1
|
Pradeepkiran JA, Islam MA, Sehar U, Reddy AP, Vijayan M, Reddy PH. Impact of diet and exercise on mitochondrial quality and mitophagy in Alzheimer's disease. Ageing Res Rev 2025; 108:102734. [PMID: 40120948 DOI: 10.1016/j.arr.2025.102734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/26/2024] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder that affects millions of people worldwide. It is characterized by the accumulation of beta-amyloid and phosphorylated tau, synaptic damage, and mitochondrial abnormalities in the brain, leading to the progressive loss of cognitive function and memory. In AD, emerging research suggests that lifestyle factors such as a healthy diet and regular exercise may play a significant role in delaying the onset and progression of the disease. Mitochondria are often referred to as the powerhouse of the cell, as they are responsible for producing the energy to cells, including neurons to maintain cognitive function. Our article elaborates on how mitochondrial quality and function decline with age and AD, leading to an increase in oxidative stress and a decrease in ATP production. Decline in mitochondrial quality can impair cellular functions contributing to the development and progression of disease with the loss of neuronal functions in AD. This article also covered mitophagy, the process by which damaged or dysfunctional mitochondria are selectively removed from the cell to maintain cellular homeostasis. Impaired mitophagy has been implicated in the progression and pathogenesis of AD. We also discussed the impact of impaired mitophagy implicated in AD, as the accumulation of damaged mitochondria can lead to increased oxidative stress. We expounded how dietary interventions and exercise can help to improve mitochondrial quality, and mitochondrial function and enhance mitophagy in AD. A diet rich in antioxidants, polyphenols, and mitochondria-targeted small molecules has been shown to enhance mitochondrial function and protect against oxidative stress, particularly in neurons with aged and mild cognitively impaired subjects and AD patients. Promoting a healthy lifestyle, mainly balanced diet and regular exercise that support mitochondrial health, in an individual can potentially delay the onset and progression of AD. In conclusion, a healthy diet and regular exercise play a crucial role in maintaining mitochondrial quality and mitochondrial function, in turn, enhancing mitophagy and synaptic activities that delay AD in the elderly populations.
Collapse
Affiliation(s)
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX, USA
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
2
|
López-Castañón N, Casquero S, Villanueva-Santos V, Pérez-Rodríguez L, Romero-Haro AÁ. The Impairment of Body Condition Transiently Increases Oxidative Stress: A Dietary Restriction Experiment in Partridges. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025. [PMID: 40391460 DOI: 10.1002/jez.2930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 04/29/2025] [Accepted: 05/09/2025] [Indexed: 05/21/2025]
Abstract
A proper body condition determines the correct functioning of physiological processes and the optimal expression of fitness-related traits. Among these processes, maintaining the redox balance is essential to protect the organism from damage caused by oxidative stress. Yet, the causal link between an impaired body condition and a consequent increase in oxidative stress remains surprisingly far from clear. We experimentally tested such link by imposing a dietary restriction (DR), that is, decreased food availability, to nonreproductive adult red-legged partridges (Alectoris rufa) and measuring a battery of oxidative stress biomarkers. Levels of oxidative status (ratio of reduced to oxidized glutathione [GSH:GSSG] in erythrocytes), oxidative damage in plasma lipids (MDA), and plasma antioxidant capacity (OXY and TEAC assays) were quantified before the DR, twice during the DR, and once after the end of the DR. The GSH:GSSG ratio remained steady throughout the experiment. By contrast, after 19 days under DR, individuals showed an increase in MDA levels and an altered antioxidant capacity (a reduction in OXY and an increase in TEAC) with respect to controls, showing that the worsening of body condition indeed leads to an increase of the oxidative stress. However, these effects were transitory, appearing only by 19 days under DR and disappearing afterwards. These findings suggest that, despite the temporary increase in oxidative damage, individuals adapt their oxidative physiology to overcome resource restriction, possibly by reallocating resources from other physiological processes. This highlights the importance of considering dynamic changes when evaluating the impact of stressful conditions.
Collapse
Affiliation(s)
- Nerea López-Castañón
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Silvia Casquero
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ciudad Real, Spain
| | | | - Lorenzo Pérez-Rodríguez
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Ana Ángela Romero-Haro
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ciudad Real, Spain
- Department of Evolutionary Ecology, National Museum of Natural Sciences (MNCN-CSIC), Madrid, Spain
| |
Collapse
|
3
|
Walls AB, Andersen JV, Waagepetersen HS, Bak LK. Fueling Brain Inhibition: Integrating GABAergic Neurotransmission and Energy Metabolism. Neurochem Res 2025; 50:136. [PMID: 40189668 DOI: 10.1007/s11064-025-04384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025]
Abstract
Despite decades of research in brain energy metabolism and to what extent different cell types utilize distinct substrates for their energy metabolism, this topic remains a vibrant area of neuroscience research. In this review, we focus on the substrates utilized by the inhibitory GABAergic neurons, which has been less explored than glutamatergic neurons. First, we discuss how GABAergic neurons may utilize both glucose, lactate, or ketone bodies under different functional conditions, and provide some preliminary data suggesting that unlike glutamatergic neurons, GABAergic neurons work well when substrate supply is restricted to lactate. We end by discussing the role of GABAergic neuron energy metabolism in pathologies where failure of inhibitory function play a central role, namely epilepsy, hepatic encephalopathy, and Alzheimer's disease.
Collapse
Affiliation(s)
- Anne B Walls
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Capital Region Hospital Pharmacy, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jens V Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | - Lasse K Bak
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
- Department of Clinical Biochemistry, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark.
- Translational Research Center (TRACE), Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark.
| |
Collapse
|
4
|
Zhao Y, Jia M, Ding C, Bao B, Li H, Ma J, Dong W, Gao R, Chen X, Chen J, Dai X, Zou Y, Hu J, Shi L, Liu X, Liu Z. Time-restricted feeding mitigates Alzheimer's disease-associated cognitive impairments via a B. pseudolongum-propionic acid-FFAR3 axis. IMETA 2025; 4:e70006. [PMID: 40236783 PMCID: PMC11995186 DOI: 10.1002/imt2.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 04/02/2025]
Abstract
Time-restricted feeding (TRF) holds promise for alleviating cognitive decline in aging, albeit the precise mechanism via the gut-brain axis remains elusive. In a clinical trial, we observed, for the first time, that a 4-month TRF ameliorated cognitive impairments among Alzheimer's disease (AD) patients. Experiments in 5xFAD mice corroborated the gut microbiota-dependent effect of TRF on mitigating cognitive dysfunction, amyloid-beta deposition, and neuroinflammation. Multi-omics integration linked Bifidobacterium pseudolongum (B. pseudolongum) and propionic acid (PA) with key genes in AD pathogenesis. Oral supplementation of B. pseudolongum or PA mimicked TRF's protective effects. Positron emission tomography imaging confirmed PA's blood-brain barrier penetration, while knockdown of the free fatty acid receptor 3 (FFAR3) diminished TRF's cognitive benefits. Notably, we observed a positive correlation between fecal PA and improved cognitive function in an AD cohort, further indicating that TRF enhanced PA production. These findings highlight the microbiota-metabolites-brain axis as pivotal in TRF's cognitive benefits, proposing B. pseudolongum or PA as potential AD therapies.
Collapse
Affiliation(s)
- Yihang Zhao
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingChina
| | - Mengzhen Jia
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingChina
| | - Chen Ding
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingChina
| | - Bingkun Bao
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingChina
| | - Hangqi Li
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingChina
| | - Jiabin Ma
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingChina
| | - Weixuan Dong
- The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Rui Gao
- The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Xuhui Chen
- Peking University Shenzhen HospitalShenzhenChina
| | - Jiao Chen
- Peking University Shenzhen HospitalShenzhenChina
| | | | | | - Jun Hu
- Peking University Shenzhen HospitalShenzhenChina
| | - Lin Shi
- Shaanxi Normal UniversityXi'anChina
| | - Xuebo Liu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingChina
| | - Zhigang Liu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingChina
- Northwest A&F University Shenzhen Research InstituteShenzhenChina
| |
Collapse
|
5
|
Liu Z, Zhang J, Jiang F, Liu C, Shao Y, Le W. Biological Effects of Dietary Restriction on Alzheimer's Disease: Experimental and Clinical Investigations. CNS Neurosci Ther 2025; 31:e70392. [PMID: 40245176 PMCID: PMC12005399 DOI: 10.1111/cns.70392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/24/2025] [Accepted: 04/02/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUNDS Dementia can impose a heavy economic burden on both society and families. Alzheimer's disease (AD), the most prevalent form of dementia, is a complex neurodegenerative disease characterized by the abnormal deposition of extracellular amyloid β-protein (Aβ) and the aggregation of intracellular Tau protein to form neurofibrillary tangles (NFTs). Given the limited efficacy of pharmacological treatment, scientists have already paid more attention to non-pharmacological strategies, including dietary restriction (DR). DR refers to a nutritional paradigm aimed at promoting overall health by modifying the balance between energy consumption and expenditure. Studies have demonstrated that DR effectively extends the healthy lifespan, delays the aging process, and achieves promising results in the prevention and treatment of AD in preclinical studies. METHODS In this review we collected related studies and viewpoints by searching on PubMed database using the keywords. Most of the citations were published between 2015 and 2025. A few older literatures were also included due to their relevance and significance in this field. RESULTS We first provide a concise overview of the current therapeutic and preventive strategies for AD. Then, we introduce several specific DR protocols and their favorable effects on AD. Furthermore, the potential mechanisms underlying the benefits of DR on AD are discussed. Finally, we briefly highlight the role of DR in maintaining brain health. CONCLUSION This review may offer valuable insights into the development of innovative non-pharmacological strategies for AD treatment.
Collapse
Affiliation(s)
- Zijiao Liu
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological DiseasesThe First Affiliated Hospital, Dalian Medical UniversityDalianChina
| | - Jun Zhang
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological DiseasesThe First Affiliated Hospital, Dalian Medical UniversityDalianChina
| | - Fei Jiang
- Clinical Research Center for PsychiatryDalian Seventh People's HospitalDalianChina
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
| | - Yaping Shao
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological DiseasesThe First Affiliated Hospital, Dalian Medical UniversityDalianChina
| | - Weidong Le
- Center for Clinical and Translational ResearchShanghai University of Medicine and Health SciencesShanghaiChina
| |
Collapse
|
6
|
Mattson MP. The cyclic metabolic switching theory of intermittent fasting. Nat Metab 2025; 7:665-678. [PMID: 40087409 DOI: 10.1038/s42255-025-01254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/19/2025] [Indexed: 03/17/2025]
Abstract
Intermittent fasting (IF) and ketogenic diets (KDs) have recently attracted much attention in the scientific literature and in popular culture and follow a longer history of exercise and caloric restriction (CR) research. Whereas IF involves cyclic metabolic switching (CMS) between ketogenic and non-ketogenic states, KDs and CR may not. In this Perspective, I postulate that the beneficial effects of IF result from alternating between activation of adaptive cellular stress response pathways during the fasting period, followed by cell growth and plasticity pathways during the feeding period. Thereby, I establish the cyclic metabolic switching (CMS) theory of IF. The health benefits of IF may go beyond those seen with continuous CR or KDs without CMS owing to the unique interplay between the signalling functions of the ketone β-hydroxybutyrate, mitochondrial adaptations, reciprocal activation of autophagy and mTOR pathways, endocrine and paracrine signalling, gut microbiota, and circadian biology. The CMS theory may have important implications for future basic research, clinical trials, development of pharmacological interventions, and healthy lifestyle practices.
Collapse
Affiliation(s)
- Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Beveridge J, Montgomery A, Grossberg G. Intermittent fasting and neurocognitive disorders: What the evidence shows. J Nutr Health Aging 2025; 29:100480. [PMID: 39798403 DOI: 10.1016/j.jnha.2025.100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
INTRODUCTION Intermittent fasting (IF) has emerged as a potential lifestyle intervention for mitigating cognitive decline and enhancing brain health in individuals with mild to major neurocognitive disorders. Unlike preventive strategies, this review evaluates IF as a therapeutic approach, focusing on its effects on neuroplasticity, inflammation, and cognitive function. METHODS A narrative review was conducted using a comprehensive PubMed search with the terms "intermittent fasting AND neurocognition" and "intermittent fasting AND neuroplasticity". Studies published in English within the last ten years involving human and animal models were included. Exclusion criteria focused on studies primarily examining mood disorders or unrelated metabolic outcomes. RESULTS Preclinical evidence demonstrates that IF enhances hippocampal neurogenesis and synaptic plasticity through pathways involving BDNF and CREB. IF also reduces neuroinflammation, as shown in animal models of Alzheimer's disease, vascular cognitive impairment, and high-fat diet-induced cognitive impairment. Human studies, though limited, suggest that regular IF may improve cognitive function and reduce markers of oxidative stress and inflammation in individuals with mild cognitive impairment. CONCLUSION Current findings highlight the therapeutic potential of IF for individuals with existing cognitive impairment. While preclinical studies provide robust evidence of neuroprotective mechanisms, human studies remain sparse and require standardization. Further clinical research is necessary to confirm long-term safety and efficacy and to refine IF protocols for broader clinical application.
