1
|
Bridi MC, Luo N, Kim G, Menarchek BJ, Lee RA, Rodriguez B, Severin D, Moreno C, Contreras A, Wesselborg C, O’Ferrall C, Patel R, Bertrand S, Kannan S, Kirkwood A. Daily oscillation of the excitation/inhibition ratio is disrupted in two mouse models of autism. iScience 2025; 28:111494. [PMID: 39850357 PMCID: PMC11754079 DOI: 10.1016/j.isci.2024.111494] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 01/25/2025] Open
Abstract
Alterations to the excitation/inhibition (E/I) ratio are postulated to underlie behavioral phenotypes in autism spectrum disorder (ASD) patients and mouse models. However, in wild type mice the E/I ratio is not constant, but instead oscillates across the 24-h day. Therefore, we tested whether E/I regulation, rather than the overall E/I ratio, is disrupted in two ASD-related mouse lines: Fmr1 KO and BTBR, models of syndromic and idiopathic ASD, respectively. The E/I ratio is dysregulated in both models, but in different ways: the oscillation is lost in Fmr1 KO and reversed in BTBR mice. Phenotypes in both models associate with differences the timing of excitatory and inhibitory synaptic transmission and endocannabinoid signaling compared to wild type mice, but not with altered sleep. These findings raise the possibility that ASD-related phenotypes may be produced by a mismatch between E/I and behavioral state, rather than alterations to overall E/I levels per se.
Collapse
Affiliation(s)
- Michelle C.D. Bridi
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
- Department of Neuroscience, West Virginia University, Morgantown, WV, USA
| | - Nancy Luo
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Grace Kim
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | | | - Rachel A. Lee
- Department of Neuroscience, West Virginia University, Morgantown, WV, USA
| | - Bryan Rodriguez
- Department of Neuroscience, West Virginia University, Morgantown, WV, USA
| | - Daniel Severin
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Cristian Moreno
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Altagracia Contreras
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Christian Wesselborg
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Caroline O’Ferrall
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruchit Patel
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Bertrand
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alfredo Kirkwood
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
2
|
Pullen LC, Bott N, McCanless C, Revana A, Sevinc G, Gorman C, Duncan A, Poliquin S, Pfalzer AC, Schmidt KQ, Wassman ER, Chapman C, Picone M. Use of Basket Trials to Solve Sleep Problems in Patients with Rare Diseases. Clocks Sleep 2024; 6:656-667. [PMID: 39584973 PMCID: PMC11586945 DOI: 10.3390/clockssleep6040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024] Open
Abstract
The need for sleep is universal, and the ability to meet this need impacts the quality of life for patients, families, and caregivers. Although substantial progress has been made in treating rare diseases, many patients have unmet medical sleep needs, and current regulatory policy makes it prohibitively difficult to address those needs medically. This opinion reviews the rare disease experience with sleep disorders and explores potential solutions. First, we provide case profiles for the rare diseases Wilson's Disease, Angelman Syndrome, and Prader-Willi Syndrome. These profiles highlight challenges in rare disease diagnosis and barriers to pinpointing disease pathophysiology, including biomarkers that intersect with sleep disorders. Second, we transition to a bird's eye view of sleep disorders and rare diseases by reporting input from a stakeholder discussion with the U.S. Food and Drug Administration regarding abnormal sleep patterns in various rare diseases. Last, in response to the profound unmet medical needs of patients with rare diseases and sleep disorders, we propose adapting and using the clinical trial design known as a "basket trial". In this case, a basket trial would include patients with different rare diseases but the same debilitating symptoms. This research approach has the potential to benefit many rare disease patients who are otherwise left with profound unmet medical needs.
Collapse
Affiliation(s)
| | - Nick Bott
- Takeda Pharmaceuticals, Cambridge, MA 02139, USA;
| | | | - Amee Revana
- Texas Children’s Hospital, Houston, TX 77001, USA;
| | - Gunes Sevinc
- Ardea Outcomes, Halifax, NS B3J 0J2, Canada; (G.S.); (C.C.)
| | - Casey Gorman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Alexandra Duncan
- COMBINEDBrain, Brentwood, TN 37027, USA; (A.D.); (S.P.); (A.C.P.); (K.Q.S.)
| | - Sarah Poliquin
- COMBINEDBrain, Brentwood, TN 37027, USA; (A.D.); (S.P.); (A.C.P.); (K.Q.S.)
| | - Anna C. Pfalzer
- COMBINEDBrain, Brentwood, TN 37027, USA; (A.D.); (S.P.); (A.C.P.); (K.Q.S.)
- Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Katie Q. Schmidt
- COMBINEDBrain, Brentwood, TN 37027, USA; (A.D.); (S.P.); (A.C.P.); (K.Q.S.)
| | | | - Chère Chapman
- Ardea Outcomes, Halifax, NS B3J 0J2, Canada; (G.S.); (C.C.)
| | - Maria Picone
- TREND Community, Philadelphia, PA 19102, USA; (E.R.W.); (M.P.)
| |
Collapse
|
3
|
Chen G, Dang D, Zhang C, Qin L, Yan T, Wang W, Liang W. Recent advances in neurotechnology-based biohybrid robots. SOFT MATTER 2024; 20:7993-8011. [PMID: 39328163 DOI: 10.1039/d4sm00768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Biohybrid robots retain the innate biological characteristics and behavioral traits of animals, making them valuable in applications such as disaster relief, exploration of unknown terrains, and medical care. This review aims to comprehensively discuss the evolution of biohybrid robots, their key technologies and applications, and the challenges they face. By analyzing studies conducted on terrestrial, aquatic, and aerial biohybrid robots, we gain a deeper understanding of how these technologies have made significant progress in simulating natural organisms, improving mechanical performance, and intelligent control. Additionally, we address challenges associated with the application of electrical stimulation technology, the precision of neural signal monitoring, and the ethical considerations for biohybrid robots. We highlight the importance of future research focusing on developing more sophisticated and biocompatible control methods while prioritizing animal welfare. We believe that exploring multimodal monitoring and stimulation technologies holds the potential to enhance the performance of biohybrid robots. These efforts are expected to pave the way for biohybrid robotics technology to introduce greater innovation and well-being to human society in the future.
Collapse
Affiliation(s)
- Guiyong Chen
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, People's Republic of China.
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China
| | - Dan Dang
- School of Sciences, Shenyang Jianzhu University, Shenyang 110168, People's Republic of China.
| | - Chuang Zhang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China
| | - Ling Qin
- School of Life Sciences, China Medical University, Shenyang 110122, People's Republic of China
| | - Tao Yan
- Department of Anesthesiology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Beijing 100021, People's Republic of China
- Chinese Academy of Medical Sciences, Beijing 100021, People's Republic of China
- Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Wenxue Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China
| | - Wenfeng Liang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, People's Republic of China.
| |
Collapse
|
4
|
Fitzgerald PJ. Neural hyperexcitability in Angelman syndrome: Genetic factors and pharmacologic treatment approaches. Epilepsy Res 2024; 200:107286. [PMID: 38217951 DOI: 10.1016/j.eplepsyres.2024.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
Angelman syndrome (AS) is a rare neurodevelopmental disorder that is typically caused by deletion or a loss-of-function mutation of the maternal copy of the ubiquitin ligase E3A (UBE3A) gene. The disorder is characterized by severe intellectual disability, deficits in speech, motor abnormalities, altered electroencephalography (EEG) activity, spontaneous epileptic seizures, sleep disturbances, and a happy demeanor with frequent laughter. Regarding electrophysiologic abnormalities in particular, enhanced delta oscillatory power and an elevated excitatory/inhibitory (E/I) ratio have been documented in AS, with E/I ratio especially studied in rodent models. These electrophysiologic characteristics appear to relate with the greatly elevated rates of epilepsy in individuals with AS, and associated hypersynchronous neural activity. Here we briefly review findings on EEG, E/I ratio, and epileptic seizures in AS, including data from rodent models of the disorder. We summarize pharmacologic approaches that have been used to treat behavioral aspects of AS, including neuropsychiatric phenomena and sleep disturbances, as well as seizures in the context of the disorder. Antidepressants such as SSRIs and atypical antipsychotics are among the medications that have been used behaviorally, whereas anticonvulsant drugs such as valproic acid and lamotrigine have frequently been used to control seizures in AS. We end by suggesting novel uses for some existing pharmacologic agents in AS, including noradrenergic transmission reducing drugs (alpha2 agonists, beta blockers, alpha1 antagonists) and cholinesterase inhibitors, where these various classes of drugs may have the ability to ameliorate both behavioral disturbances and seizures.
Collapse
Affiliation(s)
- Paul J Fitzgerald
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
5
|
Shoob S, Buchbinder N, Shinikamin O, Gold O, Baeloha H, Langberg T, Zarhin D, Shapira I, Braun G, Habib N, Slutsky I. Deep brain stimulation of thalamic nucleus reuniens promotes neuronal and cognitive resilience in an Alzheimer's disease mouse model. Nat Commun 2023; 14:7002. [PMID: 37919286 PMCID: PMC10622498 DOI: 10.1038/s41467-023-42721-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
The mechanisms that confer cognitive resilience to Alzheimer's Disease (AD) are not fully understood. Here, we describe a neural circuit mechanism underlying this resilience in a familial AD mouse model. In the prodromal disease stage, interictal epileptiform spikes (IESs) emerge during anesthesia in the CA1 and mPFC regions, leading to working memory disruptions. These IESs are driven by inputs from the thalamic nucleus reuniens (nRE). Indeed, tonic deep brain stimulation of the nRE (tDBS-nRE) effectively suppresses IESs and restores firing rate homeostasis under anesthesia, preventing further impairments in nRE-CA1 synaptic facilitation and working memory. Notably, applying tDBS-nRE during the prodromal phase in young APP/PS1 mice mitigates age-dependent memory decline. The IES rate during anesthesia in young APP/PS1 mice correlates with later working memory impairments. These findings highlight the nRE as a central hub of functional resilience and underscore the clinical promise of DBS in conferring resilience to AD pathology by restoring circuit-level homeostasis.
