1
|
Zhang H, Yang T, Mu W, Peng X, Liu T, Weng L, Wang H, Zhang Y, Chen X. Effective Amplification of Oxidative Stress and Calcium Manipulation Mediated Mitochondrial Dysfunction Based on Engineered Nanozyme for Primary and Metastatic Breast Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411299. [PMID: 40018887 DOI: 10.1002/smll.202411299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/17/2025] [Indexed: 03/01/2025]
Abstract
Herein, an engineered nanocomposite (FZSHC) was constructed containing zinc-based nanozyme(ZS), Hemin and Ca2+ ions with further surface modification of phospholipid and folic acid (FA) for primary and metastatic breast cancer therapy. During therapy, the FZSHC initially accumulated in tumor tissues through enhanced permeability and retention effectand FA receptor-mediated tumor-targeting delivery. After that, the FZSHC further dissociated to free Ca2+ and Hemin loaded ZS in the acidic environment of lysosome. The resulting ZS then generated reactive oxygen species (ROS) and consumed glutathione via peroxidase and glutathione oxidase mimicking enzyme activities to induce the tumor-specific ferroptosis for primary tumor elimination, in which the ROS production could be further promoted by the Hemin catalyzed Fenton-likereactions to amplify oxidative damage and accelerate the ferroptosis. Furthermore, the ROS also influenced calcium metabolism of tumor cells, causingthe Ca2+-overloading and mitochondrial dysfunction in tumor cell salong with the introduction of exogenous Ca2+, which resulted in the suppression of adenosine triphosphate synthesis to hinder the energy supply of tumor cells for significant inhibition of tumor metastasis. Both in vitro and in vivo results demonstrated the remarkable therapeutic slmult1 efficiencyof FZSHC nanozyme in suppressing the growth and metastasis of breastcancer.
Collapse
Affiliation(s)
- Handan Zhang
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Tianfeng Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Wenyun Mu
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiuhong Peng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Tao Liu
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lin Weng
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Haoyu Wang
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Xin Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
2
|
Gupta DS, Tomar DA, Manohar DL, Panwar DP. Nanobots: The current scenario. Crit Rev Oncol Hematol 2025; 208:104652. [PMID: 39929350 DOI: 10.1016/j.critrevonc.2025.104652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
The detection and treatment of cancer could be completely transformed by the application of nanotechnology. New nanoscale targeting methods have emerged as a result of advancements in materials science and protein engineering, giving cancer patients new hope. Only a small number of nanocarriers have been approved for clinical usage in targeting cancer cells, despite the fact that many have been licensed for human studies. We examine a few of the approved formulations in this study and talk about the difficulties in transferring laboratory results to clinical settings. This review emphasises the inherent challenges in cancer therapy as well as the different nanocarriers and chemicals that can be used for specific tumour targeting. Future advancements in cancer detection and therapy could be facilitated by nanotechnology, but still the area remains vast and more clinical as well as laboratory trails are the need of the hour to overcome the present barriers and align the discovery of the potential application of nanobots from a mere lab work to a full-fledged clinical and translational work.
Collapse
Affiliation(s)
- Dr Shalini Gupta
- Department of Oral Pathology and Microbiology, King George's Medical University, Lucknow 226003, India.
| | - Dr Arushi Tomar
- Department of Oral Pathology and Microbiology, King George's Medical University, Lucknow 226003, India
| | - Dr Lakshmi Manohar
- Department of Oral Pathology and Microbiology, King George's Medical University, Lucknow 226003, India
| | - Dr Payal Panwar
- Department of Oral Pathology and Microbiology, King George's Medical University, Lucknow 226003, India
| |
Collapse
|
3
|
Wang YC, Lin YT, Hsieh PH, Lai CW, Chen SF, Chen MH, Tung FI, Liu TY. On-site delivery of bioactive nanospheres utilizing lanthanides as crosslinkers and metastasis-inhibiting agents for breast cancer therapy. J Control Release 2025; 382:113671. [PMID: 40158810 DOI: 10.1016/j.jconrel.2025.113671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Postoperative breast cancer patients face a critical 2-3-week window during which residual tumor cells are highly prone to metastasis, yet systemic therapies are often ineffective due to impaired vascularization and limited drug transport. To address this challenge, we developed an injectable nanosphere formulation based on hyaluronic acid (HyA) crosslinked with lanthanide ions-europium (Eu) or lanthanum (La) ions-that act dually as physical crosslinkers and therapeutic agents. This dual-function design ensures structural stability without chemical crosslinkers, while actively inhibiting cancer cell migration, invasion, and colonization. The small ionic size of lanthanides facilitates deep interstitial transport, overcoming diffusion barriers in poorly perfused tissues. Upon injection, the nanospheres swell to sub-micrometer dimensions, achieving prolonged retention at the tumor site and sustained ion release for up to 21 days. In vitro and in vivo studies revealed distinct anti-metastatic profiles: HyA-Eu nanospheres effectively suppressed migration and distant metastasis, whereas HyA-La nanospheres inhibited colony formation and primary tumor growth. These results demonstrate a novel lanthanide ion-mediated strategy for post-surgical cancer therapy, integrating local retention with controlled ion release to bridge the treatment gap during recovery.
Collapse
Affiliation(s)
- Yu-Chi Wang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yan-Ting Lin
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ping-Hsun Hsieh
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chen-Wei Lai
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Shuo-Fu Chen
- Department of Heavy Particles & Radiation Oncology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Ming-Hong Chen
- Division of Neurosurgery, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 220216, Taiwan; Department of Electrical Engineering, Yuan Ze University, Taoyuan City 320315, Taiwan
| | - Fu-I Tung
- Department of Orthopaedics, Yang-Ming Branch, Taipei City Hospital, Taipei 111024, Taiwan; Department of Health and Welfare, College of City Management, University of Taipei, Taipei 111036, Taiwan.
| | - Tse-Ying Liu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan.
| |
Collapse
|
4
|
Yu Y, Li W, Yu Q, Ye J, Wang H, Li Y, Yin S. Biomimetic-Nanoparticle-Enhanced Photothermal Immunotherapy: Targeted Delivery of Near-Infrared Region II Agents and Immunoadjuvants for Tumor Immunogenicity. Biomater Res 2025; 29:0151. [PMID: 40040955 PMCID: PMC11876542 DOI: 10.34133/bmr.0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/02/2025] [Accepted: 01/31/2025] [Indexed: 03/06/2025] Open
Abstract
Advancing at the cutting edge of oncology, the synergistic application of photothermal therapy coupled with immunotherapy is rapidly establishing itself as an innovative and potent strategy against cancer. A critical challenge in this domain is the precise and efficient targeting of tumor tissues with photothermal agents and immunoadjuvants while minimizing interference with healthy tissues. In this paper, we introduce an ingenious biomimetic nanoparticle platform, cancer cell membrane coated F127/(R837 and IR1048) (CFRI) nanoparticles encapsulating a near-infrared region II photothermal agent, IR1048, and an immunostimulatory molecule, R837, with their surface modified using membranes derived from tumor cells, conferring exceptional specificity for tumor targeting. CFRI nanoparticles demonstrated an extraordinary photothermal conversion efficiency of 49%, adeptly eradicating in situ tumors. This process also triggered the release of damage-associated molecular patterns, thereby activating dendritic cells and catalyzing the maturation and differentiation of T cells, initiating a robust immune response. In vivo animal models substantiated that the CFRI-mediated synergistic photothermal and immunotherapeutic strategy markedly suppressed the proliferation of in situ tumors and provoked a vigorous systemic immune response, effectively curtailing the metastasis and recurrence of distant tumors. The successful development of the CFRI nanoparticle system offers a promising horizon for future clinical translations and pioneering research in oncology.
Collapse
Affiliation(s)
- Yanlu Yu
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering,
Hangzhou Normal University, 311121 Hangzhou, P. R. China
| | - Wen Li
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering,
Hangzhou Normal University, 311121 Hangzhou, P. R. China
| | - Qiqi Yu
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering,
Hangzhou Normal University, 311121 Hangzhou, P. R. China
| | - Jingtao Ye
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering,
Hangzhou Normal University, 311121 Hangzhou, P. R. China
| | - Hu Wang
- Key Laboratory of Ageing and Cancer Biology of Zhejiang Province, Institute of Ageing Research, School of Medicine,
Hangzhou Normal University, 311121 Hangzhou, P. R. China
| | - Yang Li
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering,
Hangzhou Normal University, 311121 Hangzhou, P. R. China
| | - Shouchun Yin
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering,
Hangzhou Normal University, 311121 Hangzhou, P. R. China
| |
Collapse
|
5
|
Li Y, Zhang R, Dang Y, Liang Y, Wang L, Chen N, Zhuang L, Liu W, Gong T. Sieging tumor cells using an amorphous ferric coordination polymer. MATERIALS HORIZONS 2025. [PMID: 40025991 DOI: 10.1039/d4mh01558d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Metastasis is one of the main reasons for cancer treatment failure. Unfortunately, most treatment approaches inevitably damage the extracellular matrix (ECM) during tumor cell elimination, thereby augmenting the risk of metastasis. Herein, we proposed a "sieging tumor cells" strategy based on ferric coordination polymers (FeCPs), which involved anchoring tumor cells through ECM consolidation and selectively eliminating them in the tumor regions. Due to the weak coordination interactions and amorphous structure of FeCPs, the acidic tumor microenvironment facilitated their disintegration, releasing salicylic acid (SA), 2,5-dihydroxyterephthalic acid (DHTA) and Fe3+ ions. The released SA inhibited heparinase activity to consolidate the ECM, while Fe-mediated chemodynamic therapy (CDT) was enhanced by DHTA due to its fast electron transport behavior, ultimately inhibiting tumor growth and metastasis. The results from the orthotopic 4T1 breast tumor model indicated that lung metastasis was reduced by about 90%, and the survival rate improved by 70% after FeCP treatment. Overall, this "sieging tumor cells" strategy provides an emerging approach for the treatment of malignant tumors by consolidating the ECM in combination with self-enhanced CDT.
