1
|
Dahl JR, Weier A, Winter C, Hintze M, Rothhammer V, Tsaktanis T, Proebstel AK, Neziraj T, Poessnecker E, Oechtering J, Kuhle J, Kallmann BA, Luber G, Heider T, Klotz L, Chunder R, Kuerten S. Modulator of VRAC Current 1 Is a Potential Target Antigen in Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200374. [PMID: 39933126 PMCID: PMC11839221 DOI: 10.1212/nxi.0000000000200374] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/12/2024] [Indexed: 02/13/2025]
Abstract
BACKGROUND AND OBJECTIVES Multiple sclerosis (MS) is a chronic immune-mediated demyelinating disease of the CNS. Highlighted by the success of B-cell-depleting therapies such as the monoclonal anti-CD20 antibodies rituximab, ocrelizumab, and ofatumumab, B cells have been shown to play a central role in the immunopathology of the disease. Yet, the target antigens of the pathogenic B-cell response in MS remain unclear. METHODS We combined polyclonal B-cell stimulation of peripheral blood mononuclear cells with a human proteome-wide protein microarray to identify target antigens of MS by comparing samples from 20 patients with MS with 9 age-matched and sex-matched healthy controls. Results were verified by enzyme-linked immunosorbent assay (ELISA) in 3 independent validation cohorts (N = 47 patients with MS in remission; N = 20 patients with MS during relapse; N = 25 HCs; N = 30 patients with other noninflammatory neurologic diseases; N = 9 patients with other inflammatory neurologic diseases). Experimental autoimmune encephalomyelitis (EAE) was used as an animal model to evaluate the pathogenicity of the antibodies of choice. RESULTS Our results corroborate the existing concept of a highly diverse autoimmune response in MS. Yet, a significantly elevated antibody response against the membrane protein modulator of VRAC current 1 (MLC1) was noted in B-cell culture supernatants and serum samples of patients with MS. Furthermore, significantly elevated titers to MLC1 were observed in the CSF of patients with neuroinflammatory diseases other than MS. Neurons and astrocytes were identified as the main cell types expressing MLC1 in the brain of a patient with MS. Injection of anti-MLC1 antibodies into mice with EAE led to strong in vivo binding to cerebral cortical neurons and to the death of 4 of the 7 injected mice. DISCUSSION Future studies will have to address the diagnostic and prognostic value of MLC1-specific antibodies in neuroinflammatory disorders such as MS and characterize the functional role of MLC1 expression in neurons and astrocytes. TRIAL REGISTRATION INFORMATION The study has been registered in the German Clinical Trials Register (study number DRKS00015528).
Collapse
Affiliation(s)
- Johannes Raffael Dahl
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- Institute of Neuroanatomy, Medical Faculty, University of Bonn and University Hospital Bonn, Germany
| | - Alicia Weier
- Institute of Neuroanatomy, Medical Faculty, University of Bonn and University Hospital Bonn, Germany
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Australia
| | | | - Maik Hintze
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- Institute of Neuroanatomy, Medical Faculty, University of Bonn and University Hospital Bonn, Germany
| | - Veit Rothhammer
- Department of Neurology, University Hospital Erlangen, Germany
| | | | - Anne-Katrin Proebstel
- Department of Neurology, University Hospital of Basel and University of Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, Switzerland
| | - Tradite Neziraj
- Department of Neurology, University Hospital of Basel and University of Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, Switzerland
| | - Elisabeth Poessnecker
- Department of Neurology, University Hospital of Basel and University of Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, Switzerland
| | - Johanna Oechtering
- Department of Neurology, University Hospital of Basel and University of Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, Switzerland
| | - Jens Kuhle
- Department of Neurology, University Hospital of Basel and University of Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, Switzerland
| | | | - Gabriele Luber
- Practice for Neurology, Psychiatry and Psychotherapy, Nürnberg, Germany
| | - Thorsten Heider
- Department of Neurology, Klinikum St. Marien Amberg, Germany; and
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University of Münster, Germany
| | - Rittika Chunder
- Institute of Neuroanatomy, Medical Faculty, University of Bonn and University Hospital Bonn, Germany
| | - Stefanie Kuerten
- Institute of Neuroanatomy, Medical Faculty, University of Bonn and University Hospital Bonn, Germany
| |
Collapse
|
2
|
Sharma S, Bharti V, Das PK, Rahman A, Sharma H, Rauthan R, Rc M, Gupta N, Shukla R, Mohanty S, Kabra M, Francis KR, Chakraborty D. MLC1 alteration in iPSCs give rise to disease-like cellular vacuolation phenotype in the astrocyte lineage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631607. [PMID: 39829899 PMCID: PMC11741324 DOI: 10.1101/2025.01.06.631607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Background Megalencephalic leukoencephalopathy with subcortical cysts (MLC), a rare and progressive neurodegenerative disorder involving the white matter, is not adequately recapitulated by current disease models. Somatic cell reprogramming, along with advancements in genome engineering, may allow the establishment of in-vitro human models of MLC for disease modeling and drug screening. In this study, we utilized cellular reprogramming and gene-editing techniques to develop induced pluripotent stem cell (iPSC) models of MLC to recapitulate the cellular context of the classical MLC-impacted nervous system. Methods Somatic cell reprogramming of peripheral patient-derived blood mononuclear cells (PBMCs) was used to develop iPSC models of MLC. CRISPR-Cas9 system-based genome engineering was also utilized to create the MLC1 knockout model of the disease. Directed differentiation of iPSCs to neural stem cells (NSCs) and astrocytes was performed in a 2D cell culture format, followed by various cellular and molecular biology approaches, to characterize the disease model. Results MLC iPSCs established by somatic cell reprogramming and genome engineering were well characterized for pluripotency. iPSCs were subsequently differentiated to disease-relevant cell types: neural stem cells (NSCs) and astrocytes. RNA sequencing profiling of MLC NSCs revealed a set of differentially expressed genes related to neurological disorders and epilepsy, a common clinical finding within MLC disease. This gene set can serve as a target for drug screening for the development of a potential therapeutic for this disease. Upon differentiation to the more disease relevant cell type-astrocytes, MLC-characteristic vacuoles were clearly observed, which were distinctly absent from controls. This emergence recapitulated a distinguishing phenotypic marker of the disease. Conclusion Through the creation and analyses of iPSC models of MLC, our work addresses a critical need for relevant cellular models of MLC for use in both disease modeling and drug screening assays. Further investigation can utilize MLC iPSC models, as well as generated transcriptomic data sets and analyses, to identify potential therapeutic interventions for this debilitating disease.
Collapse
|
3
|
Hol EM, Dykstra W, Chevalier J, Cuadrado E, Bugiani M, Aronica E, Verkhratsky A. Neuroglia in leukodystrophies. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:159-175. [PMID: 40148043 DOI: 10.1016/b978-0-443-19102-2.00032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Leukodystrophies are a heterogeneous group of rare genetic neurologic disorders characterized by white matter degeneration resulting from mutations affecting glial cells. This review focuses on the primary subtypes-astroglial, oligodendroglial, and microglial leukodystrophies-offering a detailed description of their neuropathologic features and clinical manifestations. It delves into key aspects of the pathogenesis, emphasizing the distinct cellular mechanisms that drive white matter damage. Advances in disease modeling, including the development of animal models with pathologic gene expressions and patient-derived iPS-cell models, have significantly enhanced our understanding of these rare disorders. Insights into the roles of different glial cell types highlight the complexity of leukodystrophies and provide a foundation for the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Werner Dykstra
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Juliette Chevalier
- Department of Child Neurology and Pathology, Amsterdam Leukodystrophy Center, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Eloy Cuadrado
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Marianna Bugiani
- Department of Child Neurology and Pathology, Amsterdam Leukodystrophy Center, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
4
|
Mapps AA, Thomsen MB, Boehm E, Zhao H, Hattar S, Kuruvilla R. Diversity of satellite glia in sympathetic and sensory ganglia. Cell Rep 2022; 38:110328. [PMID: 35108545 DOI: 10.1016/j.celrep.2022.110328] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/15/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Satellite glia are the major glial type found in sympathetic and sensory ganglia in the peripheral nervous system, and specifically, contact neuronal cell bodies. Sympathetic and sensory neurons differ in morphological, molecular, and electrophysiological properties. However, the molecular diversity of the associated satellite glial cells remains unclear. Here, using single-cell RNA sequencing analysis, we identify five different populations of satellite glia from sympathetic and sensory ganglia. We define three shared populations of satellite glia enriched in immune-response genes, immediate-early genes, and ion channels/ECM-interactors, respectively. Sensory- and sympathetic-specific satellite glia are differentially enriched for modulators of lipid synthesis and metabolism. Sensory glia are also specifically enriched for genes involved in glutamate turnover. Furthermore, satellite glia and Schwann cells can be distinguished by unique transcriptional signatures. This study reveals the remarkable heterogeneity of satellite glia in the peripheral nervous system.
Collapse
Affiliation(s)
- Aurelia A Mapps
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, 200 Mudd Hall, Baltimore, MD 21218, USA
| | - Michael B Thomsen
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, 200 Mudd Hall, Baltimore, MD 21218, USA; Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Erica Boehm
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, 200 Mudd Hall, Baltimore, MD 21218, USA
| | - Haiqing Zhao
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, 200 Mudd Hall, Baltimore, MD 21218, USA
| | - Samer Hattar
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, 200 Mudd Hall, Baltimore, MD 21218, USA.
| |
Collapse
|
5
|
Bugiani M, Plug BC, Man JHK, Breur M, van der Knaap MS. Heterogeneity of white matter astrocytes in the human brain. Acta Neuropathol 2022; 143:159-177. [PMID: 34878591 DOI: 10.1007/s00401-021-02391-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/17/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022]
Abstract
Astrocytes regulate central nervous system development, maintain its homeostasis and orchestrate repair upon injury. Emerging evidence support functional specialization of astroglia, both between and within brain regions. Different subtypes of gray matter astrocytes have been identified, yet molecular and functional diversity of white matter astrocytes remains largely unexplored. Nonetheless, their important and diverse roles in maintaining white matter integrity and function are well recognized. Compelling evidence indicate that impairment of normal astrocytic function and their response to injury contribute to a wide variety of diseases, including white matter disorders. In this review, we highlight our current understanding of astrocyte heterogeneity in the white matter of the mammalian brain and how an interplay between developmental origins and local environmental cues contribute to astroglial diversification. In addition, we discuss whether, and if so, how, heterogeneous astrocytes could contribute to white matter function in health and disease and focus on the sparse human research data available. We highlight four leukodystrophies primarily due to astrocytic dysfunction, the so-called astrocytopathies. Insight into the role of astroglial heterogeneity in both healthy and diseased white matter may provide new avenues for therapies aimed at promoting repair and restoring normal white matter function.
