1
|
Bina F, Bani F, Khalilzadeh B, Gheit T, Karimi A. Advancements in fluorescent nanobiosensors for HPV detection: from integrating nanomaterials to DNA nanotechnology. Int J Biol Macromol 2025; 311:143619. [PMID: 40306516 DOI: 10.1016/j.ijbiomac.2025.143619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/19/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Human papillomavirus (HPV) is a leading cause of cervical cancer and other malignancies, necessitating the development of highly sensitive and specific detection tools. This review explores recent advancements in fluorescent nanobiosensors (FNBS) for HPV detection, focusing on the integration of nanomaterials and DNA nanotechnology, highlighting their contributions to improving sensitivity, specificity, and point-of-care (POC) usability. The review critically evaluates a range of nanomaterial-based FNBS, including those employing quantum and carbon dots, nanoclusters, nanosheets, and nanoparticles, discussing their underlying signal amplification mechanisms, target recognition strategies, and limitations related to toxicity, stability, and reproducibility. Furthermore, it examines the application of diverse DNA nanotechnology, such as DNA origami, DNAzyme, catalytic hairpin assembly (CHA), hybridization chain reaction (HCR), and DNA hydrogel in improving FNBS performance. It also addresses the current challenges in clinical translation, emphasizing the necessity for large-scale production methods and thorough clinical validation to ensure biosafety. It also outlines the potential of innovative technologies, such as CRISPR-Cas-based diagnostics and artificial intelligence, to further revolutionize HPV detection and enable accessible, cost-effective screening, particularly in resource-limited settings. This review provides a valuable resource for researchers and clinicians seeking to develop next-generation FNBS for improved HPV diagnostics and cervical cancer prevention.
Collapse
Affiliation(s)
- Fateme Bina
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Bani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tarik Gheit
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), Lyon, France.
| | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
He Z, Zheng X, Liu R, Zhao K, Mao D, Zhang L, Wan R, Zhang H, Wang X. Recent Advances in HPV Detection: From Traditional Methods to Nanotechnology and the Application of Quantum Dots. Int J Nanomedicine 2025; 20:6333-6356. [PMID: 40420910 PMCID: PMC12104828 DOI: 10.2147/ijn.s524518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 05/02/2025] [Indexed: 05/28/2025] Open
Abstract
Cervical cancer, a significant public health concern, demands precise and expeditious detection methods to curb the spread of human papillomavirus (HPV). The early detection of cervical cancer remains a critical challenge in developing reliable and efficient screening tools to meet the demand for controlling cervical cancer. Traditional detection techniques are often cumbersome, costly, and inadequate for on-site HPV testing. Nanotechnology, with its unique electrical, chemical, and optical properties, has emerged as a pivotal component in the development of biosensors for rapid and reliable HPV detection. This article provides a comprehensive review of the advancements in cervical cancer detection, encompassing traditional methods, emerging protocols, and novel quantum dots (QDs)-based approaches for detection. The review examines the application of various nanomaterials in electrochemical and photoelectrochemical biosensors for the diagnosis of cervical cancer, with these innovations offering a significant improvement over conventional approach. Furthermore, we detail the synthesis methods of QDs and their properties, illustrate the substantial enhancement in sensor performance achieved through their applications, and elucidate the improvements and challenges associated with these new protocols while highlighting the potential application prospects of novel QDs technology in HPV detection.
Collapse
Affiliation(s)
- Zhenglin He
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, People’s Republic of China
| | - Xuepeng Zheng
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, People’s Republic of China
| | - Ruiqi Liu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, People’s Republic of China
| | - Kai Zhao
- School of Engineering & Applied Science, Yale University, New Haven, CT, 06520, USA
- School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Dezhi Mao
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| | - Lingkai Zhang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| | - Runshan Wan
- College of Chemistry, Jilin University, Changchun, 130012, People’s Republic of China
| | - Hongyang Zhang
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, People’s Republic of China
| | - Xue Wang
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, People’s Republic of China
- Department of Clinical Nutrition and Toxicology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| |
Collapse
|
3
|
Sokolov I. Ultrabright fluorescent particles via physical encapsulation of fluorescent dyes in mesoporous silica: a mini-review. NANOSCALE 2024; 16:10994-11004. [PMID: 38771589 PMCID: PMC11559554 DOI: 10.1039/d4nr00800f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Harnessing the power of mesoporous silica to encapsulate organic fluorescent dyes has led to the creation of an extraordinary class of nanocomposite photonic materials. These materials stand out for their ability to produce the brightest fluorescent particles known today, surpassing even the luminosity of quantum dots of similar spectrum and size. The synthesis of these materials offers precise control over the shape and size of the particles, ranging from the nano to the multi-micron scale. Just physical encapsulation of the dyes opens new possibilities for mixing different dyes within individual particles, paving the way for nearly limitless multiplexing capabilities. Moreover, this approach lays the groundwork for the development of highly sensitive sensors capable of detecting subtle changes in temperature and acidity at the nanoscale, among other parameters. This mini-review highlights the mechanism of synthesis, explains the nature of ultrabrightness, and describes the recent advancements and future prospects in the field of ultrabright fluorescent mesoporous silica particles, showcasing their potential for various applications.
Collapse
Affiliation(s)
- Igor Sokolov
- Department of Mechanical Engineering, Tufts University, Medford, Massachusetts, USA.
