1
|
Zhang Z, Zhang N, Ding S. Reactive Astrocytes Release GDNF to Promote Brain Recovery and Neuronal Survival Following Ischemic Stroke. Neurochem Res 2025; 50:117. [PMID: 40085335 PMCID: PMC11909085 DOI: 10.1007/s11064-025-04370-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/12/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Astrocytes are important glia cell type in the central nervous system. These cells can undergo transformation to a reactive state upon injury such as focal ischemic stroke (FIS). Reactive astrocytes are distinct from normal or homeostatic astrocytes in morphology, protein profiles and metabolic functions. Glial cell-derived neurotrophic factor (GDNF) was discovered as a potent survival neurotrophic factor for multiple subtypes of neurons and can be released from reactive astrocytes. In our previous study, we found that GDNF expression was upregulated in reactive astrocytes following ischemic stroke. Specific knock out of GDNF in reactive astrocytes exacerbated brain damage and motor deficits after ischemic stroke. Here, using in vitro and in vivo ischemia models, we investigated the effects of GDNF overexpression in astrocytes on neuronal survival and brain recovery after ischemia. We observed that astrocyte specific GDNF overexpression by viral transduction could decrease brain infarction and promote motor function recovery after photothrombosis (PT)-induced FIS. In addition, GDNF overexpression in astrocytes could increase the proliferation of reactive astrocytes and reduce oxidative stress after PT. Using the oxygen-glucose deprivation (OGD) model of cultured astrocytes, we confirmed that this ischemic insult could upregulate GDNF expression and increase its release to extracellular space. Transfection of GDNF DNA plasmid could further increase GDNF release after OGD. To further study the effects of reactive astrocytes-derived extracellular GDNF on neuronal survival after ischemia, cultured neurons subjected to OGD were exposed to astrocyte conditioned medium (ACM). The ACM collected from OGD subjected astrocyte culture could significantly reduce neuronal death, while neutralizing antibodies against GDNF and its receptors including GFRα1, RET and p-RET could suppress this beneficial effect. We also found that reactive astrocytes-derived GDNF could trigger the activation of RET receptors in cultured neurons and suppress neuronal mitochondrial fission and caspase-dependent cell apoptosis after OGD. Overall, our results indicate that reactive astrocytes-derived GDNF could play an important role in neuronal survival and functional recovery and underscore the non-cell autonomy underlying astrocyte-neuron interactions in brain repair after ischemic stroke.
Collapse
Affiliation(s)
- Zhe Zhang
- Dalton Cardiovascular Research Center, Columbia, USA
- Department of Chemical and Biomedical Engineering, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Nannan Zhang
- Dalton Cardiovascular Research Center, Columbia, USA
| | - Shinghua Ding
- Dalton Cardiovascular Research Center, Columbia, USA.
- Department of Chemical and Biomedical Engineering, University of Missouri-Columbia, Columbia, MO, 65211, USA.
- Dalton Cardiovascular Research Center, Department of Chemical and Biomedical Engineering, University of Missouri-Columbia, 134 Research Park Drive, Columbia, MO, 65211, USA.
| |
Collapse
|
2
|
Kim J, Yang S, Choi IS. Neutralization of Cannabidiol Neurotoxicity in Neuron-Astrocyte Sandwich Coculture. Adv Biol (Weinh) 2023; 7:e2300090. [PMID: 37080943 DOI: 10.1002/adbi.202300090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/04/2023] [Indexed: 04/22/2023]
Abstract
Cannabidiol (CBD), a main nonpsychoactive phytocannabinoid in the Cannabis genus, has been in the limelight for its potential health benefits in various neurological diseases. However, the safety issue of CBD in the nervous system has not been settled fully, while CBD has been reported to have mild side effects including dizziness and somnolence. In this work, a platform of neuron-astrocyte sandwich coculture to investigate the neurotoxicity of CBD, as well as the neuronal responses to CBD, in a more in vivo relevant mode is constructed. CBD (15 and 30 µm) causes the viability decrease, along with morphological damage, in the neuron-alone culture, whereas its neurotoxic effects are significantly attenuated by the supports of astrocytes in the neuron-astrocyte coculture. In addition, it is found that CBD-induced increase of intracellular Ca2+ concentration and depolarization of mitochondrial membrane potential, via activation of transient receptor potential vanilloid 1, are noticeably ameliorated by coculturing neurons with astrocytes. This work provides crucial information in the development of CBD as therapeutics for neurological disorders, as well as in a fundamental understanding of how CBD works in the nervous system.
Collapse
Affiliation(s)
- Jungnam Kim
- Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Seoin Yang
- Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Insung S Choi
- Department of Chemistry, KAIST, Daejeon, 34141, South Korea
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, South Korea
| |
Collapse
|
3
|
Su HC, Sun YT, Yang MY, Wu CY, Hsu CM. Dihydroisotanshinone I and BMAL-SIRT1 Pathway in an In Vitro 6-OHDA-Induced Model of Parkinson's Disease. Int J Mol Sci 2023; 24:11088. [PMID: 37446264 DOI: 10.3390/ijms241311088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Danshen has been widely used for the treatment of central nervous system diseases. We investigated the effect of dihydroisotanshinone I (DT), a compound extracted from Danshen, as well as the corresponding mechanisms in an in vitro-based 6-OHDA-induced Parkinson's disease (PD) model. SH-SY5Y human neuroblastoma cell lines were pretreated with 6-hydroxydopamine (6-OHDA) and challenged with DT. Subsequently, the cell viability and levels of reactive oxygen species (ROS) and caspase-3 were analyzed. The effect of DT on the 6-OHDA-treated SH-SY5Y cells and the expression of the core circadian clock genes were measured using a real-time quantitative polymerase chain reaction. Our results indicated that DT attenuated the 6-OHDA-induced cell death in the SH-SY5Y cells and suppressed ROS and caspase-3. Moreover, DT reversed both the RNA and protein levels of BMAL1 and SIRT1 in the 6-OHDA-treated SH-SY5Y cells. Additionally, the SIRT1 inhibitor attenuated the effect of DT on BMAL1 and reduced the cell viability. The DT and SIRT1 activators activated SIRT1 and BMAL1, and then reduced the death of the SH-SY5Y cells damaged by 6-OHDA. SIRT1 silencing was enhanced by DT and resulted in a BMAL1 downregulation and a reduction in cell viability. In conclusion, our investigation suggested that DT reduces cell apoptosis, including an antioxidative effect due to a reduction in ROS, and regulates the circadian genes by enhancing SIRT1 and suppressing BMAL1. DT may possess novel therapeutic potential for PD in the future, but further in vivo studies are still needed.
Collapse
Affiliation(s)
- Hui-Chen Su
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yuan-Ting Sun
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ming-Yu Yang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Ching-Yuan Wu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Cheng-Ming Hsu
- Department of Otolaryngology-Head and Neck Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Cancer Center, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| |
Collapse
|
4
|
Rademacher DJ. Potential for Therapeutic-Loaded Exosomes to Ameliorate the Pathogenic Effects of α-Synuclein in Parkinson's Disease. Biomedicines 2023; 11:biomedicines11041187. [PMID: 37189807 DOI: 10.3390/biomedicines11041187] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Pathogenic forms of α-synuclein (α-syn) are transferred to and from neurons, astrocytes, and microglia, which spread α-syn pathology in the olfactory bulb and the gut and then throughout the Parkinson's disease (PD) brain and exacerbate neurodegenerative processes. Here, we review attempts to minimize or ameliorate the pathogenic effects of α-syn or deliver therapeutic cargo into the brain. Exosomes (EXs) have several important advantages as carriers of therapeutic agents including an ability to readily cross the blood-brain barrier, the potential for targeted delivery of therapeutic agents, and immune resistance. Diverse cargo can be loaded via various methods, which are reviewed herein, into EXs and delivered into the brain. Genetic modification of EX-producing cells or EXs and chemical modification of EX have emerged as powerful approaches for the targeted delivery of therapeutic agents to treat PD. Thus, EXs hold great promise for the development of next-generation therapeutics for the treatment of PD.
Collapse
Affiliation(s)
- David J Rademacher
- Department of Microbiology and Immunology and Core Imaging Facility, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
5
|
Kim S, Pajarillo E, Nyarko-Danquah I, Aschner M, Lee E. Role of Astrocytes in Parkinson's Disease Associated with Genetic Mutations and Neurotoxicants. Cells 2023; 12:622. [PMID: 36831289 PMCID: PMC9953822 DOI: 10.3390/cells12040622] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons and the aggregation of Lewy bodies in the basal ganglia, resulting in movement impairment referred to as parkinsonism. However, the etiology of PD is not well known, with genetic factors accounting only for 10-15% of all PD cases. The pathogenetic mechanism of PD is not completely understood, although several mechanisms, such as oxidative stress and inflammation, have been suggested. Understanding the mechanisms of PD pathogenesis is critical for developing highly efficacious therapeutics. In the PD brain, dopaminergic neurons degenerate mainly in the basal ganglia, but recently emerging evidence has shown that astrocytes also significantly contribute to dopaminergic neuronal death. In this review, we discuss the role of astrocytes in PD pathogenesis due to mutations in α-synuclein (PARK1), DJ-1 (PARK7), parkin (PARK2), leucine-rich repeat kinase 2 (LRRK2, PARK8), and PTEN-induced kinase 1 (PINK1, PARK6). We also discuss PD experimental models using neurotoxins, such as paraquat, rotenone, 6-hydroxydopamine, and MPTP/MPP+. A more precise and comprehensive understanding of astrocytes' modulatory roles in dopaminergic neurodegeneration in PD will help develop novel strategies for effective PD therapeutics.
Collapse
Affiliation(s)
- Sanghoon Kim
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Edward Pajarillo
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Ivan Nyarko-Danquah
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Eunsook Lee
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
6
|
Leggio L, L'Episcopo F, Magrì A, Ulloa‐Navas MJ, Paternò G, Vivarelli S, Bastos CAP, Tirolo C, Testa N, Caniglia S, Risiglione P, Pappalardo F, Serra A, García‐Tárraga P, Faria N, Powell JJ, Peruzzotti‐Jametti L, Pluchino S, García‐Verdugo JM, Messina A, Marchetti B, Iraci N. Small Extracellular Vesicles Secreted by Nigrostriatal Astrocytes Rescue Cell Death and Preserve Mitochondrial Function in Parkinson's Disease. Adv Healthc Mater 2022; 11:e2201203. [PMID: 35856921 PMCID: PMC11468249 DOI: 10.1002/adhm.202201203] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/05/2022] [Indexed: 01/28/2023]
Abstract
Extracellular vesicles (EVs) are emerging as powerful players in cell-to-cell communication both in healthy and diseased brain. In Parkinson's disease (PD)-characterized by selective dopaminergic neuron death in ventral midbrain (VMB) and degeneration of their terminals in striatum (STR)-astrocytes exert dual harmful/protective functions, with mechanisms not fully elucidated. Here, this study shows that astrocytes from the VMB-, STR-, and VMB/STR-depleted brains release a population of small EVs in a region-specific manner. Interestingly, VMB-astrocytes secreted the highest rate of EVs, which is further exclusively increased in response to CCL3, a chemokine that promotes robust dopaminergic neuroprotection in different PD models. The neuroprotective potential of nigrostriatal astrocyte-EVs is investigated in differentiated versus undifferentiated SH-SY5Y cells exposed to oxidative stress and mitochondrial toxicity. EVs from both VMB- and STR-astrocytes counteract H2 O2 -induced caspase-3 activation specifically in differentiated cells, with EVs from CCL3-treated astrocytes showing a higher protective effect. High resolution respirometry further reveals that nigrostriatal astrocyte-EVs rescue neuronal mitochondrial complex I function impaired by the neurotoxin MPP+ . Notably, only EVs from VMB-astrocyte fully restore ATP production, again specifically in differentiated SH-SY5Y. These results highlight a regional diversity in the nigrostriatal system for the secretion and activities of astrocyte-EVs, with neuroprotective implications for PD.