Collapse
|
6
|
Ohlig S, Clavreul S, Thorwirth M, Simon-Ebert T, Bocchi R, Ulbricht S, Kannayian N, Rossner M, Sirko S, Smialowski P, Fischer-Sternjak J, Götz M. Molecular diversity of diencephalic astrocytes reveals adult astrogenesis regulated by Smad4. EMBO J 2021; 40:e107532. [PMID: 34549820 PMCID: PMC8561644 DOI: 10.15252/embj.2020107532] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022] Open
Abstract
Astrocytes regulate brain‐wide functions and also show region‐specific differences, but little is known about how general and region‐specific functions are aligned at the single‐cell level. To explore this, we isolated adult mouse diencephalic astrocytes by ACSA‐2‐mediated magnetic‐activated cell sorting (MACS). Single‐cell RNA‐seq revealed 7 gene expression clusters of astrocytes, with 4 forming a supercluster. Within the supercluster, cells differed by gene expression related to ion homeostasis or metabolism, with the former sharing gene expression with other regions and the latter being restricted to specific regions. All clusters showed expression of proliferation‐related genes, and proliferation of diencephalic astrocytes was confirmed by immunostaining. Clonal analysis demonstrated low level of astrogenesis in the adult diencephalon, but not in cerebral cortex grey matter. This led to the identification of Smad4 as a key regulator of diencephalic astrocyte in vivo proliferation and in vitro neurosphere formation. Thus, astrocytes show diverse gene expression states related to distinct functions with some subsets being more widespread while others are more regionally restricted. However, all share low‐level proliferation revealing the novel concept of adult astrogenesis in the diencephalon.
Collapse
Affiliation(s)
- Stefanie Ohlig
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Solène Clavreul
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Manja Thorwirth
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Tatiana Simon-Ebert
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Riccardo Bocchi
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Sabine Ulbricht
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Nirmal Kannayian
- Molecular Neurobiology, Department of Psychiatry, LMU Munich, Munich, Germany
| | - Moritz Rossner
- Molecular Neurobiology, Department of Psychiatry, LMU Munich, Munich, Germany
| | - Swetlana Sirko
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Pawel Smialowski
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Judith Fischer-Sternjak
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Magdalena Götz
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany.,SYNERGY, Excellence cluster of Systems Neurology, LMU Munich, Munich, Germany
| |
Collapse
|
7
|
Guo Y, Lennon VA, Parisi JE, Popescu B, Vasquez C, Pittock SJ, Howe CL, Lucchinetti CF. Spectrum of sublytic astrocytopathy in neuromyelitis optica. Brain 2021; 145:1379-1390. [PMID: 34718426 PMCID: PMC9128820 DOI: 10.1093/brain/awab394] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/22/2021] [Accepted: 09/18/2021] [Indexed: 11/30/2022] Open
Abstract
Neuromyelitis optica is an autoimmune inflammatory disorder targeting aquaporin-4 water channels in CNS astrocytes. Histopathological descriptions of astrocytic lesions reported in neuromyelitis optica so far have emphasized a characteristic loss of aquaporin-4, with deposition of IgG and complement and lysis of astrocytes, but sublytic reactions have been underappreciated. We performed a multi-modality study of 23 neuromyelitis optica autopsy cases (clinically and/or pathologically confirmed; 337 tissue blocks). By evaluating astrocytic morphology, immunohistochemistry and AQP4 RNA transcripts, and their associations with demyelinating activity, we documented a spectrum of astrocytopathy in addition to complement deposition, microglial reaction, granulocyte infiltration and regenerating activity. Within advanced demyelinating lesions, and in periplaque areas, there was remarkable hypertrophic astrogliosis, more subtle than astrocytic lysis. A degenerative component was suggested by ‘dystrophic’ morphology, cytoplasmic vacuolation, Rosenthal fibres and associated stress protein markers. The abundance of AQP4 mRNA transcripts in sublytic reactive astrocytes devoid of aquaporin-4 protein supported in vivo restoration following IgG-induced aquaporin-4 endocytosis/degradation. Astrocytic alterations extending beyond demyelinating lesions speak to astrocytopathy being an early and primary event in the evolving neuromyelitis optica lesion. Focal astrocytopathy observed without aquaporin-4 loss or lytic complement component deposition verifies that astrocytic reactions in neuromyelitis optica are not solely dependent on IgG-mediated aquaporin-4 loss or lysis by complement or by IgG-dependent leucocyte mediators. We conclude that neuromyelitis optica reflects a global astrocytopathy, initiated by binding of IgG to aquaporin-4 and not simply definable by demyelination and astrocytic lysis. The spectrum of astrocytic morphological changes in neuromyelitis optica attests to the complexity of factors influencing the range of astrocytic physiological responses to a targeted attack by aquaporin-4-specific IgG. Sublytic astrocytic reactions are no doubt an important determinant of the lesion’s evolution and potential for repair. Pharmacological manipulation of the astrocytic stress response may offer new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Yong Guo
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Vanda A Lennon
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.,Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Joseph E Parisi
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Bogdan Popescu
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | - Sean J Pittock
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Charles L Howe
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA.,Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Claudia F Lucchinetti
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
8
|
Elorza-Vidal X, Xicoy-Espaulella E, Pla-Casillanis A, Alonso-Gardón M, Gaitán-Peñas H, Engel-Pizcueta C, Fernández-Recio J, Estévez R. Structural basis for the dominant or recessive character of GLIALCAM mutations found in leukodystrophies. Hum Mol Genet 2021; 29:1107-1120. [PMID: 31960914 PMCID: PMC7206653 DOI: 10.1093/hmg/ddaa009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 12/27/2022] Open
Abstract
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a type of leukodystrophy characterized by white matter edema, and it is caused mainly by recessive mutations in MLC1 and GLIALCAM genes. These variants are called MLC1 and MLC2A with both types of patients sharing the same clinical phenotype. In addition, dominant mutations in GLIALCAM have also been identified in a subtype of MLC patients with a remitting phenotype. This variant has been named MLC2B. GLIALCAM encodes for an adhesion protein containing two immunoglobulin (Ig) domains and it is needed for MLC1 targeting to astrocyte–astrocyte junctions. Most mutations identified in GLIALCAM abolish GlialCAM targeting to junctions. However, it is unclear why some mutations behave as recessive or dominant. Here, we used a combination of biochemistry methods with a new developed anti-GlialCAM nanobody, double-mutants and cysteine cross-links experiments, together with computer docking, to create a structural model of GlialCAM homo-interactions. Using this model, we suggest that dominant mutations affect different GlialCAM–GlialCAM interacting surfaces in the first Ig domain, which can occur between GlialCAM molecules present in the same cell (cis) or present in neighbouring cells (trans). Our results provide a framework that can be used to understand the molecular basis of pathogenesis of all identified GLIALCAM mutations.
Collapse
Affiliation(s)
- Xabier Elorza-Vidal
- Unitat de Fisiologia, Departament de Ciències Fisiològiques, Genes Disease and Therapy Program IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain.,Centro de Investigación en red de enfermedades raras (CIBERER), ISCIII, Madrid, Spain
| | - Efren Xicoy-Espaulella
- Unitat de Fisiologia, Departament de Ciències Fisiològiques, Genes Disease and Therapy Program IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
| | - Adrià Pla-Casillanis
- Unitat de Fisiologia, Departament de Ciències Fisiològiques, Genes Disease and Therapy Program IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
| | - Marta Alonso-Gardón
- Unitat de Fisiologia, Departament de Ciències Fisiològiques, Genes Disease and Therapy Program IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
| | - Héctor Gaitán-Peñas
- Unitat de Fisiologia, Departament de Ciències Fisiològiques, Genes Disease and Therapy Program IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain.,Centro de Investigación en red de enfermedades raras (CIBERER), ISCIII, Madrid, Spain
| | - Carolyn Engel-Pizcueta
- Unitat de Fisiologia, Departament de Ciències Fisiològiques, Genes Disease and Therapy Program IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
| | - Juan Fernández-Recio
- Barcelona Supercomputing Center (BSC), Barcelona, Spain.,Institut de Biologia Molecular de Barcelona, CSIC, Barcelona, Spain.,Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC- Universidad de La Rioja- Gobierno de la Rioja, Logroño, Spain
| | - Raúl Estévez
- Unitat de Fisiologia, Departament de Ciències Fisiològiques, Genes Disease and Therapy Program IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain.,Centro de Investigación en red de enfermedades raras (CIBERER), ISCIII, Madrid, Spain
| |
Collapse
|
9
|
Tsunematsu T, Sakata S, Sanagi T, Tanaka KF, Matsui K. Region-Specific and State-Dependent Astrocyte Ca 2+ Dynamics during the Sleep-Wake Cycle in Mice. J Neurosci 2021; 41:5440-5452. [PMID: 34006590 PMCID: PMC8221592 DOI: 10.1523/jneurosci.2912-20.2021] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/06/2021] [Accepted: 05/02/2021] [Indexed: 11/21/2022] Open
Abstract
Neural activity is diverse, and varies depending on brain regions and sleep/wakefulness states. However, whether astrocyte activity differs between sleep/wakefulness states, and whether there are differences in astrocyte activity among brain regions remain poorly understood. Therefore, in this study, we recorded astrocyte intracellular calcium (Ca2+) concentrations of mice during sleep/wakefulness states in the cortex, hippocampus, hypothalamus, cerebellum, and pons using fiber photometry. For this purpose, male transgenic mice expressing the genetically encoded ratiometric Ca2+ sensor YCnano50 specifically in their astrocytes were used. We demonstrated that Ca2+ levels in astrocytes substantially decrease during rapid eye movement (REM) sleep, and increase after the onset of wakefulness. In contrast, differences in Ca2+ levels during non-REM (NREM) sleep were observed among the different brain regions, and no significant decrease was observed in the hypothalamus and pons. Further analyses focusing on the transition between sleep/wakefulness states and correlation analysis with the duration of REM sleep showed that Ca2+ dynamics differs among brain regions, suggesting the existence of several clusters, i.e., the first comprising the cortex and hippocampus, the second comprising the hypothalamus and pons, and the third comprising the cerebellum. Our study thus demonstrated that astrocyte Ca2+ levels change substantially according to sleep/wakefulness states. These changes were consistent in general unlike neural activity. However, we also clarified that Ca2+ dynamics varies depending on the brain region, implying that astrocytes may play various physiological roles in sleep.SIGNIFICANCE STATEMENT Sleep is an instinctive behavior of many organisms. In the previous five decades, the mechanism of the neural circuits controlling sleep/wakefulness states and the neural activities associated with sleep/wakefulness states in various brain regions have been elucidated. However, whether astrocytes, which are a type of glial cell, change their activity during different sleep/wakefulness states was poorly understood. Here, we demonstrated that dynamic changes in astrocyte Ca2+ concentrations occur in the cortex, hippocampus, hypothalamus, cerebellum, and pons of mice during natural sleep. Further analyses demonstrated that Ca2+ dynamics slightly differ among different brain regions, implying that the physiological roles of astrocytes in sleep/wakefulness might vary depending on the brain region.