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
- Department of Physics, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
4
|
Keyvani V, Mollazadeh S, Riahi E, Mahmoudian RA, Anvari K, Avan A. Nanotechnological Advances in the Diagnosis of Gynecological Cancers and Nanotheranostics. Curr Pharm Des 2024; 30:2619-2630. [PMID: 39021196 DOI: 10.2174/0113816128317605240628063731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024]
Abstract
Gynecological cancers are one of the main causes of female mortality worldwide. Despite the various strategies to reduce mortality and improve quality of life, there are still many deficiencies in the diagnosis and treatment of gynecological cancers. One of the important steps to ensure optimal cancer treatment is the early detection of cancer cells and the use of drugs to reduce toxicity. Due to the increase in systemic toxicity and resistance to traditional and conventional diagnostic methods, new strategies, including nanotechnology, are being used to improve diagnosis and reduce the severity of the disease. Nanoparticles (NPs) provide exciting opportunities to improve Gynecological Cancers (GCs) diagnosis, particularly in the initial stages. In biomedical investigations and clinical settings, NPs can be used to increase the sensitivity and specificity of recognition and/or imaging of GCs with the help of their molecular and cellular processes. To design more efficient diagnostic NPs for gynecological cancer cells or tissues, determining the specific biomarkers is of great importance. NP-based imaging agents are another solution to trace cancer cells. This review highlights the potential of some NP-based diagnostic techniques in GC detection, which could be translated to clinical settings to improve patient care.
Collapse
Affiliation(s)
- Vahideh Keyvani
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Espanta Riahi
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran
- Department of Biology, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | | | - Kazem Anvari
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane 4059, Australia
| |
Collapse
|
5
|
Iraniparast M, Peng B, Sokolov I. Towards the Use of Individual Fluorescent Nanoparticles as Ratiometric Sensors: Spectral Robustness of Ultrabright Nanoporous Silica Nanoparticles. SENSORS (BASEL, SWITZERLAND) 2023; 23:3471. [PMID: 37050530 PMCID: PMC10098630 DOI: 10.3390/s23073471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Here we address an important roadblock that prevents the use of bright fluorescent nanoparticles as individual ratiometric sensors: the possible variation of fluorescence spectra between individual nanoparticles. Ratiometric measurements using florescent dyes have shown their utility in measuring the spatial distribution of temperature, acidity, and concentration of various ions. However, the dyes have a serious limitation in their use as sensors; namely, their fluorescent spectra can change due to interactions with the surrounding dye. Encapsulation of the d, e in a porous material can solve this issue. Recently, we demonstrated the use of ultrabright nanoporous silica nanoparticles (UNSNP) to measure temperature and acidity. The particles have at least two kinds of encapsulated dyes. Ultrahigh brightness of the particles allows measuring of the signal of interest at the single particle level. However, it raises the problem of spectral variation between particles, which is impossible to control at the nanoscale. Here, we study spectral variations between the UNSNP which have two different encapsulated dyes: rhodamine R6G and RB. The dyes can be used to measure temperature. We synthesized these particles using three different ratios of the dyes. We measured the spectra of individual nanoparticles and compared them with simulations. We observed a rather small variation of fluorescence spectra between individual UNSNP, and the spectra were in very good agreement with the results of our simulations. Thus, one can conclude that individual UNSNP can be used as effective ratiometric sensors.
Collapse
Affiliation(s)
- Mahshid Iraniparast
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA
| | - Berney Peng
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA
| | - Igor Sokolov
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA
- Department of Physics, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
6
|
Hegde YM, Theivendren P, Srinivas G, Palanivel M, Shanmugam N, Kunjiappan S, Vellaichamy S, Gopal M, Dharmalingam SR. A Recent Advancement in Nanotechnology Approaches for the Treatment of Cervical Cancer. Anticancer Agents Med Chem 2023; 23:37-59. [PMID: 35570521 DOI: 10.2174/1871520622666220513160706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/05/2022] [Accepted: 03/17/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Cervical cancer is one of the leading causes of female death, with a mortality rate of over 200,000 per year in developing countries. Despite a decrease in cervical cancer occurrences in developed countries over the last decade, the frequency of the disease in developing nations continues to rise at an alarming rate, particularly when it is linked to the human papillomavirus (HPV). With just a few highly invasive conventional therapies available, there is a clear need for novel treatment options such as nanotechnology-based chemotherapeutic drug delivery. METHODS Traditional anticancer therapy is limited by poor drug potency, non-specificity, unwanted side effects, and the development of multiple drug resistance (MDR), leading to a decrease in long-term anticancer therapeutic efficacy. An ideal cancer therapy requires a personalized and specialized medication delivery method capable of eradicating even the last cancer cell responsible for disease recurrence. RESULTS Nanotechnology provides effective drug delivery mechanisms, allowing it to serve both therapeutic and diagnostic purposes. Nanotechnology-based formulations are widely used to accurately target the target organ, maintain drug load bioactivity, preferentially accumulate the drug at the target location, and reduce cytotoxicity. CONCLUSION The key benefits of this drug delivery are that it improves pharmacological activity, solubility, and bioavailability and reduces toxicity in the target tissue by targeting ligands, allowing for new innovative treatment methods in an area that is desperately required. The goal of this review is to highlight possible research on nanotechnologybased delivery systems for cancer detection and treatment.
