1
|
Beirampour N, Mallandrich M, Bustos-Salgado P, Domínguez-Villegas V, Garrós N, Mohammadi-Meyabadi R, Clares-Naveros B, Romero-Olid MN, Pérez-Cano FJ, Girbal M, Rodríguez-Lagunas MJ, Suñer-Carbó J, Calpena AC. Evaluation of Olive Oil-Based Formulations Loaded with Baricitinib for Topical Treatment of Alopecia Areata. Pharmaceutics 2025; 17:475. [PMID: 40284470 PMCID: PMC12030606 DOI: 10.3390/pharmaceutics17040475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/24/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Alopecia areata is an autoimmune disorder that causes hair loss in clumps about the size and shape of a quarter. The estimated prevalence of the disorder is approximately 1 in 1000 people, with a lifetime risk of approximately 2 percent. One of the systemic therapies for alopecia areata consists of the use of glucocorticoids or immunosuppressants. Methods: Baricitinib (BCT) is a Janus kinase (JAK) 1 and 2 selective inhibitor used as an immunosuppressant drug. In this study, three olive oil BCT formulations (Oil A, Oil B, and Oil C, which differ in their content in squalene, tocopherol, tyrosol, and hydroxytyrosol) have been developed for topical delivery. The formulations were physicochemically characterized and the in vitro drug release and ex vivo permeation through human skin tissues were assessed. Results: The results showed nearly identical viscosity across all three formulations, exhibiting Newtonian behavior. The mathematical modeling used to describe the drug release profiles was the one-site binding hyperbola for all formulations. Oil-based formulations showed a slow BCT penetration into human skin. Skin integrity remained intact during the experiments, with no signs of irritation or alterations observed. In addition, all the formulations proved their efficacy in vivo. Conclusions: Among the formulations, Oil A demonstrated the highest ability retention capacity (Qr = 1875 ± 124.32 ng/cm2) in the skin, making it an excellent candidate for further investigation in the treatment of alopecia areata.
Collapse
Affiliation(s)
- Negar Beirampour
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (N.B.); (M.M.); (P.B.-S.); (N.G.); (R.M.-M.); (J.S.-C.)
| | - Mireia Mallandrich
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (N.B.); (M.M.); (P.B.-S.); (N.G.); (R.M.-M.); (J.S.-C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain;
| | - Paola Bustos-Salgado
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (N.B.); (M.M.); (P.B.-S.); (N.G.); (R.M.-M.); (J.S.-C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain;
| | - Valeri Domínguez-Villegas
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Mexico;
| | - Núria Garrós
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (N.B.); (M.M.); (P.B.-S.); (N.G.); (R.M.-M.); (J.S.-C.)
| | - Roya Mohammadi-Meyabadi
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (N.B.); (M.M.); (P.B.-S.); (N.G.); (R.M.-M.); (J.S.-C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain;
| | - Beatriz Clares-Naveros
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain;
- Departamento Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain
| | - Maria Nuria Romero-Olid
- Departamento de Estomatología, Facultad de Odontología, Universidad de Granada, Colegio Máximo, Campus Universitario de Cartuja s/n, 18071 Granada, Spain;
| | - Francisco J. Pérez-Cano
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (F.J.P.-C.); (M.G.); (M.J.R.-L.)
| | - Marina Girbal
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (F.J.P.-C.); (M.G.); (M.J.R.-L.)
| | - Maria José Rodríguez-Lagunas
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (F.J.P.-C.); (M.G.); (M.J.R.-L.)
| | - Joaquim Suñer-Carbó
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (N.B.); (M.M.); (P.B.-S.); (N.G.); (R.M.-M.); (J.S.-C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain;
| | - Ana Cristina Calpena
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (N.B.); (M.M.); (P.B.-S.); (N.G.); (R.M.-M.); (J.S.-C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain;
| |
Collapse
|
2
|
Sosa L, Espinoza LC, Silva-Abreu M, Jaramillo-Fierro X, Berenguer D, Riera C, Rincón M, Calpena AC. In Vitro Efficacy and Toxicity Assessment of an Amphotericin B Gel for the Treatment of Cutaneous Leishmaniasis. Pharmaceuticals (Basel) 2025; 18:427. [PMID: 40143203 PMCID: PMC11946435 DOI: 10.3390/ph18030427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/01/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Leishmaniasis is a neglected tropical disease caused by a protozoan parasite of Leishmania. This study aimed to evaluate the in vitro efficacy and toxicity of a previously developed amphotericin gel as a possible treatment for cutaneous leishmaniasis. Methods: First, quality control of the AmB-gel was carried out, including microbiological stability. The permeated and retained drug was tested on healthy and lacerated human skin. Tolerance to the AmB-gel was tested in vitro using HaCaT, RAW 264.7, and J774 cell lines and by an irritation test (HET-CAM). Promastigotes and amastigotes of various Leishmania species were tested, and the microscopic morphology of promastigotes exposed to the formulation was analyzed. Computational analysis was performed on the drug, polymer, and ergosterol in the promastigote. Results: The AmB-gel presented appropriate characteristics for topical use, including no microbial contamination after storage. The amount of drug retained on the intact and injured skin was 1180.00 ± 13.54 µg/g/cm2 and 750.18 ± 5.43 µg/g/cm2, respectively. The AmB-gel did not cause significant signs of toxicity. The IC50 of the AmB-gel for promastigotes was less than 1 µg/mL for the four species examined, i.e., Leishmania infantum, Leishmania tropica, Leishmania major, and Leishmania braziliensis, and less than 2 µg/mL for amastigotes of Leishmania infantum and Leishmania tropica. The AmB-gel caused notable effects on the surface of promastigotes. Computational analysis revealed primarily hydrophobic and van der Waals interactions between AmB and Pluronic® F127 and ergosterol. Conclusions: Based on the drug retention content and IC50 values observed for both parasite stages, the AmB-gel may be a promising candidate for in vivo studies in patients with cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Lilian Sosa
- Microbiology Research Institute (IIM), Faculty of Sciences, National Autonomous University of Honduras (UNAH), Tegucigalpa 11101, Honduras;
- Pharmaceutical Technology Research Group, Faculty of Chemical Sciences and Pharmacy, National Autonomous University of Honduras (UNAH), Tegucigalpa 11101, Honduras
| | - Lupe Carolina Espinoza
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador (X.J.-F.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), Av. Diagonal 645, 27-31, 08028 Barcelona, Spain; (M.S.-A.)
| | - Marcelle Silva-Abreu
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), Av. Diagonal 645, 27-31, 08028 Barcelona, Spain; (M.S.-A.)
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Diagonal 645, 27-31, 08028 Barcelona, Spain
| | - Ximena Jaramillo-Fierro
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador (X.J.-F.)
| | - Diana Berenguer
- Laboratory of Parasitology, Department of Biology, Health, and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Av. Diagonal 645, 27-31, 08028 Barcelona, Spain
| | - Cristina Riera
- Laboratory of Parasitology, Department of Biology, Health, and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Av. Diagonal 645, 27-31, 08028 Barcelona, Spain
| | - María Rincón
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), Av. Diagonal 645, 27-31, 08028 Barcelona, Spain; (M.S.-A.)
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Diagonal 645, 27-31, 08028 Barcelona, Spain
| | - Ana C. Calpena
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), Av. Diagonal 645, 27-31, 08028 Barcelona, Spain; (M.S.-A.)
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Diagonal 645, 27-31, 08028 Barcelona, Spain
| |
Collapse
|
3
|
Musakhanian J, Osborne DW. Understanding Microemulsions and Nanoemulsions in (Trans)Dermal Delivery. AAPS PharmSciTech 2025; 26:31. [PMID: 39794642 DOI: 10.1208/s12249-024-02997-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/07/2024] [Indexed: 01/13/2025] Open
Abstract
Continuously explored in pharmaceuticals, microemulsions and nanoemulsions offer drug delivery opportunities that are too significant to ignore, namely safe delivery of clinically relevant drug doses across biological membranes. Their effectiveness as drug vehicles in mucosal and (trans)dermal delivery is evident from the volume of published literature. Commonly, their ability to enhance skin permeation is attributed to dispersion size, a characteristic closely related to solubilization capacity. However, the literature falls short on distinctions between microemulsions and nanoemulsions for definitions, behavior, or specific differences in their mechanisms of action in (trans)dermal delivery. The focus is typically on surfactant/cosurfactant ratio and droplet size but the role of mesostructures or the effect of cosolvent (Csol), oil (O) or water (W) on permeation profile remain poorly explained. Towards a deeper understanding of these vehicles in (trans)dermal drug delivery, this review begins with their conceptual and practical distinctions before delving into the published works for less obvious but potentially important underlying mechanisms; notably composition and the competitive positioning of system constituents in the resulting microstructures and subsequent effect(s) these may have on skin structures and drug permeability. For practical purposes, this review focuses on formulation systems based on ternary diagrams with commonly accepted non-ionic surfactants, cosurfactants, cosolvents, and oils used in pharmaceutical applications.
Collapse
|
4
|
Patel M, Jain VK, Popli H, Jain K. Nanoformulations of amphotericin B to resolve challenges in antifungal therapy. Nanomedicine (Lond) 2024; 19:2505-2508. [PMID: 39392086 DOI: 10.1080/17435889.2024.2407281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Affiliation(s)
- Manisha Patel
- Drug Delivery & Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Raebareli, Uttar Pradesh, 226002, India
| | - Vineet K Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences & Research University (DPSRU), New Delhi, 110017, India
| | - Harvinder Popli
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences & Research University (DPSRU), New Delhi, 110017, India
| | - Keerti Jain
- Drug Delivery & Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Raebareli, Uttar Pradesh, 226002, India
| |
Collapse
|
5
|
Marena GD, Nascimento ALCSD, Carvalho GC, Sábio RM, Bauab TM, Chorilli M. Amphotericin B and micafungin duo-loaded nanoemulsion as a potential strategy against Candida auris biofilms. BIOFOULING 2024; 40:602-616. [PMID: 39245976 DOI: 10.1080/08927014.2024.2396020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Candida auris is a multidrug-resistant yeast that has seen a worrying increase during the COVID-19 pandemic. Give7/n this, new therapeutic options, such as controlled-release nanomaterials, may be promising in combating the infection. Therefore, this study aimed to develop amphotericin B (AmB) and micafungin (MICA)-loaded nanoemulsions (NEMA) and evaluated against biofilms of C. auris. Nanoemulsions (NEs) were characterized and determined minimum inhibitory concentration MIC90, checkerboard and anti-biofilm. NEMA presented a size of 53.7 and 81.4 nm for DLS and NTA, respectively, with good stability and spherical morphology. MICAmB incorporated efficiency was 88.4 and 99.3%, respectively. The release results show that AmB and MICA obtained a release of 100 and 63.4%, respectively. MICAmB and NEMA showed MIC90 values of 0.015 and 0.031 ug/mL, respectively and synergism. NEMA showed greater metabolic inhibition and morphological changes in mature biofilms. This drugs combination and co-encapsulation proved to be a promising therapy against C. auris biofilms.