Collapse
Affiliation(s)
- Tomomi Tsunematsu
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
- Advanced Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Tomomi Sanagi
- Advanced Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ko Matsui
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
10
|
Bosch A, Estévez R. Megalencephalic Leukoencephalopathy: Insights Into Pathophysiology and Perspectives for Therapy. Front Cell Neurosci 2021; 14:627887. [PMID: 33551753 PMCID: PMC7862579 DOI: 10.3389/fncel.2020.627887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/30/2020] [Indexed: 01/13/2023] Open
Abstract
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare genetic disorder belonging to the group of vacuolating leukodystrophies. It is characterized by megalencephaly, loss of motor functions, epilepsy, and mild mental decline. In brain biopsies of MLC patients, vacuoles were observed in myelin and in astrocytes surrounding blood vessels. It is mainly caused by recessive mutations in MLC1 and HEPACAM (also called GLIALCAM) genes. These disease variants are called MLC1 and MLC2A with both types of patients sharing the same clinical phenotype. Besides, dominant mutations in HEPACAM were also identified in a subtype of MLC patients (MLC2B) with a remitting phenotype. MLC1 and GlialCAM proteins form a complex mainly expressed in brain astrocytes at the gliovascular interface and in Bergmann glia at the cerebellum. Both proteins regulate several ion channels and transporters involved in the control of ion and water fluxes in glial cells, either directly influencing their location and function, or indirectly regulating associated signal transduction pathways. However, the MLC1/GLIALCAM complex function and the related pathological mechanisms leading to MLC are still unknown. It has been hypothesized that, in MLC, the role of glial cells in brain ion homeostasis is altered in both physiological and inflammatory conditions. There is no therapy for MLC patients, only supportive treatment. As MLC2B patients show an MLC reversible phenotype, we speculated that the phenotype of MLC1 and MLC2A patients could also be mitigated by the re-introduction of the correct gene even at later stages. To prove this hypothesis, we injected in the cerebellar subarachnoid space of Mlc1 knockout mice an adeno-associated virus (AAV) coding for human MLC1 under the control of the glial-fibrillary acidic protein promoter. MLC1 expression in the cerebellum extremely reduced myelin vacuolation at all ages in a dose-dependent manner. This study could be considered as the first preclinical approach for MLC. We also suggest other potential therapeutic strategies in this review.
Collapse
Affiliation(s)
- Assumpció Bosch
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences, Univ. Autònoma de Barcelona, Barcelona, Spain.,Unitat Mixta UAB-VHIR, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Raúl Estévez
- Departament de Ciències Fisiològiques, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
11
|
de Waard DM, Bugiani M. Astrocyte-Oligodendrocyte-Microglia Crosstalk in Astrocytopathies. Front Cell Neurosci 2020; 14:608073. [PMID: 33328899 PMCID: PMC7710860 DOI: 10.3389/fncel.2020.608073] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Defective astrocyte function due to a genetic mutation can have major consequences for microglia and oligodendrocyte physiology, which in turn affects the white matter integrity of the brain. This review addresses the current knowledge on shared and unique pathophysiological mechanisms of astrocytopathies, including vanishing white matter, Alexander disease, megalencephalic leukoencephalopathy with subcortical cysts, Aicardi-Goutières syndrome, and oculodentodigital dysplasia. The mechanisms of disease include protein accumulation, unbalanced secretion of extracellular matrix proteins, pro- and anti-inflammatory molecules, cytokines and chemokines by astrocytes, as well as an altered gap junctional network and a changed ionic and nutrient homeostasis. Interestingly, the extent to which astrogliosis and microgliosis are present in these astrocytopathies is highly variable. An improved understanding of astrocyte-microglia-oligodendrocyte crosstalk might ultimately lead to the identification of druggable targets for these, currently untreatable, severe conditions.
Collapse
Affiliation(s)
| | - Marianna Bugiani
- Department of Pathology, VU Medical center, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
12
|
Cohen-Salmon M, Slaoui L, Mazaré N, Gilbert A, Oudart M, Alvear-Perez R, Elorza-Vidal X, Chever O, Boulay AC. Astrocytes in the regulation of cerebrovascular functions. Glia 2020; 69:817-841. [PMID: 33058289 DOI: 10.1002/glia.23924] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022]
Abstract
Astrocytes are the most numerous type of neuroglia in the brain and have a predominant influence on the cerebrovascular system; they control perivascular homeostasis, the integrity of the blood-brain barrier, the dialogue with the peripheral immune system, the transfer of metabolites from the blood, and blood vessel contractility in response to neuronal activity. These regulatory processes occur in a specialized interface composed of perivascular astrocyte extensions that almost completely cover the cerebral blood vessels. Scientists have only recently started to study how this interface is formed and how it influences cerebrovascular functions. Here, we review the literature on the astrocytes' role in the regulation of the cerebrovascular system. We cover the anatomy and development of the gliovascular interface, the known gliovascular functions, and molecular factors, the latter's implication in certain pathophysiological situations, and recent cutting-edge experimental tools developed to examine the astrocytes' role at the vascular interface. Finally, we highlight some open questions in this field of research.
Collapse
Affiliation(s)
- Martine Cohen-Salmon
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Leila Slaoui
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Noémie Mazaré
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Alice Gilbert
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Marc Oudart
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Rodrigo Alvear-Perez
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Xabier Elorza-Vidal
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Oana Chever
- Normandie University, UNIROUEN, INSERM, DC2N, IRIB, Rouen, France
| | - Anne-Cécile Boulay
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| |
Collapse
|
13
|
Sánchez A, García-Lareu B, Puig M, Prat E, Ruberte J, Chillón M, Nunes V, Estévez R, Bosch A. Cerebellar Astrocyte Transduction as Gene Therapy for Megalencephalic Leukoencephalopathy. Neurotherapeutics 2020; 17:2041-2053. [PMID: 32372403 PMCID: PMC7851290 DOI: 10.1007/s13311-020-00865-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare genetic disorder belonging to the group of vacuolating leukodystrophies. It is characterized by megalencephaly, loss of motor functions, epilepsy, and mild mental decline. In brain biopsies of MLC patients, vacuoles were observed in myelin and in astrocytes surrounding blood vessels. There is no therapy for MLC patients, only supportive treatment. We show here a preclinical gene therapy approach for MLC using the Mlc1 knock-out mouse. An adeno-associated virus coding for human MLC1 under the control of the glial fibrillary acidic protein promoter was injected in the cerebellar subarachnoid space of Mlc1 knock-out and wild-type animals at 2 months of age, before the onset of the disease, as a preventive approach. We also tested a therapeutic strategy by injecting the animals at 5 months, once the histopathological abnormalities are starting, or at 15 months, when they have progressed to a more severe pathology. MLC1 expression in the cerebellum restored the adhesion molecule GlialCAM and the chloride channel ClC-2 localization in Bergmann glia, which both are mislocalized in Mlc1 knock-out model. More importantly, myelin vacuolation was extremely reduced in treated mice at all ages and correlated with the amount of expressed MLC1 in Bergmann glia, indicating not only the preventive potential of this strategy but also its therapeutic capacity. In summary, here we provide the first therapeutic approach for patients affected with MLC. This work may have also implications to treat other diseases affecting motor function such as ataxias.