Collapse
Affiliation(s)
- Yanli Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Ruoqi Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Yuanye Dang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Yongyu Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Lulu Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Na Chen
- Soochow University Library, Soochow University, Suzhou 215006, China
| | - Luwen Zhuang
- Center for Water Resources and Environment, and Guangdong Key Laboratory of Marine Civil Engineering, School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Wen Liu
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| | - Teng Gong
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
6
|
Zhu W, Yu M, Wang M, Zhang M, Hai Z. Sequential self-assembly and release of a camptothecin prodrug for tumor-targeting therapy. NANOSCALE 2025; 17:2061-2067. [PMID: 39648922 DOI: 10.1039/d4nr03519d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Chemotherapy is the most commonly used method to treat malignant tumors with a wide range of drugs. However, chemotherapeutic drugs are characterized by poor solubility, low stability and specificity, as well as drug resistance, which led to their limited bioavailability and severe adverse effects. Therefore, most researches focus on one or two strategies while a few researches focus on three strategies to improve the efficacy of drugs. Herein, we combined three strategies (targeted therapy, prodrug design and drug delivery) to exploit a self-assembled camptothecin (CPT) prodrug (CPT-SS-FFEYp-Biotin) for enhancing therapeutic efficacy and reducing side effects of CPT. CPT-SS-FFEYp-Biotin enters into tumor cells following the recognition between biotin and biotin receptors. Moreover, the over-expressed alkaline phosphatase (ALP) on cell membranes specifically dephosphorylates CPT-SS-FFEYp-Biotin to CPT-SS-FFEY-Biotin, which self-assembles into a CPT hydrogel with the local enrichment of CPT. Subsequently, excess glutathione (GSH) in tumor cells can reduce the disulfide bond of CPT-SS-FFEY-Biotin to slowly release CPT for sustained tumor therapy. Cell experiments demonstrated that CPT-SS-FFEYp-Biotin enhances therapeutic efficacy of CPT on tumor cells while being safer to normal cells than CPT. Moreover, CPT-SS-FFEYp-Biotin effectively improved anti-tumor treatment of CPT in vivo. We envision that the integration of these three strategies is helpful to exploit a variety of prodrugs for effective anti-tumor treatment in the future.
Collapse
Affiliation(s)
- Wujuan Zhu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China.
| | - Minghui Yu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China.
| | - Minghui Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China.
| | - Miaomiao Zhang
- College of Chemistry and Center for Advanced Analysis & Gene Sequencing, Zhengzhou University, Zhengzhou 450001, China.
| | - Zijuan Hai
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
7
|
Xu M, Xu Y, Du C, Gu G, Wei G. Biomimetic CuCoO 2 nanosheets reinforced with self-assembling peptide nanofibers for tumor photothermal therapy. RSC Adv 2024; 14:39163-39172. [PMID: 39664248 PMCID: PMC11632949 DOI: 10.1039/d4ra07435a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024] Open
Abstract
The flexible design and unique physical and chemical properties of self-assembled peptides have shown great potential for applications in the fields of materials science, life science, and environmental science. Peptide nanofibers (PNFs), as a kind of bioactive nanomaterials, possess excellent biocompatibility, flexible designability, and multifaceted functionalizability. In this work, we design and describe PNFs that self-assembled by peptide molecules as carriers for bimetallic nanosheets (BMNS), leading to the development of hybrid nanomaterials, BMNS-PNFs, with unique properties. The BMNS-PNFs exhibit a photothermal conversion efficiency (PCE) of up to 31.57%, and can be used as a potential nanoplatform for photothermal therapy (PTT) of lung tumour cells. Through the results, it is shown that the PNFs can reduce the cytotoxicity of BMNS-PNFs and that BMNS-PNFs have excellent cancer cell killing effects, with photothermal killing rates of more than 95% and 90% for lung cancer cells HCC2279 and PC9, respectively. Finally, the comprehensive PTT performance of BMNS-PNFs is analysed by Ranking of Efficiency Performance (REP), and the REP value of BMNS-PNFs is calculated to be 0.741. The peptide sequences used to assemble into PNFs in this study are instructive for functional design and structural modulation of molecular self-assembly, and the constructed bimetallic-biomolecular hybrid materials provide a potential strategy for medical bioengineering.
Collapse
Affiliation(s)
- Mingjin Xu
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University Qingdao 266700 PR China
| | - Youyin Xu
- College of Chemistry & Chemical Engineering, Qingdao University 266071 Qingdao PR China
| | - Chenxi Du
- College of Chemistry & Chemical Engineering, Qingdao University 266071 Qingdao PR China
| | - Guanghui Gu
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University Qingdao 266700 PR China
| | - Gang Wei
- College of Chemistry & Chemical Engineering, Qingdao University 266071 Qingdao PR China
| |
Collapse
|
8
|
Chen R, Hu T, Lu Y, Yang S, Zhang M, Tan C, Liang R, Wang Y. PAD4 Inhibitor-Loaded Layered Double Hydroxide Nanosheets as a Multifunctional Nanoplatform for Photodynamic Therapy-Mediated Tumor Metastasis Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404211. [PMID: 39358959 PMCID: PMC11636073 DOI: 10.1002/smll.202404211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/29/2024] [Indexed: 10/04/2024]
Abstract
Photodynamic therapy (PDT) is demonstrated to be effective in inducing antitumor immune responses for tumor metastasis treatment. However, tumor hypoxia, inferior tissue penetration of light, and low singlet oxygen (1O2) quantum yield significantly hamper the efficacy of PDT, thus weakening its immune function. Moreover, PDT-mediated neutrophil extracellular traps (NETs) formation can further reduce the therapeutic effectiveness. Herein, the use of defect-rich CoMo-layered double hydroxide (DR-CoMo-LDH) nanosheets as a carrier to load a typical peptidyl arginine deiminase 4 inhibitor, i.e., YW4-03, to construct a multifunctional nanoagent (403@DR-LDH) for PDT/immunotherapy, is reported. Specifically, 403@DR-LDH inherits excellent 1O2 generation activity under 1550 nm laser irradiation and improves the half-life of YW4-03. Meanwhile, 403@DR-LDH plus 1550 nm laser irradiation can stimulate immunogenic cell death to promote the maturation of dendric cells and activation/infiltration of T cells and significantly downregulate H3cit protein expression to inhibit NETs formation, synergistically promoting the antitumor metastasis effect. Taken together, 403@DR-LDH can kill cancer cells and inhibit tumor growth/metastasis under 1550 nm laser irradiation. Single-cell analysis indicates that 403@DR-LDH can regulate the ratio of immune cells and immune-related proteins to improve the tumor immune microenvironment, showing strong efficacy to inhibit the tumor growth, metastasis, and recurrence.
Collapse
Affiliation(s)
- Rong Chen
- Department of Medicinal ChemistryCollege of Pharmaceutical Sciences of Capital Medical UniversityBeijing100069P. R. China
| | - Tingting Hu
- Department Electrical and Electronic EngineeringThe University of Hong KongPokfulam RoadHong Kong SAR999077P. R. China
| | - Yu Lu
- Department of Medicinal ChemistryCollege of Pharmaceutical Sciences of Capital Medical UniversityBeijing100069P. R. China
| | - Shuqing Yang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Min Zhang
- Department of NephrologyAffiliated Beijing Chaoyang Hospital of Capital Medical UniversityBeijing100020P. R. China
| | - Chaoliang Tan
- Department Electrical and Electronic EngineeringThe University of Hong KongPokfulam RoadHong Kong SAR999077P. R. China
- Department Electrical EngineeringCity University of Hong Kong83 Tat Chee Ave, Kowloon TongHong Kong SAR999077P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
- Quzhou Institute for Innovation in Resource Chemical EngineeringQuzhou324000P. R. China
| | - Yuji Wang
- Department of Medicinal ChemistryCollege of Pharmaceutical Sciences of Capital Medical UniversityBeijing100069P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular DrugsEngineering Research Center of Endogenous Prophylactic of Ministry of Education of ChinaBeijing Laboratory of Biomedical MaterialsLaboratory for Clinical MedicineBeijing Laboratory of Oral HealthCapital Medical UniversityBeijing100069P. R. China
| |
Collapse
|
9
|
Lee YT, Wu SH, Wu CH, Lin YH, Lin CK, Chen ZA, Sun TC, Chen YJ, Chen P, Mou CY, Chen YP. Drug-Free Mesoporous Silica Nanoparticles Enable Suppression of Cancer Metastasis and Confer Survival Advantages to Mice with Tumor Xenografts. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61787-61804. [PMID: 39448366 PMCID: PMC11565475 DOI: 10.1021/acsami.4c16609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
Despite advancements in nanomedicine for drug delivery, many drug-loaded nanoparticles reduce tumor sizes but often fail to prevent metastasis. Mesoporous silica nanoparticles (MSNs) have attracted attention as promising nanocarriers. Here, we demonstrated that MSN-PEG/TA 25, with proper surface modifications, exhibited unique antimetastatic properties. In vivo studies showed that overall tumor metastasis decreased in 4T1 xenografts mice treated with MSN-PEG/TA 25 with a notable reduction in lung tumor metastasis. In vitro assays, including wound-healing, Boyden chamber, tube-formation, and real-time cell analyses, showed that MSN-PEG/TA 25 could modulate cell migration of 4T1 breast cancer cells and interrupt tube formation by human umbilical vein endothelial cells (HUVECs), key factors in suppressing cancer metastasis. The synergistic effect of MSN-PEG/TA 25 combined with liposomal-encapsulated doxorubicin (Lipo-Dox) significantly boosted mouse survival rates, outperforming Lipo-Dox monotherapy. We attributed the improved survival to the antimetastatic capabilities of MSN-PEG/TA 25. Moreover, Dox-loaded MSN-PEG/TA 25 suppressed primary tumors while retaining the antimetastatic effect, thereby enhancing therapeutic outcomes and overall survival. Western blot and qPCR analyses revealed that MSN-PEG/TA 25 interfered with the phosphorylation of ERK, FAK, and paxillin, thus impacting focal adhesion turnover and inhibiting cell motility. Our findings suggest that drug-free MSN-PEG/TA 25 is highly efficient for cancer treatment via suppressing metastatic activity and angiogenesis.
Collapse
Affiliation(s)
- Yu-Tse Lee
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Si-Han Wu
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International
Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Cheng-Hsun Wu
- Nano
Targeting & Therapy Biopharma Inc., Taipei 10087, Taiwan
| | - Yu-Han Lin
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Cong-Kai Lin
- Graduate
Institute of Biomedical Materials & Tissue Engineering, College
of Biomedical Engineering, Taipei Medical
University, Taipei 11031, Taiwan
| | - Zih-An Chen
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Research
Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Ting-Chung Sun
- Nano
Targeting & Therapy Biopharma Inc., Taipei 10087, Taiwan
| | - Yin-Ju Chen
- Graduate
Institute of Biomedical Materials & Tissue Engineering, College
of Biomedical Engineering, Taipei Medical
University, Taipei 11031, Taiwan
| | - Peilin Chen
- Research
Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chung-Yuan Mou
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Ping Chen
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International
Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
10
|
Chu Z, Wang W, Zheng W, Fu W, Wang Y, Wang H, Qian H. Biomaterials with cancer cell-specific cytotoxicity: challenges and perspectives. Chem Soc Rev 2024; 53:8847-8877. [PMID: 39092634 DOI: 10.1039/d4cs00636d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Significant advances have been made in materials for biomedical applications, including tissue engineering, bioimaging, cancer treatment, etc. In the past few decades, nanostructure-mediated therapeutic strategies have been developed to improve drug delivery, targeted therapy, and diagnosis, maximizing therapeutic effectiveness while reducing systemic toxicity and side effects by exploiting the complicated interactions between the materials and the cell and tissue microenvironments. This review briefly introduces the differences between the cells and tissues of tumour or normal cells. We summarize recent advances in tumour microenvironment-mediated therapeutic strategies using nanostructured materials. We then comprehensively discuss strategies for fabricating nanostructures with cancer cell-specific cytotoxicity by precisely controlling their composition, particle size, shape, structure, surface functionalization, and external energy stimulation. Finally, we present perspectives on the challenges and future opportunities of nanotechnology-based toxicity strategies in tumour therapy.