Collapse
Affiliation(s)
- Jordan Beveridge
- St. Louis University Department of Psychiatry and Behavioral Neuroscience, Monteleone Hall, 1438 South Grand Boulevard, St. Louis, MO 63104, United States.
| | - Allison Montgomery
- St. Louis University Department of Psychiatry and Behavioral Neuroscience, Monteleone Hall, 1438 South Grand Boulevard, St. Louis, MO 63104, United States
| | - George Grossberg
- St. Louis University Department of Psychiatry and Behavioral Neuroscience, Monteleone Hall, 1438 South Grand Boulevard, St. Louis, MO 63104, United States
| |
Collapse
|
8
|
de Rezende VL, de Aguiar da Costa M, Martins CD, Mathias K, Gonçalves CL, Barichello T, Petronilho F. Systemic Rejuvenating Interventions: Perspectives on Neuroinflammation and Blood-Brain Barrier Integrity. Neurochem Res 2025; 50:112. [PMID: 40035979 DOI: 10.1007/s11064-025-04361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
The aging process results in structural, functional, and immunological changes in the brain, which contribute to cognitive decline and increase vulnerability to neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and stroke-related complications. Aging leads to cognitive changes and also affect executive functions. Additionally, it causes neurogenic and neurochemical alterations, such as a decline in dopamine and acetylcholine levels, which also impact cognitive performance. The chronic inflammation caused by aging contributes to the impairment of the blood-brain barrier (BBB), contributing to the infiltration of immune cells and exacerbating neuronal damage. Therefore, rejuvenating therapies such as heterochronic parabiosis, cerebrospinal fluid (CSF) administration, plasma, platelet-rich plasma (PRP), and stem cell therapy have shown potential to reverse these changes, offering new perspectives in the treatment of age-related neurological diseases. This review focuses on highlighting the effects of rejuvenating interventions on neuroinflammation and the BBB.
Collapse
Affiliation(s)
- Victória Linden de Rezende
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Maiara de Aguiar da Costa
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Carla Damasio Martins
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Khiany Mathias
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
- Laboratory of Immunoparasitology, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Cinara Ludvig Gonçalves
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, Mcgovern Medical School, The University of Texas Health Science Center at Houston (Uthealth), Houston, TX, USA
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil.
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, 1105, Criciúma, SC, 88806-000, Brazil.
| |
Collapse
|
9
|
Lv R, Liu B, Jiang Z, Zhou R, Liu X, Lu T, Bao Y, Huang C, Zou G, Zhang Z, Lu L, Yin Q. Intermittent fasting and neurodegenerative diseases: Molecular mechanisms and therapeutic potential. Metabolism 2025; 164:156104. [PMID: 39674569 DOI: 10.1016/j.metabol.2024.156104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Neurodegenerative disorders are straining public health worldwide. During neurodegenerative disease progression, aberrant neuronal network activity, bioenergetic impairment, adaptive neural plasticity impairment, dysregulation of neuronal Ca2+ homeostasis, oxidative stress, and immune inflammation manifest as characteristic pathological changes in the cellular milieu of the brain. There is no drug for the treatment of neurodegenerative disorders, and therefore, strategies/treatments for the prevention or treatment of neurodegenerative disorders are urgently needed. Intermittent fasting (IF) is characterized as an eating pattern that alternates between periods of fasting and eating, requiring fasting durations that vary depending on the specific protocol implemented. During IF, depletion of liver glycogen stores leads to the production of ketone bodies from fatty acids derived from adipocytes, thereby inducing an altered metabolic state accompanied by cellular and molecular adaptive responses within neural networks in the brain. At the cellular level, adaptive responses can promote the generation of synapses and neurons. At the molecular level, IF triggers the activation of associated transcription factors, thereby eliciting the expression of protective proteins. Consequently, this regulatory process governs central and peripheral metabolism, oxidative stress, inflammation, mitochondrial function, autophagy, and the gut microbiota, all of which contribute to the amelioration of neurodegenerative disorders. Emerging evidence suggests that weight regulation significantly contributes to the neuroprotective effects of IF. By alleviating obesity-related factors such as blood-brain barrier dysfunction, neuroinflammation, and β-amyloid accumulation, IF enhances metabolic flexibility and insulin sensitivity, further supporting its potential in mitigating neurodegenerative disorders. The present review summarizes animal and human studies investigating the role and underlying mechanisms of IF in physiology and pathology, with an emphasis on its therapeutic potential. Furthermore, we provide an overview of the cellular and molecular mechanisms involved in regulating brain energy metabolism through IF, highlighting its potential applications in neurodegenerative disorders. Ultimately, our findings offer novel insights into the preventive and therapeutic applications of IF for neurodegenerative disorders.
Collapse
Affiliation(s)
- Renjun Lv
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| | - Bin Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan 250014, China
| | - Ziying Jiang
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Runfa Zhou
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehlstr. 13-17, Mannheim 68167, Germany
| | - Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191 Beijing, China
| | - Tangsheng Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Yanping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Chunxia Huang
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China
| | - Guichang Zou
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China
| | - Zongyong Zhang
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China.
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191 Beijing, China; National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871 Beijing, China.
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| |
Collapse
|
10
|
Gasmi M, Silvia Hardiany N, van der Merwe M, Martins IJ, Sharma A, Williams-Hooker R. The influence of time-restricted eating/feeding on Alzheimer's biomarkers and gut microbiota. Nutr Neurosci 2025; 28:156-170. [PMID: 38953237 DOI: 10.1080/1028415x.2024.2359868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
OBJECTIVES Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting approximately 55 million individuals globally. Diagnosis typically occurs in advanced stages, and there are limited options for reversing symptoms. Preventive strategies are, therefore, crucial. Time Restricted Eating (TRE) or Time Restricted Feeding (TRF) is one such strategy. Here we review recent research on AD and TRE/TRF in addition to AD biomarkers and gut microbiota. METHODS A comprehensive review of recent studies was conducted to assess the impact of TRE/TRF on AD-related outcomes. This includes the analysis of how TRE/TRF influences circadian rhythms, beta-amyloid 42 (Aß42), pro-inflammatory cytokines levels, and gut microbiota composition. RESULTS TRE/TRF impacts circadian rhythms and can influence cognitive performance as observed in AD. It lowers beta-amyloid 42 deposition in the brain, a key AD biomarker, and reduces pro-ininflammatory cytokines. The gut microbiome has emerged as a modifiable factor in AD treatment. TRE/TRF changes the structure and composition of the gut microbiota, leading to increased diversity and a decrease in harmful bacteria. DISCUSSION These findings underscore the potential of TRE/TRF as a preventive strategy for AD. By reducing Aß42 plaques, modulating pro-inflammatory cytokines, and altering gut microbiota composition, TRE/TRF may slow the progression of AD. Further research is needed to confirm these effects and to understand the mechanisms involved. This review highlights TRE/TRF as a promising non-pharmacological intervention in the fight against AD.
Collapse
Affiliation(s)
- Maha Gasmi
- Higher Institute of Sport and Physical Education of Ksar said, Tunis, Tunisia
| | - Novi Silvia Hardiany
- Department of Biochemistry & Molecular Biology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Molecular Biology and Proteomic Core Facilities, Indonesia Medical Education and Research Institute, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Marie van der Merwe
- Center for Nutraceuticals and Dietary Supplement Research, College of Health Sciences, University of Memphis, Memphis, TN, USA
| | - Ian J Martins
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Aastha Sharma
- Department of Basic and Applied Science. School of Engineering and Science, University - GD Goenka University Gurugram, India
| | | |
Collapse
|
11
|
Madhavan SS, Roa Diaz S, Peralta S, Nomura M, King CD, Ceyhan KE, Lin A, Bhaumik D, Foulger AC, Shah S, Blade T, Gray W, Chamoli M, Eap B, Panda O, Diaz D, Garcia TY, Stubbs BJ, Ulrich SM, Lithgow GJ, Schilling B, Verdin E, Chaudhuri AR, Newman JC. β-hydroxybutyrate is a metabolic regulator of proteostasis in the aged and Alzheimer disease brain. Cell Chem Biol 2025; 32:174-191.e8. [PMID: 39626664 PMCID: PMC11741930 DOI: 10.1016/j.chembiol.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/23/2024] [Accepted: 11/01/2024] [Indexed: 12/11/2024]
Abstract
Loss of proteostasis is a hallmark of aging and Alzheimer disease (AD). We identify β-hydroxybutyrate (βHB), a ketone body, as a regulator of protein solubility. βHB primarily provides ATP substrate during periods of reduced glucose availability, and regulates other cellular processes through protein interactions. We demonstrate βHB-induced protein insolubility is not dependent on covalent protein modification, pH, or solute load, and is observable in mouse brain in vivo after delivery of a ketone ester. This mechanism is selective for pathological proteins such as amyloid-β, and exogenous βHB ameliorates pathology in nematode models of amyloid-β aggregation toxicity. We generate libraries of the βHB-induced protein insolublome using mass spectrometry proteomics, and identify common protein domains and upstream regulators. We show enrichment of neurodegeneration-related proteins among βHB targets and the clearance of these targets from mouse brain. These data indicate a metabolically regulated mechanism of proteostasis relevant to aging and AD.
Collapse
Affiliation(s)
- Sidharth S Madhavan
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Division of Geriatrics, University of California, San Francisco, San Francisco, CA 94118, USA
| | - Stephanie Roa Diaz
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Division of Geriatrics, University of California, San Francisco, San Francisco, CA 94118, USA
| | - Sawyer Peralta
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | | | - Kaya E Ceyhan
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Anwen Lin
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Dipa Bhaumik
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Anna C Foulger
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Samah Shah
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Thanh Blade
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Wyatt Gray
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Manish Chamoli
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Brenda Eap
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Oishika Panda
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Diego Diaz
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Thelma Y Garcia
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Division of Geriatrics, University of California, San Francisco, San Francisco, CA 94118, USA
| | | | - Scott M Ulrich
- Department of Chemistry, Ithaca College, Ithaca, NY 14850, USA
| | - Gordon J Lithgow
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Birgit Schilling
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | | | - John C Newman
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Division of Geriatrics, University of California, San Francisco, San Francisco, CA 94118, USA.
| |
Collapse
|
12
|
Hu Z, Shen Y, Liu Y, Li S. The impact of sodium nitrite and intermittent fasting on neurofilament and tau protein phosphorylation, and spatial learning in rat hippocampus. Exp Brain Res 2024; 243:28. [PMID: 39699656 DOI: 10.1007/s00221-024-06978-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
In recent years, the influence of dietary-related factors on neurodegenerative diseases has received considerable attention in the academic community, notably involving the food additive sodium nitrite (NaNO2) and intermittent fasting behavior. However, the effects of NaNO2 and intermittent fasting on spatial learning and memory have not been thoroughly investigated. This study conducted a controlled experiment to explore the impact of NaNO2 and intermittent fasting on the hyperphosphorylation of hippocampal neurofilament (NF) and tau proteins, as well as spatial learning and memory in rats. Through Morris water maze experiments, the spatial learning and memory abilities of rats were assessed, while immunoblotting and immunohistochemistry techniques were employed to evaluate the phosphorylation levels and distribution of NF and tau proteins in the rat hippocampus. NaNO2 was found to induce hyperphosphorylation of hippocampal NF and tau proteins at the Ser396/404 sites, which was accompanied by a decline in spatial learning and memory abilities. Conversely, intermittent fasting ameliorated the NaNO2-induced hyperphosphorylation of hippocampal neurofilaments and the decline in learning and memory abilities, with no discernible effect on hippocampal tau protein hyperphosphorylation.
Collapse
Affiliation(s)
- Zhihong Hu
- Department of Physiology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471000, P. R. China.
| | - Yan Shen
- Department of Medical Genetics, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471000, P. R. China
| | - Yuanyuan Liu
- Department of Physiology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471000, P. R. China
| | - Sanqiang Li
- Department of Biochemistry and Molecular Biology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471000, P. R. China.