Collapse
Affiliation(s)
- Angela Sánchez
- Department of Biochemistry and Molecular Biology and Institute of Neurosciences, Edifici H, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain
- Unitat Mixta UAB-VHIR, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Belén García-Lareu
- Department of Biochemistry and Molecular Biology and Institute of Neurosciences, Edifici H, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain
| | - Meritxell Puig
- Department of Biochemistry and Molecular Biology and Institute of Neurosciences, Edifici H, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain
- Unitat Mixta UAB-VHIR, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Esther Prat
- Laboratori de Genètica Molecular, Programa de Genes, Malaltia i Teràpia, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Unitat de Genètica, Departament de Ciències Fisiològiques, Facultad de Medicina i Ciències de la Salut, Univ. de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Ruberte
- Department of Animal Health and Anatomy and Center of Animal Biotechnology and Gene Therapy (CBATEG), Univ. Autònoma de Barcelona, Barcelona, Spain
| | - Miguel Chillón
- Department of Biochemistry and Molecular Biology and Institute of Neurosciences, Edifici H, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain
- Unitat Mixta UAB-VHIR, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Virginia Nunes
- Laboratori de Genètica Molecular, Programa de Genes, Malaltia i Teràpia, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Unitat de Genètica, Departament de Ciències Fisiològiques, Facultad de Medicina i Ciències de la Salut, Univ. de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Raul Estévez
- Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
- Departament de Ciències Fisiològiques, IDIBELL - Institute of Neurosciences, Universitat de Barcelona, E-08907, Barcelona, Spain.
| | - Assumpció Bosch
- Department of Biochemistry and Molecular Biology and Institute of Neurosciences, Edifici H, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain.
- Unitat Mixta UAB-VHIR, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
14
|
Garcia LM, Hacker JL, Sase S, Adang L, Almad A. Glial cells in the driver seat of leukodystrophy pathogenesis. Neurobiol Dis 2020; 146:105087. [PMID: 32977022 DOI: 10.1016/j.nbd.2020.105087] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/16/2020] [Accepted: 09/18/2020] [Indexed: 01/24/2023] Open
Abstract
Glia cells are often viewed as support cells in the central nervous system, but recent discoveries highlight their importance in physiological functions and in neurological diseases. Central to this are leukodystrophies, a group of progressive, neurogenetic disease affecting white matter pathology. In this review, we take a closer look at multiple leukodystrophies, classified based on the primary glial cell type that is affected. While white matter diseases involve oligodendrocyte and myelin loss, we discuss how astrocytes and microglia are affected and impinge on oligodendrocyte, myelin and axonal pathology. We provide an overview of the leukodystrophies covering their hallmark features, clinical phenotypes, diverse molecular pathways, and potential therapeutics for clinical trials. Glial cells are gaining momentum as cellular therapeutic targets for treatment of demyelinating diseases such as leukodystrophies, currently with no treatment options. Here, we bring the much needed attention to role of glia in leukodystrophies, an integral step towards furthering disease comprehension, understanding mechanisms and developing future therapeutics.
Collapse
Affiliation(s)
- Luis M Garcia
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Julia L Hacker
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Sunetra Sase
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Laura Adang
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Akshata Almad
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA.
| |
Collapse
|
15
|
Abstract
Leukodystrophies are genetically determined disorders affecting the white matter of the central nervous system. The combination of MRI pattern recognition and next-generation sequencing for the definition of novel disease entities has recently demonstrated that many leukodystrophies are due to the primary involvement and/or mutations in genes selectively expressed by cell types other than the oligodendrocytes, the myelin-forming cells in the brain. This has led to a new definition of leukodystrophies as genetic white matter disorders resulting from the involvement of any white matter structural component. As a result, the research has shifted its main focus from oligodendrocytes to other types of neuroglia. Astrocytes are the housekeeping cells of the nervous system, responsible for maintaining homeostasis and normal brain physiology and to orchestrate repair upon injury. Several lines of evidence show that astrocytic interactions with the other white matter cellular constituents play a primary pathophysiologic role in many leukodystrophies. These are thus now classified as astrocytopathies. This chapter addresses how the crosstalk between astrocytes, other glial cells, axons and non-neural cells are essential for the integrity and maintenance of the white matter in health. It also addresses the current knowledge of the cellular pathomechanisms of astrocytic leukodystrophies, and specifically Alexander disease, vanishing white matter, megalencephalic leukoencephalopathy with subcortical cysts and Aicardi-Goutière Syndrome.
Collapse
Affiliation(s)
- M S Jorge
- Department of Pathology, Free University Medical Centre, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, Free University Medical Centre, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Gilbert A, Vidal XE, Estevez R, Cohen-Salmon M, Boulay AC. Postnatal development of the astrocyte perivascular MLC1/GlialCAM complex defines a temporal window for the gliovascular unit maturation. Brain Struct Funct 2019; 224:1267-1278. [PMID: 30684007 DOI: 10.1007/s00429-019-01832-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/08/2019] [Indexed: 12/14/2022]
Abstract
Astrocytes, the most abundant glial cells of the central nervous system are morphologically complex. They display numerous processes interacting with synapses and blood vessels. At the vascular interface, astrocyte endfeet-terminated processes almost entirely cover the blood vessel surface and participate to the gliovascular unit where important vascular properties of the brain are set such as the blood-brain barrier (BBB) integrity. How specific morphological and functional interactions between astrocytes and the vascular compartment develop has not been fully investigated. Here, we elaborated an original experimental strategy to study the postnatal development of astrocyte perivascular endfeet. Using purified gliovascular units, we focused on the postnatal expression of MLC1 and GlialCAM, two transmembrane proteins forming a complex enriched at the junction between mature astrocyte perivascular endfeet. We showed that MLC1 and GlialCAM were enriched and assembled into mature complexes in astrocyte perivascular endfeet between postnatal days 10 and 15, after the formation of astrocyte perivascular Aquaporin 4 water channels. These events correlated with the increased expression of Claudin-5 and P-gP, two endothelial-specific BBB components. These results illustrate for the first time that astrocyte perivascular endfeet differentiation is a complex and progressive process which correlates with BBB maturation. Moreover, our results suggest that maturation of the astrocyte endfeet MLC1/GlialCAM complex between postnatal days 10 and 15 might be a key event in the gliovascular unit maturation.
Collapse
Affiliation(s)
- Alice Gilbert
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique CNRS, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale INSERM, U1050, 11 place Marcelin Berthelot Paris, Paris Cedex 05, 75005, France
- Paris Science Lettre Research University, Paris, 75005, France
| | - Xabier Elorza Vidal
- Unitat de Fisiología, Departament de Ciències Fisiològiques, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Raul Estevez
- Unitat de Fisiología, Departament de Ciències Fisiològiques, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Martine Cohen-Salmon
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique CNRS, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale INSERM, U1050, 11 place Marcelin Berthelot Paris, Paris Cedex 05, 75005, France.
- Paris Science Lettre Research University, Paris, 75005, France.
| | - Anne-Cécile Boulay
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique CNRS, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale INSERM, U1050, 11 place Marcelin Berthelot Paris, Paris Cedex 05, 75005, France
- Paris Science Lettre Research University, Paris, 75005, France
| |
Collapse
|
17
|
Estévez R, Elorza-Vidal X, Gaitán-Peñas H, Pérez-Rius C, Armand-Ugón M, Alonso-Gardón M, Xicoy-Espaulella E, Sirisi S, Arnedo T, Capdevila-Nortes X, López-Hernández T, Montolio M, Duarri A, Teijido O, Barrallo-Gimeno A, Palacín M, Nunes V. Megalencephalic leukoencephalopathy with subcortical cysts: A personal biochemical retrospective. Eur J Med Genet 2018; 61:50-60. [DOI: 10.1016/j.ejmg.2017.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/14/2017] [Accepted: 10/22/2017] [Indexed: 12/22/2022]
|
18
|
Dai CL, He WB, Du J, Tan YQ, Lu GX, Li W. A case of megalencephalic leukoencephalopathy with subcortical cysts type 1 was identified with a novel compound heterozygous alteration (c.135delC; c.423+2dupT) in China. Clin Case Rep 2017; 5:961-967. [PMID: 28588848 PMCID: PMC5458048 DOI: 10.1002/ccr3.986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/14/2017] [Accepted: 03/19/2017] [Indexed: 11/08/2022] Open
Abstract
We report a compound heterozygous mutation (c.135delC; c.423+2dupT) of MLC1 gene in a Chinese patient underlying infantile macrocephaly and neurological deterioration in early childhood. Brain MRI revealed diffusion abnormality in swollen white matter and a subcortical cyst. The cDNA sequencing analysis for the c.423+2dupT variant revealed skipping of exon 5.
Collapse
Affiliation(s)
- Cong-Ling Dai
- Institute of Reproductive and Stem Cell Engineering Central South University Hunan 410008 China
| | - Wen-Bin He
- Institute of Reproductive and Stem Cell Engineering Central South University Hunan 410008 China.,Reproductive and Genetic Hospital of Citic-Xiangya Hunan 410008 China
| | - Juan Du
- Institute of Reproductive and Stem Cell Engineering Central South University Hunan 410008 China.,Reproductive and Genetic Hospital of Citic-Xiangya Hunan 410008 China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering Central South University Hunan 410008 China.,Reproductive and Genetic Hospital of Citic-Xiangya Hunan 410008 China
| | - Guang-Xiu Lu
- Institute of Reproductive and Stem Cell Engineering Central South University Hunan 410008 China.,Reproductive and Genetic Hospital of Citic-Xiangya Hunan 410008 China.,National Engineering and Research Center of Human Stem Cells Changsha Hunan 410000 China
| | - Wen Li
- Institute of Reproductive and Stem Cell Engineering Central South University Hunan 410008 China.,Reproductive and Genetic Hospital of Citic-Xiangya Hunan 410008 China
| |
Collapse
|
19
|
Bugiani M, Dubey M, Breur M, Postma NL, Dekker MP, Ter Braak T, Boschert U, Abbink TEM, Mansvelder HD, Min R, van Weering JRT, van der Knaap MS. Megalencephalic leukoencephalopathy with cysts: the Glialcam-null mouse model. Ann Clin Transl Neurol 2017; 4:450-465. [PMID: 28695146 PMCID: PMC5497535 DOI: 10.1002/acn3.405] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 12/23/2022] Open
Abstract
Objective Megalencephalic leukoencephalopathy with cysts (MLC) is a genetic infantile‐onset disease characterized by macrocephaly and white matter edema due to loss of MLC1 function. Recessive mutations in either MLC1 or GLIALCAM cause the disease. MLC1 is involved in astrocytic volume regulation; GlialCAM ensures the correct membrane localization of MLC1. Their exact role in brain ion‐water homeostasis is only partly defined. We characterized Glialcam‐null mice for further studies. Methods We investigated the consequences of loss of GlialCAM in Glialcam‐null mice and compared GlialCAM developmental expression in mice and men. Results Glialcam‐null mice had early‐onset megalencephaly and increased brain water content. From 3 weeks, astrocytes were abnormal with swollen processes abutting blood vessels. Concomitantly, progressive white matter vacuolization developed due to intramyelinic edema. Glialcam‐null astrocytes showed abolished expression of MLC1, reduced expression of the chloride channel ClC‐2 and increased expression and redistribution of the water channel aquaporin4. Expression of other MLC1‐interacting proteins and the volume regulated anion channel LRRC8A was unchanged. In mice, GlialCAM expression increased until 3 weeks and then stabilized. In humans, GlialCAM expression was highest in the first 3 years to then decrease and stabilize from approximately 5 years. Interpretation Glialcam‐null mice replicate the early stages of the human disease with early‐onset intramyelinic edema. The earliest change is astrocytic swelling, further substantiating that a defect in astrocytic volume regulation is the primary cellular defect in MLC. GlialCAM expression affects expression of MLC1, ClC‐2 and aquaporin4, indicating that abnormal interplay between these proteins is a disease mechanism in megalencephalic leukoencephalopathy with cysts.
