding region. Compared with minoxidil, a widely used clinical drug for AGA treatment, Ce-MNs exhibited accelerated hair regeneration in the AGA mouse model at a lower administration frequency without inducing significant skin damage. Consequently, such a safe and perifollicular microenvironment-shaping MNs patch shows great potential for clinical AGA treatment.
Collapse
Affiliation(s)
- Anran Yuan
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fan Xia
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiong Bian
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haibin Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yueting Gu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tao Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ruxuan Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lingling Huang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaoling Huang
- Hangzhou Third People's Hospital, Hangzhou 310009, China
| | - Yuefeng Rao
- Department of Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jiangsu Engineering Research Center for New-type External and Transdermal Preparations, Changzhou 213149, China
| |
Collapse
|
24
|
Bhatia E, Kumari D, Sharma S, Ahamad N, Banerjee R. Nanoparticle platforms for dermal antiaging technologies: Insights in cellular and molecular mechanisms. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1746. [PMID: 34423571 DOI: 10.1002/wnan.1746] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 01/16/2023]
Abstract
Aging is a continuous process defined by a progressive functional decline in physiological parameters. Skin, being one of the most vulnerable organs, shows early signs of aging which are predominantly affected by intrinsic factors like hormone, gender, mood, enzymes, and genetic predisposition, and extrinsic factors like exposure to radiation, air pollution, and heat. Visible morphological and anatomical changes associated with skin aging occur due to underlying physiological aberrations governed by numerous complex interactions at cellular and subcellular levels. Nanoparticles are perceived as a powerful tool in the cosmeceutical industry both for augmenting the efficacy of existing agents and as a novel standalone therapy. Both organic and inorganic nanoparticles have been extensively investigated in antiaging applications. The use of nanoparticles helps to enhance the activity of antiaging molecules by selectively targeting cellular and molecular pathways. On the other hand, the nanoparticle platforms also gained increasing popularity as the skin protectant against extrinsic factors such as UV radiation and pollutants. This review comprehensively discusses skin aging and its mechanism by highlighting the impact on cellular, subcellular, and epigenetic elements. Importantly, the review elaborates on the examples of organic and inorganic nanoparticle-based formulations developed for antiaging application and provides mechanistic insights on how they modulate the mechanisms of skin aging. The clinical progress of nanoparticle antiaging technologies and factors that impact clinical translation are also explored. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Eshant Bhatia
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Durga Kumari
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Shivam Sharma
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Nadim Ahamad
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rinti Banerjee
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
25
|
Breuckmann P, Meinke MC, Jaenicke T, Krutmann J, Rasulev U, Keck CM, Müller RH, Klein AL, Lademann J, Patzelt A. Influence of nanocrystal size on the in vivo absorption kinetics of caffeine after topical application. Eur J Pharm Biopharm 2021; 167:57-64. [PMID: 34273544 DOI: 10.1016/j.ejpb.2021.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 11/27/2022]
Abstract
The absorption of topically applied substances is challenging due to the effective skin barrier. Encapsulation of substances into nanoparticles was expected to be promising to increase the bioavailability of topically applied products. Since nanoparticles cannot traverse the intact skin barrier, but penetrate into the hair follicles, they could be used to deliver substances via hair follicles, where the active is released and can translocate independently transfollicularly into the viable epidermis. In the present in vivo study, this effect was investigated for caffeine. Caffeine nanocrystals of two sizes, 206 nm and 694 nm, with equal amounts of caffeine were used to study caffeine serum concentration kinetics after topical application on 5 human volunteers. The study demonstrated that at early time points, the smaller nanocrystals were more effective in increasing the bioavailability of caffeine, whereas after 20 min, the serum concentration of caffeine was higher when caffeine was applied by larger nanocrystals. Caffeine was still detectable after 5 days. The area under the curve could be increased by 82% when the 694 nm nanocrystals were applied. Especially larger sized nanocrystals seem to be a promising type of nanoparticulate preparation to increase the bioavailability of topically applied drugs via the transfollicular penetration pathway.
Collapse
Affiliation(s)
- P Breuckmann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - M C Meinke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Th Jaenicke
- IUF - Leibniz Institut für Umweltmedizinische Forschung, Düsseldorf, Germany
| | - J Krutmann
- IUF - Leibniz Institut für Umweltmedizinische Forschung, Düsseldorf, Germany
| | - U Rasulev
- Arifov Institute of Electronics of the Uzbek Academy of Sciences, Tashkent, Uzbekistan
| | - C M Keck
- PharmaSol GmbH, Berlin, Germany; Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Marburg, Germany
| | - R H Müller
- Department of Pharmaceutics, Biopharmaceutics and Nutricosmetics, Freie Universität Berlin, Germany
| | - A L Klein
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany.
| | - J Lademann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - A Patzelt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| |
Collapse
|
26
|
Yariv I, Kannan S, Harel Y, Levy E, Duadi H, Lellouche JP, Michaeli S, Fixler D. Iterative optical technique for detecting anti-leishmania nanoparticles in mouse lesions. BIOMEDICAL OPTICS EXPRESS 2021; 12:4496-4509. [PMID: 34457428 PMCID: PMC8367277 DOI: 10.1364/boe.425798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Nanoparticles (NPs) based drugs for topical administration are gaining interest in the biomedical world. However, a study tool of their penetration depth to the different tissue layers without additional markers or contrast agents is required in order to relieve safety concerns. While common diagnostic tools, e.g. X-ray, computed tomography or magnetic resonance imaging, can provide in vivo detection of the metallic NPs, their resolution cannot determine the exact penetration depth to the thin skin layers. In this work, we propose the noninvasive nanophotonics iterative multi-plane optical property extraction (IMOPE) technique for the novel iron-based NPs detection in leishmaniasis lesions. The optical properties of the different tissue layers: epidermis, dermis, subcutaneous fat and muscle, were examined before and after topical drug administration. The potential topical drug was detected in the epidermis (∼13µm) and dermis (∼160µm) layers in mice lesions at different stages of the disease (two or four weeks post infection). The lesion size influence on the detection was also observed, where in larger lesions the IMOPE senses a greater presence of the topical drug.