Collapse
Affiliation(s)
- Shiri Shoob
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Nadav Buchbinder
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Ortal Shinikamin
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Or Gold
- Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Halit Baeloha
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Tomer Langberg
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Daniel Zarhin
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Ilana Shapira
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Gabriella Braun
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Naomi Habib
- Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
6
|
Camões dos Santos J, Appleton C, Cazaux Mateus F, Covas R, Bekman EP, da Rocha ST. Stem cell models of Angelman syndrome. Front Cell Dev Biol 2023; 11:1274040. [PMID: 37928900 PMCID: PMC10620611 DOI: 10.3389/fcell.2023.1274040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Angelman syndrome (AS) is an imprinted neurodevelopmental disorder that lacks a cure, characterized by developmental delay, intellectual impairment, seizures, ataxia, and paroxysmal laughter. The condition arises due to the loss of the maternally inherited copy of the UBE3A gene in neurons. The paternally inherited UBE3A allele is unable to compensate because it is silenced by the expression of an antisense transcript (UBE3A-ATS) on the paternal chromosome. UBE3A, encoding enigmatic E3 ubiquitin ligase variants, regulates target proteins by either modifying their properties/functions or leading them to degradation through the proteasome. Over time, animal models, particularly the Ube3a mat-/pat+ Knock-Out (KO) mice, have significantly contributed to our understanding of the molecular mechanisms underlying AS. However, a shift toward human pluripotent stem cell models (PSCs), such as human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), has gained momentum. These stem cell models accurately capture human genetic and cellular characteristics, offering an alternative or a complement to animal experimentation. Human stem cells possess the remarkable ability to recapitulate neurogenesis and generate "brain-in-a-dish" models, making them valuable tools for studying neurodevelopmental disorders like AS. In this review, we provide an overview of the current state-of-the-art human stem cell models of AS and explore their potential to become the preclinical models of choice for drug screening and development, thus propelling AS therapeutic advancements and improving the lives of affected individuals.
Collapse
Affiliation(s)
- João Camões dos Santos
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carolina Appleton
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Animal Biology, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Francisca Cazaux Mateus
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Rita Covas
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Evguenia Pavlovna Bekman
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- The Egas Moniz Center for Interdisciplinary Research (CiiEM), Caparica, Portugal
| | - Simão Teixeira da Rocha
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
7
|
Medina E, Peterson S, Ford K, Singletary K, Peixoto L. Critical periods and Autism Spectrum Disorders, a role for sleep. Neurobiol Sleep Circadian Rhythms 2023; 14:100088. [PMID: 36632570 PMCID: PMC9826922 DOI: 10.1016/j.nbscr.2022.100088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Brain development relies on both experience and genetically defined programs. Time windows where certain brain circuits are particularly receptive to external stimuli, resulting in heightened plasticity, are referred to as "critical periods". Sleep is thought to be essential for normal brain development. Importantly, studies have shown that sleep enhances critical period plasticity and promotes experience-dependent synaptic pruning in the developing mammalian brain. Therefore, normal plasticity during critical periods depends on sleep. Problems falling and staying asleep occur at a higher rate in Autism Spectrum Disorder (ASD) relative to typical development. In this review, we explore the potential link between sleep, critical period plasticity, and ASD. First, we review the importance of critical period plasticity in typical development and the role of sleep in this process. Next, we summarize the evidence linking ASD with deficits in synaptic plasticity in rodent models of high-confidence ASD gene candidates. We then show that the high-confidence rodent models of ASD that show sleep deficits also display plasticity deficits. Given how important sleep is for critical period plasticity, it is essential to understand the connections between synaptic plasticity, sleep, and brain development in ASD. However, studies investigating sleep or plasticity during critical periods in ASD mouse models are lacking. Therefore, we highlight an urgent need to consider developmental trajectory in studies of sleep and plasticity in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Elizabeth Medina
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Sarah Peterson
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Kaitlyn Ford
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Kristan Singletary
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Lucia Peixoto
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| |
Collapse
|
8
|
Lee D, Chen W, Kaku HN, Zhuo X, Chao ES, Soriano A, Kuncheria A, Flores S, Kim JH, Rivera A, Rigo F, Jafar-nejad P, Beaudet AL, Caudill MS, Xue M. Antisense oligonucleotide therapy rescues disturbed brain rhythms and sleep in juvenile and adult mouse models of Angelman syndrome. eLife 2023; 12:e81892. [PMID: 36594817 PMCID: PMC9904759 DOI: 10.7554/elife.81892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
UBE3A encodes ubiquitin protein ligase E3A, and in neurons its expression from the paternal allele is repressed by the UBE3A antisense transcript (UBE3A-ATS). This leaves neurons susceptible to loss-of-function of maternal UBE3A. Indeed, Angelman syndrome, a severe neurodevelopmental disorder, is caused by maternal UBE3A deficiency. A promising therapeutic approach to treating Angelman syndrome is to reactivate the intact paternal UBE3A by suppressing UBE3A-ATS. Prior studies show that many neurological phenotypes of maternal Ube3a knockout mice can only be rescued by reinstating Ube3a expression in early development, indicating a restricted therapeutic window for Angelman syndrome. Here, we report that reducing Ube3a-ATS by antisense oligonucleotides in juvenile or adult maternal Ube3a knockout mice rescues the abnormal electroencephalogram (EEG) rhythms and sleep disturbance, two prominent clinical features of Angelman syndrome. Importantly, the degree of phenotypic improvement correlates with the increase of Ube3a protein levels. These results indicate that the therapeutic window of genetic therapies for Angelman syndrome is broader than previously thought, and EEG power spectrum and sleep architecture should be used to evaluate the clinical efficacy of therapies.
Collapse
Affiliation(s)
- Dongwon Lee
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Wu Chen
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Heet Naresh Kaku
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Xinming Zhuo
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Eugene S Chao
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | | | - Allen Kuncheria
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Stephanie Flores
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Joo Hyun Kim
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Armando Rivera
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Frank Rigo
- Ionis PharmaceuticalsCarlsbadUnited States
| | | | - Arthur L Beaudet
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Matthew S Caudill
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Mingshan Xue
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
9
|
Negrón-Moreno PN, Diep DT, Guoynes CD, Sidorov MS. Dissociating motor impairment from five-choice serial reaction time task performance in a mouse model of Angelman syndrome. Front Behav Neurosci 2022; 16:968159. [PMID: 36212189 PMCID: PMC9539753 DOI: 10.3389/fnbeh.2022.968159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/05/2022] [Indexed: 12/02/2022] Open
Abstract
Angelman syndrome (AS) is a single-gene neurodevelopmental disorder associated with cognitive and motor impairment, seizures, lack of speech, and disrupted sleep. AS is caused by loss-of-function mutations in the UBE3A gene, and approaches to reinstate functional UBE3A are currently in clinical trials in children. Behavioral testing in a mouse model of AS (Ube3a m-/p+ ) represents an important tool to assess the effectiveness of current and future treatments preclinically. Existing behavioral tests effectively model motor impairments, but not cognitive impairments, in Ube3a m-/p+ mice. Here we tested the hypothesis that the 5-choice serial reaction time task (5CSRTT) can be used to assess cognitive behaviors in Ube3a m-/p+ mice. Ube3a m-/p+ mice had more omissions during 5CSRTT training than wild-type littermate controls, but also showed impaired motor function including open field hypoactivity and delays in eating pellet rewards. Motor impairments thus presented an important confound for interpreting this group difference in omissions. We report that despite hypoactivity during habituation, Ube3a m-/p+ mice had normal response latencies to retrieve rewards during 5CSRTT training. We also accounted for delays in eating pellet rewards by assessing omissions solely on trials where eating delays would not impact results. Thus, the increase in omissions in Ube3a m-/p+ mice is likely not caused by concurrent motor impairments. This work underscores the importance of considering how known motor impairments in Ube3a m-/p+ mice may affect behavioral performance in other domains. Our results also provide guidance on how to design a 5CSRTT protocol that is best suited for future studies in Ube3a mutants.
Collapse
Affiliation(s)
- Paola N. Negrón-Moreno
- University of Puerto Rico-Cayey, Cayey, PR, United States
- Department of Cell Biology and Physiology, Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David T. Diep
- University of Maryland, College Park, College Park, MD, United States
- Center for Neuroscience Research, Children’s National Medical Center, Washington, DC, United States
| | - Caleigh D. Guoynes
- Center for Neuroscience Research, Children’s National Medical Center, Washington, DC, United States
| | - Michael S. Sidorov
- Department of Cell Biology and Physiology, Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Center for Neuroscience Research, Children’s National Medical Center, Washington, DC, United States
- Departments of Pediatrics and Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
10
|
Abdalla OHMH, Mascarenhas B, Cheng HYM. Death of a Protein: The Role of E3 Ubiquitin Ligases in Circadian Rhythms of Mice and Flies. Int J Mol Sci 2022; 23:ijms231810569. [PMID: 36142478 PMCID: PMC9502492 DOI: 10.3390/ijms231810569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/04/2022] Open
Abstract
Circadian clocks evolved to enable organisms to anticipate and prepare for periodic environmental changes driven by the day–night cycle. This internal timekeeping mechanism is built on autoregulatory transcription–translation feedback loops that control the rhythmic expression of core clock genes and their protein products. The levels of clock proteins rise and ebb throughout a 24-h period through their rhythmic synthesis and destruction. In the ubiquitin–proteasome system, the process of polyubiquitination, or the covalent attachment of a ubiquitin chain, marks a protein for degradation by the 26S proteasome. The process is regulated by E3 ubiquitin ligases, which recognize specific substrates for ubiquitination. In this review, we summarize the roles that known E3 ubiquitin ligases play in the circadian clocks of two popular model organisms: mice and fruit flies. We also discuss emerging evidence that implicates the N-degron pathway, an alternative proteolytic system, in the regulation of circadian rhythms. We conclude the review with our perspectives on the potential for the proteolytic and non-proteolytic functions of E3 ubiquitin ligases within the circadian clock system.
Collapse
Affiliation(s)
- Osama Hasan Mustafa Hasan Abdalla
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Brittany Mascarenhas
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Hai-Ying Mary Cheng
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
- Correspondence:
| |
Collapse
|
11
|
Shi SQ, Mahoney CE, Houdek P, Zhao W, Anderson MP, Zhuo X, Beaudet A, Sumova A, Scammell TE, Johnson CH. Circadian Rhythms and Sleep Are Dependent Upon Expression Levels of Key Ubiquitin Ligase Ube3a. Front Behav Neurosci 2022; 16:837523. [PMID: 35401134 PMCID: PMC8989470 DOI: 10.3389/fnbeh.2022.837523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Normal neurodevelopment requires precise expression of the key ubiquitin ligase gene Ube3a. Comparing newly generated mouse models for Ube3a downregulation (models of Angelman syndrome) vs. Ube3a upregulation (models for autism), we find reciprocal effects of Ube3a gene dosage on phenotypes associated with circadian rhythmicity, including the amount of locomotor activity. Consistent with results from neurons in general, we find that Ube3a is imprinted in neurons of the suprachiasmatic nuclei (SCN), the pacemaking circadian brain locus, despite other claims that SCN neurons were somehow exceptional to these imprinting rules. In addition, Ube3a-deficient mice lack the typical drop in wake late in the dark period and have blunted responses to sleep deprivation. Suppression of physical activity by light in Ube3a-deficient mice is not due to anxiety as measured by behavioral tests and stress hormones; quantification of stress hormones may provide a mechanistic link to sleep alteration and memory deficits caused by Ube3a deficiency, and serve as an easily measurable biomarker for evaluating potential therapeutic treatments for Angelman syndrome. We conclude that reduced Ube3a gene dosage affects not only neurodevelopment but also sleep patterns and circadian rhythms.