Collapse
Affiliation(s)
- Marianna Bugiani
- Department of Pediatrics/Child Neurology Amsterdam Neuroscience VU University Medical Center Amsterdam The Netherlands.,Department of Pathology Amsterdam Neuroscience VU University Medical Center Amsterdam The Netherlands
| | - Mohit Dubey
- Department of Pediatrics/Child Neurology Amsterdam Neuroscience VU University Medical Center Amsterdam The Netherlands.,Department of Integrative Neurophysiology Center for Neurogenomics and Cognitive Research Amsterdam Neuroscience VU University Amsterdam The Netherlands
| | - Marjolein Breur
- Department of Pediatrics/Child Neurology Amsterdam Neuroscience VU University Medical Center Amsterdam The Netherlands
| | - Nienke L Postma
- Department of Pediatrics/Child Neurology Amsterdam Neuroscience VU University Medical Center Amsterdam The Netherlands
| | - Marien P Dekker
- Department of Functional Genomics Center for Neurogenomics and Cognitive Research Amsterdam Neuroscience VU University Amsterdam The Netherlands
| | - Timo Ter Braak
- Department of Pediatrics/Child Neurology Amsterdam Neuroscience VU University Medical Center Amsterdam The Netherlands
| | - Ursula Boschert
- Translational Innovation Platform Immunology/Neurology EMD Serono Research & Development Institute Billerica 01821 Massachusetts
| | - Truus E M Abbink
- Department of Pediatrics/Child Neurology Amsterdam Neuroscience VU University Medical Center Amsterdam The Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology Center for Neurogenomics and Cognitive Research Amsterdam Neuroscience VU University Amsterdam The Netherlands
| | - Rogier Min
- Department of Pediatrics/Child Neurology Amsterdam Neuroscience VU University Medical Center Amsterdam The Netherlands.,Department of Integrative Neurophysiology Center for Neurogenomics and Cognitive Research Amsterdam Neuroscience VU University Amsterdam The Netherlands
| | - Jan R T van Weering
- Department of Functional Genomics Center for Neurogenomics and Cognitive Research Amsterdam Neuroscience VU University Amsterdam The Netherlands
| | - Marjo S van der Knaap
- Department of Pediatrics/Child Neurology Amsterdam Neuroscience VU University Medical Center Amsterdam The Netherlands.,Department of Functional Genomics Center for Neurogenomics and Cognitive Research Amsterdam Neuroscience VU University Amsterdam The Netherlands
| |
Collapse
|
20
|
Lanciotti A, Brignone MS, Visentin S, De Nuccio C, Catacuzzeno L, Mallozzi C, Petrini S, Caramia M, Veroni C, Minnone G, Bernardo A, Franciolini F, Pessia M, Bertini E, Petrucci TC, Ambrosini E. Megalencephalic leukoencephalopathy with subcortical cysts protein-1 regulates epidermal growth factor receptor signaling in astrocytes. Hum Mol Genet 2016; 25:1543-58. [DOI: 10.1093/hmg/ddw032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/03/2016] [Indexed: 01/13/2023] Open
|
21
|
Capdevila-Nortes X, Jeworutzki E, Elorza-Vidal X, Barrallo-Gimeno A, Pusch M, Estévez R. Structural determinants of interaction, trafficking and function in the ClC-2/MLC1 subunit GlialCAM involved in leukodystrophy. J Physiol 2015; 593:4165-80. [PMID: 26033718 DOI: 10.1113/jp270467] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/22/2015] [Indexed: 02/03/2023] Open
Abstract
KEY POINTS The extracellular domain of GlialCAM is necessary for its targeting to cell junctions, as well as for interactions with itself and MLC1 and ClC-2. The C-terminus of GlialCAM is not necessary for interaction but is required for targeting to cell junctions. The first three residues of the transmembrane segment of GlialCAM are required for GlialCAM-mediated ClC-2 activation. ABSTRACT Mutations in the genes encoding the astrocytic protein MLC1, the cell adhesion molecule GlialCAM or the Cl(-) channel ClC-2 underlie human leukodystrophies. GlialCAM binds to itself, to MLC1 and to ClC-2, and directs these proteins to cell-cell contacts. In addition, GlialCAM dramatically activates ClC-2 mediated currents. In the present study, we used mutagenesis studies combined with functional and biochemical analyses to determine which parts of GlialCAM are required to perform these cellular functions. We found that the extracellular domain of GlialCAM is necessary for cell junction targeting and for mediating interactions with itself or with MLC1 and ClC-2. The C-terminus is also necessary for proper targeting to cell-cell junctions but is not required for the biochemical interaction. Finally, we identified the first three amino acids of the transmembrane segment of GlialCAM as being essential for the activation of ClC-2 currents but not for targeting or biochemical interaction. Our results provide new mechanistic insights concerning the regulation of the cell biology and function of MLC1 and ClC-2 by GlialCAM.
Collapse
Affiliation(s)
- Xavier Capdevila-Nortes
- Sección de Fisiología, Departamento de Ciencias Fisiológicas II, Universidad de Barcelona, Barcelona, Spain
| | - Elena Jeworutzki
- Istituto di Biofisica, CNR, Genoa, Italy.,Present address IfGH-Myocellular Electrophysiology, Department of Cardiovascular Medicine, University Hospital of Münster, Münster, Germany
| | - Xabier Elorza-Vidal
- Sección de Fisiología, Departamento de Ciencias Fisiológicas II, Universidad de Barcelona, Barcelona, Spain.,U-750, Centro de investigación en red de enfermedades raras (CIBERER), ISCIII, Barcelona, Spain
| | - Alejandro Barrallo-Gimeno
- Sección de Fisiología, Departamento de Ciencias Fisiológicas II, Universidad de Barcelona, Barcelona, Spain
| | | | - Raúl Estévez
- Sección de Fisiología, Departamento de Ciencias Fisiológicas II, Universidad de Barcelona, Barcelona, Spain.,U-750, Centro de investigación en red de enfermedades raras (CIBERER), ISCIII, Barcelona, Spain
| |
Collapse
|
22
|
Shariati G, Hamid M, Saberi A, Andashti B, Galehdari H. Molecular prenatal diagnosis of megalencephalic leukoencephalopathy with subcortical cysts in a child from southwest of Iran. Clin Case Rep 2015; 3:114-7. [PMID: 25767710 PMCID: PMC4352366 DOI: 10.1002/ccr3.168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/26/2013] [Accepted: 09/23/2014] [Indexed: 11/21/2022] Open
Abstract
Megalencephalic leukoencephalopathy (MLC) is a rare neurological disorder with an autosomal recessive pattern. Clinical diagnosis was based on macrocephaly, recurrent seizure, and magnetic resonance imaging (MRI). Here we report first finding of a novel homozygous single base deletion in the MLC1 gene in an affected Iranian child causing a premature stop codon (p.L150fs.160X).