Collapse
Affiliation(s)
- Yashoda Mariappa Hegde
- Department of Pharmaceutics, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| | - Panneerselvam Theivendren
- Department of Pharmaceutical Chemistry, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| | - Geetha Srinivas
- Department of Pharmaceutics, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| | - Monashilpa Palanivel
- Department of Pharmaceutics, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| | - Nivetha Shanmugam
- Department of Pharmaceutics, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil-626126, India
| | - Sivakumar Vellaichamy
- Department of Pharmaceutics, Arulmigu Kalasalingam College of Pharmacy, Krishnankoil-626126, India
| | - Murugananthan Gopal
- Department of Pharmacognosy, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| | - Senthil Rajan Dharmalingam
- Department of Pharmaceutics, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| |
Collapse
|
7
|
Zhou X, Lian H, Li H, Fan M, Xu W, Jin Y. Nanotechnology in cervical cancer immunotherapy: Therapeutic vaccines and adoptive cell therapy. Front Pharmacol 2022; 13:1065793. [PMID: 36588709 PMCID: PMC9802678 DOI: 10.3389/fphar.2022.1065793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Immunotherapy is an emerging method for the treatment of cervical cancer and is more effective than surgery and radiotherapy, especially for recurrent cervical cancer. However, immunotherapy is limited by adverse effects in clinical practice. In recent years, nanotechnology has been widely used for tumor diagnosis, drug delivery, and targeted therapy. In the setting of cervical cancer, nanotechnology can be used to actively or passively target immunotherapeutic agents to tumor sites, thereby enhancing local drug delivery, reducing drug adverse effects, achieving immunomodulation, improving the tumor immune microenvironment, and optimizing treatment efficacy. In this review, we highlight the current status of therapeutic vaccines and adoptive cell therapy in cervical cancer immunotherapy, as well as the application of lipid carriers, polymeric nanoparticles, inorganic nanoparticles, and exosomes in this context.
Collapse
Affiliation(s)
- Xuyan Zhou
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Haiying Lian
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Hongpeng Li
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Meiling Fan
- Gynecology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Meiling Fan, ; Wei Xu, ; Ye Jin,
| | - Wei Xu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Meiling Fan, ; Wei Xu, ; Ye Jin,
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Meiling Fan, ; Wei Xu, ; Ye Jin,
| |
Collapse
|
8
|
Fluorescent silica nanoparticles as an internal marker in fruit flies and their effects on survivorship and fertility. Sci Rep 2022; 12:19745. [PMID: 36396856 PMCID: PMC9671903 DOI: 10.1038/s41598-022-24301-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Tracking and differentiating small insects at the individual levels requires appropriate marking materials because of their small size. This study proposes and investigates the use of fluorescent silica nanoparticles (FSNPs) as an internal marker owing to their good optical properties and biocompatibility. FSNPs were prepared using the water-in-oil reverse microemulsion technique with Rubpy dye as a fluorophore. The obtained particles were spherical, monodispersed in nanosize and exhibited bright orange luminescence under ultraviolet (UV) light. Internal marking was accomplished in fruit flies (Drosophila melanogaster) through feeding. The result shows that the fruit flies exhibit bright luminescence in their abdomen when exposed to UV light. The marking persistence duration of FSNPs in the fruit fly bodies is longer than those of other fluorescent dyes. Fruit flies fed with FSNPs have a longer lifespan than those fed with Rubpy dye. There was no difference in fertility and negative geotaxis response among the treatment and control groups. These findings demonstrate that FSNPs can be used as an internal marker in fruit flies, and are possibly applied with other small insects with a translucent abdomen.
Collapse
|
9
|
Ghaleh HEG, Shahriary A, Izadi M, Farzanehpour M. Advances in early diagnosis of cervical cancer based on biosensors. Biotechnol Bioeng 2022; 119:2305-2312. [DOI: 10.1002/bit.28149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 11/07/2022]
Affiliation(s)
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems biology and poisonings instituteBaqiyatallah University of Medical SciencesTehranIran
| | - Morteza Izadi
- Health Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Mahdieh Farzanehpour
- Applied Virology Research CenterBaqiyatallah University of Medical sciencesTehranIran
| |
Collapse
|
10
|
Rastegari E, Hsiao YJ, Lai WY, Lai YH, Yang TC, Chen SJ, Huang PI, Chiou SH, Mou CY, Chien Y. An Update on Mesoporous Silica Nanoparticle Applications in Nanomedicine. Pharmaceutics 2021; 13:1067. [PMID: 34371758 PMCID: PMC8309088 DOI: 10.3390/pharmaceutics13071067] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 01/09/2023] Open
Abstract
The efficient and safe delivery of therapeutic drugs, proteins, and nucleic acids are essential for meaningful therapeutic benefits. The field of nanomedicine shows promising implications in the development of therapeutics by delivering diagnostic and therapeutic compounds. Nanomedicine development has led to significant advances in the design and engineering of nanocarrier systems with supra-molecular structures. Smart mesoporous silica nanoparticles (MSNs), with excellent biocompatibility, tunable physicochemical properties, and site-specific functionalization, offer efficient and high loading capacity as well as robust and targeted delivery of a variety of payloads in a controlled fashion. Such unique nanocarriers should have great potential for challenging biomedical applications, such as tissue engineering, bioimaging techniques, stem cell research, and cancer therapies. However, in vivo applications of these nanocarriers should be further validated before clinical translation. To this end, this review begins with a brief introduction of MSNs properties, targeted drug delivery, and controlled release with a particular emphasis on their most recent diagnostic and therapeutic applications.