Collapse
Affiliation(s)
- Inbar Yariv
- Faculty of Engineering, Bar
Ilan University, Ramat Gan 5290002, Israel
- The Institute of Nanotechnology and
Advanced Materials, Bar Ilan University,
Ramat Gan 5290002, Israel
| | - Sriram Kannan
- The Institute of Nanotechnology and
Advanced Materials, Bar Ilan University,
Ramat Gan 5290002, Israel
- The Mina and Everard Goodman Faculty of
Life Sciences, Bar Ilan University, Ramat
Gan 5290002, Israel
| | - Yifat Harel
- The Institute of Nanotechnology and
Advanced Materials, Bar Ilan University,
Ramat Gan 5290002, Israel
- Department of Chemistry Faculty of Exact
Sciences, Bar Ilan University, Ramat Gan
5290002, Israel
| | - Esthy Levy
- The Institute of Nanotechnology and
Advanced Materials, Bar Ilan University,
Ramat Gan 5290002, Israel
- Department of Chemistry Faculty of Exact
Sciences, Bar Ilan University, Ramat Gan
5290002, Israel
| | - Hamootal Duadi
- Faculty of Engineering, Bar
Ilan University, Ramat Gan 5290002, Israel
- The Institute of Nanotechnology and
Advanced Materials, Bar Ilan University,
Ramat Gan 5290002, Israel
| | - Jean-Paul Lellouche
- The Institute of Nanotechnology and
Advanced Materials, Bar Ilan University,
Ramat Gan 5290002, Israel
- Department of Chemistry Faculty of Exact
Sciences, Bar Ilan University, Ramat Gan
5290002, Israel
| | - Shulamit Michaeli
- The Institute of Nanotechnology and
Advanced Materials, Bar Ilan University,
Ramat Gan 5290002, Israel
- The Mina and Everard Goodman Faculty of
Life Sciences, Bar Ilan University, Ramat
Gan 5290002, Israel
| | - Dror Fixler
- Faculty of Engineering, Bar
Ilan University, Ramat Gan 5290002, Israel
- The Institute of Nanotechnology and
Advanced Materials, Bar Ilan University,
Ramat Gan 5290002, Israel
| |
Collapse
|
27
|
Lai X, Wang M, Zhu Y, Feng X, Liang H, Wu J, Nie L, Li L, Shao L. ZnO NPs delay the recovery of psoriasis-like skin lesions through promoting nuclear translocation of p-NFκB p65 and cysteine deficiency in keratinocytes. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124566. [PMID: 33323305 DOI: 10.1016/j.jhazmat.2020.124566] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/09/2020] [Accepted: 11/10/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND This study aimed to evaluate the safety of applying zinc oxide nanoparticles (ZnO NPs) to pathological skin. The majority of previous studies confirmed the safety of applying ZnO NPs to normal skin. However, we know very little about the risks of using sunscreen, cosmetics and topical drugs containing ZnO NPs for individuals with skin diseases. RESULTS ZnO NPs passed through gaps between keratinocytes and entered stratum basale of epidermis and dermis in imiquimod-induced psoriasis-like skin lesions. Application of a ZnO NP-containing suspension for 3 connective days delayed the healing of the epidermal barrier; increased the expression levels of inflammatory cytokines; promoted keratinocyte apoptosis and disturbed redox homeostasis. In TNF-α-stimulated HaCaT cells, QNZ and JSH-23 (NFκB inhibitors) blocked ZnO NP-induced inflammation. JSH-23 and NAC (a precursor of cysteine) inhibited ZnO NP-induced nuclear translocation of p-NFκB p65, cysteine deficiency and apoptosis. Additionally, ZnO NPs decreased CD98 level in main pathway and failed to activate transsulfuration pathway in cysteine biosynthesis. CONCLUSIONS ZnO NPs can enter psoriasis-like skin lesions and promote inflammation and keratinocyte apoptosis through nuclear translocation of p-NFκB p65 and cysteine deficiency. This work reminds the public that ZnO NPs have harmful effects on the recovery of inflammatory skin diseases.
Collapse
Affiliation(s)
- Xuan Lai
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Menglei Wang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yixia Zhu
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaoli Feng
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Huimin Liang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Junrong Wu
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Li Nie
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Li Li
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China.
| |
Collapse
|
28
|
Sousa de Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev 2021; 50:5397-5434. [PMID: 33666625 PMCID: PMC8111542 DOI: 10.1039/d0cs01127d] [Citation(s) in RCA: 481] [Impact Index Per Article: 120.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 12/19/2022]
Abstract
Nanoparticles (NPs) have attracted considerable attention in various fields, such as cosmetics, the food industry, material design, and nanomedicine. In particular, the fast-moving field of nanomedicine takes advantage of features of NPs for the detection and treatment of different types of cancer, fibrosis, inflammation, arthritis as well as neurodegenerative and gastrointestinal diseases. To this end, a detailed understanding of the NP uptake mechanisms by cells and intracellular localization is essential for safe and efficient therapeutic applications. In the first part of this review, we describe the several endocytic pathways involved in the internalization of NPs and we discuss the impact of the physicochemical properties of NPs on this process. In addition, the potential challenges of using various inhibitors, endocytic markers and genetic approaches to study endocytosis are addressed along with the principal (semi) quantification methods of NP uptake. The second part focuses on synthetic and bio-inspired substances, which can stimulate or decrease the cellular uptake of NPs. This approach could be interesting in nanomedicine where a high accumulation of drugs in the target cells is desirable and clearance by immune cells is to be avoided. This review contributes to an improved understanding of NP endocytic pathways and reveals potential substances, which can be used in nanomedicine to improve NP delivery.