Collapse
Affiliation(s)
| | - Mohammad Hamid
- Department of Biotechnology Pasteur Institute Tehran Iran
| | - Alihossein Saberi
- Department of Genetics Medical School of Ahvaz Jundishapur University Ahvaz Iran
| | | | | |
Collapse
|
23
|
Dubey M, Bugiani M, Ridder MC, Postma NL, Brouwers E, Polder E, Jacobs JG, Baayen JC, Klooster J, Kamermans M, Aardse R, de Kock CPJ, Dekker MP, van Weering JRT, Heine VM, Abbink TEM, Scheper GC, Boor I, Lodder JC, Mansvelder HD, van der Knaap MS. Mice with megalencephalic leukoencephalopathy with cysts: A developmental angle. Ann Neurol 2014; 77:114-31. [DOI: 10.1002/ana.24307] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 10/27/2014] [Accepted: 11/02/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Mohit Dubey
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
- Department of Integrative Neurophysiology; Center for Neurogenomics and Cognitive Research, VU University
| | - Marianna Bugiani
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
- Department of Pathology; VU University Medical Center
| | - Margreet C. Ridder
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
| | - Nienke L. Postma
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
| | - Eelke Brouwers
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
- Department of Integrative Neurophysiology; Center for Neurogenomics and Cognitive Research, VU University
| | - Emiel Polder
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
| | - J. Gerbren Jacobs
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
- Department of Functional Genomics; Center for Neurogenomics and Cognitive Research, VU University
| | | | - Jan Klooster
- Department of Retinal Signal Processing; Netherlands Institute for Neuroscience-KNAW; Amsterdam Netherlands
| | - Maarten Kamermans
- Department of Retinal Signal Processing; Netherlands Institute for Neuroscience-KNAW; Amsterdam Netherlands
| | - Romy Aardse
- Department of Integrative Neurophysiology; Center for Neurogenomics and Cognitive Research, VU University
| | - Christiaan P. J. de Kock
- Department of Integrative Neurophysiology; Center for Neurogenomics and Cognitive Research, VU University
| | - Marien P. Dekker
- Department of Functional Genomics; Center for Neurogenomics and Cognitive Research, VU University
| | - Jan R. T. van Weering
- Department of Functional Genomics; Center for Neurogenomics and Cognitive Research, VU University
| | - Vivi M. Heine
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
- Department of Functional Genomics; Center for Neurogenomics and Cognitive Research, VU University
| | - Truus E. M. Abbink
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
| | - Gert C. Scheper
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
| | - Ilja Boor
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
| | - Johannes C. Lodder
- Department of Integrative Neurophysiology; Center for Neurogenomics and Cognitive Research, VU University
| | - Huibert D. Mansvelder
- Department of Integrative Neurophysiology; Center for Neurogenomics and Cognitive Research, VU University
| | - Marjo S. van der Knaap
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
- Department of Functional Genomics; Center for Neurogenomics and Cognitive Research, VU University
| |
Collapse
|
24
|
Sirisi S, Folgueira M, López-Hernández T, Minieri L, Pérez-Rius C, Gaitán-Peñas H, Zang J, Martínez A, Capdevila-Nortes X, De La Villa P, Roy U, Alia A, Neuhauss S, Ferroni S, Nunes V, Estévez R, Barrallo-Gimeno A. Megalencephalic leukoencephalopathy with subcortical cysts protein 1 regulates glial surface localization of GLIALCAM from fish to humans. Hum Mol Genet 2014; 23:5069-86. [DOI: 10.1093/hmg/ddu231] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
25
|
Suga A, Sadamoto K, Fujii M, Mandai M, Takahashi M. Proliferation potential of Müller glia after retinal damage varies between mouse strains. PLoS One 2014; 9:e94556. [PMID: 24747725 PMCID: PMC3991641 DOI: 10.1371/journal.pone.0094556] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 03/18/2014] [Indexed: 01/12/2023] Open
Abstract
Retinal Müller glia can serve as a source for regeneration of damaged retinal neurons in fish, birds and mammals. However, the proliferation rate of Müller glia has been reported to be low in the mammalian retina. To overcome this problem, growth factors and morphogens have been studied as potent promoters of Müller glial proliferation, but the molecular mechanisms that limit the proliferation of Müller glia in the mammalian retina remain unknown. In the present study, we found that the degree of damage-induced Müller glia proliferation varies across mouse strains. In mouse line 129×1/SvJ (129), there was a significantly larger proliferative response compared with that observed in C57BL/6 (B6) after photoreceptor cell death. Treatment with a Glycogen synthase kinase 3 (GSK3) inhibitor enhanced the proliferation of Müller glia in 129 but not in B6 mouse retinas. We therefore focused on the different gene expression patterns during retinal degeneration between B6 and 129. Expression levels of Cyclin D1 and Nestin correlated with the degree of Müller glial proliferation. A comparison of genome-wide gene expression between B6 and 129 showed that distinct sets of genes were upregulated in the retinas after damage, including immune response genes and chromatin remodeling factors.
Collapse
Affiliation(s)
- Akiko Suga
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Minatojima, Chu-O-ku, Kobe, Japan
| | - Kazuyo Sadamoto
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Minatojima, Chu-O-ku, Kobe, Japan
| | - Momo Fujii
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Minatojima, Chu-O-ku, Kobe, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Minatojima, Chu-O-ku, Kobe, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Minatojima, Chu-O-ku, Kobe, Japan
- * E-mail:
| |
Collapse
|
26
|
Disrupting MLC1 and GlialCAM and ClC-2 interactions in leukodystrophy entails glial chloride channel dysfunction. Nat Commun 2014; 5:3475. [PMID: 24647135 DOI: 10.1038/ncomms4475] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/18/2014] [Indexed: 11/08/2022] Open
Abstract
Defects in the astrocytic membrane protein MLC1, the adhesion molecule GlialCAM or the chloride channel ClC-2 underlie human leukoencephalopathies. Whereas GlialCAM binds ClC-2 and MLC1, and modifies ClC-2 currents in vitro, no functional connections between MLC1 and ClC-2 are known. Here we investigate this by generating loss-of-function Glialcam and Mlc1 mouse models manifesting myelin vacuolization. We find that ClC-2 is unnecessary for MLC1 and GlialCAM localization in brain, whereas GlialCAM is important for targeting MLC1 and ClC-2 to specialized glial domains in vivo and for modifying ClC-2's biophysical properties specifically in oligodendrocytes (OLs), the cells chiefly affected by vacuolization. Unexpectedly, MLC1 is crucial for proper localization of GlialCAM and ClC-2, and for changing ClC-2 currents. Our data unmask an unforeseen functional relationship between MLC1 and ClC-2 in vivo, which is probably mediated by GlialCAM, and suggest that ClC-2 participates in the pathogenesis of megalencephalic leukoencephalopathy with subcortical cysts.
Collapse
|
27
|
Barrallo-Gimeno A, Estévez R. GlialCAM, a glial cell adhesion molecule implicated in neurological disease. ADVANCES IN NEUROBIOLOGY 2014; 8:47-59. [PMID: 25300132 DOI: 10.1007/978-1-4614-8090-7_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
GlialCAM (also named HepaCAM) is a cell adhesion molecule expressed mainly in glial cells from the central nervous system and the liver. GlialCAM plays different roles according to its cellular context. In epithelial cell lines, overexpression of GlialCAM increases cell adhesion and motility but also inhibits cell growth in tumor cell lines, leading to senescence. In glial cells, however, its function is quite different. GlialCAM acts a regulator of subcellular traffic of MLC1, a protein with unknown function involved in the pathogenesis of megalencephalic leukoencephalopathy with subcortical cysts (MLC), a rare neurological condition. Moreover, GlialCAM itself has been found to be responsible for some of the cases of this disease. Additionally, GlialCAM also works as an auxiliary subunit of the chloride channel ClC-2, regulating its targeting to cell-cell junctions and modifying its functional properties. In summary, GlialCAM has different functions not only related to its adhesive nature, and defects in these functions lead to neurological disease.
Collapse
|
28
|
Expanding the spectrum of megalencephalic leukoencephalopathy with subcortical cysts in two patients with GLIALCAM mutations. Neurogenetics 2013; 15:41-8. [DOI: 10.1007/s10048-013-0381-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/09/2013] [Indexed: 10/26/2022]
|
29
|
Capdevila-Nortes X, López-Hernández T, Apaja PM, López de Heredia M, Sirisi S, Callejo G, Arnedo T, Nunes V, Lukacs GL, Gasull X, Estévez R. Insights into MLC pathogenesis: GlialCAM is an MLC1 chaperone required for proper activation of volume-regulated anion currents. Hum Mol Genet 2013; 22:4405-16. [DOI: 10.1093/hmg/ddt290] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
30
|
Abstract
Astrocytes are the predominant glial cell population in the central nervous system (CNS). Once considered only passive scaffolding elements, astrocytes are now recognised as cells playing essential roles in CNS development and function. They control extracellular water and ion homeostasis, provide substrates for energy metabolism, and regulate neurogenesis, myelination and synaptic transmission. Due to these multiple activities astrocytes have been implicated in almost all brain pathologies, contributing to various aspects of disease initiation, progression and resolution. Evidence is emerging that astrocyte dysfunction can be the direct cause of neurodegeneration, as shown in Alexander's disease where myelin degeneration is caused by mutations in the gene encoding the astrocyte-specific cytoskeleton protein glial fibrillary acidic protein. Recent studies point to a primary role for astrocytes in the pathogenesis of other genetic leukodystrophies such as megalencephalic leukoencephalopathy with subcortical cysts and vanishing white matter disease. The aim of this review is to summarize current knowledge of the pathophysiological role of astrocytes focusing on their contribution to the development of the above mentioned leukodystrophies and on new perspectives for the treatment of neurological disorders.
Collapse
|
31
|
van der Knaap MS, Boor I, Estévez R. Megalencephalic leukoencephalopathy with subcortical cysts: chronic white matter oedema due to a defect in brain ion and water homoeostasis. Lancet Neurol 2012; 11:973-85. [PMID: 23079554 DOI: 10.1016/s1474-4422(12)70192-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is characterised by chronic white matter oedema. The disease has an infantile onset and leads to slow neurological deterioration in most cases, but, surprisingly, some patients recover. The first disease gene, MLC1, identified in 2001, is mutated in 75% of patients. At that time, nothing was known about MLC1 protein function and the pathophysiology of MLC. More recently, HEPACAM (also called GLIALCAM) has been identified as a second disease gene. GlialCAM serves as an escort for MLC1 and the chloride channel CLC2. The defect in MLC1 has been shown to hamper the cell volume regulation of astrocytes. One of the most important consequences involves the potassium siphoning process, which is essential in brain ion and water homoeostasis. An understanding of the mechanisms of white matter oedema in MLC is emerging. Further insight into the specific function of MLC1 is necessary to find treatment targets.