Collapse
Grants
- MOST 108-2320-B-010 -019 -MY3; MOST 109-2327-B-010-007 Ministry of Science and Technology
- MOHW108-TDU-B-211-133001, MOHW109-TDU-B-211-114001 Ministry of Health and Welfare
- VN109-16 VGH, NTUH Joint Research Program
- VTA107-V1-5-1, VTA108-V1-5-3, VTA109-V1-4-1 VGH, TSGH, NDMC, AS Joint Research Program
- IBMS-CRC109-P04 AS Clinical Research Center
- the "Cancer Progression Research Center, National Yang-Ming University" from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan the "Cancer Progression Research Center, National Yang-Ming University" from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan
- and the Ministry of Education through the SPROUT Project- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B) of National Chiao Tung University and, Taiwan. and the Ministry of Education through the SPROUT Project- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B) of National Chiao Tung University and, Taiwan.
Collapse
Affiliation(s)
- Elham Rastegari
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Yu-Jer Hsiao
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Yun-Hsien Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Tien-Chun Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Shih-Jen Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Pin-I Huang
- Department of Oncology, Taipei Veterans General Hospital, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| |
Collapse
|
11
|
Pensado-López A, Fernández-Rey J, Reimunde P, Crecente-Campo J, Sánchez L, Torres Andón F. Zebrafish Models for the Safety and Therapeutic Testing of Nanoparticles with a Focus on Macrophages. NANOMATERIALS 2021; 11:nano11071784. [PMID: 34361170 PMCID: PMC8308170 DOI: 10.3390/nano11071784] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022]
Abstract
New nanoparticles and biomaterials are increasingly being used in biomedical research for drug delivery, diagnostic applications, or vaccines, and they are also present in numerous commercial products, in the environment and workplaces. Thus, the evaluation of the safety and possible therapeutic application of these nanomaterials has become of foremost importance for the proper progress of nanotechnology. Due to economical and ethical issues, in vitro and in vivo methods are encouraged for the testing of new compounds and/or nanoparticles, however in vivo models are still needed. In this scenario, zebrafish (Danio rerio) has demonstrated potential for toxicological and pharmacological screenings. Zebrafish presents an innate immune system, from early developmental stages, with conserved macrophage phenotypes and functions with respect to humans. This fact, combined with the transparency of zebrafish, the availability of models with fluorescently labelled macrophages, as well as a broad variety of disease models offers great possibilities for the testing of new nanoparticles. Thus, with a particular focus on macrophage-nanoparticle interaction in vivo, here, we review the studies using zebrafish for toxicological and biodistribution testing of nanoparticles, and also the possibilities for their preclinical evaluation in various diseases, including cancer and autoimmune, neuroinflammatory, and infectious diseases.
Collapse
Affiliation(s)
- Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (J.F.-R.)
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Juan Fernández-Rey
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (J.F.-R.)
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Pedro Reimunde
- Department of Physiotherapy, Medicine and Biomedical Sciences, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain;
- Department of Neurosurgery, Hospital Universitario Lucus Augusti, 27003 Lugo, Spain
| | - José Crecente-Campo
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (J.F.-R.)
- Correspondence: (L.S.); (F.T.A.)
| | - Fernando Torres Andón
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
- Correspondence: (L.S.); (F.T.A.)
| |
Collapse
|
12
|
Pal N, Lee JH, Cho EB. Recent Trends in Morphology-Controlled Synthesis and Application of Mesoporous Silica Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2122. [PMID: 33113856 PMCID: PMC7692592 DOI: 10.3390/nano10112122] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 01/12/2023]
Abstract
The outstanding journey towards the investigation of mesoporous materials commences with the discovery of high surface area porous silica materials, named MCM-41 (Mobil Composition of Matter-41) according to the inventors' name Mobile scientists in the United States. Based on a self-assembled supramolecular templating mechanism, the synthesis of mesoporous silica has extended to wide varieties of silica categories along with versatile applications of all these types in many fields. These silica families have some extraordinary structural features, like highly tunable nanoscale sized pore diameter, good Brunauer-Emmett-Teller (BET) surface areas, good flexibility to accommodate different organic and inorganic functional groups, metals etc., onto their surface. As a consequence, thousands of scientists and researchers throughout the world have reported numerous silica materials in the form of published articles, communication, reviews, etc. Beside this, attention is also given to the morphology-oriented synthesis of silica nanoparticles and their significant effects on the emerging fields of study like catalysis, energy applications, sensing, environmental, and biomedical research. This review highlights a consolidated overview of those morphology-based mesoporous silica particles, emphasizing their syntheses and potential role in many promising fields of research.