Collapse
Affiliation(s)
- Mauro Sousa de Almeida
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | - Eva Susnik
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | - Barbara Drasler
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
- Department of Chemistry, University of FribourgChemin du Musée 91700 FribourgSwitzerland
| | | |
Collapse
|
29
|
Skin penetration/permeation success determinants of nanocarriers: Pursuit of a perfect formulation. Colloids Surf B Biointerfaces 2021; 203:111748. [PMID: 33853001 DOI: 10.1016/j.colsurfb.2021.111748] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/12/2021] [Accepted: 04/03/2021] [Indexed: 12/14/2022]
Abstract
The advent of nanocarriers in the field of pharmaceutical drug delivery, while exhibiting considerable advantages, has created challenges for researchers. Among the applications of nanocarriers, drug delivery to the skin has attracted increasing attention in recent decades due to its advantages over oral and parenteral administration. Accordingly, this work attempts to discuss the major obstacles surrounding topically applied formulations and different nanocarriers' potential to overcome these barriers to investigate whether their passive penetration through the skin is likely. Therefore, skin anatomical views and transcutaneous pathways are briefly reviewed. Factors commonly thought to influence skin penetration are discussed from the perspective of particularly penetrating nanocarriers. The formulation of these nanocarriers is outlined, and promising constituents are highlighted to help investigators optimize nanocarrier formulations.
Collapse
|
30
|
Banche-Niclot F, Montalbano G, Fiorilli S, Vitale-Brovarone C. PEG-Coated Large Mesoporous Silicas as Smart Platform for Protein Delivery and Their Use in a Collagen-Based Formulation for 3D Printing. Int J Mol Sci 2021; 22:1718. [PMID: 33572076 PMCID: PMC7914545 DOI: 10.3390/ijms22041718] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 01/16/2023] Open
Abstract
Silica-based mesoporous systems have gained great interest in drug delivery applications due to their excellent biocompatibility and high loading capability. However, these materials face challenges in terms of pore-size limitations since they are characterized by nanopores ranging between 6-8 nm and thus unsuitable to host large molecular weight molecules such as proteins, enzymes and growth factors (GFs). In this work, for an application in the field of bone regeneration, large-pore mesoporous silicas (LPMSs) were developed to vehicle large biomolecules and release them under a pH stimulus. Considering bone remodeling, the proposed pH-triggered mechanism aims to mimic the release of GFs encased in the bone matrix due to bone resorption by osteoclasts (OCs) and the associated pH drop. To this aim, LPMSs were prepared by using 1,3,5-trimethyl benzene (TMB) as a swelling agent and the synthesis solution was hydrothermally treated and the influence of different process temperatures and durations on the resulting mesostructure was investigated. The synthesized particles exhibited a cage-like mesoporous structure with accessible pores of diameter up to 23 nm. LPMSs produced at 140 °C for 24 h showed the best compromise in terms of specific surface area, pores size and shape and hence, were selected for further experiments. Horseradish peroxidase (HRP) was used as model protein to evaluate the ability of the LPMSs to adsorb and release large biomolecules. After HRP-loading, LPMSs were coated with a pH-responsive polymer, poly(ethylene glycol) (PEG), allowing the release of the incorporated biomolecules in response to a pH decrease, in an attempt to mimic GFs release in bone under the acidic pH generated by the resorption activity of OCs. The reported results proved that PEG-coated carriers released HRP more quickly in an acidic environment, due to the protonation of PEG at low pH that catalyzes polymer hydrolysis reaction. Our findings indicate that LPMSs could be used as carriers to deliver large biomolecules and prove the effectiveness of PEG as pH-responsive coating. Finally, as proof of concept, a collagen-based suspension was obtained by incorporating PEG-coated LPMS carriers into a type I collagen matrix with the aim of designing a hybrid formulation for 3D-printing of bone scaffolds.
Collapse
Affiliation(s)
- Federica Banche-Niclot
- Department of Applied Science and Technology, Politecnico di Torino, 10029 Torino, Italy; (F.B.-N.); (G.M.); (S.F.)
- Department of Surgical Science, Università degli Studi di Torino, 10029 Torino, Italy
| | - Giorgia Montalbano
- Department of Applied Science and Technology, Politecnico di Torino, 10029 Torino, Italy; (F.B.-N.); (G.M.); (S.F.)
| | - Sonia Fiorilli
- Department of Applied Science and Technology, Politecnico di Torino, 10029 Torino, Italy; (F.B.-N.); (G.M.); (S.F.)
- National Interuniversity Consortium of Materials Science and Technology (RU Politecnico di Torino), 50121 Firenze, Italy
| | - Chiara Vitale-Brovarone
- Department of Applied Science and Technology, Politecnico di Torino, 10029 Torino, Italy; (F.B.-N.); (G.M.); (S.F.)