Collapse
Affiliation(s)
- Shu-qun Shi
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Carrie E. Mahoney
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Pavel Houdek
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Wenling Zhao
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Matthew P. Anderson
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Xinming Zhuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | | | - Alena Sumova
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Thomas E. Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Carl Hirschie Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
12
|
Sleep deficiency as a driver of cellular stress and damage in neurological disorders. Sleep Med Rev 2022; 63:101616. [PMID: 35381445 PMCID: PMC9177816 DOI: 10.1016/j.smrv.2022.101616] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/23/2022]
Abstract
Neurological disorders encompass an extremely broad range of conditions, including those that present early in development and those that progress slowly or manifest with advanced age. Although these disorders have distinct underlying etiologies, the activation of shared pathways, e.g., integrated stress response (ISR) and the development of shared phenotypes (sleep deficits) may offer clues toward understanding some of the mechanistic underpinnings of neurologic dysfunction. While it is incontrovertibly complex, the relationship between sleep and persistent stress in the brain has broad implications in understanding neurological disorders from development to degeneration. The convergent nature of the ISR could be a common thread linking genetically distinct neurological disorders through the dysregulation of a core cellular homeostasis pathway.
Collapse
|
13
|
Abstract
Sleep homeostasis is a complex neurobiologic phenomenon involving a number of molecular pathways, neurotransmitter release, synaptic activity, and factors modulating neural networks. Sleep plasticity allows for homeostatic optimization of neural networks and the replay-based consolidation of specific circuits, especially important for cognition, behavior, and information processing. Furthermore, research is currently moving from an essentially brain-focused to a more comprehensive view involving other systems, such as the immune system, hormonal status, and metabolic pathways. When dysfunctional, these systems contribute to sleep loss and fragmentation as well as to sleep need. In this chapter, the implications of neural plasticity and sleep homeostasis for the diagnosis and treatment of some major sleep disorders, such as insomnia and sleep deprivation, obstructive sleep apnea syndrome, restless legs syndrome, REM sleep behavior disorder, and narcolepsy are discussed in detail with their therapeutical implications. This chapter highlights that sleep is necessary for the maintenance of an optimal brain function and is sensitive to both genetic background and environmental enrichment. Even in pathologic conditions, sleep acts as a resilient plastic state that consolidates prior information and prioritizes network activity for efficient brain functioning.
Collapse
|
14
|
Rayi PR, Bagrov AY, Kaphzan H. Chronic α1-Na/K-ATPase inhibition reverses the elongation of the axon initial segment of the hippocampal CA1 pyramidal neurons in Angelman syndrome model mice. Neuropsychopharmacology 2021; 46:654-664. [PMID: 33214655 PMCID: PMC8027375 DOI: 10.1038/s41386-020-00907-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/01/2020] [Accepted: 10/26/2020] [Indexed: 12/28/2022]
Abstract
Angelman syndrome (AS) is a neurodevelopmental disorder caused by the loss of function of the maternal UBE3A gene. The hippocampus is one of the most prominently affected brain regions in AS model mice, manifesting in severe hippocampal-dependent memory and plasticity deficits. Previous studies in AS mice reported an elongated axon initial segment (AIS) in pyramidal neurons (PNs) of the hippocampal CA1 region. These were the first reports in mammals to show AIS elongation in vivo. Correspondingly, this AIS elongation was linked to enhanced expression of the α1 subunit of Na+/K+-ATPase (α1-NaKA). Recently, it was shown that selective pharmacological inhibition of α1-NaKA by marinobufagenin (MBG) in adult AS mice rescued the hippocampal-dependent deficits via normalizing their compromised activity-dependent calcium (Ca+2) dynamics. In the herein study, we showed that a chronic selective α1-NaKA inhibition reversed the AIS elongation in hippocampal CA1 PNs of adult AS mice, and differentially altered their excitability and intrinsic properties. Taken together, our study is the first to demonstrate in vivo structural plasticity of the AIS in a mammalian model, and further elaborates on the modulatory effects of elevated α1-NaKA levels in the hippocampus of AS mice.
Collapse
Affiliation(s)
- Prudhvi Raj Rayi
- grid.18098.380000 0004 1937 0562Sagol Department of Neurobiology, The Integrated Brain and Behavior Research Center, University of Haifa, Haifa, 3498838 Israel
| | - Alexei Y. Bagrov
- grid.419730.80000 0004 0440 2269Sechenov Institute of Evolutionary Physiology and Biochemistry, 194223 St. Petersburg, Russian Federation
| | - Hanoch Kaphzan
- Sagol Department of Neurobiology, The Integrated Brain and Behavior Research Center, University of Haifa, Haifa, 3498838, Israel.
| |
Collapse
|
15
|
Sleep Duration in Mouse Models of Neurodevelopmental Disorders. Brain Sci 2020; 11:brainsci11010031. [PMID: 33396736 PMCID: PMC7824512 DOI: 10.3390/brainsci11010031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 01/06/2023] Open
Abstract
Sleep abnormalities are common in patients with neurodevelopmental disorders, and it is thought that deficits in sleep may contribute to the unfolding of symptoms in these disorders. Appreciating sleep abnormalities in neurodevelopmental disorders could be important for designing a treatment for these disorders. We studied sleep duration in three mouse models by means of home-cage monitoring: Tsc2+/- (tuberous sclerosis complex), oxytocin receptor (Oxtr) knockout (KO) (autism spectrum disorders), and Shank3 e4-9 KO (Phelan-McDermid syndrome). We studied both male and female mice, and data were analyzed to examine effects of both genotype and sex. In general, we found that female mice slept less than males regardless of genotype or phase. We did not find any differences in sleep duration in either Tsc2+/- or Oxtr KO mice, compared to controls. In Shank3 e4-9 KO mice, we found a statistically significant genotype x phase interaction (p = 0.002) with a trend that Shank3e4-9 KO mice regardless of sex slept more than control mice in the active phase. Our results have implications for the management of patients with Phelan-McDermid syndrome.
Collapse
|
16
|
Buonfiglio D, Hummer DL, Armstrong A, Christopher Ehlen J, DeBruyne JP. Angelman syndrome and melatonin: What can they teach us about sleep regulation. J Pineal Res 2020; 69:e12697. [PMID: 32976638 PMCID: PMC7577950 DOI: 10.1111/jpi.12697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 01/20/2023]
Abstract
In 1965, Dr Harry Angelman reported a neurodevelopmental disorder affecting three unrelated children who had similar symptoms: brachycephaly, mental retardation, ataxia, seizures, protruding tongues, and remarkable paroxysms of laughter. Over the past 50 years, the disorder became Angelman's namesake and symptomology was expanded to include hyper-activity, stereotypies, and severe sleep disturbances. The sleep disorders in many Angelman syndrome (AS) patients are broadly characterized by difficulty falling and staying asleep at night. Some of these patients sleep less than 4 hours a night and, in most cases, do not make up this lost sleep during the day-leading to the speculation that AS patients may "need" less sleep. Most AS patients also have severely reduced levels of melatonin, a hormone produced by the pineal gland exclusively at night. This nightly pattern of melatonin production is thought to help synchronize internal circadian rhythms and promote nighttime sleep in humans and other diurnal species. It has been proposed that reduced melatonin levels contribute to the sleep problems in AS patients. Indeed, emerging evidence suggests melatonin replacement therapy can improve sleep in many AS patients. However, AS mice show sleep problems that are arguably similar to those in humans despite being on genetic backgrounds that do not make melatonin. This suggests the hypothesis that the change in nighttime melatonin may be a secondary factor rather than the root cause of the sleeping disorder. The goals of this review article are to revisit the sleep and melatonin findings in both AS patients and animal models of AS and discuss what AS may tell us about the underlying mechanisms of, and interplay between, melatonin and sleep.
Collapse
Affiliation(s)
- Daniella Buonfiglio
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Daniel L Hummer
- Department of Psychology, Morehouse College, Atlanta, GA, USA
| | - Ariel Armstrong
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| | | | - Jason P DeBruyne
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
17
|
Abstract
Sleep is a fundamental property conserved across species. The homeostatic induction of sleep indicates the presence of a mechanism that is progressively activated by the awake state and that induces sleep. Several lines of evidence support that such function, namely, sleep need, lies in the neuronal assemblies rather than specific brain regions and circuits. However, the molecular mechanism underlying the dynamics of sleep need is still unclear. This review aims to summarize recent studies mainly in rodents indicating that protein phosphorylation, especially at the synapses, could be the molecular entity associated with sleep need. Genetic studies in rodents have identified a set of kinases that promote sleep. The activity of sleep-promoting kinases appears to be elevated during the awake phase and in sleep deprivation. Furthermore, the proteomic analysis demonstrated that the phosphorylation status of synaptic protein is controlled by the sleep-wake cycle. Therefore, a plausible scenario may be that the awake-dependent activation of kinases modifies the phosphorylation status of synaptic proteins to promote sleep. We also discuss the possible importance of multisite phosphorylation on macromolecular protein complexes to achieve the slow dynamics and physiological functions of sleep in mammals.
Collapse
Affiliation(s)
- Koji L Ode
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics, Osaka, Japan
| |
Collapse
|
18
|
Wintler T, Schoch H, Frank M, Peixoto L. Sleep, brain development, and autism spectrum disorders: Insights from animal models. J Neurosci Res 2020; 98:1137-1149. [PMID: 32215963 PMCID: PMC7199437 DOI: 10.1002/jnr.24619] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/07/2020] [Accepted: 02/29/2020] [Indexed: 01/28/2023]
Abstract
Sleep is an evolutionarily conserved and powerful drive, although its complete functions are still unknown. One possible function of sleep is that it promotes brain development. The amount of sleep is greatest during ages when the brain is rapidly developing, and sleep has been shown to influence critical period plasticity. This supports a role for sleep in brain development and suggests that abnormal sleep in early life may lead to abnormal development. Autism spectrum disorder (ASD) is the most prevalent neurodevelopmental disorder in the United States. It is estimated that insomnia affects 44%-86% of the ASD population, predicting the severity of ASD core symptoms and associated behavioral problems. Sleep problems impact the quality of life of both ASD individuals and their caregivers, thus it is important to understand why they are so prevalent. In this review, we explore the role of sleep in early life as a causal factor in ASD. First, we review fundamental steps in mammalian sleep ontogeny and regulation and how sleep influences brain development. Next, we summarize current knowledge gained from studying sleep in animal models of ASD. Ultimately, our goal is to highlight the importance of understanding the role of sleep in brain development and the use of animal models to provide mechanistic insight into the origin of sleep problems in ASD.