Collapse
Affiliation(s)
- Nabanita Pal
- Department of Physics and Chemistry, Mahatma Gandhi Institute of Technology, Gandipet, Hyderabad 500075, India;
| | - Jun-Hyeok Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea;
| | - Eun-Bum Cho
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea;
| |
Collapse
|
13
|
Peerzade SAMA, Makarova N, Sokolov I. Ultrabright Fluorescent Silica Nanoparticles for Multiplexed Detection. NANOMATERIALS 2020; 10:nano10050905. [PMID: 32397124 PMCID: PMC7279313 DOI: 10.3390/nano10050905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 11/16/2022]
Abstract
Fluorescent tagging is a popular method in biomedical research. Using multiple taggants of different but resolvable fluorescent spectra simultaneously (multiplexing), it is possible to obtain more comprehensive and faster information about various biochemical reactions and diseases, for example, in the method of flow cytometry. Here we report on a first demonstration of the synthesis of ultrabright fluorescent silica nanoporous nanoparticles (Star-dots), which have a large number of complex fluorescence spectra suitable for multiplexed applications. The spectra are obtained via simple physical mixing of different commercially available fluorescent dyes in a synthesizing bath. The resulting particles contain dye molecules encapsulated inside of cylindrical nanochannels of the silica matrix. The distance between the dye molecules is sufficiently small to attain Forster resonance energy transfer (FRET) coupling within a portion of the encapsulated dye molecules. As a result, one can have particles of multiple spectra that can be excited with just one wavelength. We show this for the mixing of five, three, and two dyes. Furthermore, the dyes can be mixed inside of particles in different proportions. This brings another dimension in the complexity of the obtained spectra and makes the number of different resolvable spectra practically unlimited. We demonstrate that the spectra obtained by different mixing of just two dyes inside of each particle can be easily distinguished by using a linear decomposition method. As a practical example, the errors of demultiplexing are measured when sets of a hundred particles are used for tagging.
Collapse
Affiliation(s)
| | - Nadezda Makarova
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA;
| | - Igor Sokolov
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA;
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA;
- Department of Physics, Tufts University, Medford, MA 02155, USA
- Correspondence:
| |
Collapse
|
14
|
Qin X, Laroche FFJ, Peerzade SAMA, Lam A, Sokolov I, Feng H. In Vivo Targeting of Xenografted Human Cancer Cells with Functionalized Fluorescent Silica Nanoparticles in Zebrafish. J Vis Exp 2020. [PMID: 32449736 DOI: 10.3791/61187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Developing nanoparticles capable of detecting, targeting, and destroying cancer cells is of great interest in the field of nanomedicine. In vivo animal models are required for bridging the nanotechnology to its biomedical application. The mouse represents the traditional animal model for preclinical testing; however, mice are relatively expensive to keep and have long experimental cycles due to the limited progeny from each mother. The zebrafish has emerged as a powerful model system for developmental and biomedical research, including cancer research. In particular, due to its optical transparency and rapid development, zebrafish embryos are well suited for real-time in vivo monitoring of the behavior of cancer cells and their interactions with their microenvironment. This method was developed to sequentially introduce human cancer cells and functionalized nanoparticles in transparent Casper zebrafish embryos and monitor in vivo recognition and targeting of the cancer cells by nanoparticles in real time. This optimized protocol shows that fluorescently labeled nanoparticles, which are functionalized with folate groups, can specifically recognize and target metastatic human cervical epithelial cancer cells labeled with a different fluorochrome. The recognition and targeting process can occur as early as 30 min postinjection of the nanoparticles tested. The whole experiment only requires the breeding of a few pairs of adult fish and takes less than 4 days to complete. Moreover, zebrafish embryos lack a functional adaptive immune system, allowing the engraftment of a wide range of human cancer cells. Hence, the utility of the protocol described here enables the testing of nanoparticles on various types of human cancer cells, facilitating the selection of optimal nanoparticles in each specific cancer context for future testing in mammals and the clinic.
Collapse
Affiliation(s)
- Xiaodan Qin
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, The Cancer Research Center, Boston University School of Medicine
| | - Fabrice F J Laroche
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, The Cancer Research Center, Boston University School of Medicine
| | | | - Andrew Lam
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, The Cancer Research Center, Boston University School of Medicine
| | - Igor Sokolov
- Department of Biomedical Engineering, Tufts University; Department of Mechanical Engineering, Tufts University; Department of Physics, Tufts University
| | - Hui Feng
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, The Cancer Research Center, Boston University School of Medicine;
| |
Collapse
|
15
|
Peerzade SAMA, Qin X, Laroche FJ, Palantavida S, Dokukin M, Feng H, Sokolov I. Ultrabright fluorescent silica nanoparticles for in vivo targeting of xenografted human tumors and cancer cells in zebrafish. NANOSCALE 2019; 11:22316-22327. [PMID: 31724677 PMCID: PMC7384872 DOI: 10.1039/c9nr06371d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
New ultrabright fluorescent silica nanoparticles capable of the fast targeting of epithelial tumors in vivo are presented. The as-synthesized folate-functionalized ultrabright particles of 30-40 nm are 230 times brighter than quantum dots (QD450) and 50% brighter than the polymer dots with similar spectra (excitation 365 nm and emission 486 nm). To decrease non-specific targeting, particles are coated with polyethylene glycol (PEG). We demonstrate the in vivo targeting of xenographic human cervical epithelial tumors (HeLa cells) using zebrafish as a model system. The particles target tumors (and probably even individual HeLa cells) as small as 10-20 microns within 20-30 minutes after blood injection. To demonstrate the advantages of ultrabrightness, we repeated the experiments with similar but 200× less bright particles. Compared to those, ultrabright particles showed ∼3× faster tumor detection and ∼2× higher relative fluorescent contrast of tumors/cancer cells.