- National Interuniversity Consortium of Materials Science and Technology (RU Politecnico di Torino), 50121 Firenze, Italy
| |
Collapse
|
31
|
Al Mahrooqi JH, Khutoryanskiy VV, Williams AC. Thiolated and PEGylated silica nanoparticle delivery to hair follicles. Int J Pharm 2021; 593:120130. [PMID: 33264642 DOI: 10.1016/j.ijpharm.2020.120130] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
Targeting drug delivery to hair follicles is valuable to treat conditions such as alopecia's and acne, and this shunt route may also allow drug delivery to deeper skin layers and the systemic circulation by avoiding the intact stratum corneum. Here, we investigated the effects of nanoparticle surface chemistry on their delivery into hair follicles by synthesizing fluorescent thiolated silica nanoparticles and functionalizing with 750 Da and 5000 Da methoxypolyethylene glycol maleimide (PEG). The stability of the nanoparticles in skin homogenate was verified before tape stripping of porcine-dosed tissue showed the distribution of the free fluorescent dye and different nanoparticles in the skin. Analysis of microscopic images of the skin sections revealed penetration of nanoparticles functionalized with PEG into the appendages whereas thiolated nanoparticles stayed on the surface of the skin and were removed by tape stripping. Nanoparticles functionalized with PEG 5000 Da penetrated deeper into the hair follicles compared to counterparts functionalized with PEG 750 Da. PEGylation can thus enhance targeted delivery of nanoparticulates into hair follicles.
Collapse
Affiliation(s)
| | | | - Adrian C Williams
- Reading School of Pharmacy, University of Reading, Reading RG6 6AD, UK.
| |
Collapse
|
32
|
Alimardani V, Abolmaali SS, Yousefi G, Rahiminezhad Z, Abedi M, Tamaddon A, Ahadian S. Microneedle Arrays Combined with Nanomedicine Approaches for Transdermal Delivery of Therapeutics. J Clin Med 2021; 10:E181. [PMID: 33419118 PMCID: PMC7825522 DOI: 10.3390/jcm10020181] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
Organic and inorganic nanoparticles (NPs) have shown promising outcomes in transdermal drug delivery. NPs can not only enhance the skin penetration of small/biomacromolecule therapeutic agents but can also impart control over drug release or target impaired tissue. Thanks to their unique optical, photothermal, and superparamagnetic features, NPs have been also utilized for the treatment of skin disorders, imaging, and biosensing applications. Despite the widespread transdermal applications of NPs, their delivery across the stratum corneum, which is the main skin barrier, has remained challenging. Microneedle array (MN) technology has recently revealed promising outcomes in the delivery of various formulations, especially NPs to deliver both hydrophilic and hydrophobic therapeutic agents. The present work reviews the advancements in the application of MNs and NPs for an effective transdermal delivery of a wide range of therapeutics in cancer chemotherapy and immunotherapy, photothermal and photodynamic therapy, peptide/protein vaccination, and the gene therapy of various diseases. In addition, this paper provides an overall insight on MNs' challenges and summarizes the recent achievements in clinical trials with future outlooks on the transdermal delivery of a wide range of nanomedicines.
Collapse
Affiliation(s)
- Vahid Alimardani
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran; (V.A.); (Z.R.); (M.A.); (A.T.)
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran; (V.A.); (Z.R.); (M.A.); (A.T.)
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran;
| | - Gholamhossein Yousefi
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran;
| | - Zahra Rahiminezhad
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran; (V.A.); (Z.R.); (M.A.); (A.T.)
| | - Mehdi Abedi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran; (V.A.); (Z.R.); (M.A.); (A.T.)
| | - Alimohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran; (V.A.); (Z.R.); (M.A.); (A.T.)
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran;
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| |
Collapse
|
33
|
Talapko J, Matijević T, Juzbašić M, Antolović-Požgain A, Škrlec I. Antibacterial Activity of Silver and Its Application in Dentistry, Cardiology and Dermatology. Microorganisms 2020; 8:1400. [PMID: 32932967 PMCID: PMC7565656 DOI: 10.3390/microorganisms8091400] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
The problem of antimicrobial resistance is increasingly present and requires the discovery of new antimicrobial agents. Although the healing features of silver have been recognized since ancient times, silver has not been used due to newly discovered antibiotics. Thanks to technology development, a significant step forward has been made in silver nanoparticles research. Nowadays, silver nanoparticles are a frequent target of researchers to find new and better drugs. Namely, there is a need for silver nanoparticles as alternative antibacterial nanobiotics. Silver nanoparticles (AgNPs), depending on their size and shape, also have different antimicrobial activity. In addition to their apparent antibacterial activity, AgNPs can serve as drug delivery systems and have anti-thrombogenic, anti-platelet, and anti-hypertensive properties. Today they are increasingly used in clinical medicine and dental medicine. This paper presents silver antimicrobial activity and its use in dentistry, cardiology, and dermatology, where it has an extensive range of effects.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (M.J.)
| | - Tatjana Matijević
- Department of Dermatology and Venereology, Clinical Hospital Center Osijek, HR-31000 Osijek, Croatia;
| | - Martina Juzbašić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (M.J.)
| | - Arlen Antolović-Požgain
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
- Department of Microbiology, Institute of Public Health Osijek, HR-31000 Osijek, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (M.J.)
| |
Collapse
|
34
|
El-Sayed N, Vaut L, Schneider M. Customized fast-separable microneedles prepared with the aid of 3D printing for nanoparticle delivery. Eur J Pharm Biopharm 2020; 154:166-174. [DOI: 10.1016/j.ejpb.2020.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/19/2020] [Accepted: 07/04/2020] [Indexed: 01/13/2023]
|
35
|
Reduction of focal sweating by lipid nanoparticle-delivered myricetin. Sci Rep 2020; 10:13132. [PMID: 32753614 PMCID: PMC7403431 DOI: 10.1038/s41598-020-69985-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022] Open
Abstract
Myricetin—a flavonoid capable of inhibiting the SNARE complex formation in neurons—reduces focal sweating after skin-application when delivers as encapsulated in lipid nanoparticles (M-LNPs). The stability of M-LNP enables efficient delivery of myricetin to sudomotor nerves located underneath sweat glands through transappendageal pathways while free myricetin just remained on the skin. Furthermore, release of myricetin from M-LNP is accelerated through lipase-/esterase-induced lipolysis in the skin-appendages, enabling uptake of myricetin by the surrounding cells. The amount of sweat is reduced by 55% after application of M-LNP (0.8 mg kg−1) on the mouse footpad. This is comparable to that of subcutaneously injected anticholinergic agents [0.25 mg kg−1 glycopyrrolate; 0.8 U kg−1 botulinum neurotoxin-A-type (BoNT/A)]. M-LNP neither shows a distal effect after skin-application nor induced cellular/ocular toxicity. In conclusion, M-LNP is an efficient skin-applicable antiperspirant. SNARE-inhibitory small molecules with suitable delivery systems have the potential to replace many BoNT/A interventions for which self-applications are preferred.