Collapse
Affiliation(s)
- Zhaoyou Chu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China.
| | - Wanni Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
| | - Wang Zheng
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
| | - Wanyue Fu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
| | - Yujie Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
| | - Hua Wang
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China.
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Anhui Medical University, Hefei 230011, P. R. China
| |
Collapse
|
11
|
Skládal P, Farka Z. Luminescent photon-upconversion nanoparticles with advanced functionalization for smart sensing and imaging. Mikrochim Acta 2024; 191:551. [PMID: 39167235 DOI: 10.1007/s00604-024-06615-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Photon-upconversion nanoparticles (UCNP) have already been established as labels for affinity assays in analog and digital formats. Here, advanced, or smart, systems based on UCNPs coated with active shells, fluorescent dyes, and metal and semiconductor nanoparticles participating in energy transfer reactions are reviewed. In addition, switching elements can be embedded in such assemblies and provide temporal and spatial control of action, which is important for intracellular imaging and monitoring activities. Demonstration and critical comments on representative approaches demonstrating the progress in the use of such UCNPs in bioanalytical assays, imaging, and monitoring of target molecules in cells are reported, including particular examples in the field of cancer theranostics.
Collapse
Affiliation(s)
- Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice, 5, 625 00, Brno, Czech Republic.
| | - Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice, 5, 625 00, Brno, Czech Republic
| |
Collapse
|
12
|
Zhu D, Lu Y, Yang S, Hu T, Tan C, Liang R, Wang Y. PAD4 Inhibitor-Functionalized Layered Double Hydroxide Nanosheets for Synergistic Sonodynamic Therapy/Immunotherapy Of Tumor Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401064. [PMID: 38708711 PMCID: PMC11234469 DOI: 10.1002/advs.202401064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/03/2024] [Indexed: 05/07/2024]
Abstract
Sonodynamic therapy (SDT) is demonstrated to trigger the systemic immune response of the organism and facilitate the treatment of metastatic tumors. However, SDT-mediated neutrophil extracellular traps (NETs) formation can promote tumor cell spread, thus weakening the therapeutic effectiveness of metastatic tumors. Herein, the amorphous CoW-layered double hydroxide (a-CoW-LDH) nanosheets are functionalized with a peptidyl arginine deiminase 4 (PAD4) inhibitor, i.e., YW3-56, to construct a multifunctional nanoagent (a-LDH@356) for synergistic SDT/immunotherapy. Specifically, a-CoW-LDH nanosheets can act as a sonosensitizer to generate abundant reactive oxygen species (ROS) under US irradiation. After loading with YW3-56, a-LDH@356 plus US irradiation not only effectively induces ROS generation and immunogenic cell death, but also inhibits the elevation of citrullinated histone H3 (H3cit) and the release of NETs, enabling a synergistic enhancement of anti-tumor metastasis effect. Using 4T1 tumor model, it is demonstrated that combining a-CoW-LDH with YW3-56 stimulates an anti-tumor response by upregulating the proportion of immune-activated cells and inducing polarization of M1 macrophages, and inhibits immune escape by downregulating the expression of PD-1 on immune cells under US irradiation, which not only arrests primary tumor progression with a tumor inhibition rate of 69.5% but also prevents tumor metastasis with the least number of lung metastatic nodules.
Collapse
Affiliation(s)
- Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, P. R. China
| | - Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, P. R. China
| | - Shuqing Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tingting Hu
- Department Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China
| | - Chaoliang Tan
- Department Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, P. R. China
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing Laboratory of Oral Health, Beijing, 100069, P. R. China
| |
Collapse
|
13
|
Wu M, Zhang W, Zhou X, Wang Z, Li S, Guo C, Yang Y, Zhang R, Zhang Z, Sun X, Gong T. An in situ forming gel co-loaded with pirarubicin and celecoxib inhibits postoperative recurrence and metastasis of breast cancer. Int J Pharm 2024; 653:123897. [PMID: 38360289 DOI: 10.1016/j.ijpharm.2024.123897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/16/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Surgical removal combined with postoperative chemotherapy is still the mainstay of treatment for most solid tumors. Although chemotherapy reduces the risk of recurrence and metastasis after surgery, it may produce serious adverse effects and impair patient compliance. In situ drug delivery systems are promising tools for postoperative cancer treatment, improving drug delivery efficiency and reducing side effects. Herein, an injectable phospholipid-based in situ forming gel (IPG) was prepared for the co-delivery of antitumor agent pirarubicin (THP) and cyclooxygenase-2 (COX-2) inhibitor celecoxib (CXB) in the surgical incision, and the latter are used extensively in adjuvant chemotherapy for cancer. After injection, the IPG co-loaded with THP and CXB (THP-CXB-IPG) underwent spontaneous phase transition and formed a drug reservoir that fitted the irregular surgical incisions perfectly. In vitro drug release studies and in vivo pharmacokinetic analysis had demonstrated the sustained release behaviors of THP-CXB-IPG. The in vivo therapeutic efficacy was evaluated in mice that had undergone surgical resection of breast cancer, and the THP-CXB-IPG showed considerable inhibition of residual tumor growth after surgery and reduced the incidence of pulmonary metastasis. Moreover, it reduced the systemic toxicity of chemotherapeutic agents. Therefore, THP-CXB-IPG can be a promising candidate for preventing postoperative recurrence and metastasis.
Collapse
Affiliation(s)
- Mengying Wu
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wei Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xueru Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zijun Wang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Sha Li
- NMPA Key Laboratory for Technical Research on Drug Products in Vitro and in Vivo Correlation, Bioanalytical Service Center of Sichuan Institute for Drug Control, Chengdu 611731, China
| | - Chenqi Guo
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuping Yang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rongping Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
14
|
Ouyang X, Liu Y, Zheng K, Pang Z, Peng S. Recent advances in zwitterionic nanoscale drug delivery systems to overcome biological barriers. Asian J Pharm Sci 2024; 19:100883. [PMID: 38357524 PMCID: PMC10861844 DOI: 10.1016/j.ajps.2023.100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/28/2023] [Accepted: 12/22/2023] [Indexed: 02/16/2024] Open
Abstract
Nanoscale drug delivery systems (nDDS) have been employed widely in enhancing the therapeutic efficacy of drugs against diseases with reduced side effects. Although several nDDS have been successfully approved for clinical use up to now, biological barriers between the administration site and the target site hinder the wider clinical adoption of nDDS in disease treatment. Polyethylene glycol (PEG)-modification (or PEGylation) has been regarded as the gold standard for stabilising nDDS in complex biological environment. However, the accelerated blood clearance (ABC) of PEGylated nDDS after repeated injections becomes great challenges for their clinical applications. Zwitterionic polymer, a novel family of anti-fouling materials, have evolved as an alternative to PEG due to their super-hydrophilicity and biocompatibility. Zwitterionic nDDS could avoid the generation of ABC phenomenon and exhibit longer blood circulation time than the PEGylated analogues. More impressively, zwitterionic nDDS have recently been shown to overcome multiple biological barriers such as nonspecific organ distribution, pressure gradients, impermeable cell membranes and lysosomal degradation without the need of any complex chemical modifications. The realization of overcoming multiple biological barriers by zwitterionic nDDS may simplify the current overly complex design of nDDS, which could facilitate their better clinical translation. Herein, we summarise the recent progress of zwitterionic nDDS at overcoming various biological barriers and analyse their underlying mechanisms. Finally, prospects and challenges are introduced to guide the rational design of zwitterionic nDDS for disease treatment.
Collapse
Affiliation(s)
- Xumei Ouyang
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China
| | - Yu Liu
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China
| | - Ke Zheng
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Zhiqing Pang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shaojun Peng
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China
| |
Collapse
|
15
|
Yao Y, Zhao Z, He J, Ali B, Wang M, Liao F, Zhuang J, Zheng Y, Guo W, Zhang DY. Iridium nanozyme-mediated photoacoustic imaging-guided NIR-II photothermal therapy and tumor microenvironment regulation for targeted eradication of cancer stem cells. Acta Biomater 2023; 172:369-381. [PMID: 37852456 DOI: 10.1016/j.actbio.2023.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
Cancer stem cells (CSCs) are found in many solid tumors, which play decisive roles in the occurrence, recurrence and metastasis of tumors. However, drugs are difficult to kill CSCs due to their limited number and location in oxygen-deprived tissue far from the blood vessels. Meanwhile, the survival and stemness maintenance of CSCs strongly depend on the tumor microenvironment (TME). Herein, we developed a CD44 antibody modified iridium nanosheet with enzyme-like activity (defined as Ir Nts-Ab) that effectively eradicates CSCs for cancer therapy. We observe that Ir Nts-Ab can enrich tumor tissues to remove excessive reactive oxygen species and produce oxygen, thus alleviating hypoxia and the inflammatory TME to reduce the proportion of CSCs and inhibit metastasis. In addition, Ir Nts-Ab targets CSCs and normal cancer cells with near infrared II-region photothermal therapy (NIR-II PTT), and is easily taken up by CSCs due to recognition of the CD44 proteins. Moreover, photoacoustic imaging helps monitor drug accumulation and hypoxic TME improvement in tumor tissue. Importantly, Ir Nts-Ab has good biological safety, making it suitable for biomedical applications. This iridium nanozyme based on TME regulation as well as NIR-II PTT will be a promising strategy for the treatment of cancer. STATEMENT OF SIGNIFICANCE: Cancer stem cells (CSCs) are key factors that make tumors difficult to eradicate, and strongly depend on the hypoxic tumor microenvironment (TME), which plays a crucial role in the occurrence and metastasis of tumors. Herein, an antibody modified iridium nanosheet (definition as Ir Nts-Ab) was developed for targeted eradication of CSCs by photoacoustic imaging guided photothermal therapy (PTT) and TME regulation. Ir Nts-Ab with catalase-like activity could inhibit HIF-1α by producing oxygen, thus effectively reducing the proportion of CSCs and inhibiting tumor metastasis. Additionally, Ir Nts-Ab achieved the eradication of CSCs by PTT, and eliminated reactive oxygen species to decrease the inflammatory response, resulting in reduced tumor metastasis, which was promising for the cure of solid tumors in the clinics.