- Henan Center for Engineering and Technology Research on Prevention and treatment of liver Diseases, Luoyang, 471000, P. R. China.
| |
Collapse
|
13
|
Ye F, Wei C, Wu A. The potential mechanism of mitochondrial homeostasis in postoperative neurocognitive disorders: an in-depth review. Ann Med 2024; 56:2411012. [PMID: 39450938 PMCID: PMC11514427 DOI: 10.1080/07853890.2024.2411012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 10/26/2024] Open
Abstract
Postoperative neurocognitive disorders (PND) are the most common neurological disorders following surgery and anaesthesia before and within 12 months after surgery, with a high prevalence in the geriatric population. PND can severely deteriorate the quality of life of patients, especially among the elderly, mainly manifested as memory loss, attention, decline and language comprehension disorders, mostly in elderly patients, with an incidence as high as 31%. Previous studies have also raised the possibility of accelerated cognitive decline and underlying neuropathological processes associated with diseases that affect cognitive performance (e.g. Alzheimer's dementia) for reasons related to anaesthesia and surgery. Currently, most research on PND has focused on various molecular pathways, especially in the geriatric population. The various hypotheses that have been proposed regarding the mechanisms imply peripheral neuroinflammation, oxidative stress, mitochondrial homeostasis, synaptic function, autophagy disorder, blood-brain barrier dysfunction, the microbiota-gut-brain axis and lack of neurotrophic support. However, the underlying pathogenesis and molecular mechanisms of PND have not yet been uncovered. Recent research has focused on mitochondrial homeostasis. In this paper, we present a review of various studies to better understand and characterize the mechanisms of associated cognitive dysfunction. As the biochemical basis of PND becomes more clearly defined, future treatments based on mitochondrial homeostasis modulation can prove to be very promising.
Collapse
Affiliation(s)
- Fan Ye
- Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Changwei Wei
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Anshi Wu
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Mishra A, Sobha D, Patel D, Suresh PS. Intermittent fasting in health and disease. Arch Physiol Biochem 2024; 130:755-767. [PMID: 37828854 DOI: 10.1080/13813455.2023.2268301] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023]
Abstract
CONTEXT Intermittent fasting, a new-age dietary concept derived from an age-old tradition, involves repetitive cycles of fasting/calorie restriction and eating. OBJECTIVE We aim to take a deep dive into the biological responses to intermittent fasting, delineate the disease-modifying and cognitive effects of intermittent fasting, and also shed light on the possible side effects. METHODS Numerous in vitro and in vivo studies were reviewed, followed by an in-depth analysis, and compilation of their implications in health and disease. RESULTS Intermittent fasting improves the body's stress tolerance, which is further amplified with exercise. It impacts various pathological conditions like cancer, obesity, diabetes, cardiovascular disease, and neurodegenerative diseases. CONCLUSION During dietary restriction, the human body experiences a metabolic switch due to the depletion of liver glycogen, which promotes a shift towards utilising fatty acids and ketones in the system, thereby significantly impacting adiposity, ageing and the immune response to various diseases.
Collapse
Affiliation(s)
- Anubhav Mishra
- School of Biotechnology, National Institute of Technology, Calicut, Calicut, India
| | - Devika Sobha
- School of Biotechnology, National Institute of Technology, Calicut, Calicut, India
| | - Dimple Patel
- School of Biotechnology, National Institute of Technology, Calicut, Calicut, India
| | - Padmanaban S Suresh
- School of Biotechnology, National Institute of Technology, Calicut, Calicut, India
| |
Collapse
|
15
|
Selman C. The dietary exposome: a brief history of diet, longevity, and age-related health in rodents. Clin Sci (Lond) 2024; 138:1343-1356. [PMID: 39444221 DOI: 10.1042/cs20241248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
It has been recognized for over a century that feeding animals less food than they would normally eat increases lifespan and leads to broad-spectrum improvements in age-related health. A significant number of studies have subsequently shown that restricting total protein, branched chain amino acids or individual amino acids in the diet, as well as ketogenic diets, can elicit similar effects. In addition, it is becoming clear that fasting protocols, such as time-restricted-feeding or every-other-day feeding, without changes in overall energy intake can also profoundly affect rodent longevity and late-life health. In this review, I will provide a historical perspective on various dietary interventions that modulate ageing in rodents and discuss how this understanding of the dietary exposome may help identify future strategies to maintain late-life health and wellbeing in humans.
Collapse
Affiliation(s)
- Colin Selman
- School of Molecular Biosciences, University of Glasgow, Glasgow, United Kingdom, G12 8QQ
| |
Collapse
|
16
|
Ye Y, Fu C, Li Y, Sun J, Li X, Chai S, Li S, Hou M, Cai H, Wang Z, Wu M. Alternate-day fasting improves cognitive and brain energy deficits by promoting ketone metabolism in the 3xTg mouse model of Alzheimer's disease. Exp Neurol 2024; 381:114920. [PMID: 39142368 DOI: 10.1016/j.expneurol.2024.114920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/10/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Alzheimer's disease (AD) is characterized by disorders in brain energy. The lack of sufficient energy for nerve function leads to cognitive dysfunction and massive neuronal loss in AD. Ketone bodies are an alternative to glucose as a source of energy in the brain, and alternate-day fasting (ADF) promotes the production of the ketone body β-hydroxybutyric acid (βOHB). In this study, 7-month-old male WT mice and 3xTg mice underwent dietary control for 20 weeks. We found that ADF increased circulating βOHB concentrations in 3xTg mice, improved cognitive function, reduced anxiety-like behaviors, improved hippocampal synaptic plasticity, and reduced neuronal loss, Aβ oligomers and tau hyperphosphorylation. In addition, ADF improved mitochondrial bioenergetic function by promoting brain ketone metabolism and rescued brain energy deficits in 3xTg mice. A safety evaluation showed that ADF improved exercise endurance and liver and kidney function in 3xTg mice without negatively affecting muscle motor and heart functions. This study provides a theoretical basis and strong support for the application of ADF as a non-drug strategy for preventing and treating brain energy defects in the early stage of AD.
Collapse
Affiliation(s)
- Yucai Ye
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China
| | - Chaojing Fu
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China
| | - Yan Li
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan 030001, China; Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Junli Sun
- School of Anesthesiology, Shanxi Medical University, Taiyuan 030001, China
| | - Xinru Li
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China
| | - Shifan Chai
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China
| | - Shuo Li
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
| | - Meng Hou
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
| | - Hongyan Cai
- Department of Microbiology and Immunology, School of Basic Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Zhaojun Wang
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China.
| | - Meina Wu
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China.
| |
Collapse
|
17
|
Singh I, Anand S, Gowda DJ, Kamath A, Singh AK. Caloric restriction mimetics improve gut microbiota: a promising neurotherapeutics approach for managing age-related neurodegenerative disorders. Biogerontology 2024; 25:899-922. [PMID: 39177917 PMCID: PMC11486790 DOI: 10.1007/s10522-024-10128-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
The gut microbiota (GM) produces various molecules that regulate the physiological functionality of the brain through the gut-brain axis (GBA). Studies suggest that alteration in GBA may lead to the onset and progression of various neurological dysfunctions. Moreover, aging is one of the prominent causes that contribute to the alteration of GBA. With age, GM undergoes a shift in population size and species of microflora leading to changes in their secreted metabolites. These changes also hamper communications among the HPA (hypothalamic-pituitary-adrenal), ENS (enteric nervous system), and ANS (autonomic nervous system). A therapeutic intervention that has recently gained attention in improving health and maintaining communication between the gut and the brain is calorie restriction (CR), which also plays a critical role in autophagy and neurogenesis processes. However, its strict regime and lifelong commitment pose challenges. The need is to produce similar beneficial effects of CR without having its rigorous compliance. This led to an exploration of calorie restriction mimetics (CRMs) which could mimic CR's functions without limiting diet, providing long-term health benefits. CRMs ensure the efficient functioning of the GBA through gut bacteria and their metabolites i.e., short-chain fatty acids, bile acids, and neurotransmitters. This is particularly beneficial for elderly individuals, as the GM deteriorates with age and the body's ability to digest the toxic accumulates declines. In this review, we have explored the beneficial effect of CRMs in extending lifespan by enhancing the beneficial bacteria and their effects on metabolite production, physiological conditions, and neurological dysfunctions including neurodegenerative disorders.
Collapse
Affiliation(s)
- Ishika Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Shashi Anand
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Deepashree J Gowda
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Amitha Kamath
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India.
| |
Collapse
|
18
|
Zhang A, Wang J, Zhao Y, He Y, Sun N. Intermittent fasting, fatty acid metabolism reprogramming, and neuroimmuno microenvironment: mechanisms and application prospects. Front Nutr 2024; 11:1485632. [PMID: 39512520 PMCID: PMC11541237 DOI: 10.3389/fnut.2024.1485632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Intermittent fasting (IF) has demonstrated extensive health benefits through the regulation of fatty acid metabolism and modulation of the neuroimmune microenvironment, primarily via the activation of key signaling pathways such as AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1). IF not only facilitates fatty acid oxidation and improves metabolic health, but also enhances mitochondrial function, mitigates oxidative stress, promotes autophagy, and inhibits apoptosis and ferroptosis. These mechanisms contribute to its substantial preventive and therapeutic potential in various conditions, including neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, autoimmune diseases, and neurotraumatic conditions. While supportive evidence has been obtained from animal models and preliminary clinical studies, further large-scale, long-term randomized controlled trials are imperative to establish its safety and evaluate its clinical efficacy comprehensively.
Collapse
Affiliation(s)
- Anren Zhang
- Department of Rehabilitation, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junyu Wang
- Department of Rehabilitation, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yinuo Zhao
- Department of Rehabilitation, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu He
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Nianyi Sun
- Department of Rehabilitation, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
19
|
Andrade-Guerrero J, Martínez-Orozco H, Villegas-Rojas MM, Santiago-Balmaseda A, Delgado-Minjares KM, Pérez-Segura I, Baéz-Cortés MT, Del Toro-Colin MA, Guerra-Crespo M, Arias-Carrión O, Diaz-Cintra S, Soto-Rojas LO. Alzheimer's Disease: Understanding Motor Impairments. Brain Sci 2024; 14:1054. [PMID: 39595817 PMCID: PMC11592238 DOI: 10.3390/brainsci14111054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD), the most prevalent neurodegenerative disorder and the leading cause of dementia worldwide, profoundly impacts health and quality of life. While cognitive impairments-such as memory loss, attention deficits, and disorientation-predominate in AD, motor symptoms, though common, remain underexplored. These motor symptoms, including gait disturbances, reduced cardiorespiratory fitness, muscle weakness, sarcopenia, and impaired balance, are often associated with advanced stages of AD and contribute to increased mortality. Emerging evidence, however, suggests that motor symptoms may be present in earlier stages and can serve as predictive markers for AD in older adults. Despite a limited understanding of the underlying mechanisms driving these motor symptoms, several key pathways have been identified, offering avenues for further investigation. This review provides an in-depth analysis of motor symptoms in AD, discussing its progression, potential mechanisms, and therapeutic strategies. Addressing motor symptoms alongside cognitive decline may enhance patient functionality, improve quality of life, and support more comprehensive disease management strategies.