Collapse
Affiliation(s)
- Loredana Leggio
- Department of Biomedical and Biotechnological SciencesUniversity of CataniaCatania95123Italy
| | | | - Andrea Magrì
- Department of Biological, Geological and Environmental SciencesUniversity of CataniaCatania95125Italy
| | - María José Ulloa‐Navas
- Laboratory of Compared NeurobiologyUniversity of Valencia‐CIBERNEDPaterna46980Spain
- Department of NeuroscienceMayo ClinicJacksonvilleFL32257USA
| | - Greta Paternò
- Department of Biomedical and Biotechnological SciencesUniversity of CataniaCatania95123Italy
| | - Silvia Vivarelli
- Department of Biomedical and Biotechnological SciencesUniversity of CataniaCatania95123Italy
| | | | | | | | | | - Pierpaolo Risiglione
- Department of Biological, Geological and Environmental SciencesUniversity of CataniaCatania95125Italy
| | - Fabrizio Pappalardo
- Department of Biomedical and Biotechnological SciencesUniversity of CataniaCatania95123Italy
| | | | | | - Nuno Faria
- Department of Veterinary MedicineUniversity of CambridgeCambridgeCB3 0ESUK
| | - Jonathan J. Powell
- Department of Veterinary MedicineUniversity of CambridgeCambridgeCB3 0ESUK
| | | | - Stefano Pluchino
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
| | | | - Angela Messina
- Department of Biological, Geological and Environmental SciencesUniversity of CataniaCatania95125Italy
| | - Bianca Marchetti
- Department of Biomedical and Biotechnological SciencesUniversity of CataniaCatania95123Italy
- Oasi Research Institute‐IRCCSTroina94018Italy
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological SciencesUniversity of CataniaCatania95123Italy
| |
Collapse
|
7
|
Zhang Z, Sun GY, Ding S. Glial Cell Line-Derived Neurotrophic Factor and Focal Ischemic Stroke. Neurochem Res 2021; 46:2638-2650. [PMID: 33591443 PMCID: PMC8364922 DOI: 10.1007/s11064-021-03266-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 11/29/2022]
Abstract
Focal ischemic stroke (FIS) is a leading cause of human debilitation and death. Following the onset of a FIS, the brain experiences a series of spatiotemporal changes which are exemplified in different pathological processes. One prominent feature of FIS is the development of reactive astrogliosis and glial scar formation in the peri-infarct region (PIR). During the subacute phase, astrocytes in PIR are activated, referred to as reactive astrocytes (RAs), exhibit changes in morphology (hypotrophy), show an increased proliferation capacity, and altered gene expression profile, a phenomenon known as reactive astrogliosis. Subsequently, the morphology of RAs remains stable, and proliferation starts to decline together with the formation of glial scars. Reactive astrogliosis and glial scar formation eventually cause substantial tissue remodeling and changes in permanent structure around the PIR. Glial cell line-derived neurotrophic factor (GDNF) was originally isolated from a rat glioma cell-line and regarded as a potent survival neurotrophic factor. Under normal conditions, GDNF is expressed in neurons but is upregulated in RAs after FIS. This review briefly describes properties of GDNF, its receptor-mediated signaling pathways, as well as recent studies regarding the role of RAs-derived GDNF in neuronal protection and brain recovery. These results provide evidence suggesting an important role of RA-derived GDNF in intrinsic brain repair and recovery after FIS, and thus targeting GDNF in RAs may be effective for stroke therapy.
Collapse
Affiliation(s)
- Zhe Zhang
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Grace Y Sun
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Shinghua Ding
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO, 65211, USA.
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri-Columbia, Columbia, MO, 65211, USA.
- Dalton Cardiovascular Research Center, Department of Biomedical, Biological and Chemical Engineering, University of Missouri-Columbia, 134 Research Park Drive, Columbia, MO, 65211, USA.
| |
Collapse
|
8
|
Sanchez A, Morales I, Rodriguez-Sabate C, Sole-Sabater M, Rodriguez M. Astrocytes, a Promising Opportunity to Control the Progress of Parkinson's Disease. Biomedicines 2021; 9:biomedicines9101341. [PMID: 34680458 PMCID: PMC8533570 DOI: 10.3390/biomedicines9101341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022] Open
Abstract
At present, there is no efficient treatment to prevent the evolution of Parkinson’s disease (PD). PD is generated by the concurrent activity of multiple factors, which is a serious obstacle for the development of etio-pathogenic treatments. Astrocytes may act on most factors involved in PD and the promotion of their neuroprotection activity may be particularly suitable to prevent the onset and progression of this basal ganglia (BG) disorder. The main causes proposed for PD, the ability of astrocytes to control these causes, and the procedures that can be used to promote the neuroprotective action of astrocytes will be commented upon, here.
Collapse
Affiliation(s)
- Alberto Sanchez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, 38200 Tenerife, Spain; (A.S.); (I.M.); (C.R.-S.)
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Ingrid Morales
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, 38200 Tenerife, Spain; (A.S.); (I.M.); (C.R.-S.)
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Clara Rodriguez-Sabate
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, 38200 Tenerife, Spain; (A.S.); (I.M.); (C.R.-S.)
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Department of Psychiatry, Getafe University Hospital, 28905 Madrid, Spain
| | - Miguel Sole-Sabater
- Department of Neurology, La Candelaria University Hospital, 38010 Tenerife, Spain;
| | - Manuel Rodriguez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, 38200 Tenerife, Spain; (A.S.); (I.M.); (C.R.-S.)
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Correspondence: ; Tel.: +34-922-319361; Fax: +34-922-319397
| |
Collapse
|
9
|
Chen Q, Jiang H, Wang Z, Cai LY, Jiang YC, Xie L, Zhou Y, Zeng X, Ji N, Shen YQ, Chen QM. Adrenergic Blockade by Nebivolol to Suppress Oral Squamous Cell Carcinoma Growth via Endoplasmic Reticulum Stress and Mitochondria Dysfunction. Front Pharmacol 2021; 12:691998. [PMID: 34456721 PMCID: PMC8387679 DOI: 10.3389/fphar.2021.691998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/08/2021] [Indexed: 02/05/2023] Open
Abstract
Adrenergic nerve fibers in the tumor microenvironment promote tumor growth and represent a potential target for cancer therapy. However, the effectiveness of targeting adrenergic nerve fibers for oral squamous cell carcinoma (OSCC) therapy needs to be evaluated by preclinical data. Herein, the 4NQO-induced and orthotopic xenograft OSCC mice models were established. We demonstrated that using 6OHDA chemical denervation as well as using nebivolol adrenergic blockade could halt the oral mucosa carcinogenesis. Our preclinical studies suggested that nebivolol, which is widely used to treat cardiovascular diseases, can be repositioned as a potential candidate to treat OSCC. Remarkably, we revealed the precise effect and mechanism of nebivolol on OSCC cells proliferation, cell cycle, and cell death. Administration of nebivolol could activate the endoplasmic reticulum (ER) stress signaling pathway through increasing the expression of inducible nitric oxide synthase, which subsequently triggers the integrated stress response and cell growth arrest. Simultaneously, ER stress also induced mitochondrial dysfunction in OSCC cells. We found that the accumulation of dysfunctional mitochondria with the impaired electron transport chain caused increasing reactive oxygen species production, which ultimately resulted in OSCC cell death. Altogether, our finding suggested a novel therapeutic opportunity for OSCC by targeting adrenergic nerve fibers, and repurposing nebivolol to treat OSCC can be represented as an effective strategy.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Han Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhen Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lu-Yao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu-Chen Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liang Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qian-Ming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Guo Q, Wang B, Wang X, Smith WW, Zhu Y, Liu Z. Activation of Nrf2 in Astrocytes Suppressed PD-Like Phenotypes via Antioxidant and Autophagy Pathways in Rat and Drosophila Models. Cells 2021; 10:1850. [PMID: 34440619 PMCID: PMC8394528 DOI: 10.3390/cells10081850] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
The oxidative-stress-induced impairment of autophagy plays a critical role in the pathogenesis of Parkinson's disease (PD). In this study, we investigated whether the alteration of Nrf2 in astrocytes protected against 6-OHDA (6-hydroxydopamine)- and rotenone-induced PD-like phenotypes, using 6-OHDA-induced rat PD and rotenone-induced Drosophila PD models. In the PD rat model, we found that Nrf2 expression was significantly higher in astrocytes than in neurons. CDDO-Me (CDDO methyl ester, an Nrf2 inducer) administration attenuated PD-like neurodegeneration mainly through Nrf2 activation in astrocytes by activating the antioxidant signaling pathway and enhancing autophagy in the substantia nigra and striatum. In the PD Drosophila model, the overexpression of Nrf2 in glial cells displayed more protective effects than such overexpression in neurons. Increased Nrf2 expression in glial cells significantly reduced oxidative stress and enhanced autophagy in the brain tissue. The administration of the Nrf2 inhibitor ML385 reduced the neuroprotective effect of Nrf2 through the inhibition of the antioxidant signaling pathway and autophagy pathway. The autophagy inhibitor 3-MA partially reduced the neuroprotective effect of Nrf2 through the inhibition of the autophagy pathway, but not the antioxidant signaling pathway. Moreover, Nrf2 knockdown caused neurodegeneration in flies. Treatment with CDDO-Me attenuated the Nrf2-knockdown-induced degeneration in the flies through the activation of the antioxidant signaling pathway and increased autophagy. An autophagy inducer, rapamycin, partially rescued the neurodegeneration in Nrf2-knockdown Drosophila by enhancing autophagy. Our results indicate that the activation of the Nrf2-linked signaling pathways in glial cells plays an important neuroprotective role in PD models. Our findings not only provide a novel insight into the mechanisms of Nrf2-antioxidant-autophagy signaling, but also provide potential targets for PD interventions.