Collapse
Affiliation(s)
- Gabriel Davi Marena
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, São Paulo State, Brazil
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, São Paulo State, Brazil
| | | | - Gabriela Corrêa Carvalho
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, São Paulo State, Brazil
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, São Paulo State, Brazil
| | - Rafael Miguel Sábio
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, São Paulo State, Brazil
| | - Tais Maria Bauab
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, São Paulo State, Brazil
| | - Marlus Chorilli
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, São Paulo State, Brazil
| |
Collapse
|
6
|
Chong Y, Yu D, Han R, Li Y, Gu Y, Lu Z, Nie F, Wang L, Cui H. Preparation of Luvangetin Nanoemulsions: Antimicrobial Mechanism and Role in Infected Wound Healing. Int J Nanomedicine 2024; 19:5493-5509. [PMID: 38882542 PMCID: PMC11178095 DOI: 10.2147/ijn.s457322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/07/2024] [Indexed: 06/18/2024] Open
Abstract
Purpose Incorporation of luvangetin in nanoemulsions for antimicrobial and therapeutic use in infected wound healing. Patients and Methods Luvangetin nanoemulsions were prepared by high-speed shear method and characterized based on their appearance structure, average droplet size, polydispersity index (PDI), electric potential, storage stability. Optimized formulation of luvangetin nanoemulsion by Box-Behnken design (BBD). The antimicrobial activity and antimicrobial mechanism of luvangetin nanoemulsions against common hospital pathogens, ie, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), were investigated using luvangetin nanoemulsions. The biosafety of luvangetin nanoemulsion was evaluated through cytotoxicity, apoptosis, and reactive oxygen species (ROS) assay experiments using human normal epidermal cells and endothelial cells. Finally, the effect of luvangetin nanoemulsion on healing of infected wounds was investigated in B6 mice. Results Luvangetin nanoemulsion formulation consists of 2.5% sunflower seed oil, 10% emulsifier Span-20 and 7 minutes of shear time, and with good stability. Luvangetin nanoemulsion produces antibacterial activity against S. aureus and E. coli by disrupting the structure of bacterial cell membranes. Luvangetin nanoemulsion are biologically safe for HaCat and HUVEC. Luvangetin nanoemulsion showed good therapeutic effect on MRSA infected wounds in mice. Conclusion For the first time, developed a new formulation called luvangetin nanoemulsion, which exhibited superior antibacterial effects against Gram-positive bacteria. Luvangetin nanoemulsion has a favorable effect in promoting infected wound healing. We have combined luvangetin, which has multiple activities, with nanoemulsions to provide a new topical fungicidal formulation, and have comprehensively evaluated its effectiveness and safety, opening up new possibilities for further applications of luvangetin.
Collapse
Affiliation(s)
- Yang Chong
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225000, People's Republic of China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225000, People's Republic of China
| | - Dong Yu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225000, People's Republic of China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225000, People's Republic of China
| | - Rui Han
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yanxu Li
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225000, People's Republic of China
| | - Yali Gu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Zhaoyu Lu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225000, People's Republic of China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225000, People's Republic of China
| | - Fengsong Nie
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225000, People's Republic of China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225000, People's Republic of China
| | - Lingli Wang
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225000, People's Republic of China
| | - Hengmi Cui
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| |
Collapse
|
7
|
Singh S, Patil VM, Paliwal SK, Masand N. Nanotechnology-based Drug Delivery of Topical Antifungal Agents. Pharm Nanotechnol 2024; 12:185-196. [PMID: 37594096 DOI: 10.2174/2211738511666230818125031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
Among the various prominent fungal infections, superficial ones are widespread. A large number of antifungal agents and their formulations for topical use are commercially available. They have some pharmacokinetic limitations which cannot be retracted by conventional delivery systems. While nanoformulations composed of lipidic and polymeric nanoparticles have the potential to overcome the limitations of conventional systems. The broad spectrum category of antifungals i.e. azoles (ketoconazole, voriconazole, econazole, miconazole, etc.) nanoparticles have been designed, prepared and their pharmacokinetic and pharmacodynamic profile was established. This review briefly elaborates on the types of nano-based topical drug delivery systems and portrays their advantages for researchers in the related field to benefit the available antifungal therapeutics.
Collapse
Affiliation(s)
- Sumita Singh
- Department of Pharmacy, Banasthali Vidyapith, Tonk, Rajasthan, India
- Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Vaishali M Patil
- Charak School of Pharmacy, Chaudhary Charan Singh (CCS) University, Meerut, Uttar Pradesh, India
| | | | - Neeraj Masand
- Department of Pharmacy, Lala Lajpat Rai Memorial Medical College, Meerut, Uttar Pradesh, India
| |
Collapse
|
8
|
Jusuf S, Zhan Y, Zhang M, Alexander NJ, Viens A, Mansour MK, Cheng JX. Blue Light Deactivation of Catalase Suppresses Candida Hyphae Development Through Lipogenesis Inhibition. Photochem Photobiol 2023; 99:936-946. [PMID: 36117418 DOI: 10.1111/php.13719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Abstract
Hyphae formation is a key step for fungal penetration into epithelial cells and escaping from macrophages or neutrophils. We found that 405 nm light-induced catalase deactivation results in the inhibition of hyphae growth in Candida albicans. The treatment is capable of inhibiting hyphae growth across multiple hyphae-producing Candida species. Metabolic studies on light-treated C. albicans reveal that light treatment results in a strong reduction in both lipid and protein metabolism. A significant decrease in unsaturated and saturated fatty acids was detected through mass spectroscopy, indicating that the suppression of hyphae through light-induced catalase deactivation may occur through inhibition of lipid metabolism. Initial in vivo tests indicate that blue light treatment can suppress the hyphae forming capabilities of C. albicans within murine abrasion infections. Together, these findings open new avenues for the treatment of Candida fungal infections by targeting their dimorphism.
Collapse
Affiliation(s)
- Sebastian Jusuf
- Department of Biomedical Engineering, Boston University, Boston, MA
| | - Yuewei Zhan
- Department of Biomedical Engineering, Boston University, Boston, MA
| | - Meng Zhang
- Department of Electrical & Computer Engineering, Boston University, Boston, MA
| | | | - Adam Viens
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
| | - Michael K Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Ji-Xin Cheng
- Department of Biomedical Engineering, Boston University, Boston, MA
- Department of Electrical & Computer Engineering, Boston University, Boston, MA
- Photonics Center, Boston University, Boston, MA
| |
Collapse
|
9
|
Sosa L, Espinoza LC, Fuentes JM, Siwady JA, Rodríguez Rivas F, Rincón Díaz M. Polyene macrolide antibiotic nanoemulsion: a proposal for the treatment of cutaneous leishmaniasis. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.04.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease that requires timely and inexpensive treatment. For this purpose, a nanoemulsion with a polyene macrolide antibiotic, or amphotericin B (NE-AmB), was developed. This study quantified the amount of drug permeated and retained in intact and lacerated human skin, simulating cutaneous leishmaniasis (CL) processes. Toxicity in macrophage and keratinocyte cell lines, activity against promastigotes and amastigotes of Leishmania tropica, in vivo irritant activity, and histological evidence was evaluated. Results. The amount of drug retained in intact and damaged skin was 750.18 ± 5.43 and 567.97 ± 8.64 µg/g/cm2, respectively. There was no permeation. No apparent toxic effect was observed in HaCaT cell lines. The IC50 of NE-AmB found for promastigotes and amastigotes was 0.26 ± 0.09 and 0.37 ± 0.05 µg/mL, respectively. NE without AmB did show antiparasitic activity. The formulation showed lower IC50 values on both parasite stages than the AmB solution. There was no skin irritation, and histology showed skin improvement with treatment. We suggest that this NE-AmB may be a candidate for in vivo studies in CL patients.
Keywords. Leishmaniasis, Amphotericin B, ex vivo permeation studies, in vitro cytotoxicity, in vitro leishmanicidal activity, Draize test, histology.
Collapse
Affiliation(s)
- Lilian Sosa
- Pharmaceutical Technology Research Group, Faculty of Chemistry and Pharmacy, National Autonomous University of Honduras (UNAH), Tegucigalpa, Honduras
| | - Lupe Carolina Espinoza
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja (UTPL), Loja, Ecuador
| | | | - Jorge Alberto Siwady
- Department of Pharmaceutical Technology, Faculty of Chemical Sciences and Pharmacy, National Autonomous University of Honduras (UNAH), Tegucigalpa, Honduras
| | - Fredy Rodríguez Rivas
- Faculty of Chemical Sciences and Pharmacy, National Autonomous University of Honduras (UNAH), Tegucigalpa, Honduras
| | - María Rincón Díaz
- Department of Materials Science and Physical Chemistry, Faculty of Chemistry, University of Barcelona (UB), Barcelona
| |
Collapse
|
10
|
Marena GD, Ramos MADS, Carvalho GC, de Lima LC, Nascimento ALCSD, Sábio RM, Rodero CF, Spósito L, Bauab TM, Chorilli M. Development and characterization of an amphotericin B - loaded nanoemulsion applied to Candida auris biofilms control. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Ozkan B, Altuntas E, Cakir Koc R, Budama-Kilinc Y. Development of piperine nanoemulsions: an alternative topical application for hypopigmentation. Drug Dev Ind Pharm 2022; 48:117-127. [PMID: 35815814 DOI: 10.1080/03639045.2022.2100901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, it was aimed to develop a topical piperine nanoemulsion (P-NE) using an ultrasonic emulsification process to find an alternative treatment option for some hypopigmentation disorders such as vitiligo.Results showed that 150 mg piperine loaded NE with 1:2 oil phase to Smix ratio and manufactured with 20 minutes ultrasonication duration with pre-emulsification step was the most durable formulation with a mean globule size of 216.00 ± 2.65, a PdI value of 0.094 ± 0.02 and a zeta potential value of -27.50 ± 2.48 mV.After three months of storage, the selected P-NE (coded as F3P2) remained kinetically stable without visual changes. This formulation displayed a sustained release pattern with a release of 81.92% ± 3.04% piperine after 72 hours. According to our in vitro activity experiments, it was determined that the P-NE had no toxic effect including dose of 5 mg/mL, and the highest P-NE formulation dose of 5 mg/mL increased tyrosinase activity by 32.77% ± 9.09% and melanogenesis activity by 34.90% ± 0.73%.In conclusion, it was demonstrated that the P-NE formulation may serve as a promising therapy for efficient treatment of vitiligo. Moreover, P-NE formulation may also help in preventing irregular pigmentation and skin cancer, associated with the conventional treatment methods.
Collapse
Affiliation(s)
- Burcu Ozkan
- Graduate School of Natural and Applied Science, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Ebru Altuntas
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116, Istanbul, Turkey
| | - Rabia Cakir Koc
- Faculty of Chemical ansd Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Yasemin Budama-Kilinc
- Faculty of Chemical ansd Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, 34220, Istanbul, Turkey
| |
Collapse
|
12
|
Baba Shekh AO, Abdul Wahab R, Yahya NA. Formulation of roselle extract water-in-oil nanoemulsion for controlled pulmonary delivery. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2046044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Adil Omer Baba Shekh
- Faculty of Science, Department of Chemistry, Universiti Teknologi Malaysia, Baharu, Malaysia
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Roswanira Abdul Wahab
- Faculty of Science, Department of Chemistry, Universiti Teknologi Malaysia, Baharu, Malaysia
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Nur Azzanizawaty Yahya
- Faculty of Science, Department of Chemistry, Universiti Teknologi Malaysia, Baharu, Malaysia
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| |
Collapse
|
13
|
Marena GD, Ramos MADS, Lima LC, Chorilli M, Bauab TM. Galleria mellonella for systemic assessment of anti-Candida auris using amphotericin B loaded in nanoemulsion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151023. [PMID: 34662607 DOI: 10.1016/j.scitotenv.2021.151023] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Galleria mellonella is a model that uses adult larvae to assess the prophylactic, therapeutic, and acute toxic potential of substances. Given their benefits, G. mellonella models are being employed in investigations of systemic infections caused by highly resistant microorganisms. Among the multiresistant microorganisms, we highlight Candida auris, a yeast with high mortality potential and resistance. Among the potential drugs, amphotericin B (AmB) stands out; however, microbial resistance episodes and side effects caused by low selectivity have been observed. The incorporation of AmB into a nanoemulsion (NE) can contribute to the control of C. auris infections and resistance as well as decrease the side effects of this drug. This study aimed to develop AmB-loaded NE (NEA) and evaluate its antifungal action against C. auris in G. mellonella. NEs were obtained by using sunflower oil and cholesterol as the oily phase, polyoxyethylene 20 cetyl ether (Brij® 58) and soy phosphatidylcholine as the surfactant system, and PBS buffer as the aqueous phase. An alternative in vivo assay with G. mellonella for acute toxicity and infection was performed using adult stage larvae (200 mg to 400 mg). According to the obtained results, NE and NEA exhibited sizes of 43 and 48 nm, respectively. The PDI was 0.285 and 0.389 for NE and NEA, respectively. The ZP showed electronegativity for both systems, with -3.77 mV and -3.80 mV for NE and NEA, respectively. Acute toxicity showed that free AmB had greater acute toxicity potential than NEA. The survival assay showed high larval viability. NEA had a better antifungal profile against systemic infection in G. mellonella. It is concluded that the alternative model proved to be an efficient in vivo assay to determine the toxicity and evaluate the therapeutic property of free AmB and NEA in systemic infections caused by C. auris.