Collapse
Affiliation(s)
- Yuying Yao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhuangzhuang Zhao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jinzhen He
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Barkat Ali
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China; PARC Pakistan Agricultural Research Council, Islamabad 44000, Pakistan
| | - Mingcheng Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Fangling Liao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiani Zhuang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yue Zheng
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Weisheng Guo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Dong-Yang Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
16
|
Jhunjhunwala M, Yu LS, Kuo PC, Li CY, Chen CS. Tumor-Derived Membrane Vesicles Restrain Migration in Gliomas By Altering Collective Polarization. ACS APPLIED BIO MATERIALS 2023; 6:4764-4774. [PMID: 37862244 DOI: 10.1021/acsabm.3c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Mechanobiology is a cornerstone in physiology. However, its role in biomedical applications remains considerably undermined. In this study, we employed cell membrane vesicles (CMVs), which are currently being used as nanodrug carriers, as tactile cues for mechano-regulation of collective cell behaviors. Gliomas, which are among the most resilient brain tumors and have a low patient survival rate, were used as the cell model. We observed that mechanical responses due to the application of glioma- or microglia-derived CMVs resulted in the doubling of the traction stress of glioma cell collectives with a 10-fold increase in the CMV concentration. Glioma-CMVs constrained cell protrusions and hindered their collective migration, with the migration speed of such cells declining by almost 40% compared to the untreated cells. We speculated that the alteration of collective polarization leads to migration speed changes, and this phenomenon was elucidated using the cellular Potts model. In addition to intracellular force modulation and cytoskeletal reorganization, glioma-CMVs altered drug diffusion within glioma spheroids by downregulating the mechano-signaling protein YAP-1 while also marginally enhancing the associated apoptotic events. Our results suggest that glioma-CMVs can be applied as an adjuvant to current treatment approaches to restrict tumor invasion and enhance the penetration of reagents within tumors. Considering the broad impact of mechano-transduction on cell functions, the regulation of cell mechanics through CMVs can provide a foundation for alternative therapeutic strategies.
Collapse
Affiliation(s)
| | - Lin-Sheng Yu
- National Tsing Hua University, Hsinchu 300044, Republic of China
| | - Ping-Chen Kuo
- National Tsing Hua University, Hsinchu 300044, Republic of China
| | - Chia-Yang Li
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Republic of China
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Republic of China
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Republic of China
| | - Chi-Shuo Chen
- National Tsing Hua University, Hsinchu 300044, Republic of China
| |
Collapse
|
17
|
Joshi H, Tuli HS, Ranjan A, Chauhan A, Haque S, Ramniwas S, Bhatia GK, Kandari D. The Pharmacological Implications of Flavopiridol: An Updated Overview. Molecules 2023; 28:7530. [PMID: 38005250 PMCID: PMC10673037 DOI: 10.3390/molecules28227530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Flavopiridol is a flavone synthesized from the natural product rohitukine, which is derived from an Indian medicinal plant, namely Dysoxylum binectariferum Hiern. A deeper understanding of the biological mechanisms by which such molecules act may allow scientists to develop effective therapeutic strategies against a variety of life-threatening diseases, such as cancer, viruses, fungal infections, parasites, and neurodegenerative diseases. Mechanistic insight of flavopiridol reveals its potential for kinase inhibitory activity of CDKs (cyclin-dependent kinases) and other kinases, leading to the inhibition of various processes, including cell cycle progression, apoptosis, tumor proliferation, angiogenesis, tumor metastasis, and the inflammation process. The synthetic derivatives of flavopiridol have overcome a few demerits of its parent compound. Moreover, these derivatives have much improved CDK-inhibitory activity and therapeutic abilities for treating severe human diseases. It appears that flavopiridol has potential as a candidate for the formulation of an integrated strategy to combat and alleviate human diseases. This review article aims to unravel the potential therapeutic effectiveness of flavopiridol and its possible mechanism of action.
Collapse
Affiliation(s)
- Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India;
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, Rostov-on-Don 344090, Russia;
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Sector 125, Noida 201301, India;
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 11022801, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 13306, United Arab Emirates
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali 140413, India;
| | - Gurpreet Kaur Bhatia
- Department of Physics, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India;
| | - Divya Kandari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India;
| |
Collapse
|
18
|
Wang Z, Li Z, Shi Y, Zeng L. Mesoporous polydopamine delivery system for intelligent drug release and photothermal-enhanced chemodynamic therapy using MnO 2 as gatekeeper. Regen Biomater 2023; 10:rbad087. [PMID: 37936892 PMCID: PMC10627289 DOI: 10.1093/rb/rbad087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 11/09/2023] Open
Abstract
The non-specific leakage of drugs from nanocarriers seriously weakened the safety and efficacy of chemotherapy, and it was very critical of constructing tumor microenvironment (TME)-responsive delivery nanocarriers, achieving the modulation release of drugs. Herein, using manganese dioxide (MnO2) as gatekeeper, an intelligent nanoplatform based on mesoporous polydopamine (MPDA) was developed to deliver doxorubicin (DOX), by which the DOX release was precisely controlled, and simultaneously the photothermal therapy (PTT) and chemodynamic therapy (CDT) were realized. In normal physiological environment, the stable MnO2 shell effectively avoided the leakage of DOX. However, in TME, the overexpressed glutathione (GSH) degraded MnO2 shell, which caused the DOX release. Moreover, the photothermal effect of MPDA and the Fenton-like reaction of the generated Mn2+ further accelerated the cell death. Thus, the developed MPDA-DOX@MnO2 nanoplatform can intelligently modulate the release of DOX, and the combined CDT/PTT/chemotherapy possessed high-safety and high-efficacy against tumors.
Collapse
Affiliation(s)
- Zhaoyang Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P.R. China
| | - Zekai Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P.R. China
| | - Yuehua Shi
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P.R. China
| | - Leyong Zeng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P.R. China
| |
Collapse
|
19
|
Shanmugam M, Kuthala N, Kong X, Chiang CS, Hwang KC. Combined Gadolinium and Boron Neutron Capture Therapies for Eradication of Head-and-Neck Tumor Using Gd 10B 6 Nanoparticles under MRI/CT Image Guidance. JACS AU 2023; 3:2192-2205. [PMID: 37654578 PMCID: PMC10466345 DOI: 10.1021/jacsau.3c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/16/2023] [Accepted: 07/26/2023] [Indexed: 09/02/2023]
Abstract
Eradication of head-and-neck (H&N) tumors is very difficult and challenging because of the characteristic feature of frequent recurrence and the difficulty in killing cancer stem cells. Neutron capture therapy (NCT) is emerging as a noninvasive potential modality for treatments of various types of tumors. Herein, we report that 98.5% 10B-enriched anti-EGFR-Gd10B6 nanoparticles can not only deliver large doses of 158 μg 10B/g tumor tissues as well as 56.8 μg 157Gd/g tumor tissues with a very high tumor-to-blood (T/B) 10B ratio of 4.18, but also exert very effective CT/MRI image-guided combined GdBNCT effects on killing cancer stem cells and eradication of recurrent head-and-neck (H&N) tumors. This leads to a long average half-lifespan of 81 days for H&N tumor-bearing mice, which is a record-making result, and surpasses the best result reported in the literature using combined radiotherapy and T cell-mediated immunotherapy (70 d).
Collapse
Affiliation(s)
- Munusamy Shanmugam
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan ROC
| | - Naresh Kuthala
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan ROC
| | - Xiangyi Kong
- Department
of Breast Surgical Oncology, National Cancer Center/National Clinical
Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chi-Shiun Chiang
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan R.O.C.
| | - Kuo Chu Hwang
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan ROC
| |
Collapse
|
20
|
Dai Y, Yu X, Leng Y, Peng X, Wang J, Zhao Y, Chen J, Zhang Z. Effective treatment of metastatic sentinel lymph nodes by dual-targeting melittin nanoparticles. J Nanobiotechnology 2023; 21:245. [PMID: 37528426 PMCID: PMC10391974 DOI: 10.1186/s12951-023-02026-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
Sentinel lymph node (SLN) metastasis is an important promoter of distant metastasis in breast cancer. Therefore, the timely diagnosis and precise treatment are crucial for patient staging and prognosis. However, the simultaneous diagnosis of metastasis and the implementation of imaging-guided SLN therapy is challenging. Here, we report a melittin-loaded and hyaluronic acid (HA)-conjugated high-density lipoprotein (HDL) mimic phospholipid scaffold nanoparticle (MLT-HA-HPPS), which dually-target to both breast cancer and its SLN and efficiently inhibit SLN metastasis in the LN metastasis model. The melittin peptide was successfully loaded onto HA-HPPS via electrostatic interactions, and MLT-HA-HPPS possesses effective cytotoxicity for breast cancer 4T1 cells. Moreover, the effective delivery of MLT-HA-HPPS from the primary tumor into SLN is monitored by NIR fluorescence imaging, which greatly benefits the prognosis and treatment of metastatic SLNs. After paracancerous administration, MLT-HA-HPPS can efficiently inhibit primary tumor growth with an inhibition rate of 81.3% and 76.5% relative to the PBS-treated control group and HA-HPPS group, respectively. More importantly, MLT-HA-HPPS can effectively inhibit the growth of the metastatic SLNs with an approximately 78.0%, 79.1%, and 64.2% decrease in SLNs weight than those in PBS, HA-HPPS, and melittin-treated mice, respectively. Taken together, the MLT-HA-HPPS may provide an encouraging theranostic of SLN drug delivery strategy to inhibit primary tumor progression and prevent SLN metastasis of breast cancer.
Collapse
Affiliation(s)
- Yanfeng Dai
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China
| | - Xiang Yu
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China
| | - Yuehong Leng
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Xingzhou Peng
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China
| | - Junjie Wang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Yifan Zhao
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Juan Chen
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, Canada
| | - Zhihong Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China.
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| |
Collapse
|
21
|
Kong X, Gao P, Wang J, Fang Y, Hwang KC. Advances of medical nanorobots for future cancer treatments. J Hematol Oncol 2023; 16:74. [PMID: 37452423 PMCID: PMC10347767 DOI: 10.1186/s13045-023-01463-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Early detection and diagnosis of many cancers is very challenging. Late stage detection of a cancer always leads to high mortality rates. It is imperative to develop novel and more sensitive and effective diagnosis and therapeutic methods for cancer treatments. The development of new cancer treatments has become a crucial aspect of medical advancements. Nanobots, as one of the most promising applications of nanomedicines, are at the forefront of multidisciplinary research. With the progress of nanotechnology, nanobots enable the assembly and deployment of functional molecular/nanosized machines and are increasingly being utilized in cancer diagnosis and therapeutic treatment. In recent years, various practical applications of nanobots for cancer treatments have transitioned from theory to practice, from in vitro experiments to in vivo applications. In this paper, we review and analyze the recent advancements of nanobots in cancer treatments, with a particular emphasis on their key fundamental features and their applications in drug delivery, tumor sensing and diagnosis, targeted therapy, minimally invasive surgery, and other comprehensive treatments. At the same time, we discuss the challenges and the potential research opportunities for nanobots in revolutionizing cancer treatments. In the future, medical nanobots are expected to become more sophisticated and capable of performing multiple medical functions and tasks, ultimately becoming true nanosubmarines in the bloodstream.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Peng Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Division of Breast Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Kuo Chu Hwang
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan ROC.
| |
Collapse
|
22
|
Chen L, Chen G, Hu K, Chen L, Zeng Z, Li B, Jiang G, Liu Y. Combined photothermal and photodynamic therapy enhances ferroptosis to prevent cancer recurrence after surgery using nanoparticle-hydrogel composite. CHEMICAL ENGINEERING JOURNAL 2023; 468:143685. [DOI: 10.1016/j.cej.2023.143685] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
|
23
|
Shi S, Cao M, Li Y, Zhou L, Zhang S, Wang X, Xin J, Li W. Sequential targeting dual-responsive magnetic nanoparticle for improved therapy of lung metastatic breast cancer. J Drug Target 2023; 31:655-669. [PMID: 37235535 DOI: 10.1080/1061186x.2023.2217699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/14/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Lung metastatic breast cancer is a leading cause of cancer-related death in women and difficult to treat due to non-specific drug delivery. Herein a sequential targeting dual-responsive magnetic nanoparticle was fabricated, where Fe3O4 nanoparticle was used as magnetic core, then sequentially coated with tetraethyl orthosilicate, bis[3-(triethoxy-silyl)propyl] tetrasulfide, and 3-(trimethoxysilyl) propylmethacrylate to afford -C = C- on the surface for further polymerisation with acrylic acid, acryloyl-6-ethylenediamine-6-deoxy-β-cyclodextrin using N, N-bisacryloylcy- stamine as cross-linker, obtaining pH/redox dual-responsive magnetic nanoparticle (MNPs-CD) to delivery doxorubicin (DOX) for suppressing lung metastatic breast cancer. Our results suggested DOX-loaded nanoparticle could target the lung metastases site by sequential targeting, in which they first be delivered to the lung and even the metastatic nodules through size-driven, electrical interaction, and magnetic field-guided mechanisms, then be effectively internalised into the cancer cells followed by intelligently triggering DOX release. MTT analysis demonstrated DOX-loaded nanoparticle exhibited high anti-tumour activity against 4T1 and A549 cells. 4T1 tumour-bearing mice were employed to confirm the higher specific accumulation in lung and improved anti-metastatic therapy efficiency of DOX by focussing an extracorporeal magnetic field on the biological target. Our findings suggested the as-proposed dual-responsive magnetic nanoparticle offered a prerequisite to inhibit lung metastasis of breast cancer tumours.