Collapse
Affiliation(s)
- Marjo S van der Knaap
- Department of Pediatrics/Child Neurology, VU University Medical Centre, Amsterdam, Netherlands.
| | | | | |
Collapse
|
32
|
Figueroa-Romero C, Hur J, Bender DE, Delaney CE, Cataldo MD, Smith AL, Yung R, Ruden DM, Callaghan BC, Feldman EL. Identification of epigenetically altered genes in sporadic amyotrophic lateral sclerosis. PLoS One 2012; 7:e52672. [PMID: 23300739 PMCID: PMC3530456 DOI: 10.1371/journal.pone.0052672] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 11/19/2012] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a terminal disease involving the progressive degeneration of motor neurons within the motor cortex, brainstem and spinal cord. Most cases are sporadic (sALS) with unknown causes suggesting that the etiology of sALS may not be limited to the genotype of patients, but may be influenced by exposure to environmental factors. Alterations in epigenetic modifications are likely to play a role in disease onset and progression in ALS, as aberrant epigenetic patterns may be acquired throughout life. The aim of this study was to identify epigenetic marks associated with sALS. We hypothesize that epigenetic modifications may alter the expression of pathogenesis-related genes leading to the onset and progression of sALS. Using ELISA assays, we observed alterations in global methylation (5 mC) and hydroxymethylation (5 HmC) in postmortem sALS spinal cord but not in whole blood. Loci-specific differentially methylated and expressed genes in sALS spinal cord were identified by genome-wide 5mC and expression profiling using high-throughput microarrays. Concordant direction, hyper- or hypo-5mC with parallel changes in gene expression (under- or over-expression), was observed in 112 genes highly associated with biological functions related to immune and inflammation response. Furthermore, literature-based analysis identified potential associations among the epigenes. Integration of methylomics and transcriptomics data successfully revealed methylation changes in sALS spinal cord. This study represents an initial identification of epigenetic regulatory mechanisms in sALS which may improve our understanding of sALS pathogenesis for the identification of biomarkers and new therapeutic targets.
Collapse
Affiliation(s)
- Claudia Figueroa-Romero
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Junguk Hur
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Diane E. Bender
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Colin E. Delaney
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Michael D. Cataldo
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andrea L. Smith
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Raymond Yung
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Douglas M. Ruden
- Institute of Environmental Health Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Brian C. Callaghan
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
- National Center for Integrative Biomedical Informatics, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
33
|
Cell-autonomous inactivation of the reelin pathway impairs adult neurogenesis in the hippocampus. J Neurosci 2012; 32:12051-65. [PMID: 22933789 DOI: 10.1523/jneurosci.1857-12.2012] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Adult hippocampal neurogenesis is thought to be essential for learning and memory, and has been implicated in the pathogenesis of several disorders. Although recent studies have identified key factors regulating neuroprogenitor proliferation in the adult hippocampus, the mechanisms that control the migration and integration of adult-born neurons into circuits are largely unknown. Reelin is an extracellular matrix protein that is vital for neuronal development. Activation of the Reelin cascade leads to phosphorylation of Disabled-1, an adaptor protein required for Reelin signaling. Here we used transgenic mouse and retroviral reporters along with Reelin signaling gain-of-function and loss-of-function studies to show that the Reelin pathway regulates migration and dendritic development of adult-generated hippocampal neurons. Whereas overexpression of Reelin accelerated dendritic maturation, inactivation of the Reelin signaling pathway specifically in adult neuroprogenitor cells resulted in aberrant migration, decreased dendrite development, formation of ectopic dendrites in the hilus, and the establishment of aberrant circuits. Our findings support a cell-autonomous and critical role for the Reelin pathway in regulating dendritic development and the integration of adult-generated granule cells and point to this pathway as a key regulator of adult neurogenesis. Moreover, our data reveal a novel role of the Reelin cascade in adult brain function with potential implications for the pathogenesis of several neurological and psychiatric disorders.
Collapse
|
34
|
Mancini C, Vaula G, Scalzitti L, Cavalieri S, Bertini E, Aiello C, Lucchini C, Gatti RA, Brussino A, Brusco A. Megalencephalic leukoencephalopathy with subcortical cysts type 1 (MLC1) due to a homozygous deep intronic splicing mutation (c.895-226T>G) abrogated in vitro using an antisense morpholino oligonucleotide. Neurogenetics 2012; 13:205-14. [PMID: 22552818 DOI: 10.1007/s10048-012-0331-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 04/16/2012] [Indexed: 11/24/2022]
Abstract
Megalencephalic leukoencephalopathy with subcortical cysts is an autosomal recessive disease characterized by early onset macrocephaly; developmental delay; motor disability in the form of progressive spasticity and ataxia; seizures; cognitive decline; and characteristic magnetic resonance imaging findings. Mutations in two genes, MLC1 (22q13.33; 75 % of patients) or HEPACAM (11q24; 20 % of patients), are associated with the disease. We describe an adult MLC patient with moderate clinical symptoms. MLC1 cDNA analysis from lymphoblasts showed a strong transcript reduction and identified a 246-bp pseudoexon containing a premature stop codon between exons 10 and 11, due to a homozygous c.895-226 T>G deep-intronic mutation. This category of mutations is often overlooked, being outside of canonically sequenced genomic regions. The mutation c.895-226 T>G has a leaky effect on splicing leaving part of the full-length transcript. Its role on splicing was confirmed using a minigene assay and an antisense morpholinated oligonucleotide targeted to the aberrant splice site in vitro, which partially abrogated the mutation effect.
Collapse
Affiliation(s)
- Cecilia Mancini
- Department of Genetics, Biology and Biochemistry, University of Torino, via Santena, 19-10126 Torino, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Xie H, Wang J, Dhaunchak AS, Shang J, Kou L, Guo M, Wu Y, Gu Q, Colman D, Wu X, Jiang Y. Functional studies of MLC1 mutations in Chinese patients with megalencephalic leukoencephalopathy with subcortical cysts. PLoS One 2012; 7:e33087. [PMID: 22416245 PMCID: PMC3293920 DOI: 10.1371/journal.pone.0033087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 02/07/2012] [Indexed: 01/06/2023] Open
Abstract
Megalencephalic leukoencephalopathy with subcortical cysts (MLC, MIM# 604004) is an autosomal recessive inherited disease mostly resulting from MLC1 mutations. In this study, we finished the functional analysis of MLC1 mutations identified recently in Chinese patients, including five newly described missense mutations (R22Q, A32V, G73E, A275T, Y278H), one known nonsense mutation (Y198X), and two known missense mutations (S69L, T118M). We found MLC1wt was localized to the cell periphery, whereas mutant R22Q, A32V, G73E, S69L and T118M were trapped in the lumen of endoplasmic reticulum (ER) when we transfected the wild-type and mutant MLC1 in U373MG cells. Compared to wild type, the mutant G73E, T118M, Y198X and A275T transcript decreased and all mutants except R22Q had lower protein expression in transfected U373MG cells. Therefore, we propose that all these eight MLC1 mutations had functional effect either on their protein/mRNA expression, or on their intracellular protein localization, or both.
Collapse
Affiliation(s)
- Han Xie
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China
| | - Jingmin Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China
| | | | - Jing Shang
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China
- Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Liping Kou
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China
- Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Mangmang Guo
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China
| | - Qiang Gu
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China
| | - David Colman
- Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Xiru Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China
- * E-mail: (XW); (YJ)
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China
- * E-mail: (XW); (YJ)
| |
Collapse
|
36
|
Murillo-Cuesta S, Rodríguez-de la Rosa L, Cediel R, Lassaletta L, Varela-Nieto I. The role of insulin-like growth factor-I in the physiopathology of hearing. Front Mol Neurosci 2011; 4:11. [PMID: 21845174 PMCID: PMC3146045 DOI: 10.3389/fnmol.2011.00011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 07/11/2011] [Indexed: 01/19/2023] Open
Abstract
Insulin-like growth factor-I (IGF-I) belongs to the family of polypeptides of insulin, which play a central role in embryonic development and adult nervous system homeostasis by endocrine, autocrine, and paracrine mechanisms. IGF-I is fundamental for the regulation of cochlear development, growth, and differentiation, and its mutations are associated with hearing loss in mice and men. Low levels of IGF-I have been shown to correlate with different human syndromes showing hearing loss and with presbyacusis. Animal models are fundamental to understand the genetic, epigenetic, and environmental factors that contribute to human hearing loss. In the mouse, IGF-I serum levels decrease with aging and there is a concomitant hearing loss and retinal degeneration. In the Igf1(-/-) null mouse, hearing loss is due to neuronal loss, poor innervation of the sensory hair cells, and age-related stria vascularis alterations. In the inner ear, IGF-I actions are mediated by intracellular signaling networks, RAF, AKT, and p38 MAPK protein kinases modulate the expression and activity of transcription factors, as AP1, MEF2, FoxM1, and FoxP3, leading to the regulation of cell cycle and metabolism. Therapy with rhIGF-I has been approved in humans for the treatment of poor linear growth and certain neurodegenerative diseases. This review will discuss these findings and their implications in new IGF-I-based treatments for the protection or repair of hearing loss.