Collapse
Affiliation(s)
- Jesús Andrade-Guerrero
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico;
| | - Humberto Martínez-Orozco
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico;
| | - Marcos M. Villegas-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Alberto Santiago-Balmaseda
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
| | - Karen M. Delgado-Minjares
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Isaac Pérez-Segura
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
| | - Mauricio T. Baéz-Cortés
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
| | - Miguel A. Del Toro-Colin
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
| | - Magdalena Guerra-Crespo
- Laboratorio de Medicina Regenerativa, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González, Ciudad de México 14080, Mexico;
| | - Sofía Diaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico;
| | - Luis O. Soto-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
| |
Collapse
|
20
|
Wang L, Wang Q, Wang X, Yang C, Wang X, Liu H, Wang H. Intermittent fasting alleviates postoperative cognitive dysfunction by reducing neuroinflammation in aged mice. Brain Res Bull 2024; 216:111034. [PMID: 39053649 DOI: 10.1016/j.brainresbull.2024.111034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Elderly individuals undergoing surgical procedures are often confronted with the peril of experiencing postoperative cognitive dysfunction (POCD). Prior research has demonstrated the exacerbating effect of sevoflurane anesthesia on neuroinflammation, which can further deteriorate the condition of POCD in elderly patients. Intermittent fasting (IF) restricts food consumption to a specific time window and has been demonstrated to ameliorate cognitive dysfunction induced by neuropathic inflammation. We subjected 18-month-old male mice to 16 hours of fasting and 8 hours of unrestricted eating over a 24-hour period for 0, 1, 2, and 4 weeks, followed by abdominal exploration under sevoflurane anesthesia. In this study, we aim to explore the potential impact of IF on postoperative cognitive function in aged mice undergoing sevoflurane surgery through the preoperative implementation of IF measures. The findings indicate two weeks of IF leads to a significant enhancement of learning and memory capabilities in mice following surgery. The cognitive performance, as determined by the novel object recognition and Morris water maze tests, as well as the synaptic plasticity, as measured by in vivo electrophysiological recordings, has demonstrated marked improvements. Furthermore, the administration of IF markedly enhances the expression of synaptic-associated proteins in hippocampal neurons, concomitant with a decreasing expression of pro-inflammatory factors and a reduced density of microglial cells within the hippocampal brain region. To summarize, the results of this study indicate that IF may mitigate inflammation in the hippocampal area of the brain. Furthermore, IF appears to provide a safeguard against cognitive impairment and synaptic plasticity impairment brought on by sevoflurane anesthesia.
Collapse
Affiliation(s)
- Lei Wang
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China; Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, China
| | - Qiang Wang
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Xiaoqing Wang
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Chenyi Yang
- Department of Anesthesiology, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China; Nankai University 300071, Tianjin, China; Nankai University Affinity the Third Central Hospital, Tianjin 300170, China
| | - Xinyi Wang
- Department of Anesthesiology, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China; Nankai University 300071, Tianjin, China; Nankai University Affinity the Third Central Hospital, Tianjin 300170, China
| | - Huan Liu
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Haiyun Wang
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China; Nankai University 300071, Tianjin, China; Nankai University Affinity the Third Central Hospital, Tianjin 300170, China.
| |
Collapse
|
21
|
Babygirija R, Han JH, Sonsalla MM, Matoska R, Calubag MF, Green CL, Tobon A, Yeh CY, Vertein D, Schlorf S, Illiano J, Liu Y, Grunow I, Rigby MJ, Puglielli L, Harris DA, Denu JM, Lamming DW. Fasting is required for many of the benefits of calorie restriction in the 3xTg mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613904. [PMID: 39386545 PMCID: PMC11463641 DOI: 10.1101/2024.09.19.613904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Caloric restriction (CR) is a widely recognized geroprotective intervention that slows or prevents Alzheimer's disease (AD) in animal models. CR is typically implemented via feeding mice a single meal per day; as CR mice rapidly consume their food, they are subject to a prolonged fast between meals. While CR has been shown to improve metabolic and cognitive functions and suppress pathological markers in AD mouse models, the specific contributions of fasting versus calorie reduction remains unclear. Here, we investigated the contribution of fasting and energy restriction to the beneficial effects of CR on AD progression. To test this, we placed 6-month-old 3xTg mice on one of several diet regimens, allowing us to dissect the effects of calories and fasting on metabolism, AD pathology, and cognition. We find that energy restriction alone, without fasting, was sufficient to improve glucose tolerance and reduce adiposity in both sexes, and to reduce Aβ plaques and improve aspects of cognitive performance in females. However, we find that a prolonged fast between meals is necessary for many of the benefits of CR, including improved insulin sensitivity, reduced phosphorylation of tau, decreased neuroinflammation, inhibition of mTORC1 signaling, and activation of autophagy, as well as for the full cognitive benefits of CR. Finally, we find that fasting is essential for the benefits of CR on survival in male 3xTg mice. Overall, our results demonstrate that fasting is required for the full benefits of a CR diet on the development and progression of AD in 3xTg mice, and suggest that both when and how much we eat influences the development and progress of AD.
Collapse
Affiliation(s)
- Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Jessica H. Han
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Michelle M. Sonsalla
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Comparative Biomedical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan Matoska
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Mariah F. Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Cara L. Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Anna Tobon
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Chung-Yang Yeh
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Diana Vertein
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Sophia Schlorf
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Julia Illiano
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yang Liu
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Endocrinology and Reproductive Physiology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Isaac Grunow
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Michael J. Rigby
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - David A. Harris
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Wisconsin Laboratory for Surgical Metabolism, Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Comprehensive Diabetes Center, Madison, WI 53705, USA
| | - John M. Denu
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Dudley W. Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
- Comparative Biomedical Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Comprehensive Diabetes Center, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
| |
Collapse
|
22
|
Kapogiannis D, Manolopoulos A, Mullins R, Avgerinos K, Delgado-Peraza F, Mustapic M, Nogueras-Ortiz C, Yao PJ, Pucha KA, Brooks J, Chen Q, Haas SS, Ge R, Hartnell LM, Cookson MR, Egan JM, Frangou S, Mattson MP. Brain responses to intermittent fasting and the healthy living diet in older adults. Cell Metab 2024; 36:1668-1678.e5. [PMID: 38901423 PMCID: PMC11305918 DOI: 10.1016/j.cmet.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 05/29/2024] [Indexed: 06/22/2024]
Abstract
Diet may promote brain health in metabolically impaired older individuals. In an 8-week randomized clinical trial involving 40 cognitively intact older adults with insulin resistance, we examined the effects of 5:2 intermittent fasting and the healthy living diet on brain health. Although intermittent fasting induced greater weight loss, the two diets had comparable effects in improving insulin signaling biomarkers in neuron-derived extracellular vesicles, decreasing the brain-age-gap estimate (reflecting the pace of biological aging of the brain) on magnetic resonance imaging, reducing brain glucose on magnetic resonance spectroscopy, and improving blood biomarkers of carbohydrate and lipid metabolism, with minimal changes in cerebrospinal fluid biomarkers for Alzheimer's disease. Intermittent fasting and healthy living improved executive function and memory, with intermittent fasting benefiting more certain cognitive measures. In exploratory analyses, sex, body mass index, and apolipoprotein E and SLC16A7 genotypes modulated diet effects. The study provides a blueprint for assessing brain effects of dietary interventions and motivates further research on intermittent fasting and continuous diets for brain health optimization. For further information, please see ClinicalTrials.gov registration: NCT02460783.
Collapse
Affiliation(s)
- Dimitrios Kapogiannis
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University, Baltimore, MD, USA.
| | - Apostolos Manolopoulos
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Roger Mullins
- Morgan State University, Core Lab, Baltimore, MD, USA
| | | | - Francheska Delgado-Peraza
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Maja Mustapic
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Carlos Nogueras-Ortiz
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Pamela J Yao
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Krishna A Pucha
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Janet Brooks
- Intramural Research Program, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Qinghua Chen
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Shalaila S Haas
- Mt. Sinai School of Medicine, Department of Psychiatry, New York, NY, USA
| | - Ruiyang Ge
- Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Lisa M Hartnell
- Intramural Research Program, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Mark R Cookson
- Intramural Research Program, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Josephine M Egan
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Sophia Frangou
- Mt. Sinai School of Medicine, Department of Psychiatry, New York, NY, USA; Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
23
|
Latimer CS, Prater KE, Postupna N, Dirk Keene C. Resistance and Resilience to Alzheimer's Disease. Cold Spring Harb Perspect Med 2024; 14:a041201. [PMID: 38151325 PMCID: PMC11293546 DOI: 10.1101/cshperspect.a041201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Dementia is a significant public health crisis; the most common underlying cause of age-related cognitive decline and dementia is Alzheimer's disease neuropathologic change (ADNC). As such, there is an urgent need to identify novel therapeutic targets for the treatment and prevention of the underlying pathologic processes that contribute to the development of AD dementia. Although age is the top risk factor for dementia in general and AD specifically, these are not inevitable consequences of advanced age. Some individuals are able to live to advanced age without accumulating significant pathology (resistance to ADNC), whereas others are able to maintain cognitive function despite the presence of significant pathology (resilience to ADNC). Understanding mechanisms of resistance and resilience will inform therapeutic strategies to promote these processes to prevent or delay AD dementia. This article will highlight what is currently known about resistance and resilience to AD, including our current understanding of possible underlying mechanisms that may lead to candidate preventive and treatment interventions for this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- Caitlin S Latimer
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle 98195, Washington, USA
| | - Katherine E Prater
- Department of Neurology, University of Washington, Seattle 98195, Washington, USA
| | - Nadia Postupna
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle 98195, Washington, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle 98195, Washington, USA
| |
Collapse
|
24
|
Chen J, Zou C, Guan H, Zhou X, Hou L, Cui Y, Xu J, Luan P, Zheng D. Caloric restriction leading to attenuation of experimental Alzheimer's disease results from alterations in gut microbiome. CNS Neurosci Ther 2024; 30:e14823. [PMID: 38992870 PMCID: PMC11239325 DOI: 10.1111/cns.14823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/05/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Caloric restriction (CR) might be effective for alleviating/preventing Alzheimer's disease (AD), but the biological mechanisms remain unclear. In the current study, we explored whether CR caused an alteration of gut microbiome and resulted in the attenuation of cognitive impairment of AD animal model. METHODS Thirty-week-old male APP/PS1 transgenic mice were used as AD models (AD mouse). CR was achieved by 30% reduction of daily free feeding (ad libitum, AL) amount. The mice were fed with CR protocol or AL protocol for six consecutive weeks. RESULTS We found that with CR treatment, AD mice showed improved ability of learning and spatial memory, and lower levels of Aβ40, Aβ42, IL-1β, TNF-α, and ROS in the brain. By sequencing 16S rDNA, we found that CR treatment resulted in significant diversity in composition and abundance of gut flora. At the phylum level, Deferribacteres (0.04%), Patescibacteria (0.14%), Tenericutes (0.03%), and Verrucomicrobia (0.5%) were significantly decreased in CR-treated AD mice; at the genus level, Dubosiella (10.04%), Faecalibaculum (0.04%), and Coriobacteriaceae UCG-002 (0.01%) were significantly increased in CR-treated AD mice by comparing with AL diet. CONCLUSIONS Our results demonstrate that the attenuation of AD following CR treatment in APP/PS1 mice may result from alterations in the gut microbiome. Thus, gut flora could be a new target for AD prevention and therapy.
Collapse
Affiliation(s)
- Junyu Chen
- Department of Neurology, The Affiliated Brain HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Cong Zou
- Department of Neurology, The Affiliated Brain HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Hongbing Guan
- Guangdong Yunzhao Medical Technology Co., Ltd.GuangzhouChina
| | - Xiaoming Zhou
- Department of Neurology, The Affiliated Brain HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Le Hou
- Department of Neurology, The Affiliated Brain HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Yayong Cui
- Department of Neurology, The Affiliated Brain HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Junhua Xu
- Department of Neurology, The Affiliated Brain HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Ping Luan
- School of Basic Medical SciencesShenzhen UniversityShenzhenChina
| | - Dong Zheng
- Department of Neurology, The Affiliated Brain HospitalGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
25
|
Babygirija R, Sonsalla MM, Mill J, James I, Han JH, Green CL, Calubag MF, Wade G, Tobon A, Michael J, Trautman MM, Matoska R, Yeh CY, Grunow I, Pak HH, Rigby MJ, Baldwin DA, Niemi NM, Denu JM, Puglielli L, Simcox J, Lamming DW. Protein restriction slows the development and progression of pathology in a mouse model of Alzheimer's disease. Nat Commun 2024; 15:5217. [PMID: 38890307 PMCID: PMC11189507 DOI: 10.1038/s41467-024-49589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Dietary protein is a critical regulator of metabolic health and aging. Low protein diets are associated with healthy aging in humans, and dietary protein restriction extends the lifespan and healthspan of mice. In this study, we examined the effect of protein restriction (PR) on metabolic health and the development and progression of Alzheimer's disease (AD) in the 3xTg mouse model of AD. Here, we show that PR promotes leanness and glycemic control in 3xTg mice, specifically rescuing the glucose intolerance of 3xTg females. PR induces sex-specific alterations in circulating and brain metabolites, downregulating sphingolipid subclasses in 3xTg females. PR also reduces AD pathology and mTORC1 activity, increases autophagy, and improves the cognition of 3xTg mice. Finally, PR improves the survival of 3xTg mice. Our results suggest that PR or pharmaceutical interventions that mimic the effects of this diet may hold promise as a treatment for AD.