Collapse
Affiliation(s)
- Qing Guo
- Department of Human Anatomy and Cytoneurobiology, Medical School of Soochow University, Suzhou 215123, China; (Q.G.); (B.W.); (X.W.)
| | - Bing Wang
- Department of Human Anatomy and Cytoneurobiology, Medical School of Soochow University, Suzhou 215123, China; (Q.G.); (B.W.); (X.W.)
| | - Xiaobo Wang
- Department of Human Anatomy and Cytoneurobiology, Medical School of Soochow University, Suzhou 215123, China; (Q.G.); (B.W.); (X.W.)
| | - Wanli W. Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Yi Zhu
- Department of Pharmacology, Medical School of Soochow University, Suzhou 215123, China
| | - Zhaohui Liu
- Department of Human Anatomy and Cytoneurobiology, Medical School of Soochow University, Suzhou 215123, China; (Q.G.); (B.W.); (X.W.)
| |
Collapse
|
11
|
Mavroeidi P, Xilouri M. Neurons and Glia Interplay in α-Synucleinopathies. Int J Mol Sci 2021; 22:4994. [PMID: 34066733 PMCID: PMC8125822 DOI: 10.3390/ijms22094994] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022] Open
Abstract
Accumulation of the neuronal presynaptic protein alpha-synuclein within proteinaceous inclusions represents the key histophathological hallmark of a spectrum of neurodegenerative disorders, referred to by the umbrella term a-synucleinopathies. Even though alpha-synuclein is expressed predominantly in neurons, pathological aggregates of the protein are also found in the glial cells of the brain. In Parkinson's disease and dementia with Lewy bodies, alpha-synuclein accumulates mainly in neurons forming the Lewy bodies and Lewy neurites, whereas in multiple system atrophy, the protein aggregates mostly in the glial cytoplasmic inclusions within oligodendrocytes. In addition, astrogliosis and microgliosis are found in the synucleinopathy brains, whereas both astrocytes and microglia internalize alpha-synuclein and contribute to the spread of pathology. The mechanisms underlying the pathological accumulation of alpha-synuclein in glial cells that under physiological conditions express low to non-detectable levels of the protein are an area of intense research. Undoubtedly, the presence of aggregated alpha-synuclein can disrupt glial function in general and can contribute to neurodegeneration through numerous pathways. Herein, we summarize the current knowledge on the role of alpha-synuclein in both neurons and glia, highlighting the contribution of the neuron-glia connectome in the disease initiation and progression, which may represent potential therapeutic target for a-synucleinopathies.
Collapse
Affiliation(s)
| | - Maria Xilouri
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| |
Collapse
|
12
|
Alqawlaq S, Livne-Bar I, Williams D, D'Ercole J, Leung SW, Chan D, Tuccitto A, Datti A, Wrana JL, Corbett AH, Schmitt-Ulms G, Sivak JM. An endogenous PI3K interactome promoting astrocyte-mediated neuroprotection identifies a novel association with RNA-binding protein ZC3H14. J Biol Chem 2021; 296:100118. [PMID: 33234594 PMCID: PMC7948738 DOI: 10.1074/jbc.ra120.015389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 11/06/2022] Open
Abstract
Astrocytes can support neuronal survival through a range of secreted signals that protect against neurotoxicity, oxidative stress, and apoptotic cascades. Thus, analyzing the effects of the astrocyte secretome may provide valuable insight into these neuroprotective mechanisms. Previously, we characterized a potent neuroprotective activity mediated by retinal astrocyte conditioned media (ACM) on retinal and cortical neurons in metabolic stress models. However, the molecular mechanism underlying this complex activity in neuronal cells has remained unclear. Here, a chemical genetics screen of kinase inhibitors revealed phosphoinositide 3-kinase (PI3K) as a central player transducing ACM-mediated neuroprotection. To identify additional proteins contributing to the protective cascade, endogenous PI3K was immunoprecipitated from neuronal cells exposed to ACM or control media, followed by MS/MS proteomic analyses. These data pointed toward a relatively small number of proteins that coimmunoprecipitated with PI3K, and surprisingly only five were regulated by the ACM signal. These hits included expected PI3K interactors, such as the platelet-derived growth factor receptor A (PDGFRA), as well as novel RNA-binding protein interactors ZC3H14 (zinc finger CCCH-type containing 14) and THOC1 (THO complex protein 1). In particular, ZC3H14 has recently emerged as an important RNA-binding protein with multiple roles in posttranscriptional regulation. In validation studies, we show that PI3K recruitment of ZC3H14 is necessary for PDGF-induced neuroprotection and that this interaction is present in primary retinal ganglion cells. Thus, we identified a novel non-cell autonomous neuroprotective signaling cascade mediated through PI3K that requires recruitment of ZC3H14 and may present a promising strategy to promote astrocyte-secreted prosurvival signals.
Collapse
Affiliation(s)
- Samih Alqawlaq
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Izhar Livne-Bar
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada
| | - Joseph D'Ercole
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Sara W Leung
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Darren Chan
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Alessandra Tuccitto
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Alessandro Datti
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jeffrey L Wrana
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada
| | - Jeremy M Sivak
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Gómez-Gálvez Y, Gates MA. Paclitaxel is effective for controlling astrocyte proliferation in vitro: Implications for generating ventral mesencephalic cultures enriched with dopamine neurons. J Neurosci Methods 2020; 351:109065. [PMID: 33387573 DOI: 10.1016/j.jneumeth.2020.109065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Primary embryonic ventral mesencephalic (VM) cultures are a high throughput tool for understanding and manipulating dopamine neurons, to study the mechanisms that trigger their degeneration during Parkinson's disease (PD), and to test new drugs aimed at treating the disease. Unfortunately, primary cell cultures are often quickly overwhelmed by dividing astrocytes which both obscure neuronal cells and distort the cellular composition that exists in vivo. NEW METHOD To develop a new in vitro system whereby astrocyte division can be readily controlled while maintaining neuronal integrity, VM cultures were treated with different doses (1.75, 3.5, 7, 14 nM) of the anti-mitotic drug paclitaxel for up to seven days in vitro. The study subsequently sought to determine the importance of astrocytes in dopamine neuron survival when challenged with an exposure to the toxin 6-hydroxydopamine (6-OHDA). RESULTS Optical density (O.D.) measures of GFAP expression and counts of β-III tubulin and tyrosine hydroxylase positive neurons reveals that a low dose of 3.5 nM of paclitaxel significantly reduced the density of GFAP + astrocytes in primary VM cultures, while maintaining the viability of neurons and dopamine neurons. Interestingly, a reduction of GFAP + astrocytes within primary VM cultures did not reveal any statistically significant differences in the number of dopamine neurons surviving treatment with 6-OHDA. CONCLUSIONS These findings detail a quick and simple method for stabilising astrocyte numbers in primary VM cultures, without affecting the viability of dopamine neurons, and suggest that astrocytes may not enhance the survival of dopamine neurons when challenged with the 6-OHDA toxin.
Collapse
Affiliation(s)
- Yolanda Gómez-Gálvez
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, UK; School of Life Sciences, Keele University, Staffordshire, UK; School of Medicine, Keele University, Staffordshire, UK
| | - Monte A Gates
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, UK; School of Medicine, Keele University, Staffordshire, UK.
| |
Collapse
|
14
|
Linnerbauer M, Rothhammer V. Protective Functions of Reactive Astrocytes Following Central Nervous System Insult. Front Immunol 2020; 11:573256. [PMID: 33117368 PMCID: PMC7561408 DOI: 10.3389/fimmu.2020.573256] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022] Open
Abstract
Astrocytes play important roles in numerous central nervous system disorders including autoimmune inflammatory, hypoxic, and degenerative diseases such as Multiple Sclerosis, ischemic stroke, and Alzheimer’s disease. Depending on the spatial and temporal context, activated astrocytes may contribute to the pathogenesis, progression, and recovery of disease. Recent progress in the dissection of transcriptional responses to varying forms of central nervous system insult has shed light on the mechanisms that govern the complexity of reactive astrocyte functions. While a large body of research focuses on the pathogenic effects of reactive astrocytes, little is known about how they limit inflammation and contribute to tissue regeneration. However, these protective astrocyte pathways might be of relevance for the understanding of the underlying pathology in disease and may lead to novel targeted approaches to treat autoimmune inflammatory and degenerative disorders of the central nervous system. In this review article, we have revisited the emerging concept of protective astrocyte functions and discuss their role in the recovery from inflammatory and ischemic disease as well as their role in degenerative disorders. Focusing on soluble astrocyte derived mediators, we aggregate the existing knowledge on astrocyte functions in the maintenance of homeostasis as well as their reparative and tissue-protective function after acute lesions and in neurodegenerative disorders. Finally, we give an outlook of how these mediators may guide future therapeutic strategies to tackle yet untreatable disorders of the central nervous system.
Collapse
Affiliation(s)
- Mathias Linnerbauer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Veit Rothhammer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
15
|
Leggio L, Paternò G, Vivarelli S, L’Episcopo F, Tirolo C, Raciti G, Pappalardo F, Giachino C, Caniglia S, Serapide MF, Marchetti B, Iraci N. Extracellular Vesicles as Nanotherapeutics for Parkinson's Disease. Biomolecules 2020; 10:E1327. [PMID: 32948090 PMCID: PMC7563168 DOI: 10.3390/biom10091327] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are naturally occurring membranous structures secreted by normal and diseased cells, and carrying a wide range of bioactive molecules. In the central nervous system (CNS), EVs are important in both homeostasis and pathology. Through receptor-ligand interactions, direct fusion, or endocytosis, EVs interact with their target cells. Accumulating evidence indicates that EVs play crucial roles in the pathogenesis of many neurodegenerative disorders (NDs), including Parkinson's disease (PD). PD is the second most common ND, characterized by the progressive loss of dopaminergic (DAergic) neurons within the Substantia Nigra pars compacta (SNpc). In PD, EVs are secreted by both neurons and glial cells, with either beneficial or detrimental effects, via a complex program of cell-to-cell communication. The functions of EVs in PD range from their etiopathogenetic relevance to their use as diagnostic tools and innovative carriers of therapeutics. Because they can cross the blood-brain barrier, EVs can be engineered to deliver bioactive molecules (e.g., small interfering RNAs, catalase) within the CNS. This review summarizes the latest findings regarding the role played by EVs in PD etiology, diagnosis, prognosis, and therapy, with a particular focus on their use as novel PD nanotherapeutics.
Collapse
Affiliation(s)
- Loredana Leggio
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (L.L.); (G.P.); (S.V.); (G.R.); (F.P.); (M.F.S.)
| | - Greta Paternò
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (L.L.); (G.P.); (S.V.); (G.R.); (F.P.); (M.F.S.)
| | - Silvia Vivarelli
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (L.L.); (G.P.); (S.V.); (G.R.); (F.P.); (M.F.S.)
| | - Francesca L’Episcopo
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy; (F.L.); (C.T.); (C.G.); (S.C.)
| | - Cataldo Tirolo
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy; (F.L.); (C.T.); (C.G.); (S.C.)
| | - Gabriele Raciti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (L.L.); (G.P.); (S.V.); (G.R.); (F.P.); (M.F.S.)
| | - Fabrizio Pappalardo
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (L.L.); (G.P.); (S.V.); (G.R.); (F.P.); (M.F.S.)
| | - Carmela Giachino
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy; (F.L.); (C.T.); (C.G.); (S.C.)
| | - Salvatore Caniglia
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy; (F.L.); (C.T.); (C.G.); (S.C.)
| | - Maria Francesca Serapide
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (L.L.); (G.P.); (S.V.); (G.R.); (F.P.); (M.F.S.)
| | - Bianca Marchetti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (L.L.); (G.P.); (S.V.); (G.R.); (F.P.); (M.F.S.)