Collapse
Affiliation(s)
- Taylor Wintler
- Washington State University Elson S Floyd College of Medicine, Biomedical Sciences Spokane, WA, 99202USA
| | - Hannah Schoch
- Washington State University Elson S Floyd College of Medicine, Biomedical Sciences Spokane, WA, 99202USA
| | - Marcos Frank
- Washington State University Elson S Floyd College of Medicine, Biomedical Sciences Spokane, WA, 99202USA
| | - Lucia Peixoto
- Washington State University Elson S Floyd College of Medicine, Biomedical Sciences Spokane, WA, 99202USA
| |
Collapse
|
19
|
Yang X. Characterizing spine issues: If offers novel therapeutics to Angelman syndrome. Dev Neurobiol 2020; 80:200-209. [PMID: 32378784 DOI: 10.1002/dneu.22757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/01/2020] [Indexed: 12/28/2022]
Abstract
Angelman syndrome (AS) is a rare neurodevelopmental disorder characterized by severe mental retardation, microcephaly, speech impairment, frequent epilepsy, EEG abnormalities, ataxic movements, tongue protrusion, bursts of laughter, sleep abruptions, and hyperactivity. AS results from loss of function of the imprinted UBE3A (ubiquitin-protein ligase E3A) gene on chromosome 15q11-q13, including a mutation on the maternal allele of Ube3a, a large deletion of the maternally inherited chromosomal region 15q11-13, paternal uniparental disomy of chromosome 15q11-13, or an imprinting defect. The Ube3a maternal deleted mouse model recaptured the major phenotypes of AS patients include seizure, learning and memory impairments, sleep disturbance, and motor problems. Owing to the activity-dependent structural and functional plasticity, dendritic spines are believed as the basic subcellular compartment for learning and memory and the sites where LTP and LTD are induced. Defects of spine formation and dynamics are common among several neurodevelopmental disorders and neuropsychiatric disorders including AS and reflect the underlying synaptopathology, which drives clinically relevant behavioral deficits. This review will summarize the impaired spine density, morphology, and synaptic plasticity in AS and propose that future explorations on spine dynamics and synaptic plasticity may help develop novel interventions and therapy for neurodevelopmental disorders like AS.
Collapse
Affiliation(s)
- Xin Yang
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
20
|
Liu CY, Tsai CJ, Yasugaki S, Nagata N, Morita M, Isotani A, Yanagisawa M, Hayashi Y. Copine-7 is required for REM sleep regulation following cage change or water immersion and restraint stress in mice. Neurosci Res 2020; 165:14-25. [PMID: 32283105 DOI: 10.1016/j.neures.2020.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 10/24/2022]
Abstract
Sleep is affected by the environment. In rodents, changes in the amount of rapid eye movement sleep (REMS) can precede those of other sleep/wake stages. The molecular mechanism underlying the dynamic regulation of REMS remains poorly understood. Here, we focused on the sublaterodorsal nucleus (SLD), located in the pontine tegmental area, which plays a crucial role in the regulation of REMS. We searched for genes selectively expressed in the SLD and identified copine-7 (Cpne7), whose involvement in sleep was totally unknown. We generated Cpne7-Cre knock-in mice, which enabled both the knockout (KO) of Cpne7 and the genetic labeling of Cpne7-expressing cells. While Cpne7-KO mice exhibited normal sleep under basal conditions, the amount of REMS in Cpne7-KO mice was larger compared to wildtype mice following cage change or water immersion and restraint stress, both of which are conditions that acutely reduce REMS. Thus, it was suggested that copine-7 is involved in negatively regulating REMS under certain conditions. In addition, chemogenetically activating Cpne7-expressing neurons in the SLD reduced the amount of REMS, suggesting that these neurons negatively regulate REMS. These results identify copine-7 and Cpne7-expressing neurons in the SLD as candidate molecular or neuronal components of the regulatory system that controls REMS.
Collapse
Affiliation(s)
- Chih-Yao Liu
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Chia-Jung Tsai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Shinnosuke Yasugaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Nanae Nagata
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Miho Morita
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Ayako Isotani
- NPO for Biotechnology Research and Development, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Department of Molecular Genetics, University of Texas Southwestern Medical Center, 75390, Dallas, TX, USA; Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; R&D Center for Frontiers of MIRAI in Policy and Technology (F-MIRAI), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
21
|
Maranga C, Fernandes TG, Bekman E, da Rocha ST. Angelman syndrome: a journey through the brain. FEBS J 2020; 287:2154-2175. [PMID: 32087041 DOI: 10.1111/febs.15258] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/02/2020] [Accepted: 02/21/2020] [Indexed: 12/31/2022]
Abstract
Angelman syndrome (AS) is an incurable neurodevelopmental disease caused by loss of function of the maternally inherited UBE3A gene. AS is characterized by a defined set of symptoms, namely severe developmental delay, speech impairment, uncontrolled laughter, and ataxia. Current understanding of the pathophysiology of AS relies mostly on studies using the murine model of the disease, although alternative models based on patient-derived stem cells are now emerging. Here, we summarize the literature of the last decade concerning the three major brain areas that have been the subject of study in the context of AS: hippocampus, cortex, and the cerebellum. Our comprehensive analysis highlights the major phenotypes ascribed to the different brain areas. Moreover, we also discuss the major drawbacks of current models and point out future directions for research in the context of AS, which will hopefully lead us to an effective treatment of this condition in humans.
Collapse
Affiliation(s)
- Carina Maranga
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Tiago G Fernandes
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Evguenia Bekman
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Simão Teixeira da Rocha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
22
|
Missig G, McDougle CJ, Carlezon WA. Sleep as a translationally-relevant endpoint in studies of autism spectrum disorder (ASD). Neuropsychopharmacology 2020; 45:90-103. [PMID: 31060044 PMCID: PMC6879602 DOI: 10.1038/s41386-019-0409-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 02/07/2023]
Abstract
Sleep has numerous advantages for aligning clinical and preclinical (basic neuroscience) studies of neuropsychiatric illness. Sleep has high translational relevance, because the same endpoints can be studied in humans and laboratory animals. In addition, sleep experiments are conducive to continuous data collection over long periods (hours/days/weeks) and can be based on highly objective neurophysiological measures. Here, we provide a translationally-oriented review on what is currently known about sleep in the context of autism spectrum disorder (ASD), including ASD-related conditions, thought to have genetic, environmental, or mixed etiologies. In humans, ASD is frequently associated with comorbid medical conditions including sleep disorders. Animal models used in the study of ASD frequently recapitulate dysregulation of sleep and biological (diurnal, circadian) rhythms, suggesting common pathophysiologies across species. As our understanding of the neurobiology of ASD and sleep each become more refined, it is conceivable that sleep-derived metrics may offer more powerful biomarkers of altered neurophysiology in ASD than the behavioral tests currently used in humans or lab animals. As such, the study of sleep in animal models for ASD may enable fundamentally new insights on the condition and represent a basis for strategies that enable the development of more effective therapeutics.
Collapse
Affiliation(s)
- Galen Missig
- 0000 0000 8795 072Xgrid.240206.2Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA USA
| | - Christopher J. McDougle
- 0000 0004 0386 9924grid.32224.35Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA USA ,000000041936754Xgrid.38142.3cDepartment of Psychiatry, Harvard Medical School, Boston, MA USA
| | - William A. Carlezon
- 0000 0000 8795 072Xgrid.240206.2Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA USA
| |
Collapse
|
23
|
Yang X. Towards an understanding of Angelman syndrome in mice studies. J Neurosci Res 2019; 98:1162-1173. [PMID: 31867793 DOI: 10.1002/jnr.24576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022]
Abstract
Angelman syndrome (AS) is a rare neurodevelopmental disorder characterized by severe mental retardation, absence of speech, abnormal motor coordination, abnormal EEG, and spontaneous seizure. AS is caused by a deficiency in the ubiquitin ligase E3A (Ube3a) gene product, known to play a dual role as both ubiquitin ligase and transcription coactivator. In AS animal models, multiple Ube3a substrates are accumulated in neurons. So far, studies in mouse models have either aimed at re-expressing Ube3a or manipulating downstream signaling pathways. Reintroducing Ube3a in AS mice showed promising results but may have two caveats. First, it may cause an overdosage in the Ube3a expression, which in turn is known to contribute to autism spectrum disorders. Second, in mutation cases, the exogenous Ube3a may have to compete with the mutated endogenous form. Such two caveats left spaces for developing therapies or interventions directed to targets downstream Ube3a. Notably, Ube3a expression is dynamically regulated by neuronal activity and plays a crucial role in synaptic plasticity. The abnormal synaptic plasticity uncovered in AS mice has been frequently rescued, but circuits symptoms like seizure are resistant to treatment. Future investigations are needed to further clarify the function (s) of Ube3a during development. Here I reviewed the recently identified major Ube3a substrates and signaling pathways involved in AS pathology, the Ube3a expression, imprinting and evolution, the AS mouse models that have been generated and inspired therapeutic potentials, and finally proposed some future explorations to better understand the AS pathology.
Collapse
Affiliation(s)
- Xin Yang
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
24
|
Snord116-dependent diurnal rhythm of DNA methylation in mouse cortex. Nat Commun 2018; 9:1616. [PMID: 29691382 PMCID: PMC5915486 DOI: 10.1038/s41467-018-03676-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 03/02/2018] [Indexed: 12/19/2022] Open
Abstract
Rhythmic oscillations of physiological processes depend on integrating the circadian clock and diurnal environment. DNA methylation is epigenetically responsive to daily rhythms, as a subset of CpG dinucleotides in brain exhibit diurnal rhythmic methylation. Here, we show a major genetic effect on rhythmic methylation in a mouse Snord116 deletion model of the imprinted disorder Prader–Willi syndrome (PWS). More than 23,000 diurnally rhythmic CpGs are identified in wild-type cortex, with nearly all lost or phase-shifted in PWS. Circadian dysregulation of a second imprinted Snord cluster at the Temple/Kagami-Ogata syndrome locus is observed at the level of methylation, transcription, and chromatin, providing mechanistic evidence of cross-talk. Genes identified by diurnal epigenetic changes in PWS mice overlapped rhythmic and PWS-specific genes in human brain and are enriched for PWS-relevant phenotypes and pathways. These results support the proposed evolutionary relationship between imprinting and sleep, and suggest possible chronotherapy in the treatment of PWS and related disorders. Many genes have oscillating gene expression pattern in circadian centers of the brain. This study shows cortical diurnal DNA methylation oscillation in a mouse model of Prader-Willi syndrome, and describes corresponding changes in gene expression and chromatin compaction.
Collapse
|
25
|
Epigenetics of Circadian Rhythms in Imprinted Neurodevelopmental Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:67-92. [PMID: 29933957 DOI: 10.1016/bs.pmbts.2017.11.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
DNA sequence information alone cannot account for the immense variability between chromosomal alleles within diverse cell types in the brain, whether these differences are observed across time, cell type, or parental origin. The complex control and maintenance of gene expression and modulation are regulated by a multitude of molecular and cellular mechanisms that layer on top of the genetic code. The integration of genetic and environmental signals required for regulating brain development and function is achieved in part by a dynamic epigenetic landscape that includes DNA methylation, histone modifications, and noncoding RNAs. These epigenetic mechanisms establish and maintain core biological processes, including genomic imprinting and entrainment of circadian rhythms. This chapter will focus on how the epigenetic layers of DNA methylation and long, noncoding RNAs interact with circadian rhythms at specific imprinted chromosomal loci associated with the human neurodevelopmental disorders Prader-Willi, Angelman, Kagami-Ogata, and Temple syndromes.