Collapse
Affiliation(s)
| | - Xiaodan Qin
- Departments of Pharmacology and Medicine, The Cancer Research Center, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, USA
| | - Fabrice J.F. Laroche
- Departments of Pharmacology and Medicine, The Cancer Research Center, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, USA
| | - Shajesh Palantavida
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA
| | - Maxim Dokukin
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA
| | - Hui Feng
- Departments of Pharmacology and Medicine, The Cancer Research Center, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, USA
| | - Igor Sokolov
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA
- Department of Physics, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
16
|
Farran B, Montenegro RC, Kasa P, Pavitra E, Huh YS, Han YK, Kamal MA, Nagaraju GP, Rama Raju GS. Folate-conjugated nanovehicles: Strategies for cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110341. [PMID: 31761235 DOI: 10.1016/j.msec.2019.110341] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/02/2019] [Accepted: 10/19/2019] [Indexed: 02/06/2023]
Abstract
Cancer theranostics represents a strategy that aims at combining diagnosis with therapy through the simultaneous imaging and targeted delivery of therapeutics to cancer cells. Recently, the folate receptor alpha has emerged as an attractive theranostic target due to its overexpression in multiple solid tumors and its great functional versatility. In fact, it can be incorporated into folate-conjugated nano-systems for imaging and drug delivery. Hence, it can be used along the line of personalized clinical strategies as both an imaging tool and a delivery method ensuring the selective transport of treatments to tumor cells, thus highlighting its theranostic qualities. In this review, we will explore these theranostic characteristics in detail and assess their clinical potential. We will also discuss the technological advances that have allowed the design of sophisticated folate-based nanocarriers harboring various chemical properties and suited for the transport of various therapeutic agents.
Collapse
Affiliation(s)
- Batoul Farran
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Raquel Carvalho Montenegro
- Biological Science Institute, Federal University of Para, Augusto Correa Avenue, 01 Guamá, Belém, Pará, Brazil
| | - Prameswari Kasa
- Dr. LV Prasad Diagnostics and Research Laboratory, Khairtabad, Hyderabad, AP, 500004, India
| | - Eluri Pavitra
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100, Inha-ro, Incheon, 22212, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100, Inha-ro, Incheon, 22212, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah, 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW, 2770, Australia; Novel Global Community Educational Foundation, Australia
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| |
Collapse
|
17
|
Antineoplastic Biogenic Silver Nanomaterials to Combat Cervical Cancer: A Novel Approach in Cancer Therapeutics. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01697-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
18
|
Masoomi H, Wang Y, Fang X, Wang P, Chen C, Liu K, Gu H, Xu H. Ultrabright dye-loaded spherical polyelectrolyte brushes and their fundamental structure-fluorescence tuning principles. NANOSCALE 2019; 11:14050-14059. [PMID: 31313795 DOI: 10.1039/c9nr02168j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ultrabright fluorescent particles (UFPs) have attracted increasing attention because of their outstanding signal amplification functions. However, there is still an urgent demand for designing novel UFPs with new components or structures as the existing ones can not satisfy the practical requirements due to their inherent disadvantages. Here we propose a novel ultrabright fluorescent particle platform by doping dyes of 5-aminofluorescein (5-AF) into silica core-based spherical poly (acrylic acid) brushes (SiO2@PAA@5-AF) and discuss their fundamental structure-fluorescence tuning principles. A series of brushes with different polymer chain lengths are successfully synthesized and then loaded with 5-AF through chemical binding. The high loading amount, suitable density or distribution, and enhanced quantum yield (QY) of 5-AF due to the amide bond formation with PAA chains on brushes are concluded as the three major reasons for the ultrabrightness of SiO2@PAA@5-AF. Therefore, a 2350 ± 445 times brighter brush particle in comparison to a single quantum dot (QD) is realized, and a 2.1 ± 0.4 times fluorescence improvement of a brush vs. a QD normalized by volume is also achieved when taking the hydrodynamic diameter into consideration (∼300 nm vs. ∼30 nm). Moreover, the excellent tolerance stabilities in normally applied environments and outstanding label effects to form 4-plexed encoded beads are demonstrated as well. The results in this work strongly indicate a promising potential of SiO2@PAA@5-AF as an ultrabright and stable signal amplification tool for biomedical related sensing, labeling, and biodetection.
Collapse
Affiliation(s)
- Hajar Masoomi
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Yao Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Xiaoxia Fang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Peirui Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Cang Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Kai Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Hongchen Gu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Hong Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
19
|
Mahmoodi P, Fani M, Rezayi M, Avan A, Pasdar Z, Karimi E, Amiri IS, Ghayour-Mobarhan M. Early detection of cervical cancer based on high-risk HPV DNA-based genosensors: A systematic review. Biofactors 2019; 45:101-117. [PMID: 30496635 DOI: 10.1002/biof.1465] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/15/2018] [Accepted: 09/23/2018] [Indexed: 12/22/2022]
Abstract
Human papillomavirus type (HPV) is a common cause of sexually transmitted disease (STD) in humans. HPV types 16 and 18 as the highest risk types are related with gynecologic malignancy and cervical cancer (CC) among women worldwide. Recently, considerable development of genosensors, which allows dynamic monitoring of hybridization events for HPV-16 and 18, has been a topic of focus by many researchers. In this systematic review, we highlight the route of development of DNA-based genosensory detection methods for diagnosis of high risk of HPV precancer. Biosensor detection methods of HPV-16 and 18 was investigated from 1994 to 2018 using several databases including PubMed, Cochrane Library, Scopus, Google Scholar, SID, and Scientific Information Database. Manual search of references of retrieved articles were also performed. A total of 50 studies were reviewed. By analyzing the most recent developed electrochemical biosensors for the identification of HPV, we observed that the sensor platform fabricated by Wang et al. holds the lowest detection limit reported in the literature for the DNA of HPV-16. Up to this date, optical, electrochemical, and piezoelectric systems are the main transducers used in the development of biosensors. Among the most sensitive techniques available to study the biorecognition activity of the sensors, we highlight the biosensors based fluorescent, EIS, and QCM. The current systematic review focuses on the sensory diagnostic methods that are being used to detect HPV-16 and 18 worldwide. Special emphasis is given on the sensory techniques that can diagnosis the individuals with CC. © 2018 BioFactors, 45(2):101-117, 2019.