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy; (F.L.); (C.T.); (C.G.); (S.C.)
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (L.L.); (G.P.); (S.V.); (G.R.); (F.P.); (M.F.S.)
| |
Collapse
|
16
|
Marchetti B. Nrf2/Wnt resilience orchestrates rejuvenation of glia-neuron dialogue in Parkinson's disease. Redox Biol 2020; 36:101664. [PMID: 32863224 PMCID: PMC7395594 DOI: 10.1016/j.redox.2020.101664] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress and inflammation have long been recognized to contribute to Parkinson's disease (PD), a common movement disorder characterized by the selective loss of midbrain dopaminergic neurons (mDAn) of the substantia nigra pars compacta (SNpc). The causes and mechanisms still remain elusive, but a complex interplay between several genes and a number of interconnected environmental factors, are chiefly involved in mDAn demise, as they intersect the key cellular functions affected in PD, such as the inflammatory response, mitochondrial, lysosomal, proteosomal and autophagic functions. Nuclear factor erythroid 2 -like 2 (NFE2L2/Nrf2), the master regulator of cellular defense against oxidative stress and inflammation, and Wingless (Wnt)/β-catenin signaling cascade, a vital pathway for mDAn neurogenesis and neuroprotection, emerge as critical intertwinned actors in mDAn physiopathology, as a decline of an Nrf2/Wnt/β-catenin prosurvival axis with age underlying PD mutations and a variety of noxious environmental exposures drive PD neurodegeneration. Unexpectedly, astrocytes, the so-called "star-shaped" cells, harbouring an arsenal of "beneficial" and "harmful" molecules represent the turning point in the physiopathological and therapeutical scenario of PD. Fascinatingly, "astrocyte's fil rouge" brings back to Nrf2/Wnt resilience, as boosting the Nrf2/Wnt resilience program rejuvenates astrocytes, in turn (i) mitigating nigrostriatal degeneration of aged mice, (ii) reactivating neural stem progenitor cell proliferation and neuron differentiation in the brain and (iii) promoting a beneficial immunomodulation via bidirectional communication with mDAns. Then, through resilience of Nrf2/Wnt/β-catenin anti-ageing, prosurvival and proregenerative molecular programs, it seems possible to boost the inherent endogenous self-repair mechanisms. Here, the cellular and molecular aspects as well as the therapeutical options for rejuvenating glia-neuron dialogue will be discussed together with major glial-derived mechanisms and therapies that will be fundamental to the identification of novel diagnostic tools and treatments for neurodegenerative diseases (NDs), to fight ageing and nigrostriatal DAergic degeneration and promote functional recovery.
Collapse
Affiliation(s)
- Bianca Marchetti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Pharmacology Section, Medical School, University of Catania, Via S. Sofia 65, 95125, Catania, Italy; Oasi Research Institute-IRCCS, Neuropharmacology Section, Via Conte Ruggero 73, 94018, Troina, EN, Italy.
| |
Collapse
|
17
|
Suwannasual U, Lucero J, Davis G, McDonald JD, Lund AK. Mixed Vehicle Emissions Induces Angiotensin II and Cerebral Microvascular Angiotensin Receptor Expression in C57Bl/6 Mice and Promotes Alterations in Integrity in a Blood-Brain Barrier Coculture Model. Toxicol Sci 2020; 170:525-535. [PMID: 31132127 DOI: 10.1093/toxsci/kfz121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Exposure to traffic-generated pollution is associated with alterations in blood-brain barrier (BBB) integrity and exacerbation of cerebrovascular disorders. Angiotensin (Ang) II signaling through the Ang II type 1 (AT1) receptor is known to promote BBB disruption. We have previously reported that exposure to a mixture of gasoline and diesel vehicle engine emissions (MVE) mediates alterations in cerebral microvasculature of C57Bl/6 mice, which is exacerbated through consumption of a high-fat (HF) diet. Thus, we investigated the hypothesis that inhalation exposure to MVE results in altered central nervous system microvascular integrity mediated by Ang II-AT1 signaling. Three-month-old male C57Bl/6 mice were placed on an HF or low-fat diet and exposed via inhalation to either filtered air (FA) or MVE (100 μg/m3 PM) 6 h/d for 30 days. Exposure to HF+MVE resulted in a significant increase in plasma Ang II and expression of AT1 in the cerebral microvasculature. Results from a BBB coculture study showed that transendothelial electrical resistance was decreased, associated with reduced expression of claudin-5 and occludin when treated with plasma from MVE+HF animals. These effects were attenuated through pretreatment with the AT1 antagonist, Losartan. Our BBB coculture showed increased levels of astrocyte AT1 and decreased expression of aryl hydrocarbon receptor and glutathione peroxidase-1, associated with increased interleukin-6 and transforming growth factor-β in the astrocyte media, when treated with plasma from MVE-exposed groups. Our results indicate that inhalation exposure to traffic-generated pollutants results in altered BBB integrity, mediated through Ang II-AT1 signaling and inflammation, which is exacerbated by an HF diet.
Collapse
Affiliation(s)
- Usa Suwannasual
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, Texas 76201
| | - JoAnn Lucero
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, Texas 76201
| | - Griffith Davis
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, Texas 76201
| | - Jacob D McDonald
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico 87108
| | - Amie K Lund
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, Texas 76201
| |
Collapse
|
18
|
Marchetti B, Leggio L, L’Episcopo F, Vivarelli S, Tirolo C, Paternò G, Giachino C, Caniglia S, Serapide MF, Iraci N. Glia-Derived Extracellular Vesicles in Parkinson's Disease. J Clin Med 2020; 9:jcm9061941. [PMID: 32575923 PMCID: PMC7356371 DOI: 10.3390/jcm9061941] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022] Open
Abstract
Glial cells are fundamental players in the central nervous system (CNS) development and homeostasis, both in health and disease states. In Parkinson’s disease (PD), a dysfunctional glia-neuron crosstalk represents a common final pathway contributing to the chronic and progressive death of dopaminergic (DAergic) neurons of the substantia nigra pars compacta (SNpc). Notably, glial cells communicating with each other by an array of molecules, can acquire a “beneficial” or “destructive” phenotype, thereby enhancing neuronal death/vulnerability and/or exerting critical neuroprotective and neuroreparative functions, with mechanisms that are actively investigated. An important way of delivering messenger molecules within this glia-neuron cross-talk consists in the secretion of extracellular vesicles (EVs). EVs are nano-sized membranous particles able to convey a wide range of molecular cargoes in a controlled way, depending on the specific donor cell and the microenvironmental milieu. Given the dual role of glia in PD, glia-derived EVs may deliver molecules carrying various messages for the vulnerable/dysfunctional DAergic neurons. Here, we summarize the state-of-the-art of glial-neuron interactions and glia-derived EVs in PD. Also, EVs have the ability to cross the blood brain barrier (BBB), thus acting both within the CNS and outside, in the periphery. In these regards, this review discloses the emerging applications of EVs, with a special focus on glia-derived EVs as potential carriers of new biomarkers and nanotherapeutics for PD.
Collapse
Affiliation(s)
- Bianca Marchetti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via S. Sofia 97, 95125 Catania, Italy; (L.L.); (S.V.); (G.P.); (M.F.S.)
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy; (F.L.); (C.T.); (C.G.); (S.C.)
- Correspondence: (B.M.); (N.I.)
| | - Loredana Leggio
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via S. Sofia 97, 95125 Catania, Italy; (L.L.); (S.V.); (G.P.); (M.F.S.)
| | - Francesca L’Episcopo
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy; (F.L.); (C.T.); (C.G.); (S.C.)
| | - Silvia Vivarelli
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via S. Sofia 97, 95125 Catania, Italy; (L.L.); (S.V.); (G.P.); (M.F.S.)
| | - Cataldo Tirolo
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy; (F.L.); (C.T.); (C.G.); (S.C.)
| | - Greta Paternò
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via S. Sofia 97, 95125 Catania, Italy; (L.L.); (S.V.); (G.P.); (M.F.S.)
| | - Carmela Giachino
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy; (F.L.); (C.T.); (C.G.); (S.C.)
| | - Salvatore Caniglia
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy; (F.L.); (C.T.); (C.G.); (S.C.)
| | - Maria Francesca Serapide
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via S. Sofia 97, 95125 Catania, Italy; (L.L.); (S.V.); (G.P.); (M.F.S.)
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via S. Sofia 97, 95125 Catania, Italy; (L.L.); (S.V.); (G.P.); (M.F.S.)
- Correspondence: (B.M.); (N.I.)
| |
Collapse
|
19
|
Gonzalo-Gobernado R, Reimers D, Casarejos MJ, Calatrava Ferreras L, Vallejo-Muñoz M, Jiménez-Escrig A, Diaz-Gil JJ, Ulzurrun de Asanza GM, Bazán E. Liver Growth Factor Induces Glia-Associated Neuroprotection in an In Vitro Model of Parkinson´s Disease. Brain Sci 2020; 10:brainsci10050315. [PMID: 32455921 PMCID: PMC7287666 DOI: 10.3390/brainsci10050315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 11/16/2022] Open
Abstract
Parkinson's disease is a neurodegenerative disorder characterized by the progressive death of dopaminergic (DA) neurons in the substantia nigra (SN), which leads to a loss of the neurotransmitter dopamine in the basal ganglia. Current treatments relieve the symptoms of the disease, but none stop or delay neuronal degeneration. Liver growth factor (LGF) is an albumin-bilirubin complex that stimulates axonal growth in the striatum and protects DA neurons in the SN of 6-hydroxydopamine-lesioned rats. Our previous results suggested that these effects observed in vivo are mediated by microglia and/or astrocytes. To determine if these cells are LGF targets, E14 (embryos from Sprague Dawley rats of 14 days) rat mesencephalic glial cultures were used. Treatment with 100 pg/mL of LGF up-regulated the mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinases 1/2 (ERK1/2) and the cyclic AMP response element binding protein (CREB) phosphorylation in glial cultures, and it increased the microglia marker Iba1 and tumor necrosis factor alpha (TNF-alpha) protein levels. The treatment of E14 midbrain neurons with a glial-conditioned medium from LGF-treated glial cultures (GCM-LGF) prevented the loss of DA neurons caused by 6-hydroxy-dopamine. This neuroprotective effect was not observed when GCM-LGF was applied in the presence of a blocking antibody of TNF-alpha activity. Altogether, our findings strongly suggest the involvement of microglia and TNF-alpha in the neuroprotective action of LGF on DA neurons observed in vitro.
Collapse
Affiliation(s)
- Rafael Gonzalo-Gobernado
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (D.R.); (M.J.C.); (L.C.F.); (M.V.-M.); (J.J.D.-G.); (G.M.U.d.A.)