Collapse
Affiliation(s)
- Shan Shi
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, PR China
- Chengdu Seventh People's Hospital, Chengdu, Sichuan, PR China
| | - Meiting Cao
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Yang Li
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Liping Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Shurong Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Xiaoyue Wang
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Juan Xin
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, PR China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, PR China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, PR China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
24
|
Injectable nano-composite hydrogels based on hyaluronic acid-chitosan derivatives for simultaneous photothermal-chemo therapy of cancer with anti-inflammatory capacity. Carbohydr Polym 2023; 310:120721. [PMID: 36925247 DOI: 10.1016/j.carbpol.2023.120721] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/01/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
Nowadays, the photothermal therapy (PTT) has received widespread attention and research by rapidly killing tumors with local high temperature. However, due to the irregular edges of tumor and the blurred boundary between normal and necrotic tissues, the desirable treatment cannot be achieved by the single PTT, and excessive heat will cause serious inflammation in local tissues. Herein, an injectable composite hydrogel is prepared by the oxidized hyaluronic acid (OHA) and hydroxypropyl chitosan (HPCS) via the imine bonds, which is employed as the delivery substrate for functional substances. In the gel medium, the mesoporous polydopamine (MPDA) nanoparticles are incorporated as the high efficiency photothermal agent and a reservoir of DOX, which can achieve the good photothermal conversion performance and pulsed drug release. Besides, the addition of the curcumin-cyclodextrin host-guest inclusion complex (CUR@NH2-CD) in the composite hydrogel could reduce the inflammation caused by PTT. The composite hydrogel shows favorable the Hepa1-6 tumor inhibition in vivo by virtue of the comprehensive effect of the admired photothermal efficacy of MPDA, chemotherapy of DOX and anti-inflammatory of CUR. It can be predicted that the composite hydrogel has a broad prospect in the field of comprehensive therapy for tumor.
Collapse
|
25
|
Sheng Y, Ren Q, Tao C, Wen M, Qu P, Yu N, Li M, Chen Z, Xie X. Construction of PEGylated chlorin e6@CuS-Pt theranostic nanoplatforms for nanozymes-enhanced photodynamic-photothermal therapy. J Colloid Interface Sci 2023; 645:122-132. [PMID: 37146376 DOI: 10.1016/j.jcis.2023.04.092] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/04/2023] [Accepted: 04/19/2023] [Indexed: 05/07/2023]
Abstract
Multifunctional nanoagents with photodynamic therapy (PDT) and photothermal therapy (PTT) functions have shown great promise for cancer treatment, while the design and synthesis of efficient nanoagents remain a challenge. To realize nanozyme-enhanced PDT-PTT combined therapy, herein we have synthesized the Ce6@CuS-Pt/PEG nanoplatforms as a model of efficient nanoagents. Hollow CuS nanospheres with an average diameter of ∼ 200 nm are first synthesized through vulcanization using Cu2O as the precursor. Subsequently, CuS nanospheres are surface-decorated with Pt nanoparticles (NPs) as nanozyme via an in-situ reduction route, followed by modifying the DSPE-PEG5000 and loading the photosensitizer Chlorin e6 (Ce6). The obtained Ce6@CuS-Pt/PEG NPs exhibit high photothermal conversion efficiency (43.08%), good singlet oxygen (1O2) generation ability, and good physiological stability. In addition, Ce6@CuS-Pt/PEG NPs show good catalytic performance due to the presence of Pt nanozyme, which can effectively convert H2O2 to O2 and significantly enhance the production of cytotoxic 1O2. When Ce6@CuS-Pt/PEG NPs dispersion is injected into mice, the tumors can be wholly suppressed owing to nanozyme-enhanced PDT-PTT combined therapy, providing better therapeutic effects compared to single-mode phototherapy. Thus, the present Ce6@CuS-Pt/PEG NPs can act as an efficient multifunctional nanoplatform for tumor therapy.
Collapse
Affiliation(s)
- Yangyi Sheng
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qian Ren
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Cheng Tao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Mei Wen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Pu Qu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Nuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Maoquan Li
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhigang Chen
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Xiaoyun Xie
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
26
|
Zhang P, Zhu Y, Xiao C, Chen X. Activatable dual-functional molecular agents for imaging-guided cancer therapy. Adv Drug Deliv Rev 2023; 195:114725. [PMID: 36754284 DOI: 10.1016/j.addr.2023.114725] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/16/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
Theranostics has attracted great attention due to its ability to combine the real-time diagnosis of cancers with efficient treatment modalities. Activatable dual-functional molecular agents could be synthesized by covalently conjugating imaging agents, therapeutic agents, stimuli-responsive linkers and/or targeting molecules together. They could be selectively activated by overexpressed physiological stimuli or external triggers at the tumor sites to release imaging agents and cytotoxic drugs, thus offering many advantages for tumor imaging and therapy, such as a high signal-to-noise ratio, low systemic toxicity, and improved therapeutic effects. This review summarizes the recent advances of dual-functional molecular agents that respond to various physiological or external stimuli for cancer theranostics. The molecular designs, synthetic strategies, activatable mechanisms, and biomedical applications of these molecular agents are elaborated, followed by a brief discussion of the challenges and opportunities in this field.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, PR China; State Key Laboratory of Molecular Engineering of Polymers (Fudan University), Shanghai 200433, PR China
| | - Yaowei Zhu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, PR China.
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, PR China.
| |
Collapse
|
27
|
Hegde M, Naliyadhara N, Unnikrishnan J, Alqahtani MS, Abbas M, Girisa S, Sethi G, Kunnumakkara AB. Nanoparticles in the diagnosis and treatment of cancer metastases: Current and future perspectives. Cancer Lett 2023; 556:216066. [PMID: 36649823 DOI: 10.1016/j.canlet.2023.216066] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/31/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Metastasis accounts for greater than 90% of cancer-related deaths. Despite recent advancements in conventional chemotherapy, immunotherapy, targeted therapy, and their rational combinations, metastatic cancers remain essentially untreatable. The distinct obstacles to treat metastases include their small size, high multiplicity, redundancy, therapeutic resistance, and dissemination to multiple organs. Recent advancements in nanotechnology provide the numerous applications in the diagnosis and prophylaxis of metastatic diseases, including the small particle size to penetrate cell membrane and blood vessels and their capacity to transport complex molecular 'cargo' particles to various metastatic regions such as bones, brain, liver, lungs, and lymph nodes. Indeed, nanoparticles (NPs) have demonstrated a significant ability to target specific cells within these organs. In this regard, the purpose of this review is to summarize the present state of nanotechnology in terms of its application in the diagnosis and treatment of metastatic cancer. We intensively reviewed applications of NPs in fluorescent imaging, PET scanning, MRI, and photoacoustic imaging to detect metastasis in various cancer models. The use of targeted NPs for cancer ablation in conjunction with chemotherapy, photothermal treatment, immuno therapy, and combination therapy is thoroughly discussed. The current review also highlights the research opportunities and challenges of leveraging engineering technologies with cancer cell biology and pharmacology to fabricate nanoscience-based tools for treating metastases.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nikunj Naliyadhara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Jyothsna Unnikrishnan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia; Computers and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa, 35712, Egypt
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
28
|
Li H, Luo Q, Zhang H, Ma X, Gu Z, Gong Q, Luo K. Nanomedicine embraces cancer radio-immunotherapy: mechanism, design, recent advances, and clinical translation. Chem Soc Rev 2023; 52:47-96. [PMID: 36427082 DOI: 10.1039/d2cs00437b] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cancer radio-immunotherapy, integrating external/internal radiation therapy with immuno-oncology treatments, emerges in the current management of cancer. A growing number of pre-clinical studies and clinical trials have recently validated the synergistic antitumor effect of radio-immunotherapy, far beyond the "abscopal effect", but it suffers from a low response rate and toxicity issues. To this end, nanomedicines with an optimized design have been introduced to improve cancer radio-immunotherapy. Specifically, these nanomedicines are elegantly prepared by incorporating tumor antigens, immuno- or radio-regulators, or biomarker-specific imaging agents into the corresponding optimized nanoformulations. Moreover, they contribute to inducing various biological effects, such as generating in situ vaccination, promoting immunogenic cell death, overcoming radiation resistance, reversing immunosuppression, as well as pre-stratifying patients and assessing therapeutic response or therapy-induced toxicity. Overall, this review aims to provide a comprehensive landscape of nanomedicine-assisted radio-immunotherapy. The underlying working principles and the corresponding design strategies for these nanomedicines are elaborated by following the concept of "from bench to clinic". Their state-of-the-art applications, concerns over their clinical translation, along with perspectives are covered.