Collapse
|
26
|
George AJ, Hoffiz YC, Charles AJ, Zhu Y, Mabb AM. A Comprehensive Atlas of E3 Ubiquitin Ligase Mutations in Neurological Disorders. Front Genet 2018; 9:29. [PMID: 29491882 PMCID: PMC5817383 DOI: 10.3389/fgene.2018.00029] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/22/2018] [Indexed: 01/11/2023] Open
Abstract
Protein ubiquitination is a posttranslational modification that plays an integral part in mediating diverse cellular functions. The process of protein ubiquitination requires an enzymatic cascade that consists of a ubiquitin activating enzyme (E1), ubiquitin conjugating enzyme (E2) and an E3 ubiquitin ligase (E3). There are an estimated 600-700 E3 ligase genes representing ~5% of the human genome. Not surprisingly, mutations in E3 ligase genes have been observed in multiple neurological conditions. We constructed a comprehensive atlas of disrupted E3 ligase genes in common (CND) and rare neurological diseases (RND). Of the predicted and known human E3 ligase genes, we found ~13% were mutated in a neurological disorder with 83 total genes representing 70 different types of neurological diseases. Of the E3 ligase genes identified, 51 were associated with an RND. Here, we provide an updated list of neurological disorders associated with E3 ligase gene disruption. We further highlight research in these neurological disorders and discuss the advanced technologies used to support these findings.
Collapse
Affiliation(s)
- Arlene J. George
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Yarely C. Hoffiz
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | | | - Ying Zhu
- Creative Media Industries Institute & Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Angela M. Mabb
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
27
|
Strain-dependence of the Angelman Syndrome phenotypes in Ube3a maternal deficiency mice. Sci Rep 2017; 7:8451. [PMID: 28814801 PMCID: PMC5559514 DOI: 10.1038/s41598-017-08825-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/17/2017] [Indexed: 11/09/2022] Open
Abstract
Angelman syndrome (AS) is a genetic neurodevelopmental disorder, most commonly caused by deletion or mutation of the maternal allele of the UBE3A gene, with behavioral phenotypes and seizures as key features. Currently no treatment is available, and therapeutics are often ineffective in controlling AS-associated seizures. Previous publications using the Ube3a maternal deletion model have shown behavioral and seizure susceptibility phenotypes, however findings have been variable and merit characterization of electroencephalographic (EEG) activity. In this study, we extend previous studies comparing the effect of genetic background on the AS phenotype by investigating the behavioral profile, EEG activity, and seizure threshold. AS C57BL/6J mice displayed robust behavioral impairments, spontaneous EEG polyspikes, and increased cortical and hippocampal power primarily driven by delta and theta frequencies. AS 129 mice performed poorly on wire hang and contextual fear conditioning and exhibited a lower seizure threshold and altered spectral power. AS F1 hybrid mice (C57BL/6J × 129) showed milder behavioral impairments, infrequent EEG polyspikes, and fewer spectral power alterations. These findings indicate the effect of common genetic backgrounds on the Ube3a maternal deletion behavioral, EEG, and seizure threshold phenotypes. Our results will inform future studies on the optimal strain for evaluating therapeutics with different AS-like phenotypes.
Collapse
|
28
|
Decreased Axon Caliber Underlies Loss of Fiber Tract Integrity, Disproportional Reductions in White Matter Volume, and Microcephaly in Angelman Syndrome Model Mice. J Neurosci 2017; 37:7347-7361. [PMID: 28663201 DOI: 10.1523/jneurosci.0037-17.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/24/2017] [Accepted: 06/21/2017] [Indexed: 11/21/2022] Open
Abstract
Angelman syndrome (AS) is a debilitating neurodevelopmental disorder caused by loss of function of the maternally inherited UBE3A allele. It is currently unclear how the consequences of this genetic insult unfold to impair neurodevelopment. We reasoned that by elucidating the basis of microcephaly in AS, a highly penetrant syndromic feature with early postnatal onset, we would gain new insights into the mechanisms by which maternal UBE3A loss derails neurotypical brain growth and function. Detailed anatomical analysis of both male and female maternal Ube3a-null mice reveals that microcephaly in the AS mouse model is primarily driven by deficits in the growth of white matter tracts, which by adulthood are characterized by densely packed axons of disproportionately small caliber. Our results implicate impaired axon growth in the pathogenesis of AS and identify noninvasive structural neuroimaging as a potentially valuable tool for gauging therapeutic efficacy in the disorder.SIGNIFICANCE STATEMENT People who maternally inherit a deletion or nonfunctional copy of the UBE3A gene develop Angelman syndrome (AS), a severe neurodevelopmental disorder. To better understand how loss of maternal UBE3A function derails brain development, we analyzed brain structure in a maternal Ube3a knock-out mouse model of AS. We report that the volume of white matter (WM) is disproportionately reduced in AS mice, indicating that deficits in WM development are a major factor underlying impaired brain growth and microcephaly in the disorder. Notably, we find that axons within the WM pathways of AS model mice are abnormally small in caliber. This defect is associated with slowed nerve conduction, which could contribute to behavioral deficits in AS, including motor dysfunction.
Collapse
|
29
|
Wallace ML, van Woerden GM, Elgersma Y, Smith SL, Philpot BD. Ube3a loss increases excitability and blunts orientation tuning in the visual cortex of Angelman syndrome model mice. J Neurophysiol 2017; 118:634-646. [PMID: 28468997 DOI: 10.1152/jn.00618.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 12/15/2022] Open
Abstract
Angelman syndrome (AS) is a neurodevelopmental disorder caused by loss of the maternally inherited allele of UBE3AUbe3aSTOP/p+ mice recapitulate major features of AS in humans and allow conditional reinstatement of maternal Ube3a with the expression of Cre recombinase. We have recently shown that AS model mice exhibit reduced inhibitory drive onto layer (L)2/3 pyramidal neurons of visual cortex, which contributes to a synaptic excitatory/inhibitory imbalance. However, it remains unclear how this loss of inhibitory drive affects neural circuits in vivo. Here we examined visual cortical response properties in individual neurons to explore the consequences of Ube3a loss on intact cortical circuits and processing. Using in vivo patch-clamp electrophysiology, we measured the visually evoked responses to square-wave drifting gratings in L2/3 regular-spiking (RS) neurons in control mice, Ube3a-deficient mice, and mice in which Ube3a was conditionally reinstated in GABAergic neurons. We found that Ube3a-deficient mice exhibited enhanced pyramidal neuron excitability in vivo as well as weaker orientation tuning. These observations are the first to show alterations in cortical computation in an AS model, and they suggest a basis for cortical dysfunction in AS.NEW & NOTEWORTHY Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by the loss of the gene UBE3A Using electrophysiological recording in vivo, we describe visual cortical dysfunctions in a mouse model of AS. Aberrant cellular properties in AS model mice could be improved by reinstating Ube3a in inhibitory neurons. These findings suggest that inhibitory neurons play a substantial role in the pathogenesis of AS.
Collapse
Affiliation(s)
- Michael L Wallace
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, North Carolina
| | - Geeske M van Woerden
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ype Elgersma
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Spencer L Smith
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, North Carolina.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina.,Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina.,Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina; and
| | - Benjamin D Philpot
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, North Carolina; .,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina.,Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina.,Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina; and
| |
Collapse
|
30
|
Jones KA, Han JE, DeBruyne JP, Philpot BD. Persistent neuronal Ube3a expression in the suprachiasmatic nucleus of Angelman syndrome model mice. Sci Rep 2016; 6:28238. [PMID: 27306933 PMCID: PMC4910164 DOI: 10.1038/srep28238] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/31/2016] [Indexed: 01/31/2023] Open
Abstract
Mutations or deletions of the maternal allele of the UBE3A gene cause Angelman syndrome (AS), a severe neurodevelopmental disorder. The paternal UBE3A/Ube3a allele becomes epigenetically silenced in most neurons during postnatal development in humans and mice; hence, loss of the maternal allele largely eliminates neuronal expression of UBE3A protein. However, recent studies suggest that paternal Ube3a may escape silencing in certain neuron populations, allowing for persistent expression of paternal UBE3A protein. Here we extend evidence in AS model mice (Ube3a(m-/p+)) of paternal UBE3A expression within the suprachiasmatic nucleus (SCN), the master circadian pacemaker. Paternal UBE3A-positive cells in the SCN show partial colocalization with the neuropeptide arginine vasopressin (AVP) and clock proteins (PER2 and BMAL1), supporting that paternal UBE3A expression in the SCN is often of neuronal origin. Paternal UBE3A also partially colocalizes with a marker of neural progenitors, SOX2, implying that relaxed or incomplete imprinting of paternal Ube3a reflects an overall immature molecular phenotype. Our findings highlight the complexity of Ube3a imprinting in the brain and illuminate a subpopulation of SCN neurons as a focal point for future studies aimed at understanding the mechanisms of Ube3a imprinting.
Collapse
Affiliation(s)
- Kelly A. Jones
- Department of Cell Biology & Physiology, UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Ji Eun Han
- Department of Cell Biology & Physiology, UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jason P. DeBruyne
- Department of Pharmacology & Toxicology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Benjamin D. Philpot
- Department of Cell Biology & Physiology, UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
31
|
Perez JD, Rubinstein ND, Dulac C. New Perspectives on Genomic Imprinting, an Essential and Multifaceted Mode of Epigenetic Control in the Developing and Adult Brain. Annu Rev Neurosci 2016; 39:347-84. [PMID: 27145912 DOI: 10.1146/annurev-neuro-061010-113708] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mammalian evolution entailed multiple innovations in gene regulation, including the emergence of genomic imprinting, an epigenetic regulation leading to the preferential expression of a gene from its maternal or paternal allele. Genomic imprinting is highly prevalent in the brain, yet, until recently, its central roles in neural processes have not been fully appreciated. Here, we provide a comprehensive survey of adult and developmental brain functions influenced by imprinted genes, from neural development and wiring to synaptic function and plasticity, energy balance, social behaviors, emotions, and cognition. We further review the widespread identification of parental biases alongside monoallelic expression in brain tissues, discuss their potential roles in dosage regulation of key neural pathways, and suggest possible mechanisms underlying the dynamic regulation of imprinting in the brain. This review should help provide a better understanding of the significance of genomic imprinting in the normal and pathological brain of mammals including humans.