- National Centre for Biotechnology (CNB), CSIC, 28049 Madrid, Spain
- Correspondence: (R.G.-G.); (E.B.); Tel.: +34-913-368-168 (R.G.-G. & E.B.)
| | - Diana Reimers
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (D.R.); (M.J.C.); (L.C.F.); (M.V.-M.); (J.J.D.-G.); (G.M.U.d.A.)
| | - María José Casarejos
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (D.R.); (M.J.C.); (L.C.F.); (M.V.-M.); (J.J.D.-G.); (G.M.U.d.A.)
| | - Lucía Calatrava Ferreras
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (D.R.); (M.J.C.); (L.C.F.); (M.V.-M.); (J.J.D.-G.); (G.M.U.d.A.)
| | - Manuela Vallejo-Muñoz
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (D.R.); (M.J.C.); (L.C.F.); (M.V.-M.); (J.J.D.-G.); (G.M.U.d.A.)
| | | | - Juan José Diaz-Gil
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (D.R.); (M.J.C.); (L.C.F.); (M.V.-M.); (J.J.D.-G.); (G.M.U.d.A.)
| | - Gonzalo M. Ulzurrun de Asanza
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (D.R.); (M.J.C.); (L.C.F.); (M.V.-M.); (J.J.D.-G.); (G.M.U.d.A.)
| | - Eulalia Bazán
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (D.R.); (M.J.C.); (L.C.F.); (M.V.-M.); (J.J.D.-G.); (G.M.U.d.A.)
- Correspondence: (R.G.-G.); (E.B.); Tel.: +34-913-368-168 (R.G.-G. & E.B.)
| |
Collapse
|
20
|
Serapide MF, L’Episcopo F, Tirolo C, Testa N, Caniglia S, Giachino C, Marchetti B. Boosting Antioxidant Self-defenses by Grafting Astrocytes Rejuvenates the Aged Microenvironment and Mitigates Nigrostriatal Toxicity in Parkinsonian Brain via an Nrf2-Driven Wnt/β-Catenin Prosurvival Axis. Front Aging Neurosci 2020; 12:24. [PMID: 32226376 PMCID: PMC7081734 DOI: 10.3389/fnagi.2020.00024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/22/2020] [Indexed: 12/19/2022] Open
Abstract
Astrocyte (As) bidirectional dialog with neurons plays a fundamental role in major homeostatic brain functions, particularly providing metabolic support and antioxidant self-defense against reactive oxygen (ROS) and nitrogen species (RNS) via the activation of NF-E2-related factor 2 (Nrf2), a master regulator of oxidative stress. Disruption of As-neuron crosstalk is chiefly involved in neuronal degeneration observed in Parkinson's disease (PD), the most common movement disorder characterized by the selective degeneration of dopaminergic (DAergic) cell bodies of the substantia nigra (SN) pars compacta (SNpc). Ventral midbrain (VM)-As are recognized to exert an important role in DAergic neuroprotection via the expression of a variety of factors, including wingless-related MMTV integration site 1 (Wnt1), a principal player in DAergic neurogenesis. However, whether As, by themselves, might fulfill the role of chief players in DAergic neurorestoration of aged PD mice is presently unresolved. Here, we used primary postnatal mouse VM-As as a graft source for unilateral transplantation above the SN of aged 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mice after the onset of motor symptoms. Spatio-temporal analyses documented that the engrafted cells promoted: (i) a time-dependent nigrostriatal rescue along with increased high-affinity synaptosomal DA uptake and counteraction of motor deficit, as compared to mock-grafted counterparts; and (ii) a restoration of the impaired microenvironment via upregulation of As antioxidant self-defense through the activation of Nrf2/Wnt/β-catenin signaling, suggesting that grafting As has the potential to switch the SN neurorescue-unfriendly environment to a beneficial antioxidant/anti-inflammatory prosurvival milieu. These findings highlight As-derived factors/mechanisms as the crucial key for successful therapeutic outcomes in PD.
Collapse
Affiliation(s)
- Maria Francesca Serapide
- Pharmacology Section, Department of Biomedical and Biotechnological Sciences, Medical School, University of Catania, Catania, Italy
| | | | - Cataldo Tirolo
- Section of Neuropharmacology, OASI Research Institute-IRCCS, Troina, Italy
| | - Nunzio Testa
- Section of Neuropharmacology, OASI Research Institute-IRCCS, Troina, Italy
| | - Salvatore Caniglia
- Section of Neuropharmacology, OASI Research Institute-IRCCS, Troina, Italy
| | - Carmela Giachino
- Section of Neuropharmacology, OASI Research Institute-IRCCS, Troina, Italy
| | - Bianca Marchetti
- Pharmacology Section, Department of Biomedical and Biotechnological Sciences, Medical School, University of Catania, Catania, Italy
- Section of Neuropharmacology, OASI Research Institute-IRCCS, Troina, Italy
| |
Collapse
|
21
|
Rizor A, Pajarillo E, Johnson J, Aschner M, Lee E. Astrocytic Oxidative/Nitrosative Stress Contributes to Parkinson's Disease Pathogenesis: The Dual Role of Reactive Astrocytes. Antioxidants (Basel) 2019; 8:antiox8080265. [PMID: 31374936 PMCID: PMC6719180 DOI: 10.3390/antiox8080265] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease worldwide; it is characterized by dopaminergic neurodegeneration in the substantia nigra pars compacta, but its etiology is not fully understood. Astrocytes, a class of glial cells in the central nervous system (CNS), provide critical structural and metabolic support to neurons, but growing evidence reveals that astrocytic oxidative and nitrosative stress contributes to PD pathogenesis. As astrocytes play a critical role in the production of antioxidants and the detoxification of reactive oxygen and nitrogen species (ROS/RNS), astrocytic oxidative/nitrosative stress has emerged as a critical mediator of the etiology of PD. Cellular stress and inflammation induce reactive astrogliosis, which initiates the production of astrocytic ROS/RNS and may lead to oxidative/nitrosative stress and PD pathogenesis. Although the cause of aberrant reactive astrogliosis is unknown, gene mutations and environmental toxicants may also contribute to astrocytic oxidative/nitrosative stress. In this review, we briefly discuss the physiological functions of astrocytes and the role of astrocytic oxidative/nitrosative stress in PD pathogenesis. Additionally, we examine the impact of PD-related genes such as α-synuclein, protein deglycase DJ-1( DJ-1), Parkin, and PTEN-induced kinase 1 (PINK1) on astrocytic function, and highlight the impact of environmental toxicants, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, manganese, and paraquat, on astrocytic oxidative/nitrosative stress in experimental models.
Collapse
Affiliation(s)
- Asha Rizor
- Department of Pharmaceutical Sciences, College of Pharmacy Florida A&M University, Tallahassee, FL 32301, USA
| | - Edward Pajarillo
- Department of Pharmaceutical Sciences, College of Pharmacy Florida A&M University, Tallahassee, FL 32301, USA
| | - James Johnson
- Department of Pharmaceutical Sciences, College of Pharmacy Florida A&M University, Tallahassee, FL 32301, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine Bronx, New York, NY 10461, USA
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy Florida A&M University, Tallahassee, FL 32301, USA.
| |
Collapse
|
22
|
Eskandarian Boroujeni M, Aliaghaei A, Maghsoudi N, Gardaneh M. Complementation of dopaminergic signaling by Pitx3-GDNF synergy induces dopamine secretion by multipotent Ntera2 cells. J Cell Biochem 2019; 121:200-212. [PMID: 31310388 DOI: 10.1002/jcb.29109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 11/07/2022]
Abstract
Human teratocarcinoma cell line Ntera2 (NT2) expresses dopamine signals and has shown its safe profile for clinical applications. Attempts to restore complete dopaminergic (DAergic) phenotype enabling these cells to secrete dopamine have not been fully successful so far. We applied a blend of gene transfer techniques and a defined medium to convert NT2 cells to fully DAergic. The cells were primarily engineered to overexpress the Pitx3 gene product and then cultured in a growth medium supplemented with knockout serum and retinoic acid to form embroid bodies (EBs). Trypsinization of EB colonies produced single cells ready for differentiation. Neuronal/DAergic induction was promoted by applying conditioned medium taken from engineered human astrocytomas over-secreting glial cell-derived neurotrophic factor (GDNF). Immunocytochemistry, reverse-transcription and real-time polymerase chain reaction analyses confirmed significantly induced expression of molecules involved in dopamine signaling and metabolism including tyrosine hydroxylase, Nurr1, dopamine transporter, and aromatic acid decarboxylase. High-performance liquid chromatography analysis indicated release of dopamine only from a class of fully differentiated cells expressing Pitx3 and exposed to GDNF. In addition, Pitx3 and GDNF additively promoted in vitro neuroprotection against Parkinsonian toxin. One month after transplantation to the striatum of 6-OHDA-leasioned rats, differentiated NT2 cells survived and induced significant increase in striatal volume. Besides, cell implantation improved motor coordination in Parkinson's disease (PD) rat models. Our findings highlight the importance of Pitx3-GDNF interplay in dopamine signaling and indicate that our strategy might be useful for the restoration of DAergic fate of NT2 cells to make them clinically applicable toward cell replacement therapy of PD.
Collapse
Affiliation(s)
- Mahdi Eskandarian Boroujeni
- Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abbas Aliaghaei
- Anatomy and Cell Biology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nader Maghsoudi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mossa Gardaneh
- Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
23
|
Exposure to homocysteine leads to cell cycle damage and reactive gliosis in the developing brain. Reprod Toxicol 2019; 87:60-69. [PMID: 31082465 DOI: 10.1016/j.reprotox.2019.05.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/15/2019] [Accepted: 05/09/2019] [Indexed: 01/19/2023]
Abstract
Studies that investigate the cellular effects of homocysteine (Hcy) on the differentiation of neural cells, and their involvement in establishment of cell layers in the developing brain are scarce. This study evaluated how Hcy affects the neural cell cycle and proteins involved in neuronal differentiation in the telencephalon and mesencephalon using the chicken embryo as a model. Embryos at embryonic day 2 (E2) received 20 μmol D-L Hcy/50 μl saline and analyzed at E6. The Hcy treatment induced an increase in the ventricular length of the telencephalon and also a reduction of the mantle layer thickness. We observed that Hcy induced impairments to the neural cell cycle and differentiation, which compromised the cell layers establishment in the developing brain. Hcy treatment also induced changes in gene and protein expression of astrocytes, characteristic of reactive gliosis. Our results point to new perspectives of evaluation of cellular targets of Hcy toxicity.