Collapse
Affiliation(s)
- Haonan Li
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Qiang Luo
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA 91711, USA
| | - Xuelei Ma
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Zhongwei Gu
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Qiyong Gong
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China. .,Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Kui Luo
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China. .,Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| |
Collapse
|
29
|
Bian H, Ma D, Pan F, Zhang X, Xin K, Zhang X, Yang Y, Peng X, Xiao Y. Cardiolipin-Targeted NIR-II Fluorophore Causes "Avalanche Effects" for Re-Engaging Cancer Apoptosis and Inhibiting Metastasis. J Am Chem Soc 2022; 144:22562-22573. [PMID: 36445324 DOI: 10.1021/jacs.2c08602] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Restoring innate apoptosis and simultaneously inhibiting metastasis by a molecular drug is an effective cancer therapeutic approach. Herein, a large rigid and V-shaped NIR-II dye, DUT850, is rationally designed for potential cardiolipin (CL)-targeted chemo-phototheranostic application. DUT850 displays moderate NIR-II fluorescence, excellent photodynamic therapy (PDT) and photothermal therapy (PTT) performance, and ultra-high photostability. More importantly, the unique rigid V-shaped backbone, positive charge, and lipophilicity of DUT850 afford its specific recognition and efficient binding to CL; such an interaction of DUT850-CL induced a spectrum of physiological disruptions, including translocation of cytochrome c, Ca2+ overload, reactive oxygen species burst, and ATP depletion, which not only activated cancer cell apoptosis but also inhibited tumor metastasis both in vitro and in vivo. Furthermore, the tight binding of DUT850-CL improves the phototoxicity of DUT850 toward cancer cells (IC50 as low as 90 nM) under safe 808 nm laser irradiation (330 mW cm-2). Upon encapsulation into bovine serum albumin (BSA), DUT850@BSA exerted a synergetic chemo-PDT-PTT effect on the 4T1 tumor mouse model, eventually leading to solid tumor annihilation and metastasis inhibition, which could be followed in real time with the NIR-II fluorescence of DUT850. This work contributed a promising approach for simultaneously re-engaging cancer cell apoptotic networks and activating the anti-metastasis pathway by targeting a pivotal upstream effector, which will bring a medical boon for inhibition of tumor proliferation and metastasis.
Collapse
Affiliation(s)
- Hui Bian
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Dandan Ma
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Fei Pan
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, P. R. China
| | - Xiaodong Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Kai Xin
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xinfu Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Youjun Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| |
Collapse
|
30
|
Kuthala N, Shanmugam M, Yao CL, Chiang CS, Hwang KC. One step synthesis of 10B-enriched 10BPO4 nanoparticles for effective boron neutron capture therapeutic treatment of recurrent head-and-neck tumor. Biomaterials 2022; 290:121861. [DOI: 10.1016/j.biomaterials.2022.121861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/15/2022]
|
31
|
Wang Y, Wang D, Zhang Y, Xu H, Shen L, Cheng J, Xu X, Tan H, Chen X, Li J. Tumor Microenvironment-Adaptive Nanoplatform Synergistically Enhances Cascaded Chemodynamic Therapy. Bioact Mater 2022; 22:239-253. [PMID: 36254272 PMCID: PMC9550605 DOI: 10.1016/j.bioactmat.2022.09.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Chemodynamic therapy (CDT), a noninvasive strategy, has emerged as a promising alternative to conventional chemotherapy for treating tumors. However, its therapeutic effect is limited by the amount of H2O2, pH value, the hypoxic environment of tumors, and it has suboptimal tumor-targeting ability. In this study, tumor cell membrane-camouflaged mesoporous Fe3O4 nanoparticles loaded with perfluoropentane (PFP) and glucose oxidase (GOx) are used as a tumor microenvironment-adaptive nanoplatform (M-mFeP@O2-G), which synergistically enhances the antitumor effect of CDT. Mesoporous Fe3O4 nanoparticles are selected as inducers for photothermal and Fenton reactions and as nanocarriers. GOx depletes glucose within tumor cells for starving the cells, while producing H2O2 for subsequent ·OH generation. Moreover, PFP, which can carry O2, relieves hypoxia in tumor cells and provides O2 for the cascade reaction. Finally, the nanoparticles are camouflaged with osteosarcoma cell membranes, endowing the nanoparticles with homologous targeting and immune escape abilities. Both in vivo and in vitro evaluations reveal high synergistic therapeutic efficacy of M-mFeP@O2-G, with a desirable tumor-inhibition rate (90.50%), which indicates the great potential of this platform for clinical treating cancer. GOx and PFP were loaded in mFe3O4 to form a TME-adaptive nanoplatform and synergistically enhance the cascaded reactions. Tumor cell membranes, endowing the nanoparticles with homologous targeting and immune escape abilities. The nanoparticles had excellent combined chemodynamic therapy, starvation therapy and photothermal tumor therapy effect. Tumor cell membranes coated nanoparticles improved cell uptake and had a desirable tumor-inhibition rate.
Collapse
Affiliation(s)
- Yuemin Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Duan Wang
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuyue Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Hong Xu
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Luxuan Shen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jing Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xinyuan Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xingyu Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- College of Medicine, Southwest Jiaotong University, Chengdu, 610003, China
- Corresponding author. College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
- Corresponding author. College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
32
|
The Disposition of Bioactive Compounds from Fruit Waste, Their Extraction, and Analysis Using Novel Technologies: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10102014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fruit waste contains several bioactive components such as polyphenols, polysaccharides, and numerous other phytochemicals, including pigments. Furthermore, new financial opportunities are created by using fruit ‘leftovers’ as a basis for bioactivities that may serve as new foods or food ingredients, strengthening the circular economy’s properties. From a technical standpoint, organic phenolic substances have become more appealing to industry, in addition to their application as nutritional supplements or functional meals. Several extraction methods for recovering phenolic compounds from fruit waste have already been published, most of which involve using different organic solvents. However, there is a growing demand for eco-friendly and sustainable techniques that result in phenolic-rich extracts with little ecological impact. Utilizing these new and advanced green extraction techniques will reduce the global crisis caused by fruit waste management. Using modern techniques, fruit residue is degraded to sub-zero scales, yielding bio-based commodities such as bioactive elements. This review highlights the most favorable and creative methods of separating bioactive materials from fruit residue. Extraction techniques based on environmentally friendly technologies such as bioreactors, enzyme-assisted extraction, ultrasound-assisted extraction, and their combination are specifically covered.
Collapse
|
33
|
Li R, Zhao X, Wang Y, Guo C, Wang Z, Feng L. Self-assemblies with cascade effect to boost antitumor systemic immunotherapy. Chem Commun (Camb) 2022; 58:10853-10856. [PMID: 36073502 DOI: 10.1039/d2cc04471d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bio-organic hybrid self-assemblies based on amino acids, conjugated polymers, Fe3+ and enzymes are fabricated with tumor environment-responsive and light-triggered NO release properties. By sequential energy consumption, NO attack and immune activation, FFPG shows boosted antitumor activity toward both primary and distant tumors. The three-level cascade strategy (starvation/NO/immunotherapy) adopted in this work offers a pathway to address the dilemma of low cure rate of malignant tumors.
Collapse
Affiliation(s)
- Ruipeng Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China.
| | - Xiaoyu Zhao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China.
| | - Yunxia Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China.
| | - Chenhao Guo
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China.
| | - Zhijun Wang
- Department of Chemistry, Changzhi University, Changzhi, 046011, P. R. China.
| | - Liheng Feng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China.
| |
Collapse
|
34
|
Li S, Lui KH, Lau WS, Chen J, Lo WS, Li X, Gu YJ, Lin LT, Wong WT. MSOT-Guided Nanotheranostics for Synergistic Mild Photothermal Therapy and Chemotherapy to Boost Necroptosis/Apoptosis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33712-33725. [PMID: 35822699 DOI: 10.1021/acsami.2c07592] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of nanotheranostics for precision imaging-guided regulated cell death-mediated synergistic tumor therapy is still challenging. Herein, a novel multifunctional nanotheranostic agent, iRGD-coated maleimide-poly(ethylene glycol)-poly(lactic acid/glycolic acid)-encapsulated hydrophobic gold nanocages (AuNCs) and hydrophilic epigallocatechin gallate (EGCG) (PAuE) is developed for multispectral optoacoustic tomography (MSOT)-guided photothermal therapy (PTT) and chemotherapy. The portions of necroptotic and apoptotic tumor cells were 52.9 and 5.4%, respectively, at 6 h post-incubation after the AuNC-induced mild PTT treatment, whereas they became 14.0 and 46.1% after 24 h, suggesting that the switch of the cell death pathway is a time-dependent process. Mild PTT facilitated the release of EGCG which induces the downregulation of hypoxia-inducible factor-1 (HIF-1α) expression to enhance apoptosis at a later stage, realizing a remarkable tumor growth inhibition in vivo. Moreover, RNA sequence analyses provided insights into the significant changes in genes related to the cross-talk between necroptosis and apoptosis pathways via PAuE upon laser irradiation. In addition, the biodistribution and metabolic pathways of PAuE have been successfully revealed by 3D MSOT. Taken together, this strategy of first combination of EGCG and AuNC-based photothermal agent via triggering necroptosis/apoptosis to downregulate HIF-1α expression in a tumor environment provides a new insight into anti-cancer therapy.
Collapse
Affiliation(s)
- Shiying Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 000000, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Kwok-Ho Lui
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 000000, China
| | - Wing-Sum Lau
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 000000, China
| | - Juyu Chen
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 000000, China
| | - Wai-Sum Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 000000, China
| | - Xin Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 000000, China
| | - Yan-Juan Gu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 000000, China
| | - Liang-Ting Lin
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 000000, China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 000000, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
35
|
Wu Q, Chen Y, Li Q, Chen J, Mo J, Jin M, Yang Q, Rizzello L, Tian X, Luo L. Time Rules the Efficacy of Immune Checkpoint Inhibitors in Photodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200999. [PMID: 35470595 PMCID: PMC9313507 DOI: 10.1002/advs.202200999] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Lack of adequate effector T cells infiltrated in tumor is one of the main problems in the failure of immune checkpoint blockade therapy (ICBT). Photodynamic therapy (PDT) induced acute inflammation can sensitize tumors and activate T cells, thus assisting immune checkpoint inhibitors (ICI) against tumor growth and metastasis. T cells maturation and activation lag 3 to 7 days behind PDT. However, such timing in the combination therapy of ICI and PDT is commonly ignored in designing numerous multi-functional integrated nanomedicines. Herein, the authors illustrate that intervention timing of ICI after PDT affects the anti-tumor efficacy. A tumor-targeting nanomedicine is prepared by encapsulating indocyanine green into CD44 specifically binding material, a hyaluronic acid conjugated lipid poly(ethylene glycol). The PDT nanomedicine is designed to induce a robust immune response in tumor. The optimal group (Combo-STAR), ICI gave 5 days after PDT, significantly suppresses local tumor growth and eliminates metastasis. What should be highlighted is the time point of administration because if ICI is given too early, T cells are immature, otherwise, T cells are exhausted if ICI is given too late. This work presents theoretical guidance for raising awareness of intervention timing when augmenting ICBT with immune response inducers in clinic.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Pharmaceutical SciencesSouthwest UniversityChongqing400715China
| | - Yang Chen
- College of Pharmaceutical SciencesSouthwest UniversityChongqing400715China
| | - Qing Li
- College of Pharmaceutical SciencesSouthwest UniversityChongqing400715China
| | - Junmeng Chen
- College of Pharmaceutical SciencesSouthwest UniversityChongqing400715China
| | - Junfeng Mo
- College of Pharmaceutical SciencesSouthwest UniversityChongqing400715China
| | - Ming Jin
- College of Pharmaceutical SciencesSouthwest UniversityChongqing400715China
| | - Qianzhan Yang
- Analytical Instruments DepartmentAnalytical Applications CenterShimadzu (China) Co., Ltd. Chongqing BranchChongqing404100China
| | - Loris Rizzello
- Department of Pharmaceutical SciencesUniversity of MilanMilan20133Italy
| | - Xiaohe Tian
- Huaxi MR Research Center (HMRRC)Department of RadiologyFunction & Molecular Imaging Key LabSichuan UniversityChengdu610041China
| | - Lei Luo
- College of Pharmaceutical SciencesSouthwest UniversityChongqing400715China
| |
Collapse
|
36
|
Involvement of Phytochemical-Encapsulated Nanoparticles' Interaction with Cellular Signalling in the Amelioration of Benign and Malignant Brain Tumours. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113561. [PMID: 35684498 PMCID: PMC9182026 DOI: 10.3390/molecules27113561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 12/05/2022]
Abstract
Brain tumours have unresolved challenges that include delay prognosis and lower patient survival rate. The increased understanding of the molecular pathways underlying cancer progression has aided in developing various anticancer medications. Brain cancer is the most malignant and invasive type of cancer, with several subtypes. According to the WHO, they are classified as ependymal tumours, chordomas, gangliocytomas, medulloblastomas, oligodendroglial tumours, diffuse astrocytomas, and other astrocytic tumours on the basis of their heterogeneity and molecular mechanisms. The present study is based on the most recent research trends, emphasising glioblastoma cells classified as astrocytoma. Brain cancer treatment is hindered by the failure of drugs to cross the blood–brain barrier (BBB), which is highly impregnableto foreign molecule entry. Moreover, currently available medications frequently fail to cross the BBB, whereas chemotherapy and radiotherapy are too expensive to be afforded by an average incomeperson and have many associated side effects. When compared to our current understanding of molecularly targeted chemotherapeutic agents, it appears that investigating the efficacy of specific phytochemicals in cancer treatment may be beneficial. Plants and their derivatives are game changers because they are efficacious, affordable, environmentally friendly, faster, and less toxic for the treatment of benign and malignant tumours. Over the past few years, nanotechnology has made a steady progress in diagnosing and treating cancers, particularly brain tumours. This article discusses the effects of phytochemicals encapsulated in nanoparticles on molecular targets in brain tumours, along with their limitations and potential challenges.