Collapse
Affiliation(s)
- Gabriel Davi Marena
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State 14.800-903, Brazil
| | - Matheus Aparecido Dos Santos Ramos
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State 14.800-903, Brazil
| | - Laura Caminitti Lima
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State 14.800-903, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State 14.800-903, Brazil.
| | - Tais Maria Bauab
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State 14.800-903, Brazil.
| |
Collapse
|
14
|
Garcia CR, Malik MH, Biswas S, Tam VH, Rumbaugh KP, Li W, Liu X. Nanoemulsion delivery systems for enhanced efficacy of antimicrobials and essential oils. Biomater Sci 2022; 10:633-653. [PMID: 34994371 DOI: 10.1039/d1bm01537k] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ever-growing threat of new and existing infectious diseases in combination with antimicrobial resistance requires the need for innovative and effective forms of drug delivery. Optimal drug delivery systems for existing and newly developed antimicrobials can enhance drug bioavailability, enable site-specific drug targeting, and overcome current limitations of drug formulations such as short elimination half-lives, poor drug solubility, and undesirable side effects. Nanoemulsions (NE) consist of nanometer-sized droplets stabilized by emulsifiers and are typically more stable and permeable due to their smaller particle sizes and higher surface area compared to conventional emulsions. NE have been identified as a promising means of antimicrobial delivery due to their intrinsic antimicrobial properties, ability to increase drug solubility, stability, bioavailability, organ and cellular targeting potentials, capability of targeting biofilms, and potential to overcome antimicrobial resistance. Herein, we discuss non-drug loaded essential oil-based NE that can confer antimicrobial actions through predominantly physical or biochemical mechanisms without drug payloads. We also describe drug-loaded NE for enhanced antimicrobial efficacy by augmenting the potency of existing antimicrobials. We highlight the versatility of NE to be administered through multiple different routes (oral, parenteral, dermal, transdermal, pulmonary, nasal, ocular, and rectal). We summarize recent advances in the clinical translation of antimicrobial NE and shed light on future development of effective antimicrobial therapy to combat infectious diseases.
Collapse
Affiliation(s)
- Celine R Garcia
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Muhammad H Malik
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, 77204, USA.
| | - Sujit Biswas
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, 77204, USA.
| | - Vincent H Tam
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, 77204, USA.
| | - Kendra P Rumbaugh
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, USA
| | - Wei Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
15
|
Nasiri MI, Vora LK, Ershaid JA, Peng K, Tekko IA, Donnelly RF. Nanoemulsion-based dissolving microneedle arrays for enhanced intradermal and transdermal delivery. Drug Deliv Transl Res 2021; 12:881-896. [PMID: 34939170 PMCID: PMC8694761 DOI: 10.1007/s13346-021-01107-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 01/20/2023]
Abstract
The development of dissolving microneedles (DMN) is one of the advanced technologies in transdermal drug delivery systems, which precisely deliver the drugs through a rapid dissolution of polymers after insertion into the skin. In this study, we fabricated nanoemulsion-loaded dissolving microneedle (DMN) arrays for intradermal and transdermal drug delivery. For this task, model drug (amphotericin B, AmB)-loaded nanoemulsion (NE) were prepared by the probe-sonication method. AmB-loaded-NE was prepared using Capmul MCM C-8 EP/NF, Tween® 80, poly(vinyl alcohol) (PVA-10 kDa), and poly (vinyl pyrrolidone) (PVP-360 kDa or K29/32) by using SpeedMixer™, followed by probe-sonication and evaluated for particle size and polydispersity index (PDI). Transmission electron microscopy (TEM) was also used to assess the particle size before and after DMN casting. AmB-NE embedded DMN arrays were found to be strong enough, revealed efficient skin insertion, and penetrated down to the fourth layer (depth ≈ 508 μm) of Parafilm M® (validated skin model). Ex vivo skin deposition experiments in full-thickness neonatal porcine demonstrated that after 24 h, AmB-NE-DMN arrays were able to deposit 111.05 ± 48.4 µg/patch AmB into the skin. At the same time, transdermal porcine skin permeation studies showed significantly higher permeability of AmB (29.60 ± 8.23 μg/patch) from AmB-NE-DMN compared to MN-free AmB-NE patches (5.0 ± 6.15 μg/patch) over 24 h. Antifungal studies of optimized AmB-NE-DMN, AmB-loaded discs and drug-free DMN against Candida albicans, confirmed the synergistic activity of Campul-MCM C-8, used in the nanoemulsion formulation. This study establishes that nanoemulsion based dissolving microneedle may serve as an efficient system for intradermal as well as transdermal drug delivery.
Collapse
Affiliation(s)
- Muhammad Iqbal Nasiri
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
- Department of Pharmaceutics, Hamdard Institute of Pharmaceutical Sciences, Hamdard University, Islamabad, Pakistan
| | - Lalitkumar K Vora
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Juhaina Abu Ershaid
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Ke Peng
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Ismaiel A Tekko
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
16
|
Improved Bioavailability of Poorly Soluble Drugs through Gastrointestinal Muco-Adhesion of Lipid Nanoparticles. Pharmaceutics 2021; 13:pharmaceutics13111817. [PMID: 34834232 PMCID: PMC8620210 DOI: 10.3390/pharmaceutics13111817] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Gastrointestinal absorption remains indispensable in the systemic delivery of most drugs, even though it presents several challenges that, paradoxically, may also provide opportunities that can be exploited to achieve maximal bioavailability. Drug delivery systems made from nanoparticle carriers and especially, lipid carriers, have the potential to traverse gastrointestinal barriers and deploy in the lymphatic pathway, which aptly, is free from first pass via the liver. Several poorly soluble drugs have presented improved systemic bioavailability when couriered in lipid nanoparticle carriers. In this review, we propose an additional frontier to enhancing the bioavailability of poorly soluble drugs when encapsulated in lipid nano-carriers by imparting muco-adhesion to the particles through application of appropriate polymeric coating to the lipid carrier. The combined effect of gastrointestinal muco-adhesion followed by lymphatic absorption is a promising approach to improving systemic bioavailability of poorly soluble drugs following oral administration. Evidence to the potential of this approach is backed-up by recent studies within the review.
Collapse
|
17
|
Espinoza LC, Sosa L, Granda PC, Bozal N, Díaz-Garrido N, Chulca-Torres B, Calpena AC. Development of a Topical Amphotericin B and Bursera graveolens Essential Oil-Loaded Gel for the Treatment of Dermal Candidiasis. Pharmaceuticals (Basel) 2021; 14:ph14101033. [PMID: 34681257 PMCID: PMC8538170 DOI: 10.3390/ph14101033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 01/02/2023] Open
Abstract
The higher molecular weight and low solubility of amphotericin B (AmB) hinders its topical administration. The aim of this study was to incorporate Bursera graveolens essential oil into an AmB topical gel (AmB + BGEO gel) in order to promote the diffusion of the drug through the skin in the treatment of cutaneous candidiasis. AmB + BGEO gel formulation was determined using a factorial experiment. Physical and chemical parameters, stability, in vitro release profile and ex vivo permeation in human skin were evaluated. In vitro antimicrobial activity was studied using strains of C. albicans, C. glabrata and C. parapsilosis. The tolerability was evaluated using in vitro and in vivo models. AmB + BGEO gel presented appropriate characteristics for topical administration, including pH of 5.85, pseudoplastic behavior, optimal extensibility, as well as high stability and acceptable tolerability. In vitro release studies showed that the formulation releases the drug following a Boltzmann sigmoidal model. Finally, AmB + BGEO gel exhibited higher amount of drug retained inside the skin and lower Minimum Inhibitory Concentration than a formulation sans essential oil. Therefore, these results suggest that the incorporation of B. graveolens essential oil in the formulation could be used as strategy to promote a local effect in the treatment of cutaneous candidiasis.
Collapse
Affiliation(s)
- Lupe Carolina Espinoza
- Departamento de Química, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (L.C.E.); (B.C.-T.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain;
| | - Lilian Sosa
- Faculty of Chemical Sciences and Pharmacy, National Autonomous University of Honduras (UNAH), Tegucigalpa 11101, Honduras;
| | - Paulo C. Granda
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain;
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Nuria Bozal
- Department of Biology, Healthcare and the Environment, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
| | - Natalia Díaz-Garrido
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
- Institute of Biomedicine of the University of Barcelona-Sant Joan de Déu Research Institute (IBUB-IRSJD), 08028 Barcelona, Spain
| | - Brenda Chulca-Torres
- Departamento de Química, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (L.C.E.); (B.C.-T.)
| | - Ana Cristina Calpena
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain;
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Correspondence:
| |
Collapse
|
18
|
Striking Back against Fungal Infections: The Utilization of Nanosystems for Antifungal Strategies. Int J Mol Sci 2021; 22:ijms221810104. [PMID: 34576268 PMCID: PMC8466259 DOI: 10.3390/ijms221810104] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
Fungal infections have become a major health concern, given that invasive infections by Candida, Cryptococcus, and Aspergillus species have led to millions of mortalities. Conventional antifungal drugs including polyenes, echinocandins, azoles, allylamins, and antimetabolites have been used for decades, but their limitations include off-target toxicity, drug-resistance, poor water solubility, low bioavailability, and weak tissue penetration, which cannot be ignored. These drawbacks have led to the emergence of novel antifungal therapies. In this review, we discuss the nanosystems that are currently utilized for drug delivery and the application of antifungal therapies.
Collapse
|
19
|
Ma HL, Varanda LC, Perussi JR, Carrilho E. Hypericin-loaded oil-in-water nanoemulsion synthesized by ultrasonication process enhances photodynamic therapy efficiency. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 223:112303. [PMID: 34509718 DOI: 10.1016/j.jphotobiol.2021.112303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 01/01/2023]
Abstract
Hypericin (Hy) is a hydrophobic photosensitizer used in photodynamic therapy for cancer therapeutic. In this study, Hy-loaded oil-in-water (O/W) nanoemulsions (NEs) were produced by the ultrasonication method combing different biocompatible oils and surfactants to enhance Hy aqueous solubility and bioavailability. Experimental parameters were optimized by the characterization of droplet size, zeta potential, and physicochemical properties. In vitro studies based on the release profile, cytotoxicity, cell morphology, and Hy intracellular accumulation were assayed. Hy at 100 mg L-1 was incorporated into the low viscosity (~0.005 Pa s) NEs with spherical droplets averaging 20-40 nm in size and polydispersity index <0.02. Hy release from the NE was significantly higher (4-fold) than its suspension (p < 0.001). The NEs demonstrated good physical stability during storage at 5 °C for at least six months. The Hy-loaded NEs exhibited an IC50 value 6-fold lower than Hy suspension during PDT against breast cancer cell lines (MCF-7). Cell microscopy imaging confirmed the increased cytotoxic effects of Hy-loaded NEs, showing damaged and apoptotic cells. Confocal laser scanning microscopy evidenced greater Hy delivery through NE into MCF-7 cells followed by improved intracellular ROS generation. Our results suggest that the Hy-loaded NEs can improve hypericin efficacy and assist Hy-PDT's preclinical development as a cancer treatment.