Collapse
|
24
|
Kanthasamy A, Jin H, Charli A, Vellareddy A, Kanthasamy A. Environmental neurotoxicant-induced dopaminergic neurodegeneration: a potential link to impaired neuroinflammatory mechanisms. Pharmacol Ther 2019; 197:61-82. [PMID: 30677475 PMCID: PMC6520143 DOI: 10.1016/j.pharmthera.2019.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With the increased incidence of neurodegenerative diseases worldwide, Parkinson's disease (PD) represents the second-most common neurodegenerative disease. PD is a progressive multisystem neurodegenerative disorder characterized by a marked loss of nigrostriatal dopaminergic neurons and the formation of Lewy pathology in diverse brain regions. Although the mechanisms underlying dopaminergic neurodegeneration remain poorly characterized, data from animal models and postmortem studies have revealed that heightened inflammatory responses mediated via microglial and astroglial activation and the resultant release of proinflammatory factors may act as silent drivers of neurodegeneration. In recent years, numerous studies have demonstrated a positive association between the exposure to environmental neurotoxicants and the etiology of PD. Although it is unclear whether neuroinflammation drives pesticide-induced neurodegeneration, emerging evidence suggests that the failure to dampen neuroinflammatory mechanisms may account for the increased vulnerability to pesticide neurotoxicity. Furthermore, recent studies provide additional evidence that shifts the focus from a neuron-centric view to glial-associated neurodegeneration following pesticide exposure. In this review, we propose to summarize briefly the possible factors that regulate neuroinflammatory processes during environmental neurotoxicant exposure with a focus on the potential roles of mitochondria-driven redox mechanisms. In this context, a critical discussion of the data obtained from experimental research and possible epidemiological studies is included. Finally, we hope to provide insights on the pivotal role of exosome-mediated intercellular transmission of aggregated proteins in microglial activation response and the resultant dopaminergic neurodegeneration after exposure to pesticides. Collectively, an improved understanding of glia-mediated neuroinflammatory signaling might provide novel insights into the mechanisms that contribute to neurodegeneration induced by environmental neurotoxicant exposure.
Collapse
Affiliation(s)
- Arthi Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.
| | - Huajun Jin
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Adhithiya Charli
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Anantharam Vellareddy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Anumantha Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
25
|
Tsai SY, Bendriem RM, Lee CTD. The cellular basis of fetal endoplasmic reticulum stress and oxidative stress in drug-induced neurodevelopmental deficits. Neurobiol Stress 2019; 10:100145. [PMID: 30937351 PMCID: PMC6430408 DOI: 10.1016/j.ynstr.2018.100145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 12/02/2018] [Accepted: 12/26/2018] [Indexed: 11/30/2022] Open
Abstract
Prenatal substance exposure is a growing public health concern worldwide. Although the opioid crisis remains one of the most prevalent addiction problems in our society, abuse of cocaine, methamphetamines, and other illicit drugs, particularly amongst pregnant women, are nonetheless significant and widespread. Evidence demonstrates prenatal drug exposure can affect fetal brain development and thus can have long-lasting impact on neurobehavioral and cognitive performance later in life. In this review, we highlight research examining the most prevalent drugs of abuse and their effects on brain development with a focus on endoplasmic reticulum stress and oxidative stress signaling pathways. A thorough exploration of drug-induced cellular stress mechanisms during prenatal brain development may provide insight into therapeutic interventions to combat effects of prenatal drug exposure.
Collapse
Affiliation(s)
- S-Y.A. Tsai
- Integrative Neuroscience Branch, Division of Neuroscience and Behavior, National Institute on Drug Abuse, The National Institute of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
| | - Raphael M. Bendriem
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Chun-Ting D. Lee
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, USA
| |
Collapse
|
26
|
Song C, Wu YS, Yang ZY, Kalueff AV, Tsao YY, Dong Y, Su KP. Astrocyte-Conditioned Medium Protects Prefrontal Cortical Neurons from Glutamate-Induced Cell Death by Inhibiting TNF-α Expression. Neuroimmunomodulation 2019; 26:33-42. [PMID: 30699428 DOI: 10.1159/000495211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/08/2018] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Both excitotoxicity and neurotrophin deficiency may contribute to the etiology of depression and neurodegeneration. Astrocytes not only regulate glutamate metabolism and clearance, they also produce neurotrophins in the brain. However, the direct interaction between neurons and astrocytes remains unknown. METHODS This study evaluated the cellular mechanisms by which astrocyte-conditioned medium (ACM) protects prefrontal cortical neurons from glutamate-induced death by measuring cell viability and morphology as well as mRNA and protein expression of brain-derived neurotrophic factor (BDNF), BDNF receptors, glial cell line-derived neurotrophic factor (GDNF), and the proinflammatory cytokine, tumor necrosis factor (TNF)-α. Neurons and astrocytes were purified from the brains of neonatal 1-day-old Sprague-Dawley rats. ACM was harvested after exposing astrocytes to culture medium containing 100 μM glutamate for 48 h. RESULTS Glutamate insult (100 μM for 6 h) significantly reduced neuronal cell viability and increased the mRNA expression of BDNF. Glutamate (24 h) decreased neuronal viability and the expression of BDNF, but increased mRNA expression of GFAP, p75 neurotrophin receptor (p75NTR), and TNF-α. ACM pretreatment (2 h) reversed glutamate-decreased cell viability and increased BDNF, but reduced the expression of GDNF, P75NTR, and TNF-α at the mRNA level. Western blotting generally confirmed the mRNA expression following 24 glutamate insults. Furthermore, the glutamate-induced decrease in the protein expression of BDNF and full-length TrkB receptor and increase in pro-BDNF, truncated TrkB isoform 1 receptor, p75NTR, GDNF, and TNF-α were significantly attenuated by ACM pretreatment. CONCLUSIONS The study demonstrates that ACM exerts neuroprotective effects on cell viability, and this effect is most likely mediated through the modulation of neurotrophin and TNF-α expression.
Collapse
Affiliation(s)
- Cai Song
- Research Institute for Marine Drugs and Nutrition, Food Science and Technology, Guangdong Ocean University, Zhanjiang, China,
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, and Departments of Medical Research, China Medical University Hospital, Taichung, Taiwan,
| | - Yih-Shyuan Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, and Departments of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Zhi-You Yang
- Research Institute for Marine Drugs and Nutrition, Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Allan V Kalueff
- Research Institute for Marine Drugs and Nutrition, Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russian Federation
- Ural Federal University, Ekaterinburg, Russian Federation
| | - Yin-Yin Tsao
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, and Departments of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yilong Dong
- School of Medicine, Yunnan University, Kunming, China
| | - Kuan-Pin Su
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, and Departments of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
27
|
Kaddour H, Hamdi Y, Amri F, Bahdoudi S, Bouannee I, Leprince J, Zekri S, Vaudry H, Tonon MC, Vaudry D, Amri M, Mezghani S, Masmoudi-Kouki O. Antioxidant and Anti-Apoptotic Activity of Octadecaneuropeptide Against 6-OHDA Toxicity in Cultured Rat Astrocytes. J Mol Neurosci 2018; 69:1-16. [PMID: 30343367 DOI: 10.1007/s12031-018-1181-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022]
Abstract
Oxidative stress, associated with various neurodegenerative diseases, promotes ROS generation, impairs cellular antioxidant defenses, and finally, triggers both neurons and astroglial cell death by apoptosis. Astrocytes specifically synthesize and release endozepines, a family of regulatory peptides, including the octadecaneuropeptide (ODN). We have previously reported that ODN acts as a potent neuroprotective agent that prevents 6-OHDA-induced apoptotic neuronal death. The purpose of the present study was to investigate the potential glioprotective effect of ODN on 6-OHDA-induced oxidative stress and cell death in cultured rat astrocytes. Incubation of astrocytes with graded concentrations of ODN (10-14 to 10-8 M) inhibited 6-OHDA-evoked cell death in a concentration- and time-dependent manner. In addition, ODN prevented the decrease of mitochondrial activity and caspase-3 activation induced by 6-OHDA. 6-OHDA-treated cells also exhibited enhanced levels of ROS associated with a generation of H2O2 and O2°-, and a reduction of both superoxide dismutase (SOD) and catalase (CAT) activities. Co-treatment of astrocytes with low concentrations of ODN dose-dependently blocked 6-OHDA-evoked production of ROS and inhibition of antioxidant enzyme activities. Concomitantly, ODN stimulated Mn-SOD, CAT, glutathione peroxidase-1, and sulfiredoxin-1 gene transcription and rescued 6-OHDA-associated reduced expression of endogenous antioxidant enzymes. Taken together, these data indicate that, in rat astrocytes, ODN exerts anti-apoptotic and anti-oxidative activities, and hence prevents 6-OHDA-induced oxidative assault and cell death. ODN is thus a potential candidate to delay neuronal damages in various pathological conditions involving oxidative neurodegeneration.
Collapse
Affiliation(s)
- Hadhemi Kaddour
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia.,CIRB, CNRS UMR 7241/INSERM U1050, PSL University, Labex MemoLife, Collège de France, 11 place Marcelin Berthelot, 75231, Paris, France.,Imagine Institute and Center of Psychiatry and Neuroscience, Université Paris Descartes, 102-108 rue de la Santé, 75014, Paris, France
| | - Yosra Hamdi
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia
| | - Fatma Amri
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia
| | - Seyma Bahdoudi
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia.,UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie Univ, 76000, Rouen, France
| | - Ibtissem Bouannee
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia
| | - Jérôme Leprince
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie Univ, 76000, Rouen, France.,UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandie Univ, 76000, Rouen, France
| | - Sami Zekri
- USCR Transmission Electron Microscopy, Faculty of Medicine, University Tunis El Manar, Tunis, Tunisia
| | - Hubert Vaudry
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie Univ, 76000, Rouen, France.,UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandie Univ, 76000, Rouen, France
| | - Marie-Christine Tonon
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie Univ, 76000, Rouen, France
| | - David Vaudry
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie Univ, 76000, Rouen, France.,UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandie Univ, 76000, Rouen, France
| | - Mohamed Amri
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia
| | - Sana Mezghani
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia
| | - Olfa Masmoudi-Kouki
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia.
| |
Collapse
|
28
|
Lai CL, Lu CC, Lin HC, Sung YF, Wu YP, Hong JS, Peng GS. Valproate is protective against 6-OHDA-induced dopaminergic neurodegeneration in rodent midbrain: A potential role of BDNF up-regulation. J Formos Med Assoc 2018; 118:420-428. [PMID: 30031602 DOI: 10.1016/j.jfma.2018.06.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 02/28/2018] [Accepted: 06/21/2018] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/PURPOSE The main purpose of this study was to extend previously reported showing potent neuroprotective effect of valproic acid (VPA) in primary midbrain neuro-glial cultures to investigate whether VPA could protect dopamine (DA) neurons in vivo against 6-hydroxydopamine (6-OHDA)-induced neurodegeneration and to determine the underlying mechanism. METHODS Male adult rats received a daily intraperitoneal injection of VPA or saline for two weeks before and after injection of 5, 10, or 15 μg of 6-OHDA into the brain. All rats were evaluated for motor function by rotarod performance. Brain samples were prepared for immunohistochemical staining and for determination of levels of dopamine, dopamine metabolites, and neurotrophic factors. RESULTS 6-OHDA injection showed significant and dose-dependent damage of dopaminergic neurons and decrease of striatal dopamine content. Rats in the VPA-treated group were markedly protected from the loss of dopaminergic neurons and showed improvements in motor performance, compared to the control group at the moderate 6-OHDA dose (10 μg). VPA-treated rats also showed significantly increased brain-derived neurotrophic factor (BDNF) levels in the striatum and substantia nigra compared to the levels in control animals. CONCLUSION Our studies demonstrate that VPA exerts neuroprotective effects in a rat model of 6-OHDA-induced Parkinson's disease (PD), likely in part by up-regulation BDNF.