Collapse
|
36
|
Metal Oxide Nanoparticles as Biomedical Materials. Biomimetics (Basel) 2020; 5:biomimetics5020027. [PMID: 32521669 PMCID: PMC7345077 DOI: 10.3390/biomimetics5020027] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
The development of new nanomaterials with high biomedical performance and low toxicity is essential to obtain more efficient therapy and precise diagnostic tools and devices. Recently, scientists often face issues of balancing between positive therapeutic effects of metal oxide nanoparticles and their toxic side effects. In this review, considering metal oxide nanoparticles as important technological and biomedical materials, the authors provide a comprehensive review of researches on metal oxide nanoparticles, their nanoscale physicochemical properties, defining specific applications in the various fields of nanomedicine. Authors discuss the recent development of metal oxide nanoparticles that were employed as biomedical materials in tissue therapy, immunotherapy, diagnosis, dentistry, regenerative medicine, wound healing and biosensing platforms. Besides, their antimicrobial, antifungal, antiviral properties along with biotoxicology were debated in detail. The significant breakthroughs in the field of nanobiomedicine have emerged in areas and numbers predicting tremendous application potential and enormous market value for metal oxide nanoparticles.
Collapse
|
37
|
Jia J, Wang Z, Yue T, Su G, Teng C, Yan B. Crossing Biological Barriers by Engineered Nanoparticles. Chem Res Toxicol 2020; 33:1055-1060. [PMID: 32223181 DOI: 10.1021/acs.chemrestox.9b00483] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Engineered nanoparticles (ENPs) may cause toxicity if they cross various biological barriers and are accumulated in vital organs. Which factors affect barrier crossing efficiency of ENPs are crucial to understand. Here, we present strong data showing that various nanoparticles crossed biological barriers to enter vital animal organs and cause toxicity. We also point out that physicochemical properties of ENPs, modifications of ENPs in biofluid, and physiological and pathological conditions of the body all affect barrier crossing efficiency. We also summarized our limited understanding of the related mechanisms. On the basis of this summary, major research gaps and direction of further efforts are then discussed.
Collapse
Affiliation(s)
- Jianbo Jia
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Zengjin Wang
- School of Public Health, Shandong University, Jinan 250100, China
| | - Tongtao Yue
- Center for Bioengineering and Biotechnology, State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Chuanfeng Teng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China.,School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
38
|
Staroń A, Długosz O, Pulit-Prociak J, Banach M. Analysis of the Exposure of Organisms to the Action of Nanomaterials. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E349. [PMID: 31940903 PMCID: PMC7014467 DOI: 10.3390/ma13020349] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 12/25/2022]
Abstract
The rapid development of the production of materials containing metal nanoparticles and metal oxides is a potential risk to the environment. The degree of exposure of organisms to nanoparticles increases from year to year, and its effects are not fully known. This is due to the fact that the range of nanoparticle interactions on cells, tissues and the environment requires careful analysis. It is necessary to develop methods for testing the properties of nanomaterials and the mechanisms of their impact on individual cells as well as on entire organisms. The particular need to raise public awareness of the main sources of exposure to nanoparticles should also be highlighted. This paper presents the main sources and possible routes of exposure to metal nanoparticles and metal oxides. Key elements of research on the impact of nanoparticles on organisms, that is, in vitro tests, in vivo tests and methods of detection of nanoparticles in organisms, are presented.
Collapse
Affiliation(s)
| | | | | | - Marcin Banach
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland; (A.S.); (O.D.); (J.P.-P.)
| |
Collapse
|
39
|
Krishnan V, Mitragotri S. Nanoparticles for topical drug delivery: Potential for skin cancer treatment. Adv Drug Deliv Rev 2020; 153:87-108. [PMID: 32497707 DOI: 10.1016/j.addr.2020.05.011] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Nanoparticles offer new opportunities for the treatment of skin diseases. The barrier function of the skin poses a significant challenge for nanoparticles to permeate into the tissue, although the barrier is partially compromised in case of injury or inflammation, as in the case of skin cancer. This may facilitate the penetration of nanoparticles. Extensive research has gone into developing nanoparticles for topical delivery; however, relatively little progress has been made in translating them to the clinic for treating skin cancers. We summarize the types of skin cancers and practices in current clinical management. The review provides a comprehensive outlook of the various nanoparticle technologies tested for topical therapy of skin cancers and summarizes the obstacles that impede its progress from the bench-to-bedside. The review also aims to provide an understanding of the pathways that govern nanoparticle penetration into the skin and a critical analysis of the approaches used to study nanoparticle interactions within the tissue.