Collapse
Affiliation(s)
- Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Michelle M Sonsalla
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Comparative Biomedical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jericha Mill
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Isabella James
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jessica H Han
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Cara L Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Mariah F Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Gina Wade
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Anna Tobon
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - John Michael
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Michaela M Trautman
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan Matoska
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Chung-Yang Yeh
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Isaac Grunow
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Heidi H Pak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael J Rigby
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Dominique A Baldwin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Natalie M Niemi
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - John M Denu
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Judith Simcox
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA.
- Comparative Biomedical Sciences, University of Wisconsin-Madison, Madison, WI, USA.
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
26
|
Martens N, Zhan N, Yam SC, Leijten FPJ, Palumbo M, Caspers M, Tiane A, Friedrichs S, Li Y, van Vark-van der Zee L, Voortman G, Zimetti F, Jaarsma D, Verschuren L, Jonker JW, Kuipers F, Lütjohann D, Vanmierlo T, Mulder MT. Supplementation of Seaweed Extracts to the Diet Reduces Symptoms of Alzheimer's Disease in the APPswePS1ΔE9 Mouse Model. Nutrients 2024; 16:1614. [PMID: 38892548 PMCID: PMC11174572 DOI: 10.3390/nu16111614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
We previously demonstrated that diet supplementation with seaweed Sargassum fusiforme (S. fusiforme) prevented AD-related pathology in a mouse model of Alzheimer's Disease (AD). Here, we tested a lipid extract of seaweed Himanthalia elongata (H. elongata) and a supercritical fluid (SCF) extract of S. fusiforme that is free of excess inorganic arsenic. Diet supplementation with H. elongata extract prevented cognitive deterioration in APPswePS1ΔE9 mice. Similar trends were observed for the S. fusiforme SCF extract. The cerebral amyloid-β plaque load remained unaffected. However, IHC analysis revealed that both extracts lowered glial markers in the brains of APPswePS1ΔE9 mice. While cerebellar cholesterol concentrations remained unaffected, both extracts increased desmosterol, an endogenous LXR agonist with anti-inflammatory properties. Both extracts increased cholesterol efflux, and particularly, H. elongata extract decreased the production of pro-inflammatory cytokines in LPS-stimulated THP-1-derived macrophages. Additionally, our findings suggest a reduction of AD-associated phosphorylated tau and promotion of early oligodendrocyte differentiation by H. elongata. RNA sequencing on the hippocampus of one-week-treated APPswePS1ΔE9 mice revealed effects of H. elongata on, amongst others, acetylcholine and synaptogenesis signaling pathways. In conclusion, extracts of H. elongata and S. fusiforme show potential to reduce AD-related pathology in APPswePS1ΔE9 mice. Increasing desmosterol concentrations may contribute to these effects by dampening neuroinflammation.
Collapse
Affiliation(s)
- Nikita Martens
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, B-3590 Hasselt, Belgium
| | - Na Zhan
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Sammie C. Yam
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
| | - Frank P. J. Leijten
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
| | - Marcella Palumbo
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (M.P.)
| | - Martien Caspers
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands
| | - Assia Tiane
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, B-3590 Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division Translational Neuroscience, Mental Health and Neuroscience Institute, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Silvia Friedrichs
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, D-53127 Bonn, Germany (D.L.)
| | - Yanlin Li
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
- Department of Immunology, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
- Department of Ophthalmology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Leonie van Vark-van der Zee
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
| | - Gardi Voortman
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (M.P.)
| | - Dick Jaarsma
- Department of Neuroscience, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands
| | - Johan W. Jonker
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (J.W.J.)
| | - Folkert Kuipers
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (J.W.J.)
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, D-53127 Bonn, Germany (D.L.)
| | - Tim Vanmierlo
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, B-3590 Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division Translational Neuroscience, Mental Health and Neuroscience Institute, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Monique T. Mulder
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
| |
Collapse
|
27
|
Rutkowsky JM, Roland Z, Valenzuela A, Nguyen AB, Park HH, Six N, Dursun I, Kim K, Lein PJ, Ramsey JJ. The impact of continuous and intermittent ketogenic diets on cognitive behavior, motor function, and blood lipids in TgF344-AD rats. Aging (Albany NY) 2024; 16:5811-5828. [PMID: 38613791 PMCID: PMC11042947 DOI: 10.18632/aging.205741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/13/2024] [Indexed: 04/15/2024]
Abstract
Studies suggest that ketogenic diets (KD) may improve memory in mouse models of aging and Alzheimer's disease (AD). This study determined whether a continuous or intermittent KD (IKD) enhanced cognitive behavior in the TgF344-AD rat model of AD. At 6 months-old, TgF344-AD and wild-type (WT) littermates were placed on a control (CD), KD, or IKD (morning CD and afternoon KD) provided as two meals per day for 2 or 6 months. Cognitive and motor behavior and circulating β-hydroxybutyrate (BHB), AD biomarkers and blood lipids were assessed. Animals on a KD diet had elevated circulating BHB, with IKD levels intermediate to CD and KD. TgF344-AD rats displayed impaired spatial learning memory in the Barnes maze at 8 and 12 months of age and impaired motor coordination at 12 months of age. Neither KD nor IKD improved performance compared to CD. At 12 months of age, TgF344-AD animals had elevated blood lipids. IKD reduced lipids to WT levels with KD further reducing cholesterol below WT levels. This study shows that at 8 or 12 months of age, KD or IKD intervention did not improve measures of cognitive or motor behavior in TgF344-AD rats; however, both IKD and KD positively impacted circulating lipids.
Collapse
Affiliation(s)
- Jennifer M. Rutkowsky
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Zabrisky Roland
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Anthony Valenzuela
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - An B. Nguyen
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Heui Hye Park
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Natalie Six
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Ilknur Dursun
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Department of Physiology, School of Medicine, Istinye University, Istanbul 34396, Turkey
| | - Kyoungmi Kim
- Department of Public Health Sciences, School of Medicine, University of California, Davis, CA 95616, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- The MIND Institute, School of Medicine, University of California, Davis, CA 95817, USA
- Center for Neuroscience, University of California, Davis, CA 95616, USA
| | - Jon J. Ramsey
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
28
|
Strilbytska O, Klishch S, Storey KB, Koliada A, Lushchak O. Intermittent fasting and longevity: From animal models to implication for humans. Ageing Res Rev 2024; 96:102274. [PMID: 38499159 DOI: 10.1016/j.arr.2024.102274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/16/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
In recent years, intermittent fasting (IF) and its numerous modifications have been increasingly suggested as a promising therapy for age-related problems and a non-pharmacological strategy to extend lifespan. Despite the great variability in feeding schedules that we describe in the current work, underlying physiological processes are the same and include a periodic switch from glucose metabolism (generated by glycogenolysis) to fatty acids and fatty acid-derived ketones. Many of the beneficial effects of IF appear to be mediated by optimization of energy utilization. Findings to date from both human and animal experiments indicate that fasting improves physiological function, enhances performance, and slows aging and disease processes. In this review, we discuss some of the remarkable discoveries about the beneficial effects of IF on metabolism, endocrine and cardiovascular systems, cancer prevention, brain health, neurodegeneration and aging. Experimental studies on rodent models and human investigations are summarized to compare the outcomes and underlying mechanisms of IF. Metabolic and cellular responses triggered by IF could help to achieve the aim of preventing disease, and maximizing healthspan and longevity with minimal side effects.
Collapse
Affiliation(s)
- Olha Strilbytska
- Deparment of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Shevchenka 57, Ivano-Frankivsk 76018, Ukraine
| | - Svitlana Klishch
- Deparment of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Shevchenka 57, Ivano-Frankivsk 76018, Ukraine
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ontario, Ottawa K1S 5B6, Canada
| | - Alexander Koliada
- D.F. Chebotarev Institute of Gerontology, NAMS, 67 Vyshgorodska str., Kyiv 04114, Ukraine
| | - Oleh Lushchak
- Deparment of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Shevchenka 57, Ivano-Frankivsk 76018, Ukraine; Research and Development University, 13a Shota Rustaveli str., Ivano-Frankivsk 76018, Ukraine.
| |
Collapse
|
29
|
Mersha MD, Hubbard R, Zeiler SR. Alternate Day Fasting Leads to Improved Post-Stroke Motor Recovery in Mice. Neurorehabil Neural Repair 2024; 38:187-196. [PMID: 38425047 DOI: 10.1177/15459683241232680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
BACKGROUND Caloric restriction promotes neuroplasticity and recovery after neurological injury. In mice, we tested the hypothesis that caloric restriction can act post-stroke to enhance training-associated motor recovery. METHODS Mice were trained to perform a skilled prehension task. We then induced a photothrombotic stroke in the caudal forelimb area, after which we retrained animals on the prehension task following an 8-day delay. Mice underwent either ad libitum feeding or alternate day fasting beginning 1-day after stroke and persisting for either 7 days or the entire post-stroke training period until sacrifice. RESULTS Prior studies have shown that post-stroke recovery of prehension can occur if animals receive rehabilitative training during an early sensitive period but is incomplete if rehabilitative training is delayed. In contrast, we show complete recovery of prehension, despite a delay in rehabilitative training, when mice underwent alternate day fasting beginning 1-day post-stroke and persisting for either 7 days or the entire post-stroke training period until sacrifice. Recovery was independent of weight loss. Stroke volumes were similar across groups. CONCLUSIONS Post-stroke caloric restriction led to recovery of motor function independent of a protective effect on stroke volume. Prehension recovery improved even after ad libitum feeding was reinstituted suggesting that the observed motor recovery was not merely a motivational response. These data add to the growing evidence that post-stroke caloric restriction can enhance recovery.
Collapse
Affiliation(s)
- Mahlet D Mersha
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Robert Hubbard
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Steven R Zeiler
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
30
|
Paoli A, Tinsley GM, Mattson MP, De Vivo I, Dhawan R, Moro T. Common and divergent molecular mechanisms of fasting and ketogenic diets. Trends Endocrinol Metab 2024; 35:125-141. [PMID: 38577754 DOI: 10.1016/j.tem.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 04/06/2024]
Abstract
Intermittent short-term fasting (ISTF) and ketogenic diets (KDs) exert overlapping but not identical effects on cell metabolism, function, and resilience. Whereas health benefits of KD are largely mediated by the ketone bodies (KBs), ISTF engages additional adaptive physiological responses. KDs act mainly through inhibition of histone deacetylases (HDACs), reduction of oxidative stress, improvement of mitochondria efficiency, and control of inflammation. Mechanisms of action of ISTF include stimulation of autophagy, increased insulin and leptin sensitivity, activation of AMP-activated protein kinase (AMPK), inhibition of the mechanistic target of rapamycin (mTOR) pathway, bolstering mitochondrial resilience, and suppression of oxidative stress and inflammation. Frequent switching between ketogenic and nonketogenic states may optimize health by increasing stress resistance, while also enhancing cell plasticity and functionality.
Collapse
Affiliation(s)
- Antonio Paoli
- Department of Biomedical Sciences, University of Padua, 35127 Padua, Italy.
| | - Grant M Tinsley
- Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX 79409, USA
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Immaculata De Vivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Ravi Dhawan
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Tatiana Moro
- Department of Biomedical Sciences, University of Padua, 35127 Padua, Italy
| |
Collapse
|
31
|
Barbero Mazzucca C, Cappellano G, Chiocchetti A. Nutrition, Immunity and Aging: Current Scenario and Future Perspectives in Neurodegenerative Diseases. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:573-587. [PMID: 37138438 DOI: 10.2174/1871527322666230502123255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/17/2023] [Accepted: 02/14/2023] [Indexed: 05/05/2023]
Abstract
Aging is a gradual decline of physiological function and tissue homeostasis and, in many instances, is related to increased (neuro)-degeneration, together with inflammation, becoming one of the most important risks for developing neurodegenerative diseases. Certain individual nutrients or foods in combination may counteract aging and associated neurodegenerative diseases by promoting a balance between the pro- and anti-inflammatory responses. Thus, nutrition could represent a powerful modulator of this fine balance, other than a modifiable risk factor to contrast inflammaging. This narrative review explores from a broad perspective the impact of nutrition on the hallmarks of aging and inflammation in Alzheimer's disease (AD), Parkinson's disease (PD) and Amyotrophic Lateral Sclerosis Syndrome (ALS), starting from nutrients up to single foods and complex dietary patterns.