Collapse
Affiliation(s)
- Ching-Long Lai
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Chun-Chung Lu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Hui-Ching Lin
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Yueh-Feng Sung
- Department of Neurology, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Pin Wu
- Department of Neurology, National Defense Medical Center, Taipei, Taiwan
| | - Jau-Shyong Hong
- Laboratory of Neurobiology, NIEHS-NIH, Research Triangle Park, NC 27709, USA
| | - Giia-Sheun Peng
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Neurology, National Defense Medical Center, Taipei, Taiwan; Division of Neurology, Taipei Veterans General Hospital, Hsinchu Branch, Taiwan.
| |
Collapse
|
29
|
L'Episcopo F, Tirolo C, Peruzzotti-Jametti L, Serapide MF, Testa N, Caniglia S, Balzarotti B, Pluchino S, Marchetti B. Neural Stem Cell Grafts Promote Astroglia-Driven Neurorestoration in the Aged Parkinsonian Brain via Wnt/β-Catenin Signaling. Stem Cells 2018; 36:1179-1197. [PMID: 29575325 DOI: 10.1002/stem.2827] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 02/19/2018] [Accepted: 03/06/2018] [Indexed: 12/16/2022]
Abstract
neuronal phenotype. Wnt/β-catenin signaling antagonism abolished mDA neurorestoration and immune modulatory effects of NSC grafts. Our work implicates an unprecedented therapeutic potential for somatic NSC grafts in the restoration of mDA neuronal function in the aged Parkinsonian brain. Stem Cells 2018;36:1179-1197.
Collapse
Affiliation(s)
| | | | - Luca Peruzzotti-Jametti
- Dept of Clinical Neurosciences, Clifford Allbutt Building - Cambridge Biosciences Campus and NIHR Biomedical Research,Centre, University of Cambridge, Hills Road, CB2 0HA Cambridge, UK
| | - Maria F Serapide
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Pharmacology and Physiology Sections, University of Catania Medical School, Catania, Italy
| | | | | | - Beatrice Balzarotti
- Dept of Clinical Neurosciences, Clifford Allbutt Building - Cambridge Biosciences Campus and NIHR Biomedical Research,Centre, University of Cambridge, Hills Road, CB2 0HA Cambridge, UK
| | - Stefano Pluchino
- Dept of Clinical Neurosciences, Clifford Allbutt Building - Cambridge Biosciences Campus and NIHR Biomedical Research,Centre, University of Cambridge, Hills Road, CB2 0HA Cambridge, UK
| | - Bianca Marchetti
- Oasi Research Institute-IRCCS, Troina, Italy.,Department of Biomedical and Biotechnological Sciences (BIOMETEC), Pharmacology and Physiology Sections, University of Catania Medical School, Catania, Italy
| |
Collapse
|
30
|
Weilnau JN, Carcella MA, Miner KM, Bhatia TN, Hutchison DF, Pant DB, Nouraei N, Leak RK. Evidence for cross-hemispheric preconditioning in experimental Parkinson's disease. Brain Struct Funct 2018; 223:1255-1273. [PMID: 29103154 PMCID: PMC11061878 DOI: 10.1007/s00429-017-1552-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 10/19/2017] [Indexed: 12/12/2022]
Abstract
Dopamine loss and motor deficits in Parkinson's disease typically commence unilaterally and remain asymmetric for many years, raising the possibility that endogenous defenses slow the cross-hemispheric transmission of pathology. It is well-established that the biological response to subtoxic stress prepares cells to survive subsequent toxic challenges, a phenomenon known as preconditioning, tolerance, or stress adaptation. Here we demonstrate that unilateral striatal infusions of the oxidative toxicant 6-hydroxydopamine (6-OHDA) precondition the contralateral nigrostriatal pathway against the toxicity of a second 6-OHDA infusion in the opposite hemisphere. 6-OHDA-induced loss of dopaminergic terminals in the contralateral striatum was ablated by cross-hemispheric preconditioning, as shown by two independent markers of the dopaminergic phenotype, each measured by two blinded observers. Similarly, loss of dopaminergic somata in the contralateral substantia nigra was also abolished, according to two blinded measurements. Motor asymmetries in floor landings, forelimb contacts with a wall, and spontaneous turning behavior were consistent with these histological observations. Unilateral 6-OHDA infusions increased phosphorylation of the kinase ERK2 and expression of the antioxidant enzyme CuZn superoxide dismutase in both striata, consistent with our previous mechanistic work showing that these two proteins mediate preconditioning in dopaminergic cells. These findings support the existence of cross-hemispheric preconditioning in Parkinson's disease and suggest that dopaminergic neurons mount impressive natural defenses, despite their reputation as being vulnerable to oxidative injury. If these results generalize to humans, Parkinson's pathology may progress slowly and asymmetrically because exposure to a disease-precipitating insult induces bilateral upregulation of endogenous defenses and elicits cross-hemispheric preconditioning.
Collapse
Affiliation(s)
- Justin N Weilnau
- Division of Pharmaceutical Sciences, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Michael A Carcella
- Division of Pharmaceutical Sciences, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Kristin M Miner
- Division of Pharmaceutical Sciences, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Tarun N Bhatia
- Division of Pharmaceutical Sciences, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Daniel F Hutchison
- Division of Pharmaceutical Sciences, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Deepti B Pant
- Division of Pharmaceutical Sciences, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Negin Nouraei
- Division of Pharmaceutical Sciences, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA.
| |
Collapse
|
31
|
Park HS, Kwon H, Yu J, Bae Y, Park JY, Choi KA, Choi Y, Hong S. Precise nanoinjection delivery of plasmid DNA into a single fibroblast for direct conversion of astrocyte. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:1114-1122. [PMID: 29506416 DOI: 10.1080/21691401.2018.1446019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Direct conversion is a powerful approach to safely generate mature neural lineages with potential for treatment of neurological disorders. Astrocytes play a crucial role in neuronal homeostasis and their dysfunctions contribute to several neurodegenerative diseases. Using a single-cell approach for precision, we describe here a robust method using optimized DNA amounts for the direct conversion of mouse fibroblasts to astrocytes. Controlled amount of the reprogramming factors Oct4, Sox2, Klf4 and cMyc was directly delivered into a single fibroblast cell. Consequently, 2500 DNA molecules, no more or less, were found to be the optimal amount that dramatically increased the expression levels of the astrocyte-specific markers GFAP and S100b and the demethylation gene TET1, the expression of which was sustained to maintain astrocyte functionality. The converted astrocytes showed glutamate uptake ability and electrophysiological activity. Furthermore, we demonstrated a potential mechanism whereby fibroblast was directly converted into astrocyte at a single-cell level; this was achieved by activating BMP2 pathway through direct binding of Sox2 protein to BMP2 gene. This study suggests that nanotechnology for directly injecting plasmid DNAs into cell nuclei may help understand such a conversion at single-cell level.
Collapse
Affiliation(s)
- Hang-Soo Park
- a Department of Integrated Biomedical and Life Science , Korea University , Seoul , Republic of Korea
| | - Hyosung Kwon
- b Department of Bio-convergence Engineering , Korea University , Seoul , Republic of Korea
| | - Jewon Yu
- b Department of Bio-convergence Engineering , Korea University , Seoul , Republic of Korea
| | - Yeonju Bae
- a Department of Integrated Biomedical and Life Science , Korea University , Seoul , Republic of Korea
| | - Jae-Yong Park
- a Department of Integrated Biomedical and Life Science , Korea University , Seoul , Republic of Korea.,c School of Biosystem and Biomedical Science , Korea University , Seoul , Republic of Korea
| | - Kyung-Ah Choi
- c School of Biosystem and Biomedical Science , Korea University , Seoul , Republic of Korea
| | - Yeonho Choi
- b Department of Bio-convergence Engineering , Korea University , Seoul , Republic of Korea.,d School of Biomedical Engineering , Korea University , Seoul , Republic of Korea
| | - Sunghoi Hong
- a Department of Integrated Biomedical and Life Science , Korea University , Seoul , Republic of Korea.,c School of Biosystem and Biomedical Science , Korea University , Seoul , Republic of Korea
| |
Collapse
|
32
|
Jha MK, Kim JH, Song GJ, Lee WH, Lee IK, Lee HW, An SSA, Kim S, Suk K. Functional dissection of astrocyte-secreted proteins: Implications in brain health and diseases. Prog Neurobiol 2017; 162:37-69. [PMID: 29247683 DOI: 10.1016/j.pneurobio.2017.12.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/23/2017] [Accepted: 12/08/2017] [Indexed: 02/07/2023]
Abstract
Astrocytes, which are homeostatic cells of the central nervous system (CNS), display remarkable heterogeneity in their morphology and function. Besides their physical and metabolic support to neurons, astrocytes modulate the blood-brain barrier, regulate CNS synaptogenesis, guide axon pathfinding, maintain brain homeostasis, affect neuronal development and plasticity, and contribute to diverse neuropathologies via secreted proteins. The identification of astrocytic proteome and secretome profiles has provided new insights into the maintenance of neuronal health and survival, the pathogenesis of brain injury, and neurodegeneration. Recent advances in proteomics research have provided an excellent catalog of astrocyte-secreted proteins. This review categorizes astrocyte-secreted proteins and discusses evidence that astrocytes play a crucial role in neuronal activity and brain function. An in-depth understanding of astrocyte-secreted proteins and their pathways is pivotal for the development of novel strategies for restoring brain homeostasis, limiting brain injury/inflammation, counteracting neurodegeneration, and obtaining functional recovery.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jong-Heon Kim
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Gyun Jee Song
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Ho-Won Lee
- Department of Neurology, Brain Science and Engineering Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Seong Soo A An
- Department of BioNano Technology, Gachon University, Gyeonggi-do, Republic of Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
33
|
Song JJ, Oh SM, Kwon OC, Wulansari N, Lee HS, Chang MY, Lee E, Sun W, Lee SE, Chang S, An H, Lee CJ, Lee SH. Cografting astrocytes improves cell therapeutic outcomes in a Parkinson's disease model. J Clin Invest 2017; 128:463-482. [PMID: 29227284 DOI: 10.1172/jci93924] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 10/31/2017] [Indexed: 12/20/2022] Open
Abstract
Transplantation of neural progenitor cells (NPCs) is a potential therapy for treating neurodegenerative disorders, but this approach has faced many challenges and limited success, primarily because of inhospitable host brain environments that interfere with enriched neuron engraftment and function. Astrocytes play neurotrophic roles in the developing and adult brain, making them potential candidates for helping with modification of hostile brain environments. In this study, we examined whether astrocytic function could be utilized to overcome the current limitations of cell-based therapies in a murine model of Parkinson's disease (PD) that is characterized by dopamine (DA) neuron degeneration in the midbrain. We show here that cografting astrocytes, especially those derived from the midbrain, remarkably enhanced NPC-based cell therapeutic outcomes along with robust DA neuron engraftment in PD rats for at least 6 months after transplantation. We further show that engineering of donor astrocytes with Nurr1 and Foxa2, transcription factors that were recently reported to polarize harmful immunogenic glia into the neuroprotective form, further promoted the neurotrophic actions of grafted astrocytes in the cell therapeutic approach. Collectively, these findings suggest that cografting astrocytes could be a potential strategy for successful cell therapeutic outcomes in neurodegenerative disorders.