Collapse
Affiliation(s)
- Julio D Perez
- Department of Molecular and Cellular Biology, Harvard University, Howard Hughes Medical Institute, Cambridge, Massachusetts 02138;
| | - Nimrod D Rubinstein
- Department of Molecular and Cellular Biology, Harvard University, Howard Hughes Medical Institute, Cambridge, Massachusetts 02138;
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Harvard University, Howard Hughes Medical Institute, Cambridge, Massachusetts 02138;
| |
Collapse
|
32
|
Lassi G, Priano L, Maggi S, Garcia-Garcia C, Balzani E, El-Assawy N, Pagani M, Tinarelli F, Giardino D, Mauro A, Peters J, Gozzi A, Grugni G, Tucci V. Deletion of the Snord116/SNORD116 Alters Sleep in Mice and Patients with Prader-Willi Syndrome. Sleep 2016; 39:637-44. [PMID: 26446116 DOI: 10.5665/sleep.5542] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/24/2015] [Indexed: 01/01/2023] Open
Abstract
STUDY OBJECTIVES Sleep-wake disturbances are often reported in Prader-Willi syndrome (PWS), a rare neurodevelopmental syndrome that is associated with paternally-expressed genomic imprinting defects within the human chromosome region 15q11-13. One of the candidate genes, prevalently expressed in the brain, is the small nucleolar ribonucleic acid-116 (SNORD116). Here we conducted a translational study into the sleep abnormalities of PWS, testing the hypothesis that SNORD116 is responsible for sleep defects that characterize the syndrome. METHODS We studied sleep in mutant mice that carry a deletion of Snord116 at the orthologous locus (mouse chromosome 7) of the human PWS critical region (PWScr). In particular, we assessed EEG and temperature profiles, across 24-h, in PWScr (m+/p-) heterozygous mutants compared to wild-type littermates. High-resolution magnetic resonance imaging (MRI) was performed to explore morphoanatomical differences according to the genotype. Moreover, we complemented the mouse work by presenting two patients with a diagnosis of PWS and characterized by atypical small deletions of SNORD116. We compared the individual EEG parameters of patients with healthy subjects and with a cohort of obese subjects. RESULTS By studying the mouse mutant line PWScr(m+/p-), we observed specific rapid eye movement (REM) sleep alterations including abnormal electroencephalograph (EEG) theta waves. Remarkably, we observed identical sleep/EEG defects in the two PWS cases. We report brain morphological abnormalities that are associated with the EEG alterations. In particular, mouse mutants have a bilateral reduction of the gray matter volume in the ventral hippocampus and in the septum areas, which are pivotal structures for maintaining theta rhythms throughout the brain. In PWScr(m+/p-) mice we also observed increased body temperature that is coherent with REM sleep alterations in mice and human patients. CONCLUSIONS Our study indicates that paternally expressed Snord116 is involved in the 24-h regulation of sleep physiological measures, suggesting that it is a candidate gene for the sleep disturbances that most individuals with PWS experience.
Collapse
Affiliation(s)
- Glenda Lassi
- Neuroscience and Brain Technologies (NBT) Department, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genova (Italy)
| | - Lorenzo Priano
- Department of Neurology and Neurorehabilitation, S. Giuseppe Hospital, IRCCS Istituto Auxologico Italiano, Piancavallo (VB), Italy. Department of Neurosciences, University of Turin, Italy
| | - Silvia Maggi
- Neuroscience and Brain Technologies (NBT) Department, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genova (Italy)
| | - Celina Garcia-Garcia
- Neuroscience and Brain Technologies (NBT) Department, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genova (Italy)
| | - Edoardo Balzani
- Neuroscience and Brain Technologies (NBT) Department, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genova (Italy)
| | - Nadia El-Assawy
- Department of Neurology and Neurorehabilitation, S. Giuseppe Hospital, IRCCS Istituto Auxologico Italiano, Piancavallo (VB), Italy. Department of Neurosciences, University of Turin, Italy
| | - Marco Pagani
- Istituto Italiano di Tecnologia. Center for Neuroscience and Cognitive Systems, Rovereto, Italy.,Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy
| | - Federico Tinarelli
- Neuroscience and Brain Technologies (NBT) Department, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genova (Italy)
| | - Daniela Giardino
- Laboratory of Medical Cytogenetics, Istituto Auxologico Italiano, Cusano Milanino (MI), Italy
| | - Alessandro Mauro
- Department of Neurology and Neurorehabilitation, S. Giuseppe Hospital, IRCCS Istituto Auxologico Italiano, Piancavallo (VB), Italy. Department of Neurosciences, University of Turin, Italy
| | - Jo Peters
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, UK
| | - Alessandro Gozzi
- Istituto Italiano di Tecnologia. Center for Neuroscience and Cognitive Systems, Rovereto, Italy
| | - Graziano Grugni
- Division of Auxology, S. Giuseppe Hospital, Research Institute, Istituto Auxologico Italiano, Piancavallo di Oggebbio (VB), Verbania, Italy
| | - Valter Tucci
- Neuroscience and Brain Technologies (NBT) Department, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genova (Italy)
| |
Collapse
|
33
|
Maternal Ube3a Loss Disrupts Sleep Homeostasis But Leaves Circadian Rhythmicity Largely Intact. J Neurosci 2016; 35:13587-98. [PMID: 26446213 DOI: 10.1523/jneurosci.2194-15.2015] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Individuals with Angelman syndrome (AS) suffer sleep disturbances that severely impair quality of life. Whether these disturbances arise from sleep or circadian clock dysfunction is currently unknown. Here, we explored the mechanistic basis for these sleep disorders in a mouse model of Angelman syndrome (Ube3a(m-/p+) mice). Genetic deletion of the maternal Ube3a allele practically eliminates UBE3A protein from the brain of Ube3a(m-/p+) mice, because the paternal allele is epigenetically silenced in most neurons. However, we found that UBE3A protein was present in many neurons of the suprachiasmatic nucleus--the site of the mammalian circadian clock--indicating that Ube3a can be expressed from both parental alleles in this brain region in adult mice. We found that while Ube3a(m-/p+) mice maintained relatively normal circadian rhythms of behavior and light-resetting, these mice exhibited consolidated locomotor activity and skipped the timed rest period (siesta) present in wild-type (Ube3a(m+/p+)) mice. Electroencephalographic analysis revealed that alterations in sleep regulation were responsible for these overt changes in activity. Specifically, Ube3a(m-/p+) mice have a markedly reduced capacity to accumulate sleep pressure, both during their active period and in response to forced sleep deprivation. Thus, our data indicate that the siesta is governed by sleep pressure, and that Ube3a is an important regulator of sleep homeostasis. These preclinical findings suggest that therapeutic interventions that target mechanisms of sleep homeostasis may improve sleep quality in individuals with AS. SIGNIFICANCE STATEMENT Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by loss of expression of the maternal copy of the UBE3A gene. Individuals with AS have severe sleep dysfunction that affects their cognition and presents challenges to their caregivers. Unfortunately, current treatment strategies have limited efficacy due to a poor understanding of the mechanisms underlying sleep disruptions in AS. Here we demonstrate that abnormal sleep patterns arise from a deficit in accumulation of sleep drive, uncovering the Ube3a gene as a novel genetic regulator of sleep homeostasis. Our findings encourage a re-evaluation of current treatment strategies for sleep dysfunction in AS, and suggest that interventions that promote increased sleep drive may alleviate sleep disturbances in individuals with AS.
Collapse
|
34
|
LaSalle JM, Reiter LT, Chamberlain SJ. Epigenetic regulation of UBE3A and roles in human neurodevelopmental disorders. Epigenomics 2015; 7:1213-28. [PMID: 26585570 DOI: 10.2217/epi.15.70] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The E3 ubiquitin ligase UBE3A, also known as E6-AP, has a multitude of ascribed functions and targets relevant to human health and disease. Epigenetic regulation of the UBE3A gene by parentally imprinted noncoding transcription within human chromosome 15q11.2-q13.3 is responsible for the maternal-specific effects of 15q11.2-q13.3 deletion or duplication disorders. Here, we review the evidence for diverse and emerging roles for UBE3A in the proteasome, synapse and nucleus in regulating protein stability and transcription as well as the current mechanistic understanding of UBE3A imprinting in neurons. Angelman and Dup15q syndromes as well as experimental models of these neurodevelopmental disorders are highlighted as improving understanding of UBE3A and its complex regulation for improving therapeutic strategies.
Collapse
Affiliation(s)
- Janine M LaSalle
- Medical Microbiology & Immunology, Genome Center & MIND Institute, University of California, Davis, CA 95616, USA
| | - Lawrence T Reiter
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA.,Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Stormy J Chamberlain
- Department of Genetics & Developmental Biology & Stem Cell Institute, University of Connecticut, Farmington, CT 06030, USA
| |
Collapse
|
35
|
Mandel-Brehm C, Salogiannis J, Dhamne SC, Rotenberg A, Greenberg ME. Seizure-like activity in a juvenile Angelman syndrome mouse model is attenuated by reducing Arc expression. Proc Natl Acad Sci U S A 2015; 112:5129-34. [PMID: 25848016 PMCID: PMC4413330 DOI: 10.1073/pnas.1504809112] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Angelman syndrome (AS) is a neurodevelopmental disorder arising from loss-of-function mutations in the maternally inherited copy of the UBE3A gene, and is characterized by an absence of speech, excessive laughter, cognitive delay, motor deficits, and seizures. Despite the fact that the symptoms of AS occur in early childhood, behavioral characterization of AS mouse models has focused primarily on adult phenotypes. In this report we describe juvenile behaviors in AS mice that are strain-independent and clinically relevant. We find that young AS mice, compared with their wild-type littermates, produce an increased number of ultrasonic vocalizations. In addition, young AS mice have defects in motor coordination, as well as abnormal brain activity that results in an enhanced seizure-like response to an audiogenic challenge. The enhanced seizure-like activity, but not the increased ultrasonic vocalizations or motor deficits, is rescued in juvenile AS mice by genetically reducing the expression level of the activity-regulated cytoskeleton-associated protein, Arc. These findings suggest that therapeutic interventions that reduce the level of Arc expression have the potential to reverse the seizures associated with AS. In addition, the identification of aberrant behaviors in young AS mice may provide clues regarding the neural circuit defects that occur in AS and ultimately allow new approaches for treating this disorder.