Collapse
Affiliation(s)
- Camilla Barbero Mazzucca
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, Novara, Italy
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, Novara, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
32
|
Ahire ED, Surana KR, Khairnar SJ, Laddha UD, Kshirsagar SJ, Rajora AK, Keservani RK. Role of protein-rich diet in brain functions. NUTRACEUTICAL FRUITS AND FOODS FOR NEURODEGENERATIVE DISORDERS 2024:505-523. [DOI: 10.1016/b978-0-443-18951-7.00026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
33
|
Ye YC, Chai SF, Li XR, Wu MN, Cai HY, Wang ZJ. Intermittent fasting and Alzheimer's disease-Targeting ketone bodies as a potential strategy for brain energy rescue. Metab Brain Dis 2024; 39:129-146. [PMID: 37823968 DOI: 10.1007/s11011-023-01288-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/01/2023] [Indexed: 10/13/2023]
Abstract
Alzheimer's disease (AD) lacks effective clinical treatments. As the disease progresses, the cerebral glucose hypometabolism that appears in the preclinical phase of AD gradually worsens, leading to increasingly severe brain energy disorders. This review analyzes the brain energy deficit in AD and its etiology, brain energy rescue strategies based on ketone intervention, the effects and mechanisms of IF, the differences in efficacy between IF and ketogenic diet and the duality of IF. The evidence suggests that brain energy deficits lead to the development and progression of AD pathology. IF, which improves brain energy impairments by promoting ketone metabolism, thus has good therapeutic potential for AD.
Collapse
Affiliation(s)
- Yu- Cai Ye
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Shi-Fan Chai
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xin-Ru Li
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Mei-Na Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Hong-Yan Cai
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Zhao-Jun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China.
| |
Collapse
|
34
|
Cogut V, McNeely TL, Bussian TJ, Graves SI, Baker DJ. Caloric Restriction Improves Spatial Learning Deficits in Tau Mice. J Alzheimers Dis 2024; 98:925-940. [PMID: 38517786 PMCID: PMC11068089 DOI: 10.3233/jad-231117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Background Caloric restriction (CR) has been recognized for its benefits in delaying age-related diseases and extending lifespan. While its effects on amyloid pathology in Alzheimer's disease (AD) mouse models are well-documented, its effects on tauopathy, another hallmark of AD, are less explored. Objective To assess the impact of a short-term 30% CR regimen on age-dependent spatial learning deficits and pathological features in a tauopathy mouse model. Methods We subjected male PS19 tau P301S (hereafter PS19) and age-matched wildtype mice from two age cohorts (4.5 and 7.5 months old) to a 6-week 30% CR regimen. Spatial learning performance was assessed using the Barnes Maze test. Tau pathology, neuroinflammation, hippocampal cell proliferation, and neurogenesis were evaluated in the older cohort by immunohistochemical staining and RT-qPCR. Results CR mitigated age-dependent spatial learning deficits in PS19 mice but exhibited limited effects on tau pathology and the associated neuroinflammation. Additionally, we found a decrease in hippocampal cell proliferation, predominantly of Iba1+ cells. Conclusions Our findings reinforce the cognitive benefits conferred by CR despite its limited modulation of disease pathology. Given the pivotal role of microglia in tau-driven pathology, the observed reduction in Iba1+ cells under CR suggests potential therapeutic implications, particularly if CR would be introduced early in disease progression.
Collapse
Affiliation(s)
- Valeria Cogut
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Taylor L. McNeely
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Tyler J. Bussian
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Sara I. Graves
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Darren J. Baker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Paul F. Glenn Center for Biology of Aging Research at Mayo Clinic, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| |
Collapse
|
35
|
Perluigi M, Di Domenico F, Butterfield DA. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease. Physiol Rev 2024; 104:103-197. [PMID: 37843394 PMCID: PMC11281823 DOI: 10.1152/physrev.00030.2022] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/30/2023] [Accepted: 05/24/2023] [Indexed: 10/17/2023] Open
Abstract
Alzheimer disease (AD) is associated with multiple etiologies and pathological mechanisms, among which oxidative stress (OS) appears as a major determinant. Intriguingly, OS arises in various pathways regulating brain functions, and it seems to link different hypotheses and mechanisms of AD neuropathology with high fidelity. The brain is particularly vulnerable to oxidative damage, mainly because of its unique lipid composition, resulting in an amplified cascade of redox reactions that target several cellular components/functions ultimately leading to neurodegeneration. The present review highlights the "OS hypothesis of AD," including amyloid beta-peptide-associated mechanisms, the role of lipid and protein oxidation unraveled by redox proteomics, and the antioxidant strategies that have been investigated to modulate the progression of AD. Collected studies from our groups and others have contributed to unraveling the close relationships between perturbation of redox homeostasis in the brain and AD neuropathology by elucidating redox-regulated events potentially involved in both the pathogenesis and progression of AD. However, the complexity of AD pathological mechanisms requires an in-depth understanding of several major intracellular pathways affecting redox homeostasis and relevant for brain functions. This understanding is crucial to developing pharmacological strategies targeting OS-mediated toxicity that may potentially contribute to slow AD progression as well as improve the quality of life of persons with this severe dementing disorder.
Collapse
Affiliation(s)
- Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
36
|
Han SC, Kang JI, Choi YK, Boo HJ, Yoon WJ, Kang HK, Yoo ES. Intermittent Fasting Modulates Immune Response by Generating Tregs via TGF-β Dependent Mechanisms in Obese Mice with Allergic Contact Dermatitis. Biomol Ther (Seoul) 2024; 32:136-145. [PMID: 37424516 PMCID: PMC10762271 DOI: 10.4062/biomolther.2023.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/25/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023] Open
Abstract
People with obesity maintain low levels of inflammation; therefore, their exposure to foreign antigens can trigger an excessive immune response. In people with obesity or allergic contact dermatitis (ACD), symptoms are exacerbated by a reduction in the number of regulatory T cells (Tregs) and IL-10/TGF-β-modified macrophages (M2 macrophages) at the inflammatory site. Benefits of intermittent fasting (IF) have been demonstrated for many diseases; however, the immune responses regulated by macrophages and CD4+T cells in obese ACD animal models are poorly understood. Therefore, we investigated whether IF suppresses inflammatory responses and upregulates the generation of Tregs and M2 macrophages in experimental ACD animal models of obese mice. The IF regimen relieved various ACD symptoms in inflamed and adipose tissues. We showed that the IF regimen upregulates Treg generation in a TGF-β-dependent manner and induces CD4+T cell hypo-responsiveness. IF-M2 macrophages, which strongly express TGF-β and inhibit CD4+T cell proliferation, directly regulated Treg differentiation from CD4+T cells. These results indicate that the IF regimen enhances the TGF-β-producing ability of M2 macrophages and that the development of Tregs keeps mice healthy against ACD exacerbated by obesity. Therefore, the IF regimen may ameliorate inflammatory immune disorders caused by obesity.
Collapse
Affiliation(s)
- Sang-Chul Han
- Department of Medicine, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Jung-Il Kang
- Department of Medicine, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Youn Kyung Choi
- Department of Medicine, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Hye-Jin Boo
- Department of Medicine, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Weon-Jong Yoon
- Jeju Biodiversity Research Institute (JBRI), Jeju Technopark (JTP), Jeju 63208, Republic of Korea
| | - Hee-Kyoung Kang
- Department of Medicine, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Eun-Sook Yoo
- Department of Medicine, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
37
|
Hernandez AR, Barrett ME, Lubke KN, Maurer AP, Burke SN. A long-term ketogenic diet in young and aged rats has dissociable effects on prelimbic cortex and CA3 ensemble activity. Front Aging Neurosci 2023; 15:1274624. [PMID: 38155737 PMCID: PMC10753023 DOI: 10.3389/fnagi.2023.1274624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction Age-related cognitive decline has been linked to distinct patterns of cellular dysfunction in the prelimbic cortex (PL) and the CA3 subregion of the hippocampus. Because higher cognitive functions require both structures, selectively targeting a neurobiological change in one region, at the expense of the other, is not likely to restore normal behavior in older animals. One change with age that both the PL and CA3 share, however, is a reduced ability to utilize glucose, which can produce aberrant neural activity patterns. Methods The current study used a ketogenic diet (KD) intervention, which reduces the brain's reliance on glucose, and has been shown to improve cognition, as a metabolic treatment for restoring neural ensemble dynamics in aged rats. Expression of the immediate-early genes Arc and Homer1a were used to quantify the neural ensembles that were active in the home cage prior to behavior, during a working memory/biconditional association task, and a continuous spatial alternation task. Results Aged rats on the control diet had increased activity in CA3 and less ensemble overlap in PL between different task conditions than did the young animals. In the PL, the KD was associated with increased activation of neurons in the superficial cortical layers, establishing a clear link between dietary macronutrient content and frontal cortical activity. The KD did not lead to any significant changes in CA3 activity. Discussion These observations suggest that the availability of ketone bodies may permit the engagement of compensatory mechanisms in the frontal cortices that produce better cognitive outcomes.
Collapse
Affiliation(s)
- Abbi R. Hernandez
- Division of Gerontology, Geriatrics, and Palliative Care, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Maya E. Barrett
- Department of Psychology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Katelyn N. Lubke
- Department of Neuroscience, McKnight Brain Institute, and Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL, United States
| | - Andrew P. Maurer
- Department of Neuroscience, McKnight Brain Institute, and Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL, United States
| | - Sara N. Burke
- Department of Neuroscience, McKnight Brain Institute, and Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL, United States
| |
Collapse
|
38
|
Tagliafico L, Nencioni A, Monacelli F. Fasting and Cognitive Impairment. Nutrients 2023; 15:5108. [PMID: 38140367 PMCID: PMC10745626 DOI: 10.3390/nu15245108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Fasting is a nutritional practice involving complete food restriction for a varying length of time [...].
Collapse
Affiliation(s)
- Luca Tagliafico
- Section of Geriatrics, Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, 16132 Genoa, Italy; (A.N.); (F.M.)
| | - Alessio Nencioni
- Section of Geriatrics, Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, 16132 Genoa, Italy; (A.N.); (F.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Fiammetta Monacelli
- Section of Geriatrics, Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, 16132 Genoa, Italy; (A.N.); (F.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
39
|
Guo M, Wang X, Li Y, Luo A, Zhao Y, Luo X, Li S. Intermittent Fasting on Neurologic Diseases: Potential Role of Gut Microbiota. Nutrients 2023; 15:4915. [PMID: 38068773 PMCID: PMC10707790 DOI: 10.3390/nu15234915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
As the global population ages, the prevalence of neurodegenerative diseases is surging. These disorders have a multifaceted pathogenesis, entwined with genetic and environmental factors. Emerging research underscores the profound influence of diet on the development and progression of health conditions. Intermittent fasting (IF), a dietary pattern that is increasingly embraced and recommended, has demonstrated potential in improving neurophysiological functions and mitigating pathological injuries with few adverse effects. Although the precise mechanisms of IF's beneficial impact are not yet completely understood, gut microbiota and their metabolites are believed to be pivotal in mediating these effects. This review endeavors to thoroughly examine current studies on the shifts in gut microbiota and metabolite profiles prompted by IF, and their possible consequences for neural health. It also highlights the significance of dietary strategies as a clinical consideration for those with neurological conditions.
Collapse
Affiliation(s)
- Mingke Guo
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.W.); (Y.L.); (A.L.); (Y.Z.)
| | - Xuan Wang
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.W.); (Y.L.); (A.L.); (Y.Z.)
| | - Yujuan Li
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.W.); (Y.L.); (A.L.); (Y.Z.)
| | - Ailin Luo
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.W.); (Y.L.); (A.L.); (Y.Z.)
| | - Yilin Zhao
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.W.); (Y.L.); (A.L.); (Y.Z.)
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiyong Li
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.W.); (Y.L.); (A.L.); (Y.Z.)
| |
Collapse
|
40
|
Li Z, Huang L, Luo Y, Yu B, Tian G. Effects and possible mechanisms of intermittent fasting on health and disease: a narrative review. Nutr Rev 2023; 81:1626-1635. [PMID: 36940184 DOI: 10.1093/nutrit/nuad026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
The imbalance between energy intake and expenditure in an environment of continuous food availability can lead to metabolic disturbances in the body and increase the risk of obesity and a range of chronic noncommunicable diseases. Intermittent fasting (IF) is one of the most popular nonpharmacological interventions to combat obesity and chronic noncommunicable diseases. The 3 most widely studied IF regimens are alternate-day fasting, time-restricted feeding, and the 5:2 diet. In rodents, IF helps optimize energy metabolism, prevent obesity, promote brain health, improve immune and reproductive function, and delay aging. In humans, IF's benefits are relevant for the aging global population and for increasing human life expectancy. However, the optimal model of IF remains unclear. In this review, the possible mechanisms of IF are summarized and its possible drawbacks are discussed on the basis of the results of existing research, which provide a new idea for nonpharmaceutical dietary intervention of chronic noncommunicable diseases.