Collapse
Affiliation(s)
- Silvia Murillo-Cuesta
- Servicio de Evaluación Neurofuncional no Invasiva, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid Madrid, Spain
| | | | | | | | | |
Collapse
|
37
|
López-Hernández T, Sirisi S, Capdevila-Nortes X, Montolio M, Fernández-Dueñas V, Scheper GC, van der Knaap MS, Casquero P, Ciruela F, Ferrer I, Nunes V, Estévez R. Molecular mechanisms of MLC1 and GLIALCAM mutations in megalencephalic leukoencephalopathy with subcortical cysts. Hum Mol Genet 2011; 20:3266-77. [DOI: 10.1093/hmg/ddr238] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
38
|
Mutant GlialCAM causes megalencephalic leukoencephalopathy with subcortical cysts, benign familial macrocephaly, and macrocephaly with retardation and autism. Am J Hum Genet 2011; 88:422-32. [PMID: 21419380 DOI: 10.1016/j.ajhg.2011.02.009] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/12/2011] [Accepted: 02/21/2011] [Indexed: 11/23/2022] Open
Abstract
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a leukodystrophy characterized by early-onset macrocephaly and delayed-onset neurological deterioration. Recessive MLC1 mutations are observed in 75% of patients with MLC. Genetic-linkage studies failed to identify another gene. We recently showed that some patients without MLC1 mutations display the classical phenotype; others improve or become normal but retain macrocephaly. To find another MLC-related gene, we used quantitative proteomic analysis of affinity-purified MLC1 as an alternative approach and found that GlialCAM, an IgG-like cell adhesion molecule that is also called HepaCAM and is encoded by HEPACAM, is a direct MLC1-binding partner. Analysis of 40 MLC patients without MLC1 mutations revealed multiple different HEPACAM mutations. Ten patients with the classical, deteriorating phenotype had two mutations, and 18 patients with the improving phenotype had one mutation. Most parents with a single mutation had macrocephaly, indicating dominant inheritance. In some families with dominant HEPACAM mutations, the clinical picture and magnetic resonance imaging normalized, indicating that HEPACAM mutations can cause benign familial macrocephaly. In other families with dominant HEPACAM mutations, patients had macrocephaly and mental retardation with or without autism. Further experiments demonstrated that GlialCAM and MLC1 both localize in axons and colocalize in junctions between astrocytes. GlialCAM is additionally located in myelin. Mutant GlialCAM disrupts the localization of MLC1-GlialCAM complexes in astrocytic junctions in a manner reflecting the mode of inheritance. In conclusion, GlialCAM is required for proper localization of MLC1. HEPACAM is the second gene found to be mutated in MLC. Dominant HEPACAM mutations can cause either macrocephaly and mental retardation with or without autism or benign familial macrocephaly.
Collapse
|
39
|
Duarri A, Lopez de Heredia M, Capdevila-Nortes X, Ridder MC, Montolio M, López-Hernández T, Boor I, Lien CF, Hagemann T, Messing A, Gorecki DC, Scheper GC, Martínez A, Nunes V, van der Knaap MS, Estévez R. Knockdown of MLC1 in primary astrocytes causes cell vacuolation: a MLC disease cell model. Neurobiol Dis 2011; 43:228-38. [PMID: 21440627 DOI: 10.1016/j.nbd.2011.03.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 03/07/2011] [Accepted: 03/14/2011] [Indexed: 10/18/2022] Open
Abstract
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare type of leukodystrophy, in the majority of cases caused by mutations in the MLC1 gene. MRI from MLC patients shows diffuse cerebral white matter signal abnormality and swelling, with evidence of increased water content. Histopathology in a MLC patient shows vacuolation of myelin, which causes the cerebral white matter swelling. MLC1 protein is expressed in astrocytic processes that are part of blood- and cerebrospinal fluid-brain barriers. We aimed to create an astrocyte cell model of MLC disease. The characterization of rat astrocyte cultures revealed MLC1 localization in cell-cell contacts, which contains other proteins described typically in tight and adherent junctions. MLC1 localization in these contacts was demonstrated to depend on the actin cytoskeleton; it was not altered when disrupting the microtubule or the GFAP networks. In human tissues, MLC1 and the protein Zonula Occludens 1 (ZO-1), which is linked to the actin cytoskeleton, co-localized by EM immunostaining and were specifically co-immunoprecipitated. To create an MLC cell model, knockdown of MLC1 in primary astrocytes was performed. Reduction of MLC1 expression resulted in the appearance of intracellular vacuoles. This vacuolation was reversed by the co-expression of human MLC1. Re-examination of a human brain biopsy from an MLC patient revealed that vacuoles were also consistently present in astrocytic processes. Thus, vacuolation of astrocytes is also a hallmark of MLC disease.
Collapse
Affiliation(s)
- Anna Duarri
- Sección de Fisiología, Departamento de Ciencias Fisiológicas II, Universidad de Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
MLC1 trafficking and membrane expression in astrocytes: Role of caveolin-1 and phosphorylation. Neurobiol Dis 2010; 37:581-95. [DOI: 10.1016/j.nbd.2009.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 10/23/2009] [Accepted: 11/12/2009] [Indexed: 12/19/2022] Open
|
41
|
Sanchez-Calderon H, Rodriguez-de la Rosa L, Milo M, Pichel JG, Holley M, Varela-Nieto I. RNA microarray analysis in prenatal mouse cochlea reveals novel IGF-I target genes: implication of MEF2 and FOXM1 transcription factors. PLoS One 2010; 5:e8699. [PMID: 20111592 PMCID: PMC2810322 DOI: 10.1371/journal.pone.0008699] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 12/18/2009] [Indexed: 01/19/2023] Open
Abstract
Background Insulin-like growth factor-I (IGF-I) provides pivotal cell survival and differentiation signals during inner ear development throughout evolution. Homozygous mutations of human IGF1 cause syndromic sensorineural deafness, decreased intrauterine and postnatal growth rates, and mental retardation. In the mouse, deficits in IGF-I result in profound hearing loss associated with reduced survival, differentiation and maturation of auditory neurons. Nevertheless, little is known about the molecular basis of IGF-I activity in hearing and deafness. Methodology/Principal Findings A combination of quantitative RT-PCR, subcellular fractionation and Western blotting, along with in situ hybridization studies show IGF-I and its high affinity receptor to be strongly expressed in the embryonic and postnatal mouse cochlea. The expression of both proteins decreases after birth and in the cochlea of E18.5 embryonic Igf1−/− null mice, the balance of the main IGF related signalling pathways is altered, with lower activation of Akt and ERK1/2 and stronger activation of p38 kinase. By comparing the Igf1−/− and Igf1+/+ transcriptomes in E18.5 mouse cochleae using RNA microchips and validating their results, we demonstrate the up-regulation of the FoxM1 transcription factor and the misexpression of the neural progenitor transcription factors Six6 and Mash1 associated with the loss of IGF-I. Parallel, in silico promoter analysis of the genes modulated in conjunction with the loss of IGF-I revealed the possible involvement of MEF2 in cochlear development. E18.5 Igf1+/+ mouse auditory ganglion neurons showed intense MEF2A and MEF2D nuclear staining and MEF2A was also evident in the organ of Corti. At P15, MEF2A and MEF2D expression were shown in neurons and sensory cells. In the absence of IGF-I, nuclear levels of MEF2 were diminished, indicating less transcriptional MEF2 activity. By contrast, there was an increase in the nuclear accumulation of FoxM1 and a corresponding decrease in the nuclear cyclin-dependent kinase inhibitor p27Kip1. Conclusions/Significance We have defined the spatiotemporal expression of elements involved in IGF signalling during inner ear development and reveal novel regulatory mechanisms that are modulated by IGF-I in promoting sensory cell and neural survival and differentiation. These data will help us to understand the molecular bases of human sensorineural deafness associated to deficits in IGF-I.
Collapse
|
42
|
Duarri A, Teijido O, López-Hernández T, Scheper GC, Barriere H, Boor I, Aguado F, Zorzano A, Palacín M, Martínez A, Lukacs GL, van der Knaap MS, Nunes V, Estévez R. Molecular pathogenesis of megalencephalic leukoencephalopathy with subcortical cysts: mutations in MLC1 cause folding defects. Hum Mol Genet 2008; 17:3728-39. [PMID: 18757878 DOI: 10.1093/hmg/ddn269] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare type of leukodystrophy, most often caused by mutations in the MLC1 gene. MLC1 is an oligomeric plasma membrane (PM) protein of unknown function expressed mainly in glial cells and neurons. Most disease-causing missense mutations dramatically reduced the total and PM MLC1 expression levels in Xenopus oocytes and mammalian cells. The impaired expression of the mutants was verified in primary cultures of rat astrocytes, as well as human monocytes, cell types that endogenously express MLC1, demonstrating the relevance of the tissue culture models. Using a combination of biochemical, pharmacological and imaging methods, we also demonstrated that increased endoplasmatic reticulum-associated degradation and endo-lysosomal-associated degradation can contribute to the cell surface expression defect of the mutants. Based on these results, we suggest that MLC1 mutations reduce protein levels in vivo. Since the expression defect of the mutants could be rescued by exposing the mutant-protein expressing cells to low temperature and glycerol, a chemical chaperone, we propose that MLC belongs to the class of conformational diseases. Therefore, we suggest the use of pharmacological strategies that improve MLC1 expression to treat MLC patients.
Collapse
Affiliation(s)
- Anna Duarri
- CGMM-IDIBELL, l'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Jerbi Omezzine S, Ben Ameur H, Bousoffara R, Ayedi A, Hamza H, Sfar M. La leucoencéphalopathie mégalencéphalique avec kystes sous-corticaux : description de 4 nouveaux cas. ACTA ACUST UNITED AC 2008; 89:891-4. [DOI: 10.1016/s0221-0363(08)73877-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
|
45
|
Biochemical characterization of MLC1 protein in astrocytes and its association with the dystrophin-glycoprotein complex. Mol Cell Neurosci 2007; 37:480-93. [PMID: 18165104 DOI: 10.1016/j.mcn.2007.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 10/31/2007] [Accepted: 11/07/2007] [Indexed: 11/23/2022] Open
Abstract
MLC1 gene mutations have been associated with megalencephalic leukoencephalopathy with subcortical cysts (MLC), a rare neurologic disorder in children. The MLC1 gene encodes a membrane protein (MLC1) with unknown function which is mainly expressed in astrocytes. Using a newly developed anti-human MLC1 polyclonal antibody, we have investigated the biochemical properties and localization of MLC1 in cultured astrocytes and brain tissue and searched for evidence of a relationship between MLC1 and proteins of the dystrophin-glycoprotein complex (DGC). Cultured astrocytes express two MLC1 components showing different solubilisation properties and subcellular distribution. Most importantly, we show that the membrane-associated component of MLC1 (60-64 kDa) localizes in astrocytic lipid rafts together with dystroglycan, syntrophin and caveolin-1, and co-fractionates with the DGC in whole rat brain tissue. In the human brain, MLC1 protein is expressed in astrocyte processes and ependymal cells, where it colocalizes with dystroglycan and syntrophin. These data indicate that the DGC may be involved in the organization and function of the MLC1 protein in astrocyte membranes.
Collapse
|