Collapse
Affiliation(s)
- Hui Ling Ma
- Instituto de Química de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica - INCTBio, 13083-970 Campinas, SP, Brazil
| | - Laudemir Carlos Varanda
- Instituto de Química de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP, Brazil
| | | | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica - INCTBio, 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
20
|
Wang X, Mohammad IS, Fan L, Zhao Z, Nurunnabi M, Sallam MA, Wu J, Chen Z, Yin L, He W. Delivery strategies of amphotericin B for invasive fungal infections. Acta Pharm Sin B 2021; 11:2585-2604. [PMID: 34522599 PMCID: PMC8424280 DOI: 10.1016/j.apsb.2021.04.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/18/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Invasive fungal infections (IFIs) represent a growing public concern for clinicians to manage in many medical settings, with substantial associated morbidities and mortalities. Among many current therapeutic options for the treatment of IFIs, amphotericin B (AmB) is the most frequently used drug. AmB is considered as a first-line drug in the clinic that has strong antifungal activity and less resistance. In this review, we summarized the most promising research efforts on nanocarriers for AmB delivery and highlighted their efficacy and safety for treating IFIs. We have also discussed the mechanism of actions of AmB, rationale for treating IFIs, and recent advances in formulating AmB for clinical use. Finally, this review discusses some practical considerations and provides recommendations for future studies in applying AmB for combating IFIs.
Collapse
Key Words
- ABCD, AmB colloidal dispersion
- AIDS, acquired immunodeficiency syndrome
- AP, antisolvent precipitation
- ARDS, acute respiratory distress syndrome
- AmB, amphotericin B
- AmB-GCPQ, AmB-encapsulated N-palmitoyl-N-methyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycol-chitosan nanoparticles
- AmB-IONP, AmB-loaded iron oxide nanoparticles
- AmB-PM, AmB-polymeric micelles
- AmB-SD, AmB sodium deoxycholate
- AmBd, AmB deoxycholate
- Amphotericin B
- Aspergillus fumigatus, A. fumigatus
- BBB, blood‒brain barrier
- BCS, biopharmaceutics classification system
- BDDE, butanediol diglycidyl ether
- BSA, bovine serum albumin
- BUN, blood urea nitrogen
- C. Albicans, Candida Albicans
- CFU, colony-forming unit
- CLSM, confocal laser scanning microscope
- CMC, carboxymethylated l-carrageenan
- CP, chitosan-polyethylenimine
- CS, chitosan
- Conjugates
- DDS, drug delivery systems
- DMPC, dimyristoyl phosphatidyl choline
- DMPG, dimyristoyl phosphatidylglycerole
- DMSA, dimercaptosuccinic acid
- Drug delivery
- GNPs, gelatin nanoparticles
- HPH, high-pressure homogenization
- HPMC, hydroxypropyl methylcellulose
- ICV, intensive care unit
- IFIs, invasive fungal infections
- Invasive fungal infections
- L-AmB, liposomal AmB
- LNA, linolenic acid
- MAA, methacrylic acid
- MFC, minimum fungicidal concentrations
- MIC, minimum inhibitory concentration
- MN, microneedles
- MOP, microneedle ocular patch
- MPEG-PCL, monomethoxy poly(ethylene glycol)-poly(epsilon-caprolactone)
- NEs, nanoemulsions
- NLC, nanostructured lipid carriers
- NPs, nanoparticles
- Nanoparticles
- P-407, poloxamer-407
- PAM, polyacrylamide
- PCL, polycaprolactone
- PDA, poly(glycolic acid)
- PDLLA, poly(d,l-lactic acid)
- PDLLGA, poly(d,l-lactic-co-glycolic acid)
- PEG, poly(ethylene glycol)
- PEG-DSPE, PEG-lipid poly(ethylene glycol)-distearoylphosphatidylethanolamine
- PEG-PBC, phenylboronic acid-functionalized polycarbonate/PEG
- PEG-PUC, urea-functionalized polycarbonate/PEG
- PGA-PPA, poly(l-lysine-b-l-phenylalanine) and poly(l-glutamic acid-b-l-phenylalanine)
- PLA, poly(lactic acid)
- PLGA, polyvinyl alcohol poly(lactic-co-glycolic acid)
- PLGA-PLH-PEG, PLGA-b-poly(l-histidine)-b-poly(ethylene glycol)
- PMMA, poly(methyl methacrylate)
- POR, porphyran
- PVA, poly(vinyl alcohol)
- PVP, polyvinylpyrrolidone
- Poor water-solubility
- RBCs, red blood cells
- RES, reticuloendothelial system
- ROS, reactive oxygen species
- SEM, scanning electron microscope
- SL-AmB, sophorolipid-AmB
- SLNs, solid lipid nanoparticles
- Topical administration
- Toxicity
- γ-CD, γ-cyclodextrin
- γ-PGA, γ-poly(gamma-glutamic acid
Collapse
Affiliation(s)
- Xiaochun Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China
| | - Imran Shair Mohammad
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, China
| | - Lifang Fan
- Jiangsu Aosaikang Pharmaceutical Co., Ltd., Nanjing 211112, China
| | - Zongmin Zhao
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Marwa A. Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Jun Wu
- Department of Geriatric Cardiology, Jiangsu Provincial Key Laboratory of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Lifang Yin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China
| | - Wei He
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
21
|
Baveloni FG, Riccio BVF, Di Filippo LD, Fernandes MA, Meneguin AB, Chorilli M. Nanotechnology-based Drug Delivery Systems as Potential for Skin Application: A Review. Curr Med Chem 2021; 28:3216-3248. [PMID: 32867631 DOI: 10.2174/0929867327666200831125656] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 11/22/2022]
Abstract
Administration of substances through the skin represents a promising alternative, in relation to other drug administration routes, due to its large body surface area, in order to offer ideal and multiple sites for drug administration. In addition, the administration of drugs through the skin avoids the first-pass metabolism, allowing an increase in the bioavailability of drugs, as well as reducing their side effects. However, the stratum corneum (SC) comprises the main barrier of protection against external agents, mainly due to its structure, composition and physicochemical properties, becoming the main limitation for the administration of substances through the skin. In view of the above, pharmaceutical technology has allowed the development of multiple drug delivery systems (DDS), which include liquid crystals (LC), cubosomes, liposomes, polymeric nanoparticles (PNP), nanoemulsions (NE), as well as cyclodextrins (CD) and dendrimers (DND). It appears that the DDS circumvents the problems of drug absorption through the SC layer of the skin, ensuring the release of the drug, as well as optimizing the therapeutic effect locally. This review aims to highlight the DDS that include LC, cubosomes, lipid systems, PNP, as well as CD and DND, to optimize topical skin therapies.
Collapse
Affiliation(s)
- Franciele Garcia Baveloni
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara-Jau, km 01, Araraquara, SP, CEP 14800-903, Brazil
| | - Bruno Vincenzo Fiod Riccio
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara-Jau, km 01, Araraquara, SP, CEP 14800-903, Brazil
| | - Leonardo Delello Di Filippo
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara-Jau, km 01, Araraquara, SP, CEP 14800-903, Brazil
| | - Mariza Aires Fernandes
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara-Jau, km 01, Araraquara, SP, CEP 14800-903, Brazil
| | - Andréia Bagliotti Meneguin
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara-Jau, km 01, Araraquara, SP, CEP 14800-903, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara-Jau, km 01, Araraquara, SP, CEP 14800-903, Brazil
| |
Collapse
|
22
|
Zhao ZJ, Cui XD, Ma XL, Wang ZH. Formulation of a Self-Nanoemulsifying Drug Delivery System of Buckwheat Flavonoids and Evaluation of Its Antimicrobial Activity. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:3050-3058. [PMID: 33653479 DOI: 10.1166/jnn.2021.19080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study was aimed at constructing a self-nanoemulsifying drug delivery system of buckwheat flavonoids and evaluating its antimicrobial activity. The construction of the nanoemulsion followed a pseudo-ternary phase diagram, and its particle properties (particle size, zeta potential, and surface morphology) and physicochemical parameters (turbidity, surface tension, pH value, conductivity, encapsulation efficiency, and stability) were evaluated. The antimicrobial potential of buckwheat flavonoids nanoemulsion was determined against Staphylococcus aureus, Escherichia coli, and Candida albicans and compared to the buckwheat flavonoids suspension. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) exhibited that the antimicrobial activity of the nanoemulsions and suspension increased while enhancing the drug concentration, and the antimicrobial activity of nanoemulsion was significantly higher than that of the suspension against those three bacteria. Agar disc diffusion test demonstrated that the inhibition zone diameter of the suspension was about 50% of the nanoemulsion against three bacteria. The time killing assay indicated that the IC50 of the nanoemulsion was significantly lower than that of the suspension. These results indicate that nanoemulsion is a promising drug delivery system, which can improve the antimicrobial activity of buckwheat flavonoids.
Collapse
Affiliation(s)
- Zhi-Juan Zhao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Xiao-Dong Cui
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Xiao-Li Ma
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Zhuan-Hua Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
23
|
Lin W, Xu T, Wang Z, Chen J. Sustained intrathecal delivery of amphotericin B using an injectable and biodegradable thermogel. Drug Deliv 2021; 28:499-509. [PMID: 33657949 PMCID: PMC7935127 DOI: 10.1080/10717544.2021.1892242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Cryptococcal meningitis is a fungal infectious disease with a poor prognosis and high mortality. Amphotericin B (AMB) is the first choice for the treatment of cryptococcal meninges. The blood-brain barrier (BBB) is the major barrier for the effective delivery of drugs to the brain. In this study, AMB was incorporated in a thermosensitive gel for intrathecal injection. We first synthesized AMB-loaded thermogel, investigated its in vitro cumulative release, and in vivo neurotoxicity, and therapeutic effect. The thermosensitive gel was comprised of 25 wt% poly (lactic acid-co-glycolic acid)-poly (ethylene glycol)-poly (lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) triblock polymer aqueous solution. The AMB loaded in the thermosensitive gel (AMB in gel) had low viscosity at low temperature and resulted in the formation of a non-flowing gel at 37 °C (physiological temperature). AMB loading in gel sustained its release for 36 days and the in vitro cumulative release rate was satisfactory. Compared with the AMB solution, intrathecal administration of AMB in gel could reduce the neurovirulence of AMB and get a better treatment effect. The findings of the current study show that the injectable PLGA–PEG–PLGA thermogel is a biocompatible carrier for the delivery of drugs into the intrathecal.