Collapse
Affiliation(s)
- Vinu Krishnan
- John A. Paulson School of Engineering & Applied Sciences Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, United States of America
| | - Samir Mitragotri
- John A. Paulson School of Engineering & Applied Sciences Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, United States of America.
| |
Collapse
|
40
|
Eid AM, Istateyeh I, Salhi N, Istateyeh T. Antibacterial Activity of Fusidic Acid and Sodium Fusidate Nanoparticles Incorporated in Pine Oil Nanoemulgel. Int J Nanomedicine 2019; 14:9411-9421. [PMID: 31819440 PMCID: PMC6898994 DOI: 10.2147/ijn.s229557] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/06/2019] [Indexed: 01/18/2023] Open
Abstract
Purpose Fusidic acid (FA) and sodium fusidate (SF) have problems in their skin penetration and stability resulting in a reduction in their potency; therefore, the objective of this study was to develop FA and SF nanoemulgels to improve the antibacterial activity of the drugs. Methods FA and SF nanoemulgel formulations were prepared by the incorporation of FA and SF nanoemulsions with Carbopol hydrogel. First, the drugs were screened for their solubility in different oils and surfactants to choose the suitable oil and surfactants for the drugs, and then the drug nanoemulsion formulations were prepared by a self-nanoemulsifying technique using Tween 80, Span 20 and pine oil. The drug nanoemulgels were evaluated for their particle size, polydispersity index (PDI), rheological behaviour, drug release and anti-microbial activity. Results Based on the solubility test, pine oil was the best solubilising oil for both drugs, Tween 80 and Span 20 showed the highest solubilising ability for both the drugs among the surfactants; therefore, they were chosen as surfactant and co-surfactant, respectively. The optimum self-nanoemulsifying formulations showed a particle size for fusidic acid and Sodium fusidate of 140.58 nm and 151.86 nm respectively, and both showed a low PDI below 0.3. After incorporating both drug SNEDDS formulations with Carbopol at different concentrations, the results of the drugs particle size and PDI showed no significant difference. The zeta potential results for both drugs nanoemulgels showed a negative potential with more than 30 mV. All nanoemulgel formulations showed pseudo-plastic behaviour with the highest release pattern at 0.4% Carbopol. The antibacterial activity of both drug nanoemulgel formulations showed superiority over the market product. Conclusion Nanoemulgel is a promising delivery system for FA and SF that helps in improving the stability and antibacterial activities of the drugs.
Collapse
Affiliation(s)
- Ahmad M Eid
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Ibraheem Istateyeh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Noura Salhi
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Thaer Istateyeh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
41
|
Kim HS, Kwon HK, Lee DH, Le TN, Park HJ, Kim MI. Poly(γ-Glutamic Acid)/Chitosan Hydrogel Nanoparticles For Effective Preservation And Delivery Of Fermented Herbal Extract For Enlarging Hair Bulb And Enhancing Hair Growth. Int J Nanomedicine 2019; 14:8409-8419. [PMID: 31695374 PMCID: PMC6816081 DOI: 10.2147/ijn.s227514] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
Introduction Hair growth-promoting herbal extract mixtures (4HGF) exhibits significant anti-inflammatory activities relevant to promoting hair growth; however, its efficacy in patients with hair loss has been limited majorly due to its low penetration ability into hair follicles. Herein, we prepared hydrogels via dropwise addition of poly(γ-glutamic acid) (PGA) solution containing 4HGF into chitosan (CS) solution, resulting in quick formation of ~400 nm-sized hydrogel particles through electrostatic interaction-derived ionic gelation with over 50% encapsulation efficiency of 4HGF (PGA-4HGF). Methods The size and morphology of PGA-4HGF were characterized by TEM, SEM, and dynamic light scattering analyses. Encapsulation efficiency and loading capacity of 4HGF within PGA-4HGF, as well as in vitro release profiles were determined by simply measuring the characteristic absorbance of 4HGF. Penetrating efficiency of PGA-4HGF was evaluated by tracking the respective fluorescence through model porcine skin with confocal laser microscope system. By treating PGA-4HGF on telogenic mice and dermal papilla cells (DPCs), we evaluated the size of hair bulbs in mice, as well as morphological changes in DPCs. Results Negligible and sustained release of entrapped 4HGF from the hydrogel nanoparticles were observed under acidic and physiological pH conditions, respectively, which is quite advantageous to control their release and prolong their hair growth-promoting effect. The hydrogel nanoparticles were penetrable through the porcine skin after incubation with or without shaking. After treating telogenic mice and DPCs with PGA-4HGF, we detected enlargement of hair bulbs and remarkable shape changes, respectively, thereby showing its potential in induction of hair growth. Conclusion These results suggest that the hydrogel nanoparticle formulation developed in this study can be employed as a potential approach for the preservation of hair growth-promoting compounds, their delivery of into hair follicles, and enhancing hair growth.
Collapse
Affiliation(s)
- Hye Su Kim
- Department of BioNano Technology, Gachon University, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Ha-Kyoung Kwon
- Department of Food Science and Biotechnology, Gachon University, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Dong Hoon Lee
- Department of BioNano Technology, Gachon University, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Thao Nguyen Le
- Department of BioNano Technology, Gachon University, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Hye-Jin Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Moon Il Kim
- Department of BioNano Technology, Gachon University, Seongnam, Gyeonggi 13120, Republic of Korea
| |
Collapse
|
42
|
Abo‐zeid Y, Williams GR. The potential anti‐infective applications of metal oxide nanoparticles: A systematic review. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1592. [DOI: 10.1002/wnan.1592] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/01/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Yasmin Abo‐zeid
- School of Pharmacy Helwan University Cairo Egypt
- UCL School of Pharmacy University College London London UK
| | | |
Collapse
|
43
|
Hydrophobic silver nanoparticles interacting with phospholipids and stratum corneum mimic membranes in Langmuir monolayers. J Colloid Interface Sci 2019; 543:247-255. [DOI: 10.1016/j.jcis.2019.02.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 12/16/2022]
|
44
|
Thipperudrappa J, Raghavendra UP, Deepa HR, Basanagouda M. Modification of Spectral Behavior of Ketocyanine Dyes by Silver Nanoparticles of Different Sizes. INTERNATIONAL JOURNAL OF NANOSCIENCE 2019. [DOI: 10.1142/s0219581x18500229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The spectral behavior of two ketocyanine dyes 2,5-di[(E)-1-(4-dimethylaminophenyl) methylidine]-1-cyclopentanone(2,5-DMAPMC) and 2,5-di[(E)-1-(4-diethylaminophenyl) methylidine]-1-cyclopentanone (2,5-DEAPMC) is investigated in the presence of silver nanoparticles (AgNPs) of sizes 32[Formula: see text]nm, 52[Formula: see text]nm and 60[Formula: see text]nm using absorption and fluorescence spectroscopy. The absorption spectral changes of dyes with the addition of AgNPs of different sizes suggest their possible interaction with AgNPs. Fluorescence quenching has been observed for both the dyes with the addition of AgNPs of all the sizes. The possible quenching mechanisms including energy transfer and electron transfer are discussed. The fluorescence quenching rate parameter is found to increase with increase in the size of AgNPs and is explained based on the varying ability of silver AgNPs of different sizes to accommodate dye molecules. The effect of functional groups on quenching rate parameters is also discussed.