Collapse
Affiliation(s)
- Pegah Mahmoodi
- Department of Biology, Faculty of Science, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mona Fani
- Virology Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Rezayi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Pasdar
- Medical School, University of Aberdeen, Aberdeen, UK
| | - Ehsan Karimi
- Department of Biology, Faculty of Science, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Iraj S Amiri
- Computational Optics Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Majid Ghayour-Mobarhan
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Abstract
The unique features of Mesoporous Silica Nanoparticles (MSNs) provide a suitable platform to carry fluorescence dyes for various bioimaging applications. Several strategies have been developed to conjugate a variety of dyes either in the pores or on the surfaces of MSNs to form the fluorescence MSNs (FMSNs). In this chapter, we will discuss recent research progress and future development of FMSNs for living system imaging. We will first describe different strategies for the fabrications of FMSNs. Then, we will discuss the recent developments of cellular and intracellular imaging including self-probe for the interactions of FMSNs with the cells, receptor and organelle labeling, sensing and tracking of biological system, and monitoring the drug delivery and release processes. Moreover, we will include the applications of FMSNs as contrast agents for in vivo imaging. Finally, we will conclude and highlight the challenges and opportunities for MSNs in medical applications.
Collapse
|
21
|
Lloyd-Parry O, Downing C, Aleisaei E, Jones C, Coward K. Nanomedicine applications in women's health: state of the art. Int J Nanomedicine 2018; 13:1963-1983. [PMID: 29636611 PMCID: PMC5880180 DOI: 10.2147/ijn.s97572] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
State-of-the-art applications of nanomedicine have the potential to revolutionize the diagnosis, prevention, and treatment of a range of conditions and diseases affecting women’s health. In this review, we provide a synopsis of potential applications of nanomedicine in some of the most dominant fields of women’s health: mental health, sexual health, reproductive medicine, oncology, menopause-related conditions and dementia. We explore published studies arising from in vitro and in vivo experiments, and clinical trials where available, to reveal novel and highly promising therapeutic applications of nanomedicine in these fields. For the first time, we summarize the growing body of evidence relating to the use of nanomaterials as experimental tools for the detection, prevention, and treatment of significant diseases and conditions across the life course of a cisgender woman, from puberty to menopause; revealing the far-reaching and desirable theoretical impact of nanomedicine across different medical disciplines. We also present an overview of potential concerns regarding the therapeutic applications of nanomedicine and the factors currently restricting the growth of applied nanomedicine.
Collapse
Affiliation(s)
- Oliver Lloyd-Parry
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| | - Charlotte Downing
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| | - Eisa Aleisaei
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| | - Celine Jones
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| | - Kevin Coward
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| |
Collapse
|
22
|
Palantavida S, Peng B, Sokolov I. Ultrabright fluorescent silica particles with a large number of complex spectra excited with a single wavelength for multiplex applications. NANOSCALE 2017; 9:4881-4890. [PMID: 28177010 DOI: 10.1039/c6nr08976c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report on a novel approach to synthesize ultrabright fluorescent silica particles capable of producing a large number of complex spectra. The spectra can be excited using a single wavelength which is paramount in quantitative fluorescence imaging, flow cytometry and sensing applications. The approach employs the physical encapsulation of organic fluorescent molecules inside a nanoporous silica matrix with no dye leakage. As was recently demonstrated, such an encapsulation allowed for the encapsulation of very high concentrations of organic dyes without quenching their fluorescent efficiency. As a result, dye molecules are distanced within ∼5 nm from each other; it theoretically allows for efficient exchange of excitation energy via Förster resonance energy transfer (FRET). Here we present the first experimental demonstration of the encapsulation of fluorescent dyes in the FRET sequence. Attaining a FRET sequence of up to five different dyes is presented. The number of distinguishable spectra can be further increased by using different relative concentrations of encapsulated dyes. Combining these approaches allows for creating a large number of ultrabright fluorescent particles with substantially different fluorescence spectra. We also demonstrate the utilization of these particles for potential multiplexing applications. Though fluorescence spectra of the obtained multiplex probes are typically overlapping, they can be distinguished by using standard linear decomposition algorithms.
Collapse
Affiliation(s)
- S Palantavida
- Department of Mechanical Engineering, Tufts University, 200 College Ave., Medford, MA 02155, USA.
| | | | | |
Collapse
|
23
|
Lu D, Gai F, Qiao ZA, Wang X, Wang T, Liu Y, Huo Q. Ru(bpy)2(phen-5-NH2)2+ doped ultrabright and photostable fluorescent silica nanoparticles. RSC Adv 2016. [DOI: 10.1039/c6ra02917e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Ru(bpy)2(phen-5-NH2)2+ doped silica nanoparticles with high fluorescence brightness and controllable size are synthesized via reverse microemulsion method by introducing ethanol to reaction system.
Collapse
Affiliation(s)
- Dongdong Lu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Fangyuan Gai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Zhen-An Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Xue Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Tao Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Qisheng Huo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
24
|
Yildirim A, Turkaydin M, Garipcan B, Bayindir M. Cytotoxicity of multifunctional surfactant containing capped mesoporous silica nanoparticles. RSC Adv 2016. [DOI: 10.1039/c5ra21722a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This paper reports the synthesis of silica capped surfactant (CTAB) and dye (Rose Bengal; RB) containing mesoporous silica nanoparticles (MSNs).