Collapse
Affiliation(s)
- Zimei Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Liansu Huang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Yuheng Luo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Gang Tian
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
41
|
Miao J, Chen L, Pan X, Li L, Zhao B, Lan J. Microglial Metabolic Reprogramming: Emerging Insights and Therapeutic Strategies in Neurodegenerative Diseases. Cell Mol Neurobiol 2023; 43:3191-3210. [PMID: 37341833 PMCID: PMC11410021 DOI: 10.1007/s10571-023-01376-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023]
Abstract
Microglia, the resident immune cells of the central nervous system, play a critical role in maintaining brain homeostasis. However, in neurodegenerative conditions, microglial cells undergo metabolic reprogramming in response to pathological stimuli, including Aβ plaques, Tau tangles, and α-synuclein aggregates. This metabolic shift is characterized by a transition from oxidative phosphorylation (OXPHOS) to glycolysis, increased glucose uptake, enhanced production of lactate, lipids, and succinate, and upregulation of glycolytic enzymes. These metabolic adaptations result in altered microglial functions, such as amplified inflammatory responses and diminished phagocytic capacity, which exacerbate neurodegeneration. This review highlights recent advances in understanding the molecular mechanisms underlying microglial metabolic reprogramming in neurodegenerative diseases and discusses potential therapeutic strategies targeting microglial metabolism to mitigate neuroinflammation and promote brain health. Microglial Metabolic Reprogramming in Neurodegenerative Diseases This graphical abstract illustrates the metabolic shift in microglial cells in response to pathological stimuli and highlights potential therapeutic strategies targeting microglial metabolism for improved brain health.
Collapse
Affiliation(s)
- Jifei Miao
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Lihua Chen
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Xiaojin Pan
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Liqing Li
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Beibei Zhao
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China.
| | - Jiao Lan
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China.
| |
Collapse
|
42
|
Kumar A, Karuppagounder SS, Chen Y, Corona C, Kawaguchi R, Cheng Y, Balkaya M, Sagdullaev BT, Wen Z, Stuart C, Cho S, Ming GL, Tuvikene J, Timmusk T, Geschwind DH, Ratan RR. 2-Deoxyglucose drives plasticity via an adaptive ER stress-ATF4 pathway and elicits stroke recovery and Alzheimer's resilience. Neuron 2023; 111:2831-2846.e10. [PMID: 37453419 PMCID: PMC10528360 DOI: 10.1016/j.neuron.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/10/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
Intermittent fasting (IF) is a diet with salutary effects on cognitive aging, Alzheimer's disease (AD), and stroke. IF restricts a number of nutrient components, including glucose. 2-deoxyglucose (2-DG), a glucose analog, can be used to mimic glucose restriction. 2-DG induced transcription of the pro-plasticity factor, Bdnf, in the brain without ketosis. Accordingly, 2-DG enhanced memory in an AD model (5xFAD) and functional recovery in an ischemic stroke model. 2-DG increased Bdnf transcription via reduced N-linked glycosylation, consequent ER stress, and activity of ATF4 at an enhancer of the Bdnf gene, as well as other regulatory regions of plasticity/regeneration (e.g., Creb5, Cdc42bpa, Ppp3cc, and Atf3) genes. These findings demonstrate an unrecognized role for N-linked glycosylation as an adaptive sensor to reduced glucose availability. They further demonstrate that ER stress induced by 2-DG can, in the absence of ketosis, lead to the transcription of genes involved in plasticity and cognitive resilience as well as proteostasis.
Collapse
Affiliation(s)
- Amit Kumar
- Burke Neurological Institute and Brain and Mind Research Institute, Weill Cornell Medicine, 785 Mamaroneck Ave, White Plains, NY, USA
| | - Saravanan S Karuppagounder
- Burke Neurological Institute and Brain and Mind Research Institute, Weill Cornell Medicine, 785 Mamaroneck Ave, White Plains, NY, USA
| | - Yingxin Chen
- Burke Neurological Institute and Brain and Mind Research Institute, Weill Cornell Medicine, 785 Mamaroneck Ave, White Plains, NY, USA
| | - Carlo Corona
- Burke Neurological Institute and Brain and Mind Research Institute, Weill Cornell Medicine, 785 Mamaroneck Ave, White Plains, NY, USA
| | - Riki Kawaguchi
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yuyan Cheng
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mustafa Balkaya
- Burke Neurological Institute and Brain and Mind Research Institute, Weill Cornell Medicine, 785 Mamaroneck Ave, White Plains, NY, USA
| | - Botir T Sagdullaev
- Burke Neurological Institute and Brain and Mind Research Institute, Weill Cornell Medicine, 785 Mamaroneck Ave, White Plains, NY, USA; Regeneron Pharmaceuticals, Tarrytown, New York, NY, USA
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Charles Stuart
- East Tennessee State University Quillen College of Medicine, Johnson City, TN, USA
| | - Sunghee Cho
- Burke Neurological Institute and Brain and Mind Research Institute, Weill Cornell Medicine, 785 Mamaroneck Ave, White Plains, NY, USA
| | - Guo-Li Ming
- Department of Neuroscience, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jürgen Tuvikene
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Tõnis Timmusk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Daniel H Geschwind
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rajiv R Ratan
- Burke Neurological Institute and Brain and Mind Research Institute, Weill Cornell Medicine, 785 Mamaroneck Ave, White Plains, NY, USA.
| |
Collapse
|
43
|
Jiménez-Herrera R, Contreras A, Djebari S, Mulero-Franco J, Iborra-Lázaro G, Jeremic D, Navarro-López J, Jiménez-Díaz L. Systematic characterization of a non-transgenic Aβ 1-42 amyloidosis model: synaptic plasticity and memory deficits in female and male mice. Biol Sex Differ 2023; 14:59. [PMID: 37716988 PMCID: PMC10504764 DOI: 10.1186/s13293-023-00545-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND The amyloid-β (Aβ) cascade is one of the most studied theories linked to AD. In multiple models, Aβ accumulation and dyshomeostasis have shown a key role in AD onset, leading to excitatory/inhibitory imbalance, the impairments of synaptic plasticity and oscillatory activity, and memory deficits. Despite the higher prevalence of Alzheimer's disease (AD) in women compared to men, the possible sex difference is scarcely explored and the information from amyloidosis transgenic mice models is contradictory. Thus, given the lack of data regarding the early stages of amyloidosis in female mice, the aim of this study was to systematically characterize the effect of an intracerebroventricular (icv.) injection of Aβ1-42 on hippocampal-dependent memory, and on associated activity-dependent synaptic plasticity in the hippocampal CA1-CA3 synapse, in both male and female mice. METHODS To do so, we evaluated long term potentiation (LTP) with ex vivo electrophysiological recordings as well as encoding and retrieval of spatial (working, short- and long-term) and exploratory habituation memories using Barnes maze and object location, or open field habituation tasks, respectively. RESULTS Aβ1-42 administration impaired all forms of memory evaluated in this work, regardless of sex. This effect was displayed in a long-lasting manner (up to 17 days post-injection). LTP was inhibited at a postsynaptic level, both in males and females, and a long-term depression (LTD) was induced for the same prolonged period, which could underlie memory deficits. CONCLUSIONS In conclusion, our results provide further evidence on the shifting of LTP/LTD threshold due to a single icv. Aβ1-42 injection, which underly cognitive deficits in the early stages of AD. These long-lasting cognitive and functional alterations in males and females validate this model for the study of early amyloidosis in both sexes, thus offering a solid alternative to the inconsistence of amyloidosis transgenic mice models.
Collapse
Affiliation(s)
- Raquel Jiménez-Herrera
- Neurophysiology and Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Ana Contreras
- Neurophysiology and Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Souhail Djebari
- Neurophysiology and Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Jaime Mulero-Franco
- Neurophysiology and Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Guillermo Iborra-Lázaro
- Neurophysiology and Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Danko Jeremic
- Neurophysiology and Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Juan Navarro-López
- Neurophysiology and Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071, Ciudad Real, Spain.
| | - Lydia Jiménez-Díaz
- Neurophysiology and Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071, Ciudad Real, Spain.
| |
Collapse
|
44
|
Elias A, Padinjakara N, Lautenschlager NT. Effects of intermittent fasting on cognitive health and Alzheimer's disease. Nutr Rev 2023; 81:1225-1233. [PMID: 37043764 PMCID: PMC10413426 DOI: 10.1093/nutrit/nuad021] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
OBJECTIVE Caloric restriction by intermittent fasting produces several metabolic changes, such as increased insulin sensitivity and use of ketone bodies as energy sources. In humans, intermittent fasting has been studied in hypertension, diabetes, and related conditions, but, to date, not as a strategy to reduce the risk of emergent dementia. In this scoping review, the relevance of intermittent fasting as a potential preventive intervention for Alzheimer's dementia is explored. BACKGROUND The beneficial effects of calorie restriction have been documented in animals and humans. Decreased oxidative stress damage and attenuated inflammatory responses are associated with intermittent fasting. These changes have a favorable impact on the vascular endothelium and stress-induced cellular adaptation. RESULTS Physiological alterations associated with fasting have profound implications for pathological mechanisms associated with dementias, particularly Alzheimer's disease. Compared with ad libitum feeding, caloric restriction in animals was associated with a reduction in β-amyloid accumulation, which is the cardinal pathological marker of Alzheimer's disease. Animal studies have demonstrated synaptic adaptations in the hippocampus and enhanced cognitive function after fasting, consistent with these theoretical frameworks. Furthermore, vascular dysfunction plays a crucial role in Alzheimer's disease pathology, and intermittent fasting promotes vascular health. CONCLUSIONS These observations lead to a hypothesis that intermittent fasting over the years will potentially reverse or delay the pathological process in Alzheimer's disease.
Collapse
Affiliation(s)
- Alby Elias
- Academic Unit for Psychiatry of Old Age, Department of Psychiatry, The University of Melbourne, North-Western Mental Health, Melbourne Health, Victoria, Australia
| | - Noushad Padinjakara
- Department of Endocrinology and Metabolic Medicine, South Warwickshire University NHS Foundation Trust, Coventry, United Kingdom
| | - Nicola T Lautenschlager
- Academic Unit for Psychiatry of Old Age, Department of Psychiatry, The University of Melbourne, North-Western Mental Health, Melbourne Health, Victoria, Australia
| |
Collapse
|
45
|
Boccardi V, Pigliautile M, Guazzarini AG, Mecocci P. The Potential of Fasting-Mimicking Diet as a Preventive and Curative Strategy for Alzheimer's Disease. Biomolecules 2023; 13:1133. [PMID: 37509169 PMCID: PMC10377404 DOI: 10.3390/biom13071133] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
This review examines the potential of fasting-mimicking diets (FMDs) in preventing and treating Alzheimer's disease (AD). FMDs are low-calorie diets that mimic the physiological and metabolic effects of fasting, including the activation of cellular stress response pathways and autophagy. Recent studies have shown that FMDs can reduce amyloid-beta accumulation, tau phosphorylation, and inflammation, as well as improve cognitive function in animal models of AD. Human studies have also reported improvements in AD biomarkers, cognitive functions, and subjective well-being measures following FMDs. However, the optimal duration and frequency of FMDs and their long-term safety and efficacy remain to be determined. Despite these uncertainties, FMDs hold promise as a non-pharmacological approach to AD prevention and treatment, and further research in this area is warranted.