Collapse
Affiliation(s)
- J. Thipperudrappa
- Department of Physics, BNM Institute of Technology, Bangalore 560070, Karnataka, India
| | - U. P. Raghavendra
- Department of Physics, Bangalore Institute of Technology, Bangalore 560004, Karnataka, India
| | - H. R. Deepa
- Department of Physics, BNM Institute of Technology, Bangalore 560070, Karnataka, India
| | - Mahantesha Basanagouda
- P. G. Department of Chemistry, K. L. E. Society’s P. C. Jabin College, Hubli 580031, Karnataka, India
| |
Collapse
|
45
|
Aditya A, Chattopadhyay S, Gupta N, Alam S, Veedu AP, Pal M, Singh A, Santhiya D, Ansari KM, Ganguli M. ZnO Nanoparticles Modified with an Amphipathic Peptide Show Improved Photoprotection in Skin. ACS APPLIED MATERIALS & INTERFACES 2019; 11:56-72. [PMID: 30507150 DOI: 10.1021/acsami.8b08431] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
ZnO nanoparticles of different sizes were functionalized with an amphipathic peptide, and its effect on nanoparticle stabilization and UV photoprotective activity was studied in this article. The peptide-modified nanoparticles exhibited lower aggregation, significant reduction in Zn2+ leaching in vitro and even inside the cells for smaller particle sizes, reduced photocatalytic activity, and reduced cellular toxicity under UV-B treated conditions. In addition, the peptide-modified 60 nm ZnO nanoparticles showed lower genotoxicity, lower oxidative stress induction levels, less DNA damage responses, and less immunogenic potential than the bare counterparts in the presence of UV-B rays. They localized more in the stratum corneum and epidermis ex vivo, indicating better retention in epidermis, and demonstrated improved UV-B protection and/or skin integrity in SKH-1 mice in vivo compared to unmodified nanoparticles and commercial UV-protective agents tested. To our knowledge, this is the first report on the application of peptide-modified ZnO nanoparticles for improved photoprotection.
Collapse
Affiliation(s)
- Anusha Aditya
- CSIR - Institute of Genomics and Integrative Biology , Mathura Road , New Delhi 110025 , India
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan, 2 Rafi Marg , New Delhi 110001 , India
| | | | - Nidhi Gupta
- Department of Applied Chemistry and Polymer Technology , Delhi Technological University , New Delhi 110042 , India
| | - Shamshad Alam
- CSIR - Indian Institute of Toxicology Research , Post Box No. 80, Mahatma Gandhi Marg , Lucknow , Uttar Pradesh 226001 , India
| | - Archana Palillam Veedu
- CSIR - Institute of Genomics and Integrative Biology , Mathura Road , New Delhi 110025 , India
| | - Mrinmoy Pal
- CSIR - Institute of Genomics and Integrative Biology , Mathura Road , New Delhi 110025 , India
| | - Archana Singh
- CSIR - Institute of Genomics and Integrative Biology , Mathura Road , New Delhi 110025 , India
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan, 2 Rafi Marg , New Delhi 110001 , India
| | - Deenan Santhiya
- Department of Applied Chemistry and Polymer Technology , Delhi Technological University , New Delhi 110042 , India
| | - Kausar M Ansari
- CSIR - Indian Institute of Toxicology Research , Post Box No. 80, Mahatma Gandhi Marg , Lucknow , Uttar Pradesh 226001 , India
| | - Munia Ganguli
- CSIR - Institute of Genomics and Integrative Biology , Mathura Road , New Delhi 110025 , India
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan, 2 Rafi Marg , New Delhi 110001 , India
| |
Collapse
|
46
|
Gubala V, Johnston LJ, Krug HF, Moore CJ, Ober CK, Schwenk M, Vert M. Engineered nanomaterials and human health: Part 2. Applications and nanotoxicology (IUPAC Technical Report). PURE APPL CHEM 2018. [DOI: 10.1515/pac-2017-0102] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
AbstractResearch on engineered nanomaterials (ENM) has progressed rapidly from the very early stages of studying their unique, size-dependent physicochemical properties and commercial exploration to the development of products that influence our everyday lives. We have previously reviewed various methods for synthesis, surface functionalization, and analytical characterization of ENM in a publication titled ‘Engineered Nanomaterials: Preparation, Functionalization and Characterization’. In this second, inter-linked document, we first provide an overview of important applications of ENM in products relevant to human healthcare and consumer goods, such as food, textiles, and cosmetics. We then highlight the challenges for the design and development of new ENM for bio-applications, particularly in the rapidly developing nanomedicine sector. The second part of this document is dedicated to nanotoxicology studies of ENM in consumer products. We describe the various biological targets where toxicity may occur, summarize the four nanotoxicology principles, and discuss the need for careful consideration of the biodistribution, degradation, and elimination routes of nanosized materials before they can be safely used. Finally, we review expert opinions on the risk, regulation, and ethical aspects of using engineered nanomaterials in applications that may have direct or indirect impact on human health or our environment.