Collapse
Affiliation(s)
- Adem Yildirim
- UNAM-National Nanotechnology Research Center
- Bilkent University
- 06800 Ankara
- Turkey
- Institute of Materials Science and Nanotechnology
| | - Muge Turkaydin
- Institute of Biomedical Engineering
- Bogazici University
- 34684 İstanbul
- Turkey
| | - Bora Garipcan
- Institute of Biomedical Engineering
- Bogazici University
- 34684 İstanbul
- Turkey
| | - Mehmet Bayindir
- UNAM-National Nanotechnology Research Center
- Bilkent University
- 06800 Ankara
- Turkey
- Institute of Materials Science and Nanotechnology
| |
Collapse
|
25
|
Chen J, Gu W, Yang L, Chen C, Shao R, Xu K, Xu ZP. Nanotechnology in the management of cervical cancer. Rev Med Virol 2015; 25:72-83. [DOI: 10.1002/rmv.1825] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Jiezhong Chen
- Australian Institute of Bioengineering and Nanotechnology; The University of Queensland; St Lucia QLD Australia
- School of Biomedical Sciences; The University of Queensland; St Lucia QLD Australia
| | - Wenyi Gu
- Australian Institute of Bioengineering and Nanotechnology; The University of Queensland; St Lucia QLD Australia
| | - Lei Yang
- School of Medicine and Health Management; Hangzhou Normal University; Hangzhou Zhejiang China
| | - Chen Chen
- School of Biomedical Sciences; The University of Queensland; St Lucia QLD Australia
| | - Renfu Shao
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering; The University of Sunshine Coast; Maroochydore QLD Australia
| | - Kewei Xu
- School of Medicine; The University of Queensland; St Lucia QLD Australia
| | - Zhi Ping Xu
- Australian Institute of Bioengineering and Nanotechnology; The University of Queensland; St Lucia QLD Australia
| |
Collapse
|
26
|
Palantavida S, Tang R, Sudlow GP, Akers WJ, Achilefu S, Sokolov I. Ultrabright NIR fluorescent mesoporous silica nanoparticles. J Mater Chem B 2014; 2:3107-3114. [PMID: 32261686 DOI: 10.1039/c4tb00287c] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Near-infrared (NIR) water-dispersible fluorescent tags are of big importance for biomedical imaging. Bright, stable, biocompatible NIR fluorescent nanoparticles have great translation potential to improve diagnosis of early stages of different diseases. Here we report on the synthesis of exceptionally bright ("ultrabright") fluorescent meso(nano)porous silica nanoparticles of 28 ± 3 nm in diameter. The NIR fluorescent dye LS277 is encapsulated inside these silica nanoparticles. The wavelengths of the maximum excitation/fluorescence of the particles are 804/815 nm. The absorptivity coefficient of the particles is 2.1 × 108 M-1 cm-1 at 805 nm and the quantum yield of the dye increased by a factor of 5 after encapsulating to 1.5%. The fluorescent brightness of these particles is more than 2000× higher than the fluorescence of one molecule of LS277 in water. When exited in NIR spectral region (>700 nm), these particles are up to 4× brighter than QD800 commercial quantum dots emitting at 800 nm. We demonstrate that the synthesized NIR mesoporous silica nanoparticles easily internalize 4T1luc breast tumor cells, and remain bright for more than 9 weeks whereas the dye is completely bleached by that time.
Collapse
Affiliation(s)
- S Palantavida
- Departments of Mechanical Engineering, Tufts University, Medford, MA 02155, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Palantavida S, Guz NV, Woodworth CD, Sokolov I. Ultrabright fluorescent mesoporous silica nanoparticles for prescreening of cervical cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:1255-62. [PMID: 23665420 DOI: 10.1016/j.nano.2013.04.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/24/2013] [Accepted: 04/28/2013] [Indexed: 01/26/2023]
Abstract
UNLABELLED We report on the first functional use of recently introduced ultrabright fluorescent mesoporous silica nanoparticles, which are functionalized with folic acid, to distinguish cancerous and precancerous cervical epithelial cells from normal cells. The high brightness of the particles is advantageous for fast and reliable identification of both precancerous and cancerous cells. Normal and cancer cells were isolated from three healthy women and three cancer patients. Three precancerous cell lines were derived by immortalization of primary cultures of normal cells with human papillomavirus type-16 (HPV-16) DNA. We observed substantially different particle internalization by normal and cancerous/precancerous cells after a short incubation time of 15 minutes. Compared to HPV-DNA and cell pathology tests, which are currently used for prescreening of cervical cancer, we demonstrated that the specificity of our method was similar (94-95%), whereas its sensitivity was significantly better (95-97%) than the sensitivity of those currently used tests (30-80%). FROM THE CLINICAL EDITOR This team of investigators reports on the development of a new screening test for cervical cancer using ultrabright fluorescent mesoporous silica nanoparticles functionalized with folic acid, enabling significantly better sensitivity (95-97% vs. 30-80%) and maintained specificity (94-95%) compared with current clinical tests. This test should find a way to clinical use in the near future.
Collapse
Affiliation(s)
- Shajesh Palantavida
- Departments of Mechanical and Biomedical Engineering, Tufts University, Medford, MA 01255, USA
| | | | | | | |
Collapse
|