Collapse
|
37
|
Fan R, Sun W, Zhang T, Wang R, Tian Y, Zhang H, Li J, Zheng A, Song S. Paclitaxel-nanocrystals-loaded network thermosensitive hydrogel for localised postsurgical recurrent of breast cancer after surgical resection. Biomed Pharmacother 2022; 150:113017. [PMID: 35483193 DOI: 10.1016/j.biopha.2022.113017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/19/2022] [Indexed: 11/02/2022] Open
Abstract
The recurrence of cancer after local surgery has been a difficult problem in the clinic for a long time. In recent years, local treatment via drug-loaded thermosensitive hydrogels have become a promising strategy to prevent cancer recurrence. Thus, a thermosensitive hydrogel based on poloxamer 407, poloxamer 188 and the bioadhesive excipient carbomer 974P was designed to locally release paclitaxel and prevent local tumour recurrence after direct smearing of the hydrogel at the site of injury in the surgical cavity. To improve the local drug concentration, paclitaxel was prepared into nanocrystals via a wet mill process. A series of studies were performed on this paclitaxel nanocrystal thermosensitive hydrogel (PTX-NCS-gel), including examination of its rheological properties and in vitro release and dissolution studies. Moreover, a postoperative tumour recurrence mouse model was established to evaluate the antitumour effects of this thermosensitive hydrogel. The results showed that PTX-NCS-gel had a clear, regular network structure with excellent temperature sensitivity and could be gelated within minutes at 33.1 °C. Additionally, the rheological property investigation indicated that the hydrogel has proper viscoelasticity and self-recovery ability. In vivo imaging showed that PTX-NCS-gel inhibited both local tumour recurrence and distant metastasis. Moreover, PTX-NCS-gel has the following advantages: it is more convenient to administer, avoids strong allergic responses, and has fewer side effects on the liver and spleen. This hydrogel has the potential to serve as a powerful auxiliary medication to prevent postoperative local tumour recurrence.
Collapse
Affiliation(s)
- Ranran Fan
- School of Pharmacy, Bengbu Medical College, Anhui 233030, China; Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China
| | - Wenjun Sun
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China
| | - Ting Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Rongrong Wang
- North China University of Science and Technology, Hebei 063210, China
| | - Yang Tian
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China
| | - Hui Zhang
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China.
| | - Jianchun Li
- School of Pharmacy, Bengbu Medical College, Anhui 233030, China.
| | - Aiping Zheng
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China.
| | - Shenghan Song
- Department of Vascular Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
38
|
Qian X, Xu X, Wu Y, Wang J, Li J, Chen S, Wen J, Li Y, Zhang Z. Strategies of engineering nanomedicines for tumor retention. J Control Release 2022; 346:193-211. [PMID: 35447297 DOI: 10.1016/j.jconrel.2022.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 01/29/2023]
Abstract
The retention of therapeutic agents in solid tumors at sufficient concentration and duration is crucial for their antitumor effects. Given the important contribution of nanomedicines to oncology, we herein summarized two major strategies of nanomedicines for tumor retention, such as transformation- and interactions-mediated strategies. The transformation-mediated retention strategy was achieved by enlarging particle size of nanomedicines or modulating the morphology into fibrous structures, while the interactions-mediated retention strategy was accomplished by modulating nanomedicines to promote their interactions with versatile cells or components in tumors. Moreover, we provide some considerations and perspectives of tumor-retaining nanomedicines for effective cancer therapy.
Collapse
Affiliation(s)
- Xindi Qian
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxuan Xu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Wu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiaoying Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jie Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shuo Chen
- School of Pharmacy, the University of Auckland, Auckland 1142, New Zealand
| | - Jingyuan Wen
- School of Pharmacy, the University of Auckland, Auckland 1142, New Zealand
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, Fudan University, Shanghai 201203, China.; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China.
| | - Zhiwen Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, Fudan University, Shanghai 201203, China.; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
39
|
Brás MM, Sousa SR, Carneiro F, Radmacher M, Granja PL. Mechanobiology of Colorectal Cancer. Cancers (Basel) 2022; 14:1945. [PMID: 35454852 PMCID: PMC9028036 DOI: 10.3390/cancers14081945] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
In this review, the mechanobiology of colorectal cancer (CRC) are discussed. Mechanotransduction of CRC is addressed considering the relationship of several biophysical cues and biochemical pathways. Mechanobiology is focused on considering how it may influence epithelial cells in terms of motility, morphometric changes, intravasation, circulation, extravasation, and metastization in CRC development. The roles of the tumor microenvironment, ECM, and stroma are also discussed, taking into account the influence of alterations and surface modifications on mechanical properties and their impact on epithelial cells and CRC progression. The role of cancer-associated fibroblasts and the impact of flow shear stress is addressed in terms of how it affects CRC metastization. Finally, some insights concerning how the knowledge of biophysical mechanisms may contribute to the development of new therapeutic strategies and targeting molecules and how mechanical changes of the microenvironment play a role in CRC disease are presented.
Collapse
Affiliation(s)
- Maria Manuela Brás
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Faculdade de Engenharia da Universidade do Porto (FEUP), 4200-465 Porto, Portugal
| | - Susana R. Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto (IPP), 4200-072 Porto, Portugal
| | - Fátima Carneiro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-465 Porto, Portugal
- Serviço de Patologia, Centro Hospitalar Universitário de São João (CHUSJ), 4200-319 Porto, Portugal
- Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - Manfred Radmacher
- Institute for Biophysics, University of Bremen, 28334 Bremen, Germany
| | - Pedro L. Granja
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
40
|
Kalluru P, Shanmugam M, Vankayala R, Chiang C, Hwang KC. Conquering multidrug resistant lung cancer by upconversion
nanoparticles‐mediated
photodynamic therapy and gene silencing. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Poliraju Kalluru
- Department of Chemistry National Tsing Hua University Hsinchu Taiwan, R.O.C
| | - Munusamy Shanmugam
- Department of Chemistry National Tsing Hua University Hsinchu Taiwan, R.O.C
| | - Raviraj Vankayala
- Department of Bioscience and Bioengineering Indian Institute of Technology Jodhpur Jodhpur Rajasthan India
| | - Chi‐Shiun Chiang
- Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University Hsinchu Taiwan, R.O.C
| | - Kuo Chu Hwang
- Department of Chemistry National Tsing Hua University Hsinchu Taiwan, R.O.C
| |
Collapse
|
41
|
Jing X, Hu H, Sun Y, Yu B, Cong H, Shen Y. The Intracellular and Extracellular Microenvironment of Tumor Site: The Trigger of Stimuli-Responsive Drug Delivery Systems. SMALL METHODS 2022; 6:e2101437. [PMID: 35048560 DOI: 10.1002/smtd.202101437] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/29/2021] [Indexed: 06/14/2023]
Abstract
The tumor microenvironment (TME), including intracellular and extracellular microenvironment, contains many biochemical indicators (such as acidity/alkalinity, oxygen content, and enzymatic activity) that are different from the normal physiological environment. These abnormal biochemical indicators can accelerate the heterogeneity of tumors, but on the other hand, they also provide opportunities for the design of intelligent drug delivery systems (DDSs). The TME-responsive DDSs have shown great potential in reducing the side effects of chemotherapy and improving the curative effect of tumors. In this review, the abnormal biochemical indicators of TME are introduced in detail from both the extracellular and intracellular aspects. In view of the various physiological barriers encountered during drug delivery, the strategy of constructing TME-responsive DDSs is discussed. By summarizing the typical research progress, the authors prospect the development of TME-responsive DDS in the future.