Collapse
|
47
|
Cao Y, Gong Y, Liao W, Luo Y, Wu C, Wang M, Yang Q. A review of cardiovascular toxicity of TiO 2, ZnO and Ag nanoparticles (NPs). Biometals 2018; 31:457-476. [PMID: 29748744 DOI: 10.1007/s10534-018-0113-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/04/2018] [Indexed: 12/22/2022]
Abstract
To ensure the safe use of nanoparticles (NPs) in modern society, it is necessary and urgent to assess the potential toxicity of NPs. Cardiovascular system is required for the systemic distribution of NPs entering circulation. Therefore, the adverse cardiovascular effects of NPs have gained extensive research interests. Metal based NPs, such as TiO2, ZnO and Ag NPs, are among the most popular NPs found in commercially available products. They may also have potential applications in biomedicine, which could increase their contact with cardiovascular systems. This review aimed at providing an overview about the adverse cardiovascular effects of TiO2, ZnO and Ag NPs. We discussed about the bio-distribution of NPs following different exposure routes. We also discussed about the cardiovascular toxicity of TiO2, ZnO and Ag NPs as assessed by in vivo and in vitro models. The possible mechanisms and contribution of physicochemical properties of metal based NPs were also discussed.
Collapse
Affiliation(s)
- Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, No. 1023 South Shatai Road, Guangzhou, 510515, People's Republic of China.
| | - Yu Gong
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Wenzhen Liao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, No. 1023 South Shatai Road, Guangzhou, 510515, People's Republic of China.
| | - Yunfeng Luo
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Chaohua Wu
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Maolin Wang
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Qianyu Yang
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| |
Collapse
|
48
|
Wang M, Lai X, Shao L, Li L. Evaluation of immunoresponses and cytotoxicity from skin exposure to metallic nanoparticles. Int J Nanomedicine 2018; 13:4445-4459. [PMID: 30122919 PMCID: PMC6078075 DOI: 10.2147/ijn.s170745] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nanotechnology is an interdisciplinary science that has developed rapidly in recent years. Metallic nanoparticles (NPs) are increasingly utilized in dermatology and cosmetology, because of their unique properties. However, skin exposure to NPs raises concerns regarding their transdermal toxicity. The tight junctions of epithelial cells form the skin barrier, which protects the host against external substances. Recent studies have found that NPs can pass through the skin barrier into deeper layers, indicating that skin exposure is a means for NPs to enter the body. The distribution and interaction of NPs with skin cells may cause toxic side effects. In this review, possible penetration pathways and related toxicity mechanisms are discussed. The limitations of current experimental methods on the penetration and toxic effects of metallic NPs are also described. This review contributes to a better understanding of the risks of topically applied metallic NPs and provides a foundation for future studies.
Collapse
Affiliation(s)
- Menglei Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China,
| | - Xuan Lai
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Longquan Shao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Li Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China,
| |
Collapse
|
49
|
Mahmoud NN, Harfouche M, Alkilany AM, Al-Bakri AG, El-Qirem RA, Shraim SA, Khalil EA. Synchrotron-based X-ray fluorescence study of gold nanorods and skin elements distribution into excised human skin layers. Colloids Surf B Biointerfaces 2018; 165:118-126. [DOI: 10.1016/j.colsurfb.2018.02.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/21/2018] [Accepted: 02/11/2018] [Indexed: 02/02/2023]
|
50
|
Bourquin J, Milosevic A, Hauser D, Lehner R, Blank F, Petri-Fink A, Rothen-Rutishauser B. Biodistribution, Clearance, and Long-Term Fate of Clinically Relevant Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704307. [PMID: 29389049 DOI: 10.1002/adma.201704307] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/20/2017] [Indexed: 05/18/2023]
Abstract
Realization of the immense potential of nanomaterials for biomedical applications will require a thorough understanding of how they interact with cells, tissues, and organs. There is evidence that, depending on their physicochemical properties and subsequent interactions, nanomaterials are indeed taken up by cells. However, the subsequent release and/or intracellular degradation of the materials, transfer to other cells, and/or translocation across tissue barriers are still poorly understood. The involvement of these cellular clearance mechanisms strongly influences the long-term fate of used nanomaterials, especially if one also considers repeated exposure. Several nanomaterials, such as liposomes and iron oxide, gold, or silica nanoparticles, are already approved by the American Food and Drug Administration for clinical trials; however, there is still a huge gap of knowledge concerning their fate in the body. Herein, clinically relevant nanomaterials, their possible modes of exposure, as well as the biological barriers they must overcome to be effective are reviewed. Furthermore, the biodistribution and kinetics of nanomaterials and their modes of clearance are discussed, knowledge of the long-term fates of a selection of nanomaterials is summarized, and the critical points that must be considered for future research are addressed.
Collapse
Affiliation(s)
- Joël Bourquin
- Adolphe Merkle InstituteUniversity of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Ana Milosevic
- Adolphe Merkle InstituteUniversity of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Daniel Hauser
- Adolphe Merkle InstituteUniversity of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Roman Lehner
- Adolphe Merkle InstituteUniversity of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Fabian Blank
- Respiratory Medicine, Department of Biomedical Research, University of Bern, Murtenstrasse 50, 3008, Bern
| | - Alke Petri-Fink
- Adolphe Merkle InstituteUniversity of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | | |
Collapse
|