Collapse
Affiliation(s)
- Wenting Lin
- Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Tao Xu
- Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhongzhi Wang
- Institute of Internal Dermatology, Shanghai Skin Disease Hospital, Tongji University, Shanghai, China
| | - Jianghan Chen
- Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
24
|
Nanocarriers Mediated Cutaneous Drug Delivery. Eur J Pharm Sci 2021; 158:105638. [DOI: 10.1016/j.ejps.2020.105638] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023]
|
25
|
Mallandrich M, Calpena AC, Clares B, Parra A, García ML, Soriano JL, Fernández-Campos F. Nano-engineering of ketorolac tromethamine platforms for ocular treatment of inflammatory disorders. Nanomedicine (Lond) 2021; 16:401-414. [PMID: 33586454 DOI: 10.2217/nnm-2020-0403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: The development and optimization of Ketorolac tromethamine-loaded polylactic-co-glycolic acid nanoparticles (KT-NPs) for the treatment of inflammatory processes of the eye. Materials & methods: KT-NPs were developed by factorial design and characterized by assessing their physicochemical properties. Biopharmaceutical behavior studies, ocular tolerance, anti-inflammatory efficacy and bioavailability tests were performed on pigs. Results: Optimized KT-NPs of 112 nm, narrow distribution with encapsulation efficiency near 100% were obtained. KT release followed the Weibull model and there was significantly greater retention in the cornea and sclera than in the commercial reference. KT-NPs showed no signs of ocular irritancy and similar anti-inflammatory efficacy to the commercial reference. Conclusion: KT-NPs were a suitable alternative for the treatment of inflammatory disorders of the anterior and posterior segments of the eye as an alternative to conventional topical formulations.
Collapse
Affiliation(s)
- Mireia Mallandrich
- Department of Pharmacy & Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, 08028 Barcelona, Spain.,Nanoscience & Nanotechnology Institute (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Ana C Calpena
- Department of Pharmacy & Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, 08028 Barcelona, Spain.,Nanoscience & Nanotechnology Institute (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Beatriz Clares
- Nanoscience & Nanotechnology Institute (IN2UB), University of Barcelona, 08028 Barcelona, Spain.,Department of Pharmacy & Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Alexander Parra
- Department of Pharmacy & Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - María L García
- Department of Pharmacy & Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, 08028 Barcelona, Spain.,Nanoscience & Nanotechnology Institute (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - José L Soriano
- Department of Pharmacy & Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Francisco Fernández-Campos
- Department of Pharmacy & Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, 08028 Barcelona, Spain.,Reig-Jofre Laboratories, Av. de les Flors s/n, 08970 Sant Joan Despí, Spain
| |
Collapse
|
26
|
Botros SR, Hussein AK, Mansour HF. A Novel Nanoemulsion Intermediate Gel as a Promising Approach for Delivery of Itraconazole: Design, In Vitro and Ex Vivo Appraisal. AAPS PharmSciTech 2020; 21:272. [PMID: 33025308 DOI: 10.1208/s12249-020-01830-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/22/2020] [Indexed: 11/30/2022] Open
Abstract
The aim the study was to design, formulate, and evaluate self-nanoemulsifying drug delivery systems (SNEDDS) of itraconazole for improving the topical antifungal properties of the drug by adopting the nanoemulsion intermediate gel of the optimized system. Solubility study was conducted to select the most appropriate oils and surfactants for formulation. Different possible systems were created. Ternary phase diagrams were constructed to select the most promising system for further study. The nanoemulsion intermediate gel of the selected system was evaluated for stability, dilution effect, viscosity, pH, antifungal activity, droplet size, PDI, and zeta potential. In vitro release of the drug from the selected intermediate gel was investigated, and the kinetic model of drug release was determined. Ex vivo permeation of itraconazole was studied, and the amount of drug accumulated in the skin was calculated. Solubility and phase diagrams revealed that the system consisting of 60% cotton seed oil and 40% span 80 provided the nanoemulsion intermediate gel with the highest drug concentration. The selected system had a droplet size of about 236 nm and zeta potential of - 59.8. The viscosity of the corresponding intermediate gel was 1583.47 cp. The system exhibited high stability at 4°C and 25°C for 12 months and improved antifungal activity. In vitro release study showed complete release of itraconazole within 4 h, while the ex vivo permeation study revealed accumulation of the majority of the drug within the skin layers (72.5%).
Collapse
|
27
|
Sousa F, Ferreira D, Reis S, Costa P. Current Insights on Antifungal Therapy: Novel Nanotechnology Approaches for Drug Delivery Systems and New Drugs from Natural Sources. Pharmaceuticals (Basel) 2020; 13:ph13090248. [PMID: 32942693 PMCID: PMC7558771 DOI: 10.3390/ph13090248] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 01/18/2023] Open
Abstract
The high incidence of fungal infections has become a worrisome public health issue, having been aggravated by an increase in host predisposition factors. Despite all the drugs available on the market to treat these diseases, their efficiency is questionable, and their side effects cannot be neglected. Bearing that in mind, it is of upmost importance to synthetize new and innovative carriers for these medicines not only to fight emerging fungal infections but also to avert the increase in drug-resistant strains. Although it has revealed to be a difficult job, new nano-based drug delivery systems and even new cellular targets and compounds with antifungal potential are now being investigated. This article will provide a summary of the state-of-the-art strategies that have been studied in order to improve antifungal therapy and reduce adverse effects of conventional drugs. The bidirectional relationship between Mycology and Nanotechnology will be also explained. Furthermore, the article will focus on new compounds from the marine environment which have a proven antifungal potential and may act as platforms to discover drug-like characteristics, highlighting the challenges of the translation of these natural compounds into the clinical pipeline.
Collapse
Affiliation(s)
- Filipa Sousa
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal;
- Correspondence: (F.S.); (P.C.)
| | - Domingos Ferreira
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal;
| | - Salette Reis
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal;
| | - Paulo Costa
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal;
- Correspondence: (F.S.); (P.C.)
| |
Collapse
|
28
|
Araujo VHS, Duarte JL, Carvalho GC, Silvestre ALP, Fonseca-Santos B, Marena GD, Ribeiro TDC, Dos Santos Ramos MA, Bauab TM, Chorilli M. Nanosystems against candidiasis: a review of studies performed over the last two decades. Crit Rev Microbiol 2020; 46:508-547. [PMID: 32795108 DOI: 10.1080/1040841x.2020.1803208] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The crescent number of cases of candidiasis and the increase in the number of infections developed by non-albicans species and by multi-resistant strains has taken the attention of the scientific community, which has been searching for new therapeutic alternatives. Among the alternatives found the use of nanosystems for delivery of drugs already commercialized and new biomolecules have grown, in order to increase stability, solubility, optimize efficiency and reduce adverse effects. In view of the growing number of studies involving technological alternatives for the treatment of candidiasis, the present review came with the intention of gathering studies from the last two decades that used nanotechnology for the treatment of candidiasis, as well as analysing them critically and pointing out the future perspectives for their application with this purpose. Different studies were considered for the development of this review, addressing nanosystems such as metallic nanoparticles, mesoporous silica nanoparticles, polymeric nanoparticles, liposomes, nanoemulsion, microemulsion, solid lipid nanoparticle, nanostructured lipid carrier, lipidic nanocapsules and liquid crystals; and different clinical presentations of candidiasis. As a general overview, nanotechnology has proven to be an important ally for the treatment against the diversity of candidiasis found in the clinic, whether in increasing the effectiveness of commercialized drugs and reducing their adverse effects, as well as allowing exploring more effectively properties therapeutics of new biomolecules.
Collapse
Affiliation(s)
- Victor Hugo Sousa Araujo
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Gabriela Corrêa Carvalho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Bruno Fonseca-Santos
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gabriel Davi Marena
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.,Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Tais de Cassia Ribeiro
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Matheus Aparecido Dos Santos Ramos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.,Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Taís Maria Bauab
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
29
|
Garg A, Sharma GS, Goyal AK, Ghosh G, Si SC, Rath G. Recent advances in topical carriers of anti-fungal agents. Heliyon 2020; 6:e04663. [PMID: 32904164 PMCID: PMC7452444 DOI: 10.1016/j.heliyon.2020.e04663] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 11/22/2019] [Accepted: 08/05/2020] [Indexed: 12/19/2022] Open
Abstract
Fungal skin infections are the most common global issue for skin health. Fungal infections are often treated by topical or systemic anti-fungal therapy. Topical fungal therapy is usually preferred because of their targeted therapy and fewer side effects. Advanced topical carriers because of their distinct structural and functional features, overcome biopharmaceutical challenges associated with conventional drug delivery systems like poor retention and low bioavailability. Literature evidence indicated topical nanocarriers loaded with anti-fungal agents display superior therapeutic response with minimum toxicity. Nanocarriers often used for topical anti-fungal medication includes Solid-Lipid nanoparticles, Microemulsions, Liposomes, Niosomes, Microsponge, Nanogel, Nanoemulsion, Micelles etc. This review summarizes recent advances in novel strategies employed in topical carriers to improve the therapeutic performance of anti-fungal drugs.
Collapse
Affiliation(s)
- Abhinava Garg
- Department of Pharmaceutics, I.S.F.College of Pharmacy, Moga, Punjab, India
| | - Ganti S. Sharma
- Department of Pharmaceutics, I.S.F.College of Pharmacy, Moga, Punjab, India
| | - Amit K. Goyal
- School of Chemical Sciences and. Pharmacy, Central University of Rajasthan, India
| | - Goutam Ghosh
- Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Sudam Chandra Si
- Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Goutam Rath
- Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
30
|
Development, characterization, and anti-leishmanial activity of topical amphotericin B nanoemulsions. Drug Deliv Transl Res 2020; 10:1552-1570. [DOI: 10.1007/s13346-020-00821-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Brunet K, Rammaert B. Mucormycosis treatment: Recommendations, latest advances, and perspectives. J Mycol Med 2020; 30:101007. [PMID: 32718789 DOI: 10.1016/j.mycmed.2020.101007] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/21/2022]
Abstract
Mucormycosis are life-threatening fungal infections especially affecting immunocompromised or diabetic patients. Despite treatment, mortality remains high (from 32 to 70% according to organ involvement). This review provides an update on mucormycosis management. The latest recommendations strongly recommend as first-line therapy the use of liposomal amphotericin B (≥5mg/kg) combined with surgery whenever possible. Isavuconazole and intravenous or delayed-release tablet forms of posaconazole have remained second-line. Many molecules are currently in development to fight against invasive fungal diseases but few have demonstrated efficacy against Mucorales. Despite in vitro efficacy, combinations of treatment have failed to demonstrate superiority versus monotherapy. Adjuvant therapies are particularly complex to evaluate without prospective randomized controlled studies, which are complex to perform due to low incidence rate and high mortality of mucormycosis. Perspectives are nonetheless encouraging. New approaches assessing relationships between host, fungi, and antifungal drugs, and new routes of administration such as aerosols could improve mucormycosis treatment.
Collapse
Affiliation(s)
- K Brunet
- INSERM U1070, Poitiers, France; Faculté de médecine et pharmacie, université de Poitiers, Poitiers, France; Service de mycologie-parasitologie, département des agents infectieux, CHU de Poitiers, Poitiers, France.
| | - B Rammaert
- INSERM U1070, Poitiers, France; Faculté de médecine et pharmacie, université de Poitiers, Poitiers, France; Service de maladies infectieuses et tropicales, CHU de Poitiers, Poitiers, France
| |
Collapse
|
32
|
Song R, Yan F, Cheng M, Dong F, Lin Y, Wang Y, Song B. Ultrasound-Assisted Preparation of Exopolysaccharide/Nystatin Nanoemulsion for Treatment of Vulvovaginal Candidiasis. Int J Nanomedicine 2020; 15:2027-2044. [PMID: 32273700 PMCID: PMC7104221 DOI: 10.2147/ijn.s241134] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/06/2020] [Indexed: 01/04/2023] Open
Abstract
PURPOSE As one of the classic anti-Canidia albicans (CA) and vulvovaginal candidiasis (VVC) drugs, nystatin (NYS) is limited by poor water solubility and easy aggregation. Traditional NYS vaginal delivery formulations do not fully adapt to the specific environment of the vaginal cavity. The use of exopolysaccharides (EPS) has great application potential in emulsifiers, but its use has not been reported in nanoemulsions. In this work, an EPS/NYS nanoemulsion (ENNE) was developed to improve the activities of NYS against CA and VVC. METHODS The ENNE was prepared by ultrasonic method using EPS as an emulsifier, liquid paraffin oil as an oil phase, PEG400 as a co-emulsifier, and NYS as the loaded drug. ENNE preparation was optimized by response surface method. After optimization, in vitro and in vivo analysis of the anti-CA activity; animal experiments; staining with propidium iodide (PI), periodic acid-schiff (PAS), and hematoxylin-eosin (H&E); and cytokine experiments were performed to investigate the therapeutic ability against VVC. RESULTS The optimal formulation and preparation parameters of ENNE were determined as follows: EPS content of 1.5%, PEG400 content of 3.2%, NYS content of 700 μg/mL, paraffin oil content of 5.0%, ultrasonic time of 15 min, and ultrasonic amplitude of 35%. The ENNE showed an encapsulated structure with an average particle size of 131.1 ± 4.32 nm. ENNE exhibited high storage and pH stability, as well as slow release. The minimum inhibitory concentration (MIC) of ENNE against CA was only 0.125 μg/mL and the inhibition zone was 19.0 ± 0.5 mm, for greatly improved anti-CA effect. The prepared ENNE destroyed the membrane of CA cells, and exhibited good anti-CA effect in vivo and therapeutic ability against VVC. CONCLUSION The results of this study will promote the application of EPS in nanotechnology, which should lead to new and effective local drug formulations for treating VVC.