Collapse
Affiliation(s)
- Virginia Boccardi
- Department of Medicine and Surgery, Institute of Gerontology and Geriatrics, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Martina Pigliautile
- Department of Medicine and Surgery, Institute of Gerontology and Geriatrics, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Anna Giulia Guazzarini
- Department of Medicine and Surgery, Institute of Gerontology and Geriatrics, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Patrizia Mecocci
- Department of Medicine and Surgery, Institute of Gerontology and Geriatrics, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
46
|
Madhavan SS, Roa Diaz S, Peralta S, Nomura M, King CD, Lin A, Bhaumik D, Shah S, Blade T, Gray W, Chamoli M, Eap B, Panda O, Diaz D, Garcia TY, Stubbs BJ, Lithgow GJ, Schilling B, Verdin E, Chaudhuri AR, Newman JC. β-hydroxybutyrate is a metabolic regulator of proteostasis in the aged and Alzheimer disease brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547547. [PMID: 37461525 PMCID: PMC10349929 DOI: 10.1101/2023.07.03.547547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Loss of proteostasis is a hallmark of aging and Alzheimer disease (AD). Here, we identify β-hydroxybutyrate (βHB), a ketone body, as a regulator of protein solubility in the aging brain. βHB is a small molecule metabolite which primarily provides an oxidative substrate for ATP during hypoglycemic conditions, and also regulates other cellular processes through covalent and noncovalent protein interactions. We demonstrate βHB-induced protein insolubility across in vitro, ex vivo, and in vivo mouse systems. This activity is shared by select structurally similar metabolites, is not dependent on covalent protein modification, pH, or solute load, and is observable in mouse brain in vivo after delivery of a ketone ester. Furthermore, this phenotype is selective for pathological proteins such as amyloid-β, and exogenous βHB ameliorates pathology in nematode models of amyloid-β aggregation toxicity. We have generated a comprehensive atlas of the βHB-induced protein insolublome ex vivo and in vivo using mass spectrometry proteomics, and have identified common protein domains within βHB target sequences. Finally, we show enrichment of neurodegeneration-related proteins among βHB targets and the clearance of these targets from mouse brain, likely via βHB-induced autophagy. Overall, these data indicate a new metabolically regulated mechanism of proteostasis relevant to aging and AD.
Collapse
Affiliation(s)
- S S Madhavan
- Buck Institute for Research on Aging, Novato, CA, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Geriatrics, University of California San Francisco, San Francisco, CA, USA
| | - S Roa Diaz
- Buck Institute for Research on Aging, Novato, CA, USA
- Department of Geriatrics, University of California San Francisco, San Francisco, CA, USA
| | - S Peralta
- Buck Institute for Research on Aging, Novato, CA, USA
| | - M Nomura
- Buck Institute for Research on Aging, Novato, CA, USA
| | - C D King
- Buck Institute for Research on Aging, Novato, CA, USA
| | - A Lin
- Buck Institute for Research on Aging, Novato, CA, USA
| | - D Bhaumik
- Buck Institute for Research on Aging, Novato, CA, USA
| | - S Shah
- Buck Institute for Research on Aging, Novato, CA, USA
| | - T Blade
- Buck Institute for Research on Aging, Novato, CA, USA
| | - W Gray
- Buck Institute for Research on Aging, Novato, CA, USA
| | - M Chamoli
- Buck Institute for Research on Aging, Novato, CA, USA
| | - B Eap
- Buck Institute for Research on Aging, Novato, CA, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - O Panda
- Buck Institute for Research on Aging, Novato, CA, USA
| | - D Diaz
- Buck Institute for Research on Aging, Novato, CA, USA
| | - T Y Garcia
- Buck Institute for Research on Aging, Novato, CA, USA
- Department of Geriatrics, University of California San Francisco, San Francisco, CA, USA
| | - B J Stubbs
- Buck Institute for Research on Aging, Novato, CA, USA
| | - G J Lithgow
- Buck Institute for Research on Aging, Novato, CA, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - B Schilling
- Buck Institute for Research on Aging, Novato, CA, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - E Verdin
- Buck Institute for Research on Aging, Novato, CA, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - A R Chaudhuri
- Buck Institute for Research on Aging, Novato, CA, USA
| | - J C Newman
- Buck Institute for Research on Aging, Novato, CA, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Geriatrics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
47
|
Arora S, Santiago JA, Bernstein M, Potashkin JA. Diet and lifestyle impact the development and progression of Alzheimer's dementia. Front Nutr 2023; 10:1213223. [PMID: 37457976 PMCID: PMC10344607 DOI: 10.3389/fnut.2023.1213223] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Dementia is a growing public health concern, with an estimated prevalence of 57 million adults worldwide. Alzheimer's disease (AD) accounts for 60-80% of the cases. Clinical trials testing potential drugs and neuroprotective agents have proven futile, and currently approved drugs only provide symptomatic benefits. Emerging epidemiological and clinical studies suggest that lifestyle changes, including diet and physical activity, offer an alternative therapeutic route for slowing and preventing cognitive decline and dementia. Age is the single most common risk factor for dementia, and it is associated with slowing cellular bioenergetics and metabolic processes. Therefore, a nutrient-rich diet is critical for optimal brain health. Furthermore, type 2 diabetes (T2D) is a risk factor for AD, and diets that reduce the risk of T2D may confer neuroprotection. Foods predominant in Mediterranean, MIND, and DASH diets, including fruits, leafy green vegetables, fish, nuts, and olive oil, may prevent or slow cognitive decline. The mechanisms by which these nutrients promote brain health, however, are not yet completely understood. Other dietary approaches and eating regimes, including ketogenic and intermittent fasting, are also emerging as beneficial for brain health. This review summarizes the pathophysiology, associated risk factors, and the potential neuroprotective pathways activated by several diets and eating regimes that have shown promising results in promoting brain health and preventing dementia.
Collapse
Affiliation(s)
- Sarah Arora
- Center for Neurodegenerative Diseases and Therapeutics, Cellular and Molecular Pharmacology Discipline, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | | | - Melissa Bernstein
- Department of Nutrition, College of Health Professions, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Judith A. Potashkin
- Center for Neurodegenerative Diseases and Therapeutics, Cellular and Molecular Pharmacology Discipline, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
48
|
Doroszkiewicz J, Mroczko J, Rutkowski P, Mroczko B. Molecular Aspects of a Diet as a New Pathway in the Prevention and Treatment of Alzheimer's Disease. Int J Mol Sci 2023; 24:10751. [PMID: 37445928 PMCID: PMC10341644 DOI: 10.3390/ijms241310751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Alzheimer's disease is the most common cause of dementia in the world. Lack of an established pathology makes it difficult to develop suitable approaches and treatment for the disease. Besides known hallmarks, including amyloid β peptides cumulating in plaques and hyperphosphorylated tau forming NFTs, inflammation also plays an important role, with known connections to the diet. In AD, adhering to reasonable nutrition according to age-related principles is recommended. The diet should be high in neuroprotective foods, such as polyunsaturated fatty acids, antioxidants, and B vitamins. In addition, foods capable of rising BDNF should be considered because of the known profitable results of this molecule in AD. Adhering to beneficial diets might result in improvements in memory, cognition, and biomarkers and might even reduce the risk of developing AD. In this review, we discuss the effects of various diets, foods, and nutrients on brain health and possible connections to Alzheimer's disease.
Collapse
Affiliation(s)
- Julia Doroszkiewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-089 Bialystok, Poland; (J.M.); (B.M.)
| | - Jan Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-089 Bialystok, Poland; (J.M.); (B.M.)
| | | | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-089 Bialystok, Poland; (J.M.); (B.M.)
- Department of Biochemical Diagnostics, Medical University of Białystok, 15-089 Bialystok, Poland
| |
Collapse
|
49
|
Landry O, François A, Oye Mintsa Mi-Mba MF, Traversy MT, Tremblay C, Emond V, Bennett DA, Gylys KH, Buxbaum JD, Calon F. Postsynaptic Protein Shank3a Deficiency Synergizes with Alzheimer's Disease Neuropathology to Impair Cognitive Performance in the 3xTg-AD Murine Model. J Neurosci 2023; 43:4941-4954. [PMID: 37253603 PMCID: PMC10312061 DOI: 10.1523/jneurosci.1945-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/17/2023] [Accepted: 05/04/2023] [Indexed: 06/01/2023] Open
Abstract
Synaptic loss is intrinsically linked to Alzheimer's disease (AD) neuropathology and symptoms, but its direct impact on clinical symptoms remains elusive. The postsynaptic protein Shank3 (SH3 and multiple ankyrin repeat domains) is of particular interest, as the loss of a single allele of the SHANK3 gene is sufficient to cause profound cognitive symptoms in children. We thus sought to determine whether a SHANK3 deficiency could contribute to the emergence or worsening of AD symptoms and neuropathology. We first found a 30%-50% postmortem loss of SHANK3a associated with cognitive decline in the parietal cortex of individuals with AD. To further probe the role of SHANK3 in AD, we crossed male and female 3xTg-AD mice modelling Aβ and tau pathologies with Shank3a-deficient mice (Shank3Δex4-9). We observed synergistic deleterious effects of Shank3a deficiency and AD neuropathology on object recognition memory at 9, 12, and 18 months of age and on anxious behavior at 9 and 12 months of age in hemizygous Shank3Δex4-9-3xTg-AD mice. In addition to the expected 50% loss of Shank3a, levels of other synaptic proteins, such as PSD-95, drebrin, and homer1, remained unchanged in the parietotemporal cortex of hemizygous Shank3Δex4-9 animals. However, Shank3a deficiency increased the levels of soluble Aβ42 and human tau at 18 months of age compared with 3xTg-AD mice with normal Shank3 expression. The results of this study in human brain samples and in transgenic mice are consistent with the hypothesis that Shank3 deficiency makes a key contribution to cognitive impairment in AD.SIGNIFICANCE STATEMENT Although the loss of several synaptic proteins has been described in Alzheimer's disease (AD), it remains unclear whether their reduction contributes to clinical symptoms. The results of this study in human samples show lower levels of SHANK3a in AD brain, correlating with cognitive decline. Data gathered in a novel transgenic mouse suggest that Shank3a deficiency synergizes with AD neuropathology to induce cognitive impairment, consistent with a causal role in AD. Therefore, treatment aiming at preserving Shank3 in the aging brain may be beneficial to prevent AD.
Collapse
Affiliation(s)
- Olivier Landry
- Faculté de pharmacie, Université Laval, Quebec G1V 0A6, Quebec, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Quebec G1V 4G2, Quebec, Canada
| | - Arnaud François
- Faculté de pharmacie, Université Laval, Quebec G1V 0A6, Quebec, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Quebec G1V 4G2, Quebec, Canada
| | - Méryl-Farelle Oye Mintsa Mi-Mba
- Faculté de pharmacie, Université Laval, Quebec G1V 0A6, Quebec, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Quebec G1V 4G2, Quebec, Canada
| | - Marie-Therese Traversy
- Faculté de pharmacie, Université Laval, Quebec G1V 0A6, Quebec, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Quebec G1V 4G2, Quebec, Canada
| | - Cyntia Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Quebec G1V 4G2, Quebec, Canada
| | - Vincent Emond
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Quebec G1V 4G2, Quebec, Canada
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois 60612
| | - Karen H Gylys
- School of Nursing, University of California, Los Angeles, California 90095
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York 10029, New York
| | - Frédéric Calon
- Faculté de pharmacie, Université Laval, Quebec G1V 0A6, Quebec, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Quebec G1V 4G2, Quebec, Canada
| |
Collapse
|
50
|
Reiss AB, Muhieddine D, Jacob B, Mesbah M, Pinkhasov A, Gomolin IH, Stecker MM, Wisniewski T, De Leon J. Alzheimer's Disease Treatment: The Search for a Breakthrough. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1084. [PMID: 37374288 PMCID: PMC10302500 DOI: 10.3390/medicina59061084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
As the search for modalities to cure Alzheimer's disease (AD) has made slow progress, research has now turned to innovative pathways involving neural and peripheral inflammation and neuro-regeneration. Widely used AD treatments provide only symptomatic relief without changing the disease course. The recently FDA-approved anti-amyloid drugs, aducanumab and lecanemab, have demonstrated unclear real-world efficacy with a substantial side effect profile. Interest is growing in targeting the early stages of AD before irreversible pathologic changes so that cognitive function and neuronal viability can be preserved. Neuroinflammation is a fundamental feature of AD that involves complex relationships among cerebral immune cells and pro-inflammatory cytokines, which could be altered pharmacologically by AD therapy. Here, we provide an overview of the manipulations attempted in pre-clinical experiments. These include inhibition of microglial receptors, attenuation of inflammation and enhancement of toxin-clearing autophagy. In addition, modulation of the microbiome-brain-gut axis, dietary changes, and increased mental and physical exercise are under evaluation as ways to optimize brain health. As the scientific and medical communities work together, new solutions may be on the horizon to slow or halt AD progression.
Collapse
Affiliation(s)
- Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Dalia Muhieddine
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Berlin Jacob
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Michael Mesbah
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Aaron Pinkhasov
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Irving H. Gomolin
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | | | - Thomas Wisniewski
- Center for Cognitive Neurology, Departments of Neurology, Pathology and Psychiatry, NYU School of Medicine, New York, NY 10016, USA;
| | - Joshua De Leon
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| |
Collapse
|