Collapse
Affiliation(s)
| | | | - Sameer C Dhamne
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Alexander Rotenberg
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
36
|
Colas D, Chuluun B, Warrier D, Blank M, Wetmore DZ, Buckmaster P, Garner CC, Heller HC. Short-term treatment with the GABAA receptor antagonist pentylenetetrazole produces a sustained pro-cognitive benefit in a mouse model of Down's syndrome. Br J Pharmacol 2015; 169:963-73. [PMID: 23489250 DOI: 10.1111/bph.12169] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 01/25/2013] [Accepted: 02/16/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Down's syndrome is a common genetic cause of intellectual disability, for which there are no drug therapies. Mechanistic studies in a model of Down's syndrome [Ts65Dn (TS) mice] demonstrated that impaired cognitive function was due to excessive neuronal inhibitory tone. These deficits were normalized by low doses of GABAA receptor antagonists in adult animals. In this study, we explore the therapeutic potential of pentylenetetrazole, a GABAA receptor antagonist with a history of safe use in humans. EXPERIMENTAL APPROACH Long-term memory was assessed by the novel object recognition test in different cohorts of TS mice after a delay following a short-term chronic treatment with pentylenetetrazole. Seizure susceptibility, an index of treatment safety, was studied by means of EEG, behaviour and hippocampus morphology. EEG spectral analysis was used as a bio-marker of the treatment. KEY RESULTS PTZ has a wide therapeutic window (0.03-3 mg·kg(-1)) that is >10-1000-fold below its seizure threshold and chronic pentylenetetrazole treatment did not lower the seizure threshold. Short-term, low, chronic dose regimens of pentylenetetrazole elicited long-lasting (>1 week) normalization of cognitive function in young and aged mice. Pentylenetetrazole effectiveness was dependent on the time of treatment; cognitive performance improved after treatment during the light (inactive) phase, but not during the dark (active) phase. Chronic pentylenetetrazole treatment normalized EEG power spectra in TS mice. CONCLUSIONS AND IMPLICATIONS Low doses of pentylenetetrazole were safe, produced long-lasting cognitive improvements and have the potential of fulfilling an unmet therapeutic need in Down's syndrome.
Collapse
Affiliation(s)
- D Colas
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Shi SQ, Bichell TJ, Ihrie RA, Johnson CH. Ube3a imprinting impairs circadian robustness in Angelman syndrome models. Curr Biol 2015; 25:537-45. [PMID: 25660546 PMCID: PMC4348236 DOI: 10.1016/j.cub.2014.12.047] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/24/2014] [Accepted: 12/15/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND The paternal allele of Ube3a is silenced by imprinting in neurons, and Angelman syndrome (AS) is a disorder arising from a deletion or mutation of the maternal Ube3a allele, which thereby eliminates Ube3a neuronal expression. Sleep disorders such as short sleep duration and increased sleep onset latency are very common in AS. RESULTS We found a unique link between neuronal imprinting of Ube3a and circadian rhythms in two mouse models of AS, including enfeebled circadian activity behavior and slowed molecular rhythms in ex vivo brain tissues. As a consequence of compromised circadian behavior, metabolic homeostasis is also disrupted in AS mice. Unsilencing the paternal Ube3a allele restores functional circadian periodicity in neurons deficient in maternal Ube3a but does not affect periodicity in peripheral tissues that are not imprinted for uniparental Ube3a expression. The ubiquitin ligase encoded by Ube3a interacts with the central clock components BMAL1 and BMAL2. Moreover, inactivation of Ube3a expression elevates BMAL1 levels in brain regions that control circadian behavior of AS-model mice, indicating an important role for Ube3a in modulating BMAL1 turnover. CONCLUSIONS Ube3a expression constitutes a direct mechanistic connection between symptoms of a human neurological disorder and the central circadian clock mechanism. The lengthened circadian period leads to delayed phase, which could explain the short sleep duration and increased sleep onset latency of AS subjects. Moreover, we report the pharmacological rescue of an AS phenotype, in this case, altered circadian period. These findings reveal potential treatments for sleep disorders in AS patients.
Collapse
Affiliation(s)
- Shu-qun Shi
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Terry Jo Bichell
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA
| | - Rebecca A Ihrie
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA; Cancer Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Carl Hirschie Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
38
|
Judson MC, Sosa-Pagan JO, Del Cid WA, Han JE, Philpot BD. Allelic specificity of Ube3a expression in the mouse brain during postnatal development. J Comp Neurol 2014; 522:1874-96. [PMID: 24254964 DOI: 10.1002/cne.23507] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 10/30/2013] [Accepted: 11/15/2013] [Indexed: 12/23/2022]
Abstract
Genetic alterations of the maternal UBE3A allele result in Angelman syndrome (AS), a neurodevelopmental disorder characterized by severe developmental delay, lack of speech, and difficulty with movement and balance. The combined effects of maternal UBE3A mutation and cell type-specific epigenetic silencing of paternal UBE3A are hypothesized to result in a complete loss of functional UBE3A protein in neurons. However, the allelic specificity of UBE3A expression in neurons and other cell types in the brain has yet to be characterized throughout development, including the early postnatal period when AS phenotypes emerge. Here we define maternal and paternal allele-specific Ube3a protein expression throughout postnatal brain development in the mouse, a species that exhibits orthologous epigenetic silencing of paternal Ube3a in neurons and AS-like behavioral phenotypes subsequent to maternal Ube3a deletion. We find that neurons downregulate paternal Ube3a protein expression as they mature and, with the exception of neurons born from postnatal stem cell niches, do not express detectable paternal Ube3a beyond the first postnatal week. By contrast, neurons express maternal Ube3a throughout postnatal development, during which time localization of the protein becomes increasingly nuclear. Unlike neurons, astrocytes and oligodendrotyes biallelically express Ube3a. Notably, mature oligodendrocytes emerge as the predominant Ube3a-expressing glial cell type in the cortex and white matter tracts during postnatal development. These findings demonstrate the spatiotemporal characteristics of allele-specific Ube3a expression in key brain cell types, thereby improving our understanding of the developmental parameters of paternal Ube3a silencing and the cellular basis of AS.
Collapse
Affiliation(s)
- Matthew C Judson
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, 27599
| | | | | | | | | |
Collapse
|
39
|
Peters J. The role of genomic imprinting in biology and disease: an expanding view. Nat Rev Genet 2014; 15:517-30. [PMID: 24958438 DOI: 10.1038/nrg3766] [Citation(s) in RCA: 304] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Genomic imprinting is an epigenetic phenomenon that results in monoallelic gene expression according to parental origin. It has long been established that imprinted genes have major effects on development and placental biology before birth. More recently, it has become evident that imprinted genes also have important roles after birth. In this Review, I bring together studies of the effects of imprinted genes from the prenatal period onwards. Recent work on postnatal stages shows that imprinted genes influence an extraordinarily wide-ranging array of biological processes, the effects of which extend into adulthood, and play important parts in common diseases that range from obesity to psychiatric disorders.
Collapse
Affiliation(s)
- Jo Peters
- Medical Research Council Mammalian Genetics Unit, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| |
Collapse
|
40
|
Abstract
"Angelman syndrome" (AS) is a neurodevelopmental disorder whose main features are intellectual disability, lack of speech, seizures, and a characteristic behavioral profile. The behavioral features of AS include a happy demeanor, easily provoked laughter, short attention span, hypermotoric behavior, mouthing of objects, sleep disturbance, and an affinity for water. Microcephaly and subtle dysmorphic features, as well as ataxia and other movement disturbances, are additional features seen in most affected individuals. AS is due to deficient expression of the ubiquitin protein ligase E3A (UBE3A) gene, which displays paternal imprinting. There are four molecular classes of AS, and some genotype-phenotype correlations have emerged. Much remains to be understood regarding how insufficiency of E6-AP, the protein product of UBE3A, results in the observed neurodevelopmental deficits. Studies of mouse models of AS have implicated UBE3A in experience-dependent synaptic remodeling.
Collapse
Affiliation(s)
- Lynne M Bird
- Department of Pediatrics, University of California, Division of Genetics, Rady Children’s Hospital, San Diego, California, USA
| |
Collapse
|
41
|
Haig D. Troubled sleep: A response to commentaries. Evol Med Public Health 2014; 2014:57-62. [PMID: 24632049 PMCID: PMC3982903 DOI: 10.1093/emph/eou011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- David Haig
- *Corresponding author. Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA. Tel: +1-617-496-5125; Fax: +1-617-495-5667; E-mail:
| |
Collapse
|
42
|
Picchioni D, Reith RM, Nadel JL, Smith CB. Sleep, plasticity and the pathophysiology of neurodevelopmental disorders: the potential roles of protein synthesis and other cellular processes. Brain Sci 2014; 4:150-201. [PMID: 24839550 PMCID: PMC4020186 DOI: 10.3390/brainsci4010150] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/26/2014] [Accepted: 03/07/2014] [Indexed: 12/28/2022] Open
Abstract
Sleep is important for neural plasticity, and plasticity underlies sleep-dependent memory consolidation. It is widely appreciated that protein synthesis plays an essential role in neural plasticity. Studies of sleep-dependent memory and sleep-dependent plasticity have begun to examine alterations in these functions in populations with neurological and psychiatric disorders. Such an approach acknowledges that disordered sleep may have functional consequences during wakefulness. Although neurodevelopmental disorders are not considered to be sleep disorders per se, recent data has revealed that sleep abnormalities are among the most prevalent and common symptoms and may contribute to the progression of these disorders. The main goal of this review is to highlight the role of disordered sleep in the pathology of neurodevelopmental disorders and to examine some potential mechanisms by which sleep-dependent plasticity may be altered. We will also briefly attempt to extend the same logic to the other end of the developmental spectrum and describe a potential role of disordered sleep in the pathology of neurodegenerative diseases. We conclude by discussing ongoing studies that might provide a more integrative approach to the study of sleep, plasticity, and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Dante Picchioni
- Behavioral Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; E-Mail:
- Advanced MRI Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, Bethesda, MD 20892, USA; E-Mails: (R.M.R.); (J.L.N.)
| | - R. Michelle Reith
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, Bethesda, MD 20892, USA; E-Mails: (R.M.R.); (J.L.N.)
| | - Jeffrey L. Nadel
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, Bethesda, MD 20892, USA; E-Mails: (R.M.R.); (J.L.N.)
| | - Carolyn B. Smith
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, Bethesda, MD 20892, USA; E-Mails: (R.M.R.); (J.L.N.)
| |
Collapse
|
43
|
Tinarelli F, Garcia-Garcia C, Nicassio F, Tucci V. Parent-of-origin genetic background affects the transcriptional levels of circadian and neuronal plasticity genes following sleep loss. Philos Trans R Soc Lond B Biol Sci 2014; 369:20120471. [PMID: 24446504 DOI: 10.1098/rstb.2012.0471] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sleep homoeostasis refers to a process in which the propensity to sleep increases as wakefulness progresses and decreases as sleep progresses. Sleep is tightly organized around the circadian clock and is regulated by genetic and epigenetic mechanisms. The homoeostatic response of sleep, which is classically triggered by sleep deprivation, is generally measured as a rebound effect of electrophysiological measures, for example delta sleep. However, more recently, gene expression changes following sleep loss have been investigated as biomarkers of sleep homoeostasis. The genetic background of an individual may affect this sleep-dependent gene expression phenotype. In this study, we investigated whether parental genetic background differentially modulates the expression of genes following sleep loss. We tested the progeny of reciprocal crosses of AKR/J and DBA/2J mouse strains and we show a parent-of-origin effect on the expression of circadian, sleep and neuronal plasticity genes following sleep deprivation. Thus, we further explored, by in silico, specific functions or upstream mechanisms of regulation and we observed that several upstream mechanisms involving signalling pathways (i.e. DICER1, PKA), growth factors (CSF3 and BDNF) and transcriptional regulators (EGR2 and ELK4) may be differentially modulated by parental effects. This is the first report showing that a behavioural manipulation (e.g. sleep deprivation) in adult animals triggers specific gene expression responses according to parent-of-origin genomic mechanisms. Our study suggests that the same mechanism may be extended to other behavioural domains and that the investigation of gene expression following experimental manipulations should take seriously into account parent-of-origin effects.