Collapse
Affiliation(s)
- Xiaodong Jing
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Hao Hu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Yanzhen Sun
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
42
|
Shen W, Han G, Yu L, Yang S, Li X, Zhang W, Pei P. Combined Prussian Blue Nanozyme Carriers Improve Photodynamic Therapy and Effective Interruption of Tumor Metastasis. Int J Nanomedicine 2022; 17:1397-1408. [PMID: 35369032 PMCID: PMC8964450 DOI: 10.2147/ijn.s359156] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/15/2022] [Indexed: 12/20/2022] Open
Affiliation(s)
- Wenhao Shen
- Department of Oncology, Hospital Affiliated 5 to Nantong University (Taizhou People’s Hospital), Taizhou, Jiangsu, People’s Republic of China
| | - Gaohua Han
- Department of Oncology, Hospital Affiliated 5 to Nantong University (Taizhou People’s Hospital), Taizhou, Jiangsu, People’s Republic of China
| | - Lei Yu
- Department of Oncology, Hospital Affiliated 5 to Nantong University (Taizhou People’s Hospital), Taizhou, Jiangsu, People’s Republic of China
| | - Song Yang
- Department of Oncology, Hospital Affiliated 5 to Nantong University (Taizhou People’s Hospital), Taizhou, Jiangsu, People’s Republic of China
| | - Xiangyi Li
- Department of Endocrinology, Hospital Affiliated 5 to Nantong University (Taizhou People’s Hospital), Taizhou, Jiangsu, People’s Republic of China
| | - Wei Zhang
- Department of Infectious Disease, Hospital Affiliated 5 to Nantong University (Taizhou People’s Hospital), Taizhou, Jiangsu, People’s Republic of China
- Correspondence: Wei Zhang; Pei Pei, Email ;
| | - Pei Pei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People’s Republic of China
| |
Collapse
|
43
|
Kumar N, Goel N. Recent development of imidazole derivatives as potential anticancer agents. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Cancer, one of the key health problems globally, is a group of related diseases that share a number of characteristics primarily the uncontrolled growth and invasive to surrounding tissues. Chemotherapy is one of the ways for the treatment of cancer which uses one or more anticancer agents as per chemotherapy regimen. Limitations of most anticancer drugs due to a variety of reasons such as serious side effects, drug resistance, lack of sensitivity and efficacy etc. generate the necessity towards the designing of novel anticancer lead molecules. In this regard, the synthesis of biologically active heterocyclic molecules is an appealing research area. Among heterocyclic compounds, nitrogen containing heterocyclic molecules has fascinated tremendous consideration due to broad range of pharmaceutical activity. Imidazoles, extensively present in natural products as well as synthetic molecules, have two nitrogen atoms, and are five membered heterocyclic rings. Because of their countless physiological and pharmacological characteristics, medicinal chemists are enthused to design and synthesize new imidazole derivatives with improved pharmacodynamic and pharmacokinetic properties. The aim of this present chapter is to discuss the synthesis, chemistry, pharmacological activity, and scope of imidazole-based molecules in anticancer drug development. Finally, we have discussed the current challenges and future perspectives of imidazole-based derivatives in anticancer drug development.
Collapse
Affiliation(s)
- Naresh Kumar
- Department of Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Indore , Madhya Pradesh 453552 , India
| | - Nidhi Goel
- Department of Chemistry , Institute of Science, Banaras Hindu University , Varanasi , Uttar Pradesh 221005 , India
| |
Collapse
|
44
|
Ma Z, Foda MF, Zhao Y, Han H. Multifunctional Nanosystems with Enhanced Cellular Uptake for Tumor Therapy. Adv Healthc Mater 2022; 11:e2101703. [PMID: 34626528 DOI: 10.1002/adhm.202101703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/01/2021] [Indexed: 11/10/2022]
Abstract
Rapid development of nanotechnology provides promising strategies in biomedicine, especially in tumor therapy. In particular, the cellular uptake of nanosystems is not only a basic premise to realize various biomedical applications, but also a fatal factor for determining the final therapeutic effect. Thus, a systematic and comprehensive summary is necessary to overview the recent research progress on the improvement of nanosystem cellular uptake for cancer treatment. According to the process of nanosystems entering the body, they can be classified into three categories. The first segment is to enhance the accumulation and permeation of nanosystems to tumor cells through extracellular microenvironment stimulation. The second segment is to improve cellular internalization from extracellular to intracellular via active targeting. The third segment is to enhance the intracellular retention of therapeutics by subcellular localization. The major factors in the delivery can be utilized to develop multifunctional nanosystems for strengthening the tumor therapy. Ultimately, the key challenges and prospective in the emerging research frontier are thoroughly outlined. This review is expected to provide inspiring ideas, promising strategies and potential pathways for developing advanced anticancer nanosystems in clinical practice.
Collapse
Affiliation(s)
- Zhaoyu Ma
- State Key Laboratory of Agricultural Microbiology College of Life Science and Technology Huazhong Agricultural University Wuhan Hubei 430070 P. R. China
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Mohamed F. Foda
- State Key Laboratory of Agricultural Microbiology College of Life Science and Technology Huazhong Agricultural University Wuhan Hubei 430070 P. R. China
- Department of Biochemistry Faculty of Agriculture Benha University Moshtohor Toukh 13736 Egypt
| | - Yanli Zhao
- State Key Laboratory of Agricultural Microbiology College of Life Science and Technology Huazhong Agricultural University Wuhan Hubei 430070 P. R. China
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology College of Life Science and Technology Huazhong Agricultural University Wuhan Hubei 430070 P. R. China
| |
Collapse
|
45
|
Huang Y, Liu W. Cell membrane-engineered nanoparticles for cancer therapy. J Mater Chem B 2022; 10:7161-7172. [DOI: 10.1039/d2tb00709f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cell-membrane-coated nanotechnology involves dressing the synthetic nanoparticles (NPs) with membrane derived from different types of cells to endow the NPs with the properties of a specific cell type and to further...
Collapse
|
46
|
Zhou S, Li R, Li Y, Wang Y, Feng L. A tailored and red-emissive type I photosensitizer to potentiate photodynamic immunotherapy. J Mater Chem B 2022; 10:8003-8012. [DOI: 10.1039/d2tb01578a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodynamic immunotherapy (PDIT) emerges and shows great potentials in eradicating malignant tumors for the advantages on simultaneously damaging primary tumors, inhibiting tumors metastasis and recurrence. However, hypoxic microenvironment of tumor...
Collapse
|
47
|
Tu L, Liao Z, Luo Z, Wu Y, Herrmann A, Huo S. Ultrasound-controlled drug release and drug activation for cancer therapy. EXPLORATION (BEIJING, CHINA) 2021; 1:20210023. [PMID: 37323693 PMCID: PMC10190934 DOI: 10.1002/exp.20210023] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/02/2021] [Indexed: 06/15/2023]
Abstract
Traditional chemotherapy suffers from severe toxicity and side effects that limit its maximum application in cancer therapy. To overcome this challenge, an ideal treatment strategy would be to selectively control the release or regulate the activity of drugs to minimize the undesirable toxicity. Recently, ultrasound (US)-responsive drug delivery systems (DDSs) have attracted significant attention due to the non-invasiveness, high tissue penetration depth, and spatiotemporal controllability of US. Moreover, the US-induced mechanical force has been proven to be a robust method to site-selectively rearrange or cleave bonds in mechanochemistry. This review describes the US-activated DDSs from the fundamental basics and aims to present a comprehensive summary of the current understanding of US-responsive DDSs for controlled drug release and drug activation. First, we summarize the typical mechanisms for US-responsive drug release and drug activation. Second, the main factors affecting the ultrasonic responsiveness of drug carriers are outlined. Furthermore, representative examples of US-controlled drug release and drug activation are discussed, emphasizing their novelty and design principles. Finally, the challenges and an outlook on this promising therapeutic strategy are discussed.
Collapse
Affiliation(s)
- Li Tu
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenP. R. China
| | - Zhihuan Liao
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenP. R. China
| | - Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenP. R. China
| | - Yun‐Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenP. R. China
| | - Andreas Herrmann
- DWI – Leibniz Institute for Interactive MaterialsAachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityAachenGermany
| | - Shuaidong Huo
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenP. R. China
| |
Collapse
|
48
|
Zafar A, Hasan M, Tariq T, Dai Z. Enhancing Cancer Immunotherapeutic Efficacy with Sonotheranostic Strategies. Bioconjug Chem 2021; 33:1011-1034. [PMID: 34793138 DOI: 10.1021/acs.bioconjchem.1c00437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immunotherapy has revolutionized the modality for establishing a firm immune response and immunological memory. However, intrinsic limitations of conventional low responsive poor T cell infiltration and immune related adverse effects urge the coupling of cancer nanomedicines with immunotherapy for boosting antitumor response under ultrasound (US) sensitization to mimic dose-limiting toxicities for safe and effective therapy against advanced cancer. US is composed of high-frequency sound waves that mediate targeted spatiotemporal control over release and internalization of the drug. The unconventional US triggered immunogenic nanoengineered arena assists the limited immunogenic dose, limiting toxicities and efficacies. In this Review, we discuss current prospects of enhanced immunotherapy using nanomedicine under US. We highlight how nanotechnology designs and incorporates nanomedicines for the reprogramming of systematic immunity in the tumor microenvironment. We also emphasize the mechanical and biological potential of US, encompassing sonosensitizer activation for enhanced immunotherapeutic efficacies. Finally, the smartly converging combinational platform of US stimulated cancer nanomedicines for amending immunotherapy is summarized. This Review will widen scientists' ability to explore and understand the limiting factors for combating cancer in a precisely customized way.
Collapse
Affiliation(s)
- Ayesha Zafar
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Murtaza Hasan
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Tuba Tariq
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
49
|
Yu W, Hu C, Gao H. Advances of nanomedicines in breast cancer metastasis treatment targeting different metastatic stages. Adv Drug Deliv Rev 2021; 178:113909. [PMID: 34352354 DOI: 10.1016/j.addr.2021.113909] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most common tumor in women, and the metastasis further increases the malignancy with extremely high mortality. However, there is almost no effective method in the clinic to completely inhibit breast cancer metastasis due to the dynamic multistep process with complex pathways and scattered occurring site. Nowadays, nanomedicines have been evidenced with great potential in treating cancer metastasis. In this review, we summarize the latest research advances of nanomedicines in anti-metastasis treatment. Strategies are categorized according to the metastasis dynamics, including primary tumor, circulating tumor cells, pre-metastatic niches and secondary tumor. In each different stage of metastasis process, nanomedicines are designed specifically with different functions. At the end of the review, we give our perspectives on current limitations and future directions in anti-metastasis therapy. We expect the review provides comprehensive understandings of anti-metastasis therapy for breast cancer, and boosts the clinical translation in the future to improve women's health.
Collapse
|
50
|
Lee K, Wan Y, Li X, Cui X, Li S, Lee C. Recent Progress of Alkyl Radicals Generation-Based Agents for Biomedical Applications. Adv Healthc Mater 2021; 10:e2100055. [PMID: 33738983 DOI: 10.1002/adhm.202100055] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/25/2021] [Indexed: 12/19/2022]
Abstract
Photodynamic therapy (PDT) is extensively explored for anticancer and antibacterial applications. It typically relies on oxygen-dependent generation of reactive oxygen species (ROS) to realize its killing effect. This type of therapy modality shows compromised therapeutic results for treating hypoxic tumors or bacteria-infected wounds. Recently, alkyl radicals attracted much attention as they can be generated from some azo-based initiators only under mild heat stimulus without oxygen participation. Many nanocarriers or hydrogel systems have been developed to load and deliver these radical initiators to lesion sites for theranostics. These systems show good anticancer or antimicrobial effect in hypoxic environment and some of them possess specific imaging abilities providing precise guidance for treatment. This review summarizes the developed materials that aim at treating hypoxic cancer and bacteria-infected wound by using this kind of oxygen-irrelevant alkyl radicals. Based on the carrier components, these agents are divided into three groups: inorganic, organic, as well as inorganic and organic hybrid carrier-based therapeutic systems. The construction of these agents and their specific advantages in biomedical field are highlighted. Finally, the existing problems and future promising development directions are discussed.
Collapse
Affiliation(s)
- Ka‐Wai Lee
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
| | - Yingpeng Wan
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
| | - Xiaozhen Li
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
| | - Xiao Cui
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
| | - Shengliang Li
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
- College of Pharmaceutical Sciences Soochow University Suzhou 215123 P. R. China
| | - Chun‐Sing Lee
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
| |
Collapse
|