Collapse
Affiliation(s)
- Ruiteng Song
- School of Pharmacy, Weifang Medical University, Weifang, Shandong261053, People’s Republic of China
| | - Fang Yan
- School of Pharmacy, Weifang Medical University, Weifang, Shandong261053, People’s Republic of China
| | - Min Cheng
- Clinical Medical College, Weifang Medical University, Weifang, Shandong261053, People’s Republic of China
| | - Fakun Dong
- School of Pharmacy, Weifang Medical University, Weifang, Shandong261053, People’s Republic of China
| | - Yongqi Lin
- School of Pharmacy, Weifang Medical University, Weifang, Shandong261053, People’s Republic of China
| | - Yuzhen Wang
- Medical Imaging Specialty, Weifang Medical University, Weifang, Shandong261053, People’s Republic of China
| | - Bo Song
- School of Pharmacy, Weifang Medical University, Weifang, Shandong261053, People’s Republic of China
| |
Collapse
|
33
|
Self-assembling cashew gum-graft-polylactide copolymer nanoparticles as a potential amphotericin B delivery matrix. Int J Biol Macromol 2020; 152:492-502. [PMID: 32097738 DOI: 10.1016/j.ijbiomac.2020.02.166] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 01/13/2023]
Abstract
Amphotericin B is an antibiotic used in the treatment of fungal disease and leishmania; however, it exhibits side effects to patients, hindering its wider application. Therefore, nanocarriers have been investigated as delivery systems for amphotericin B (AMB) in order to decrease its toxicity, besides increase bioavailability and solubility. Amphiphilic copolymers are interesting materials to encapsulate hydrophobic drugs such as AMB, hence copolymers of cashew gum (CG) and l-lactide (LA) were synthesized using two different CG:LA molar ratios (1:1 and 1:10). Data obtained revealed that copolymer nanoparticles present similar figures for particle sizes and zeta potentials; however, particle size of encapsulated AMB increases if compared to unloaded nanoparticles. The 1:10 nanoparticle sample has better stability although higher polydispersity index (PDI) if compared to 1:1 sample. High amphotericin (AMB) encapsulation efficiencies and low hemolysis were obtained. AMB loaded copolymers show lower aggregation pattern than commercial AMB solution. AMB loaded nanoparticles show antifungal activities against four C. albicans strains. It can be inferred that cashew gum/polylactide copolymers have potential as nanocarrier systems for AMB.
Collapse
|
34
|
Topical Amphotericin B Semisolid Dosage Form for Cutaneous Leishmaniasis: Physicochemical Characterization, Ex Vivo Skin Permeation and Biological Activity. Pharmaceutics 2020; 12:pharmaceutics12020149. [PMID: 32059430 PMCID: PMC7076632 DOI: 10.3390/pharmaceutics12020149] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
Amphotericin B (AmB) is a potent antifungal successfully used intravenously to treat visceral leishmaniasis but depending on the Leishmania infecting species, it is not always recommended against cutaneous leishmaniasis (CL). To address the need for alternative topical treatments of CL, the aim of this study was to elaborate and characterize an AmB gel. The physicochemical properties, stability, rheology and in vivo tolerance were assayed. Release and permeation studies were performed on nylon membranes and human skin, respectively. Toxicity was evaluated in macrophage and keratinocyte cell lines, and the activity against promastigotes and intracellular amastigotes of Leishmania infantum was studied. The AmB gel remained stable for a period of two months, with optimal properties for topical use and no apparent toxic effect on the cell lines. High amounts of AmB were found in damaged and non-damaged skin (1230.10 ± 331.52 and 2484.57 ± 439.12 µg/g/cm2, respectively) and they were above the IC50 of AmB for amastigotes. Although there were no differences in the in vitro anti-leishmanial activity between the AmB solution and gel, the formulation resulted in a higher amount of AmB being retained in the skin, and is therefore a candidate for further studies of in vivo efficacy.
Collapse
|
35
|
Faustino C, Pinheiro L. Lipid Systems for the Delivery of Amphotericin B in Antifungal Therapy. Pharmaceutics 2020; 12:pharmaceutics12010029. [PMID: 31906268 PMCID: PMC7023008 DOI: 10.3390/pharmaceutics12010029] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/31/2022] Open
Abstract
Amphotericin B (AmB), a broad-spectrum polyene antibiotic in the clinic for more than fifty years, remains the gold standard in the treatment of life-threatening invasive fungal infections and visceral leishmaniasis. Due to its poor water solubility and membrane permeability, AmB is conventionally formulated with deoxycholate as a micellar suspension for intravenous administration, but severe infusion-related side effects and nephrotoxicity hamper its therapeutic potential. Lipid-based formulations, such as liposomal AmB, have been developed which significantly reduce the toxic side effects of the drug. However, their high cost and the need for parenteral administration limit their widespread use. Therefore, delivery systems that can retain or even enhance antimicrobial efficacy while simultaneously reducing AmB adverse events are an active area of research. Among those, lipid systems have been extensively investigated due to the high affinity of AmB for binding lipids. The development of a safe and cost-effective oral formulation able to improve drug accessibility would be a major breakthrough, and several lipid systems for the oral delivery of AmB are currently under development. This review summarizes recent advances in lipid-based systems for targeted delivery of AmB focusing on non-parenteral nanoparticulate formulations mainly investigated over the last five years and highlighting those that are currently in clinical trials.
Collapse
Affiliation(s)
| | - Lídia Pinheiro
- Correspondence: ; Tel.: +351-21-7946-400; Fax: +351-21-7946-470
| |
Collapse
|
36
|
Thakur K, Sharma G, Singh B, Katare OP. Topical Drug Delivery of Anti-infectives Employing Lipid-Based Nanocarriers: Dermatokinetics as an Important Tool. Curr Pharm Des 2019; 24:5108-5128. [PMID: 30657036 DOI: 10.2174/1381612825666190118155843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/11/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND The therapeutic approaches for the management of topical infections have always been a difficult approach due to lack of efficacy of conventional topical formulations, high frequency of topical applications and non-patient compliance. The major challenge in the management of topical infections lies in antibiotic resistance which leads to severe complications and hospitalizations resulting in economic burden and high mortality rates. METHODS Topical delivery employing lipid-based carriers has been a promising strategy to overcome the challenges of poor skin permeation and retention along with large doses which need to be administered systemically. The use of lipid-based delivery systems is a promising strategy for the effective topical delivery of antibiotics and overcoming drug-resistant strains in the skin. The major systems include transfersomes, niosomes, ethosomes, solid lipid nanoparticles, nanostructured lipid carriers, microemulsion and nanoemulsion as the most promising drug delivery approaches to treat infectious disorders. The main advantages of these systems include lipid bilayer structure which mimics the cell membrane and can fuse with infectious microbes. The numerous advantages associated with nanocarriers like enhanced efficacy, improvement in bioavailability, controlled drug release and ability to target the desired infectious pathogen have made these carriers successful. CONCLUSION Despite the number of strides taken in the field of topical drug delivery in infectious diseases, it still requires extensive research efforts to have a better perspective of the factors that influence drug permeation along with the mechanism of action with regard to skin penetration and deposition. The final objective of the therapy is to provide a safe and effective therapeutic approach for the management of infectious diseases affecting topical sites leading to enhanced therapeutic efficacy and patient-compliance.
Collapse
Affiliation(s)
- Kanika Thakur
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| | - Gajanand Sharma
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| | - Bhupindar Singh
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| | - Om Prakash Katare
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| |
Collapse
|
37
|
Garcia A, Fan YY, Vellanki S, Huh EY, Vanegas D, Wang SH, Lee SC. Nanoemulsion as an Effective Treatment against Human-Pathogenic Fungi. mSphere 2019; 4:e00729-19. [PMID: 31852807 PMCID: PMC6920514 DOI: 10.1128/msphere.00729-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/30/2019] [Indexed: 11/30/2022] Open
Abstract
Infections triggered by pathogenic fungi cause a serious threat to the public health care system. In particular, an increase of antifungal drug-resistant fungi has resulted in difficulty in treatment. A limited variety of antifungal drugs available to treat patients has left us in a situation where we need to develop new therapeutic approaches that are less prone to development of resistance by pathogenic fungi. In this study, we demonstrate the efficacy of the nanoemulsion NB-201, which utilizes the surfactant benzalkonium chloride, against human-pathogenic fungi. We found that NB-201 exhibited in vitro activity against Candidaalbicans, including both planktonic growth and biofilms. Furthermore, treatments with NB-201 significantly reduced the fungal burden at the infection site and presented an enhanced healing process after subcutaneous infections by multidrug-resistant C. albicans in a murine host system. NB-201 also exhibited in vitro growth inhibition activity against other fungal pathogens, including Cryptococcus spp., Aspergillus fumigatus, and Mucorales Due to the nature of the activity of this nanoemulsion, there is a minimized chance of drug resistance developing, presenting a novel treatment to control fungal wound or skin infections.IMPORTANCE Advances in medicine have resulted in the discovery and implementation of treatments for human disease. While these recent advances have been beneficial, procedures such as solid-organ transplants and cancer treatments have left many patients in an immunocompromised state. Furthermore, the emergence of immunocompromising diseases such as HIV/AIDS or other immunosuppressive medical conditions have opened an opportunity for fungal infections to afflict patients globally. The development of drug resistance in human-pathogenic fungi and the limited array of antifungal drugs has left us in a scenario where we need to develop new therapeutic approaches to treat fungal infections that are less prone to the development of resistance by pathogenic fungi. The significance of our work lies in utilizing a novel nanoemulsion formulation to treat topical fungal infections while minimizing risks of drug resistance development.