Collapse
Affiliation(s)
- Federico Tinarelli
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, , via Morego, 30, 16163 Genova, Italy
| | | | | | | |
Collapse
|
44
|
Abstract
Sleep improves cognition and is necessary for normal brain plasticity, but the precise cellular and molecular mechanisms mediating these effects are unknown. At the molecular level, experience-dependent synaptic plasticity triggers new gene and protein expression necessary for long-lasting changes in synaptic strength.(1) In particular, translation of mRNAs at remodeling synapses is emerging as an important mechanism in persistent forms of synaptic plasticity in vitro and certain forms of memory consolidation.(2) We have previously shown that sleep is required for the consolidation of a canonical model of in vivo plasticity (i.e., ocular dominance plasticity [ODP] in the developing cat).(3) Using this model, we recently showed that protein synthesis during sleep participates in the consolidation process. We demonstrate that activation of the mammalian target of rapamycin [mTOR] pathway, an important regulator of translation initiation,(4) is necessary for sleep-dependent ODP consolidation and that sleep promotes translation (but not transcription) of proteins essential for synaptic plasticity (i.e., ARC and BDNF). Our study thus reveals a previously unknown mechanism operating during sleep that consolidates cortical plasticity in vivo.
Collapse
Affiliation(s)
- Julie Seibt
- Department of Neuroscience; Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA USA ; Institute of Physiology; University of Bern; Bern, Switzerland
| | | |
Collapse
|
45
|
Kelly JM, Bianchi MT. Mammalian sleep genetics. Neurogenetics 2012; 13:287-326. [DOI: 10.1007/s10048-012-0341-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 08/10/2012] [Indexed: 10/27/2022]
|
46
|
Lassi G, Ball ST, Maggi S, Colonna G, Nieus T, Cero C, Bartolomucci A, Peters J, Tucci V. Loss of Gnas imprinting differentially affects REM/NREM sleep and cognition in mice. PLoS Genet 2012; 8:e1002706. [PMID: 22589743 PMCID: PMC3349741 DOI: 10.1371/journal.pgen.1002706] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 03/27/2012] [Indexed: 12/17/2022] Open
Abstract
It has been suggested that imprinted genes are important in the regulation of sleep. However, the fundamental question of whether genomic imprinting has a role in sleep has remained elusive up to now. In this work we show that REM and NREM sleep states are differentially modulated by the maternally expressed imprinted gene Gnas. In particular, in mice with loss of imprinting of Gnas, NREM and complex cognitive processes are enhanced while REM and REM-linked behaviors are inhibited. This is the first demonstration that a specific overexpression of an imprinted gene affects sleep states and related complex behavioral traits. Furthermore, in parallel to the Gnas overexpression, we have observed an overexpression of Ucp1 in interscapular brown adipose tissue (BAT) and a significant increase in thermoregulation that may account for the REM/NREM sleep phenotypes. We conclude that there must be significant evolutionary advantages in the monoallelic expression of Gnas for REM sleep and for the consolidation of REM-dependent memories. Conversely, biallelic expression of Gnas reinforces slow wave activity in NREM sleep, and this results in a reduction of uncertainty in temporal decision-making processes.
Collapse
Affiliation(s)
- Glenda Lassi
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Simon T. Ball
- Medical Research Council Mammalian Genetics Unit, Harwell, United Kingdom
| | - Silvia Maggi
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Giovanni Colonna
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Thierry Nieus
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Cheryl Cero
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jo Peters
- Medical Research Council Mammalian Genetics Unit, Harwell, United Kingdom
| | - Valter Tucci
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
- * E-mail:
| |
Collapse
|
47
|
Wang G, Grone B, Colas D, Appelbaum L, Mourrain P. Synaptic plasticity in sleep: learning, homeostasis and disease. Trends Neurosci 2011; 34:452-63. [PMID: 21840068 DOI: 10.1016/j.tins.2011.07.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/07/2011] [Accepted: 07/07/2011] [Indexed: 12/30/2022]
Abstract
Sleep is a fundamental and evolutionarily conserved aspect of animal life. Recent studies have shed light on the role of sleep in synaptic plasticity. Demonstrations of memory replay and synapse homeostasis suggest that one essential role of sleep is in the consolidation and optimization of synaptic circuits to retain salient memory traces despite the noise of daily experience. Here, we review this recent evidence and suggest that sleep creates a heightened state of plasticity, which may be essential for this optimization. Furthermore, we discuss how sleep deficits seen in diseases such as Alzheimer's disease and autism spectrum disorders might not just reflect underlying circuit malfunction, but could also play a direct role in the progression of those disorders.
Collapse
Affiliation(s)
- Gordon Wang
- Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences, Beckman Center, Stanford University, Palo Alto, CA 94305, USA
| | | | | | | | | |
Collapse
|
48
|
Takumi T. The neurobiology of mouse models syntenic to human chromosome 15q. J Neurodev Disord 2011; 3:270-81. [PMID: 21789598 PMCID: PMC3261275 DOI: 10.1007/s11689-011-9088-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 07/12/2011] [Indexed: 11/26/2022] Open
Abstract
Autism is a neurodevelopmental disorder that manifests in childhood as social behavioral abnormalities, such as abnormal social interaction, impaired communication, and restricted interest or behavior. Of the known causes of autism, duplication of human chromosome 15q11–q13 is the most frequently associated cytogenetic abnormality. Chromosome 15q11–q13 is also known to include imprinting genes. In terms of neuroscience, it contains interesting genes such as Necdin, Ube3a, and a cluster of GABAA subunits as well as huge clusters of non-coding RNAs (small nucleolar RNAs, snoRNAs). Phenotypic analyses of mice genetically or chromosomally engineered for each gene or their clusters on a region of mouse chromosome seven syntenic to human 15q11–q13 indicate that this region may be involved in social behavior, serotonin metabolism, and weight control. Further studies using these models will provide important clues to the pathophysiology of autism. This review overviews phenotypes of mouse models of genes in 15q11–q13 and their relationships to autism.
Collapse
Affiliation(s)
- Toru Takumi
- Laboratory of Integrative Bioscience, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami, Hiroshima, 734-8553, Japan,
| |
Collapse
|
49
|
Mabb AM, Judson MC, Zylka MJ, Philpot BD. Angelman syndrome: insights into genomic imprinting and neurodevelopmental phenotypes. Trends Neurosci 2011; 34:293-303. [PMID: 21592595 PMCID: PMC3116240 DOI: 10.1016/j.tins.2011.04.001] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/25/2011] [Accepted: 04/05/2011] [Indexed: 10/24/2022]
Abstract
Angelman syndrome (AS) is a severe genetic disorder caused by mutations or deletions of the maternally inherited UBE3A gene. UBE3A encodes an E3 ubiquitin ligase that is expressed biallelically in most tissues but is maternally expressed in almost all neurons. In this review, we describe recent advances in understanding the expression and function of UBE3A in the brain and the etiology of AS. We highlight current AS model systems, epigenetic mechanisms of UBE3A regulation, and the identification of potential UBE3A substrates in the brain. In the process, we identify major gaps in our knowledge that, if bridged, could move us closer to identifying treatments for this debilitating neurodevelopmental disorder.
Collapse
Affiliation(s)
- Angela M. Mabb
- Department of Cell and Molecular Physiology, UNC Neuroscience Center, and Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Matthew C. Judson
- Department of Cell and Molecular Physiology, UNC Neuroscience Center, and Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mark J. Zylka
- Department of Cell and Molecular Physiology, UNC Neuroscience Center, and Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Benjamin D. Philpot
- Department of Cell and Molecular Physiology, UNC Neuroscience Center, and Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
50
|
Gustin RM, Bichell TJ, Bubser M, Daily J, Filonova I, Mrelashvili D, Deutch AY, Colbran RJ, Weeber EJ, Haas KF. Tissue-specific variation of Ube3a protein expression in rodents and in a mouse model of Angelman syndrome. Neurobiol Dis 2010; 39:283-91. [PMID: 20423730 PMCID: PMC2922926 DOI: 10.1016/j.nbd.2010.04.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 04/16/2010] [Accepted: 04/18/2010] [Indexed: 12/13/2022] Open
Abstract
Angelman syndrome (AS) is a neurogenetic disorder caused by loss of maternal UBE3A expression or mutation-induced dysfunction of its protein product, the E3 ubiquitin-protein ligase, UBE3A. In humans and rodents, UBE3A/Ube3a transcript is maternally imprinted in several brain regions, but the distribution of native UBE3A/Ube3a(1) protein expression has not been comprehensively examined. To address this, we systematically evaluated Ube3a expression in the brain and peripheral tissues of wild-type (WT) and Ube3a maternal knockout mice (AS mice). Immunoblot and immunohistochemical analyses revealed a marked loss of Ube3a protein in hippocampus, hypothalamus, olfactory bulb, cerebral cortex, striatum, thalamus, midbrain, and cerebellum in AS mice relative to WT littermates. Also, Ube3a expression in heart and liver of AS mice showed greater than the predicted 50% reduction relative to WT mice. Co-localization studies showed Ube3a expression to be primarily neuronal in all brain regions and present in GABAergic interneurons as well as principal neurons. These findings suggest that neuronal function throughout the brain is compromised in AS.
Collapse
Affiliation(s)
- Richard M. Gustin
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Terry Jo Bichell
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Kennedy Center for Human Development, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael Bubser
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Jennifer Daily
- Department of Molecular Physiology and Pharmacology, University of South Florida, Tampa, FL, USA
| | - Irina Filonova
- Department of Molecular Physiology and Pharmacology, University of South Florida, Tampa, FL, USA
| | - Davit Mrelashvili
- Department of Neuropsychiatry and Behavioral Science, University of South Carolina, Columbia, SC, USA
| | - Ariel Y. Deutch
- Kennedy Center for Human Development, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Roger J. Colbran
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Kennedy Center for Human Development, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Edwin J. Weeber
- Department of Molecular Physiology and Pharmacology, University of South Florida, Tampa, FL, USA
- Johnnie B Byrd Sr. Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL, USA
| | - Kevin F. Haas
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Kennedy Center for Human Development, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|