Collapse
Affiliation(s)
- Alexis Garcia
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Yong Yi Fan
- Michigan Nanotechnology Institute for Medicine & Biological Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Sandeep Vellanki
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Eun Young Huh
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - DiFernando Vanegas
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Su He Wang
- Michigan Nanotechnology Institute for Medicine & Biological Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Soo Chan Lee
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
38
|
Development of amphotericin B-loaded propionate Sterculia striata polysaccharide nanocarrier. Int J Biol Macromol 2019; 146:1133-1141. [PMID: 31734368 DOI: 10.1016/j.ijbiomac.2019.10.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 12/15/2022]
Abstract
This work was aimed at the production and characterization of a new nanocarrier based on a Sterculia striata polysaccharide (SSP) modified via acylation reaction with propionic anhydride. Nanocapsules of propionated SSP (PSSP) were produced via spontaneous nanoemulsification process and tested as a potential amphotericin B (AMB) nanocarrier. Stable nanoparticles with a very low polydispersity index (0.08-0.29) and high zeta potential (ζ -42.7 to -53.8 mV) were obtained. Particle size was dependent on the degree of substitution and ranged from 205 to 286 nm. A nanocapsule with a degree of substitution (DS) of 2.53 (NCP 2.53) was selected for encapsulation, biocompatibility, and antifungal evaluation against Candida albicans strains. A maximum of 98.3% AMB encapsulation was achieved. Encapsulated AMB was in its monomeric form and showed good biocompatibility and antifungal activity against four C. albicans strains. Data indicate that PSSP has potential as a nanocarrier system for AMB.
Collapse
|
39
|
Lewińska A, Jaromin A, Jezierska J. Role of architecture of N-oxide surfactants in the design of nanoemulsions for Candida skin infection. Colloids Surf B Biointerfaces 2019; 187:110639. [PMID: 31776055 DOI: 10.1016/j.colsurfb.2019.110639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 10/23/2019] [Accepted: 11/09/2019] [Indexed: 11/29/2022]
Abstract
In this work we present comprehensive research on the formation, stability and structural properties of oil-in-water (o/w) nanoemulsions with the ability for topical administration, penetration of the skin and acting as antifungal agents against C. albicans. The studied nanoemulsions were composed of different ratios of double-head - single-tail surfactants {1-bis{[3-(N,N-dimethylamino)ethyl]amido}alkane-di-N-oxides (Cn-MEDA), N,N-bis[3,3'-(dimethyl-amino)propyl]alkyl-amide di-N-oxides (Cn(DAPANO)2} and single-head - single-tail surfactants {2-(alkanoylamino)-ethyldimethyl-amine-N-oxides (Cn-EDA), and 3-(alkanoylamino) propyldimethylamine-N-oxides, (Cn-PDA)} added to the oil {isooctane IO, isopropyl myristate IPM or glyceryl monocaprylate GM as (O)} and to the water phase (W). The phase behavior of the systems was examined by a titration method. Morphology of the resulting colloids was characterized by scanning and transmission electron microscopy, the particle size and size distributions determined by dynamic light scattering, and kinetic stability by multiple light scattering. While both surfactant types resulted in quite stable nanoemulsions, the systems formed using a single-headed one-tail surfactant were slightly more stable with GM or IPM. The microenvironmental properties of the nanoemulsions were studied by an electron paramagnetic resonance technique to distinguish the molecular dynamics of the different spin probes localized in the particular regions of the surfactant layers, depending on the surfactant structure and the system preparation. Skin permeation studies were performed to monitor transport through the skin, and changes in skin structure were followed using differential scanning calorimetry. Moreover, the activities of curcumin-loaded nanoemulsions stabilized by N-oxide surfactants against Candida albicans fungus were evaluated. To estimate in vitro efficacy, the suitability of an N-oxide nanoemulsion dressing against wound infection with biofilm C. albicans was assessed according to the Antibiofilm Dressing's Activity Measurement. We expect that the nanoemulsion formulations tested in this study will have potential for application as topical delivery systems for pharmaceutically active compounds in skin-related conditions.
Collapse
Affiliation(s)
- Agnieszka Lewińska
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland.
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14A, 50-383 Wroclaw, Poland.
| | - Julia Jezierska
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
40
|
Gowda DV, Afrasim M, Meenakshi SI, Manohar M, Hemalatha S, Siddaramaiah H, Sathishbabu P, Rizvi SMD, Hussain T, Kamal MA. A Paradigm Shift in the Development of Anti-Candida Drugs. Curr Top Med Chem 2019; 19:2610-2628. [PMID: 31663480 DOI: 10.2174/1568026619666191029145209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/27/2019] [Accepted: 09/26/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The considerable increase in the incidence of Candida infection in recent times has prompted the use of numerous antifungal agents, which has resulted in the development of resistance towards various antifungal agents. With rising Candida infections, the need for design and development of novel antifungal agents is in great demand. However, new therapeutic approaches are very essential in preventing the mortality rate and improving the patient outcome in those suffering from Candida infections. OBJECTIVE The present review objective is to describe the burden, types of Candidiasis, mechanism of action of antifungal agents and its resistance and the current novel approaches used to combat candidiasis. METHODS We have collected and analyzed 135 different peer-reviewed literature studies pertinent to candidiasis. In this review, we have compiled the major findings from these studies. RESULTS AND CONCLUSION The review describes the concerns related to candidiasis, its current treatment strategy, resistance mechanisms and imminent ways to tackle the problem. The review explored that natural plant extracts and essential oils could act as sources of newer therapeutic agents, however, the focus was on novel strategies, such as combinational therapy, new antibodies, utilization of photodynamic therapy and adaptive transfer primed immune cells with emphasis on the development of effective vaccination.
Collapse
Affiliation(s)
- D V Gowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru- 570015, India
| | - M Afrasim
- Department of Pharmaceutics, Hail University, Hail, Saudi Arabia
| | - S I Meenakshi
- Department of Prosthodontics and Crown & Bridge, JSS Dental College and Hospital, JSS Academy of Higher Education and Research, Mysuru-570015, India
| | - M Manohar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru- 570015, India
| | - S Hemalatha
- Department of Anaesthesia, JSS Medical College & Hospital, JSS Academy of Higher Education and Research, Mysuru - 570004, India
| | - H Siddaramaiah
- Department of Polymer Science and Technology, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, Mysuru - 570006, India
| | - P Sathishbabu
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru- 570015, India
| | - S M Danish Rizvi
- Department of Pharmaceutics, Hail University, Hail, Saudi Arabia
| | - T Hussain
- Department of Pharmacology and Toxicology, University of Hail, Hail, Saudi Arabia
| | - M A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.,Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia.,Novel Global Community Educational Foundation, Australia
| |
Collapse
|
41
|
Sosa L, Calpena AC, Silva-Abreu M, Espinoza LC, Rincón M, Bozal N, Domenech O, Rodríguez-Lagunas MJ, Clares B. Thermoreversible Gel-Loaded Amphotericin B for the Treatment of Dermal and Vaginal Candidiasis. Pharmaceutics 2019; 11:pharmaceutics11070312. [PMID: 31277267 PMCID: PMC6680481 DOI: 10.3390/pharmaceutics11070312] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
Abstract
The present study was designed to develop a thermoreversible gel of Pluronic (P407) loaded amphotericin B (AmB-gel) for the dermal and vaginal treatment of candidiasis. P407 was used as a copolymer to exploit potential advantages related to increasing drug concentration in the tissue layer in order to provide a local effect. Parameters including internal structure, swelling, porosity, and short-term stability were determined. In addition, drug release profile and ex vivo skin and vaginal permeation studies were carried out. Antifungal efficacy was evaluated against strains of Candida spp. and atomic force microscopy (AFM) supported the results. The tolerance of AmB-gel was studied by evaluating biomechanical properties of skin and determining the irritation level in scarified rabbit skin supported by histological analysis. Results confirmed the development of a thermoreversible AmB-gel with high porosity exhibiting Newtonian behavior at 4 °C and pseudoplasticity at 32 °C as well as optimal stability for at least 90 days. The Amb-gel provided a sustained drug release following a Boltzmann sigmoidal model. Non permeation was observed in skin and vaginal mucosa, showing a high retained amount of AmB of 960.0 and 737.3 µg/g/cm2, respectively. In vitro antifungal efficacy showed that AmB-gel was more effective than Free-AmB in inhibiting strains of Candida spp. and these results were corroborated by AFM. Finally, tolerance studies showed that its application did not induce skin irritation nor alter its biophysical properties. Together, these results confirmed that AmB-gel could be proposed as a promising candidate for the clinical status in the treatment of skin and vaginal candidiasis.
Collapse
Affiliation(s)
- Lilian Sosa
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute de Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Marcelle Silva-Abreu
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
- Institute de Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain.
| | - Lupe Carolina Espinoza
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador
| | - María Rincón
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Nuria Bozal
- Department of Biology, Healthcare and the Environment, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Oscar Domenech
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - María José Rodríguez-Lagunas
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), Universitat de Barcelona, 08921 Barcelona, Spain
| | - Beatriz Clares
- Institute de Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, 18071 Granada, Spain
| |
Collapse
|
42
|
Matoso Sombra F, Richter AR, de Araújo AR, de Oliveira Silva Ribeiro F, de Fátima Souza Mendes J, dos Santos Fontenelle RO, da Silva DA, Beserra de Paula HC, Pessoa de Andrade Feitosa J, Martín Goycoolea F, Monteiro de Paula RC. Nanocapsules of Sterculia striata acetylated polysaccharide as a potential monomeric amphotericin B delivery matrix. Int J Biol Macromol 2019; 130:655-663. [DOI: 10.1016/j.ijbiomac.2019.02.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 02/02/2023]
|
43
|
Yang Q, Liu S, Gu Y, Tang X, Wang T, Wu J, Liu J. Development of sulconazole-loaded nanoemulsions for enhancement of transdermal permeation and antifungal activity. Int J Nanomedicine 2019; 14:3955-3966. [PMID: 31239665 PMCID: PMC6551561 DOI: 10.2147/ijn.s206657] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/03/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Sulconazole (SCZ) is a broad-spectrum transdermally administered anti-fungicidal agent. However, the therapeutic effect of SCZ is generally limited by its poor water solubility. This present study aimed to develop and evaluate sulconazole-loaded nanoemulsions (SCZ-NEs) for enhancement of the transdermal permeation and antifungal activity. Methods: A spontaneous titration method was applied to prepare the SCZ-NEs. And the optimized formulation of SCZ-NEs was screened by central composite design (CCD). In addition, the characteristics of the SCZ-NEs were evaluated, including particle size, zeta potential, drug loading (DL%) and encapsulation efficiency (EE%). The morphology of SCZ-NEs was observed by transmission electron microscopy (TEM). Franz diffusion cells were used to evaluate the transdermal permeability of the SCZ-NEs. The antifungal activity of the SCZ-NEs was measured by a zone of inhibition (ZOI) test. Results: The optimized SCZ-NEs possessed a moderate particle size of 52.3±3.8 nm, zeta potential of 23.3±1.2 mV, DL% of 0.47±0.05% and EE% of 87.1±3.2%. The ex vivo skin permeation study verified that the cumulative permeability (Qn) and penetration rate (Js) of the optimized SCZ-NEs were about 1.7-fold higher than that of a commercial reference, miconazole (MCZ) cream and 3-fold higher than that of SCZ-DMSO solution. The optimized SCZ-NEs exhibited zone of inhibition (ZOI) values of 23.5±2.4 and 20.4±2.5 mm against C. albicans and T. rubrum, which were larger compared with these of the MCZ cream and SCZ-DMSO solution. Conclusion: SCZ-NEs were effectively developed to overcome the poor solubility of SCZ, promote SCZ permeation through the skin and improve its antifungal activity. Thus, the SCZ-NEs are a promising percutaneous administration for skin fungal infections induced by C. albicans and T. rubrum.
Collapse
Affiliation(s)
- Qing Yang
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai200032, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, People’s Republic of China
| | - Shanshan Liu
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai200433, People’s Republic of China
| | - Yongwei Gu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai200032, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, People’s Republic of China
| | - Xiaomeng Tang
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai200433, People’s Republic of China
| | - Ting Wang
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai200032, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, People’s Republic of China
| | - Jianhua Wu
- Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai200433, People’s Republic of China
| | - Jiyong Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai200032, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, People’s Republic of China
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai200433, People’s Republic of China
| |
Collapse
|
44
|
Espinoza LC, Silva-Abreu M, Calpena AC, Rodríguez-Lagunas MJ, Fábrega MJ, Garduño-Ramírez ML, Clares B. Nanoemulsion strategy of pioglitazone for the treatment of skin inflammatory diseases. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 19:115-125. [PMID: 31004811 DOI: 10.1016/j.nano.2019.03.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 02/17/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022]
Abstract
Pioglitazone (PGZ) is a peroxisome proliferator-activated receptor agonist. Its role in the inflammatory response modulation paves the way for additional therapeutic applications. The purpose of this study was to develop a pioglitazone nanoemulsion (PGZ-NE) in order to investigate its anti-inflammatory efficacy on the skin. To that end, an NE vehicle developed for skin delivery was optimized and characterized. The resulting PGZ-NE showed good anti-inflammatory efficacy by decreasing the expression of inflammatory cytokines IL-6, IL-1β and TNF-α. The properties of the developed nanocarrier allowed achievement of a high permeation flux of PGZ through the skin as well as a high retained amount in the skin, likely due to the depot effect of ingredients, which assured a prolonged local action, with good skin tolerability among participating individuals. Consequently, these results suggest that PGZ-NE may be used as an alternative treatment for inflammatory skin diseases such as rosacea, atopic dermatitis or psoriasis.
Collapse
Affiliation(s)
- Lupe C Espinoza
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Marcelle Silva-Abreu
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Ana C Calpena
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - María J Rodríguez-Lagunas
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - María-José Fábrega
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Biomedicine, University of Barcelona, Barcelona, Spain
| | - María L Garduño-Ramírez
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Beatriz Clares
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain.
| |
Collapse
|
45
|
Linolenic acid-modified methoxy poly (ethylene glycol)-oligochitosan conjugate micelles for encapsulation of amphotericin B. Carbohydr Polym 2019; 205:571-580. [DOI: 10.1016/j.carbpol.2018.10.086] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/30/2018] [Accepted: 10/25/2018] [Indexed: 01/07/2023]
|
46
|
Zhou F, Xu H, Song Z, Zhu L, Feng S, Feng R. α-Linolenic acid-modified pluronic 127-CS copolymeric micelles for the skin targeted delivery of amphotericin B. NEW J CHEM 2019. [DOI: 10.1039/c8nj03847c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, an α-linolenic acid modified pluronic F127-block-chitosan (F127-(CS-LNA)2) copolymer was synthesized to prepare topical amphotericin B (AMB)-loaded micelles (AMB-M) via a dialysis technique.
Collapse
Affiliation(s)
- Feilong Zhou
- School of Biological Science and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| | - Hongmei Xu
- School of Biological Science and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| | - Zhimei Song
- School of Biological Science and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| | - Li Zhu
- School of Biological Science and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| | - Sijia Feng
- School of Basic Medical Sciences
- Dali University
- Dali 671000
- P. R. China
| | - Runliang Feng
- School of Biological Science and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| |
Collapse
|
47
|
Development of Pranoprofen Loaded Nanostructured Lipid Carriers to Improve Its Release and Therapeutic Efficacy in Skin Inflammatory Disorders. NANOMATERIALS 2018; 8:nano8121022. [PMID: 30544628 PMCID: PMC6316124 DOI: 10.3390/nano8121022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/24/2018] [Accepted: 12/01/2018] [Indexed: 12/27/2022]
Abstract
Pranoprofen (PF)-loaded nanostructured lipid carriers (NLCs), prepared using a high-pressure homogenization method, have been optimized and characterized to improve the biopharmaceutical profile of the drug. The optimized PF-NLCs exhibited physicochemical characteristics and morphological properties that were suitable for dermal application. Stability assays revealed good physical stability, and the release behavior of PF from these NLCs showed a sustained release pattern. Cell viability results revealed no toxicity. Ex vivo human skin permeation studies in Franz diffusion cells were performed to determine the influence of different skin penetration enhancers (pyrrolidone, decanol, octanoic acid, nonane, menthone, squalene, linoleic acid, and cineol) on skin penetration and retention of PF, being the highest dermal retention in the presence of linoleic acid. The selected formulations of NLCs exhibited a high retained amount of PF in the skin and no systemic effects. In vivo mice anti-inflammatory efficacy studies showed a significant reduction in dermal oedema. NLCs containing linoleic acid presented better anti-inflammatory efficacy by decreasing the production of interleukins in keratinocytes and monocytes. The biomechanical properties of skin revealed an occlusive effect and no hydration power. No signs of skin irritancy in vivo were detected. According to these results, dermal PF-NLCs could be an effective system for the delivery and controlled release of PF, improving its dermal retention, with reduced dermal oedema as a possible effect of this drug.
Collapse
|
48
|
Soriano-Ruiz JL, Suñer-Carbó J, Calpena-Campmany AC, Bozal-de Febrer N, Halbaut-Bellowa L, Boix-Montañés A, Souto EB, Clares-Naveros B. Clotrimazole multiple W/O/W emulsion as anticandidal agent: Characterization and evaluation on skin and mucosae. Colloids Surf B Biointerfaces 2018; 175:166-174. [PMID: 30530002 DOI: 10.1016/j.colsurfb.2018.11.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/11/2018] [Accepted: 11/27/2018] [Indexed: 01/09/2023]
Abstract
Clotrimazole (CLT) was formulated in a multiple W/O/W emulsion (ME) with the aim of evaluating its potential as topical anticandidal agent and comparing with marketed products. A previously evaluated CLT-ME was selected and physicochemically characterized. The in vitro release behavior and the ex vivo permeation profiles were assessed using Franz diffusion cells using three different types of biological membranes: human skin and porcine buccal, sublingual and vaginal mucosae. The antifungal activity against Candida strains was also tested. Results showed CLT-MEs sizes of 29.206 and 47.678 μm with skin compatible pH values of 6.47 and 6.42 exhibiting high zeta potential values of -55.13 and -55.59 mV with dependence on the pH variation. The physicochemical stability was kept for a period of 180 days of storage at room temperature. CLT-MEs exhibited pseudoplastic behavior with hysteresis areas and viscosities of 286 and 331 mPa⋅s showing higher spreadability properties than commercial counterparts. An improved CLT release pattern was supplied by the ME system following a hyperbolic model. Likewise, ME system gave higher skin permeation flux of CLT than commercial reference. CLT amounts retained in the skin and mucosae were also higher than commercial references, which coupled with the higher antimycotic efficacy make CLT-MEs a great tool for clinical investigation of topical candidiasis treatments.
Collapse
Affiliation(s)
- José L Soriano-Ruiz
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, University Campus of Cartuja, 18071 Granada, Spain
| | - Joaquim Suñer-Carbó
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Ave., 08028 Barcelona, Spain
| | - Ana C Calpena-Campmany
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Ave., 08028 Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, 645 Diagonal Ave., 08028 Barcelona, Spain
| | - Nuria Bozal-de Febrer
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Ave., 08028 Barcelona, Spain
| | - Lyda Halbaut-Bellowa
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Ave., 08028 Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, 645 Diagonal Ave., 08028 Barcelona, Spain
| | - Antonio Boix-Montañés
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Ave., 08028 Barcelona, Spain
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
| | - Beatriz Clares-Naveros
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, University Campus of Cartuja, 18071 Granada, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, 645 Diagonal Ave., 08028 Barcelona, Spain.
| |
Collapse
|
49
|
Soriano-Ruiz JL, Calpena-Capmany AC, Cañadas-Enrich C, Febrer NBD, Suñer-Carbó J, Souto EB, Clares-Naveros B. Biopharmaceutical profile of a clotrimazole nanoemulsion: Evaluation on skin and mucosae as anticandidal agent. Int J Pharm 2018; 554:105-115. [PMID: 30395953 DOI: 10.1016/j.ijpharm.2018.11.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 10/30/2018] [Accepted: 11/01/2018] [Indexed: 12/15/2022]
Abstract
Clotrimazole (CLT) was formulated in a nanoemulsion (NE) for the topical treatment of candidiasis consisting of 10% labrafac® lipophile, 60% labrasol®:capryol® 90 mixture (ratio 4:1) and 30% propylene glycol. Physicochemical properties, stability, rheology, in vitro drug release, ex vivo drug permeation through human skin and porcine buccal, sublingual and vaginal mucosae, antifungal efficacy, as well as in vivo skin tolerance were evaluated. 1% CLT-NE (CLT-NE1) and 2% CLT-NE (CLT-NE2) exhibited 153 ± 17.25 and 186 ± 15.38 nm droplet sizes, low polydispersity indexes, negative zeta potentials and biocompatible pH values. The CLT-NEs exhibited typical Newtonian profiles with viscosities of 42.14 ± 0.037 mPa·s and 41.35 ± 0.041 mPa·s, respectively and higher extensibility properties than commercial counterparts retaining their physicochemical properties for 180 days. NEs provided a sustained release of drug according to the first order model. Similar skin permeation properties were observed between CLT-NE1 and commercial reference. However, significant higher CLT amounts retained in mucosae were provided by CLT-NE2 when compared with references. Antifungal efficacies were also higher than commercial references, and the in vivo tolerance study confirmed the suitability for topical application, making CLT-NEs a great tool for clinical investigation of topical candidiasis treatments.
Collapse
Affiliation(s)
- José L Soriano-Ruiz
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, University Campus of Cartuja, 18071 Granada, Spain
| | - Ana C Calpena-Capmany
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Ave., 08028 Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, 645 Diagonal Ave., 08028 Barcelona, Spain
| | - Cristina Cañadas-Enrich
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Ave., 08028 Barcelona, Spain
| | - Nuria Bozal-de Febrer
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Ave., 08028 Barcelona, Spain
| | - Joaquim Suñer-Carbó
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Ave., 08028 Barcelona, Spain
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Beatriz Clares-Naveros
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, University Campus of Cartuja, 18071 Granada, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, 645 Diagonal Ave., 08028 Barcelona, Spain.
| |
Collapse
|
50
|
Rincón M, Calpena AC, Clares B, Espina M, Garduño-Ramírez ML, Rodríguez-Lagunas MJ, García ML, Abrego G. Skin-controlled release lipid nanosystems of pranoprofen for the treatment of local inflammation and pain. Nanomedicine (Lond) 2018; 13:2397-2413. [DOI: 10.2217/nnm-2018-0195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: The design and development of pranoprofen (PF) nanostructured lipid carriers (NLCs) for topical treatment of local inflammation and pain. Materials & methods: PF-NLCs were designed and optimized by central rotatable composite design. A physicochemical characterization was addressed. Release and skin permeation were performed in Franz diffusion cells. In vivo anti-inflammatory efficacy was assayed in mice and tolerance study in humans. Results: PF-NLCs F7 and F10 provided sustained release, good stability and optimal skin retention avoiding systemic undesired side effects. Anti-inflammatory activity was enhanced, suggesting an improved efficacy as compared with standard formulation. No skin irritancy was detected. Conclusion: Topical PF-NLCs F7 and F10 could be effective and safe new therapeutic tools for the treatment of local inflammation and pain. [Formula: see text]
Collapse
Affiliation(s)
- María Rincón
- Department of Pharmacy & Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain
| | - Ana C Calpena
- Department of Pharmacy & Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience & Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Beatriz Clares
- Institute of Nanoscience & Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
- Department of Pharmacy & Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Marta Espina
- Department of Pharmacy & Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience & Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - María L Garduño-Ramírez
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - María J Rodríguez-Lagunas
- Department of Biochemistry & Physiology, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain
| | - María L García
- Department of Pharmacy & Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience & Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Guadalupe Abrego
- Department of Chemical & Instrumental Analysis, Faculty of Chemistry & Pharmacy, University of El Salvador, San Salvador, El Salvador
| |
Collapse
|