Collapse
Affiliation(s)
- Jae-Jin Song
- Department of Biochemistry and Molecular Biology, College of Medicine.,Hanyang Biomedical Research Institute, and.,Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Sang-Min Oh
- Department of Biochemistry and Molecular Biology, College of Medicine.,Hanyang Biomedical Research Institute, and.,Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Oh-Chan Kwon
- Department of Biochemistry and Molecular Biology, College of Medicine.,Hanyang Biomedical Research Institute, and.,Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Noviana Wulansari
- Department of Biochemistry and Molecular Biology, College of Medicine.,Hanyang Biomedical Research Institute, and.,Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Hyun-Seob Lee
- Genomic Core Facility, Transdisciplinary Research and Collaboration Division, Translational Research Institute, and.,Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Mi-Yoon Chang
- Department of Biochemistry and Molecular Biology, College of Medicine.,Hanyang Biomedical Research Institute, and
| | - Eunsoo Lee
- Department of Anatomy and Division of Brain Korea 21 PLUS Program for Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Woong Sun
- Department of Anatomy and Division of Brain Korea 21 PLUS Program for Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Sang-Eun Lee
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Sunghoe Chang
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Heeyoung An
- Center for Neuroscience and.,Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| | - C Justin Lee
- Center for Neuroscience and.,Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Sang-Hun Lee
- Department of Biochemistry and Molecular Biology, College of Medicine.,Hanyang Biomedical Research Institute, and.,Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| |
Collapse
|
34
|
Anti-oxidative effects of 4-hydroxybenzyl alcohol in astrocytes confer protective effects in autocrine and paracrine manners. PLoS One 2017; 12:e0177322. [PMID: 28489907 PMCID: PMC5425201 DOI: 10.1371/journal.pone.0177322] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/25/2017] [Indexed: 12/26/2022] Open
Abstract
4-Hydroxybenzyl alcohol (4-HBA) is an important phenolic constituent of Gastrodia elata Blume (GEB), a traditional herbal medicine used in East Asia. Many activities have been reported to underlie the beneficial effects of 4-HBA in the brain, and in particular, its anti-inflammatory, anti-oxidative, and anti-zinc-toxic effects have been implicated in the postischemic brain. Here, the authors investigated the anti-oxidative effect of 4-HBA on astrocytes and sought to identify the underlying molecular mechanisms involved. 4-HBA dose-dependently suppressed H2O2-induced astrocyte cell death. More specifically, pre-incubation of C6 cells (an astrocyte cell line) with 100 μM 4-HBA for 6 hrs increased survival when cells were treated with H2O2 (100 μM, 1 hr) from 54.2±0.7% to 85.9±1.5%. In addition, 4-HBA was found to up-regulate and activate Nrf2, and subsequently, to induce the expressions of several anti-oxidative genes, such as, HO-1, NQO1, and GCLM. Notably, HO-1 was induced by 3.4-fold in 4-HBA-treated C6 cells, and siRNA-mediated HO-1 knockdown demonstrated that Nrf2 activation and HO-1 induction were responsible for the observed cytoprotective effect of 4-HBA. ERK and Akt signaling pathways were activated by 4-HBA in C6 cells, suggesting their involvements in protective effect of 4-HBA. In addition, 4-HBA-conditioned astrocyte culture medium was found to have neuroprotective effects on primary neuronal cultures or fresh C6 cells exposed to oxidative stress, and these effects seemed to be mediated by glial cell line-derived neurotrophic factor (GDNF) and vascular endothelial growth factor (VEGF), which both accumulated in 4-HBA-treated astrocyte culture media. Thus, the 4-HBA-mediated activation of Nrf2 and induction of HO-1 in astrocytes were found to act via autocrine and paracrine mechanisms to confer protective effects. Furthermore, given the pleiotropic effects of 4-HBA with respect to its targeting of various brain cell types and functions, it would appear that 4-HBA has therapeutic potential for the prevention and amelioration of various brain diseases.
Collapse
|
35
|
El Massri N, Lemgruber AP, Rowe IJ, Moro C, Torres N, Reinhart F, Chabrol C, Benabid AL, Mitrofanis J. Photobiomodulation-induced changes in a monkey model of Parkinson’s disease: changes in tyrosine hydroxylase cells and GDNF expression in the striatum. Exp Brain Res 2017; 235:1861-1874. [DOI: 10.1007/s00221-017-4937-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 02/27/2017] [Indexed: 11/30/2022]
|
36
|
Destination Brain: the Past, Present, and Future of Therapeutic Gene Delivery. J Neuroimmune Pharmacol 2017; 12:51-83. [PMID: 28160121 DOI: 10.1007/s11481-016-9724-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/12/2016] [Indexed: 12/20/2022]
Abstract
Neurological diseases and disorders (NDDs) present a significant societal burden and currently available drug- and biological-based therapeutic strategies have proven inadequate to alleviate it. Gene therapy is a suitable alternative to treat NDDs compared to conventional systems since it can be tailored to specifically alter select gene expression, reverse disease phenotype and restore normal function. The scope of gene therapy has broadened over the years with the advent of RNA interference and genome editing technologies. Consequently, encouraging results from central nervous system (CNS)-targeted gene delivery studies have led to their transition from preclinical to clinical trials. As we shift to an exciting gene therapy era, a retrospective of available literature on CNS-associated gene delivery is in order. This review is timely in this regard, since it analyzes key challenges and major findings from the last two decades and evaluates future prospects of brain gene delivery. We emphasize major areas consisting of physiological and pharmacological challenges in gene therapy, function-based selection of a ideal cellular target(s), available therapy modalities, and diversity of viral vectors and nanoparticles as vehicle systems. Further, we present plausible answers to key questions such as strategies to circumvent low blood-brain barrier permeability and most suitable CNS cell types for targeting. We compare and contrast pros and cons of the tested viral vectors in the context of delivery systems used in past and current clinical trials. Gene vector design challenges are also evaluated in the context of cell-specific promoters. Key challenges and findings reported for recent gene therapy clinical trials, assessing viral vectors and nanoparticles are discussed from the perspective of bench to bedside gene therapy translation. We conclude this review by tying together gene delivery challenges, available vehicle systems and comprehensive analyses of neuropathogenesis to outline future prospects of CNS-targeted gene therapies.
Collapse
|
37
|
Inflammatory pre-conditioning restricts the seeded induction of α-synuclein pathology in wild type mice. Mol Neurodegener 2017; 12:1. [PMID: 28049533 PMCID: PMC5210310 DOI: 10.1186/s13024-016-0142-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 12/06/2016] [Indexed: 12/02/2022] Open
Abstract
Background Cell-to-cell transmission of α-synuclein (αSyn) is hypothesized to play an important role in disease progression in synucleinopathies. This process involves cellular uptake of extracellular amyloidogenic αSyn seeds followed by seeding of endogenous αSyn. Though it is well known that αSyn is an immunogenic protein that can interact with immune receptors, the role of innate immunity in regulating induction of αSyn pathology in vivo is unknown. Herein, we explored whether altering innate immune activation affects induction of αSyn pathology in wild type mice. Methods We have previously demonstrated that recombinant adeno-associated virus (AAV) mediated expression of the inflammatory cytokine, Interleukin (IL)-6, in neonatal wild type mice brains leads to widespread immune activation in the brain without overt neurodegeneration. To investigate how IL-6 expression affects induction of αSyn pathology, we injected mouse wild type αSyn fibrils in the hippocampus of AAV-IL-6 expressing mice. Control mice received AAV containing an Empty vector (EV) construct. Two separate cohorts of AAV-IL-6 and AAV-EV mice were analyzed in this study: 4 months or 2 months following intrahippocampal αSyn seeding. Results Here, we show that IL-6 expression resulted in widespread gliosis and concurrently reduced αSyn inclusion pathology induced by a single intra-hippocampal injection of exogenous amyloidogenic αSyn. The reduction in αSyn inclusion pathology in IL-6 expressing mice was time-dependent. Suppression of αSyn pathology was accompanied by reductions in both argyrophilic and p62 immunoreactive inclusions. Conclusions Our data supports a beneficial role of inflammatory priming of the CNS in wild type mice challenged with exogenous αSyn. A likely mechanism is efficient astroglial scavenging of exogenous αSyn, at least early in the disease process, and in the absence of human αSyn transgene overexpression. Given evidence that a pro-inflammatory environment may restrict seeding of αSyn pathology, this can be used to design anti-αSyn immunobiotherapies by harnessing innate immune function. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0142-z) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Gleixner AM, Posimo JM, Pant DB, Henderson MP, Leak RK. Astrocytes Surviving Severe Stress Can Still Protect Neighboring Neurons from Proteotoxic Injury. Mol Neurobiol 2016; 53:4939-60. [PMID: 26374549 PMCID: PMC4792804 DOI: 10.1007/s12035-015-9427-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/03/2015] [Indexed: 12/18/2022]
Abstract
Astrocytes are one of the major cell types to combat cellular stress and protect neighboring neurons from injury. In order to fulfill this important role, astrocytes must sense and respond to toxic stimuli, perhaps including stimuli that are severely stressful and kill some of the astrocytes. The present study demonstrates that primary astrocytes that managed to survive severe proteotoxic stress were protected against subsequent challenges. These findings suggest that the phenomenon of preconditioning or tolerance can be extended from mild to severe stress for this cell type. Astrocytic stress adaptation lasted at least 96 h, the longest interval tested. Heat shock protein 70 (Hsp70) was raised in stressed astrocytes, but inhibition of neither Hsp70 nor Hsp32 activity abolished their resistance against a second proteotoxic challenge. Only inhibition of glutathione synthesis abolished astrocytic stress adaptation, consistent with our previous report. Primary neurons were plated upon previously stressed astrocytes, and the cocultures were then exposed to another proteotoxic challenge. Severely stressed astrocytes were still able to protect neighboring neurons against this injury, and the protection was unexpectedly independent of glutathione synthesis. Stressed astrocytes were even able to protect neurons after simultaneous application of proteasome and Hsp70 inhibitors, which otherwise elicited synergistic, severe loss of neurons when applied together. Astrocyte-induced neuroprotection against proteotoxicity was not elicited with astrocyte-conditioned media, suggesting that physical cell-to-cell contacts may be essential. These findings suggest that astrocytes may adapt to severe stress so that they can continue to protect neighboring cell types from profound injury.
Collapse
Affiliation(s)
- Amanda M Gleixner
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, 407 Mellon Hall, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| | - Jessica M Posimo
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, 407 Mellon Hall, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| | - Deepti B Pant
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, 407 Mellon Hall, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| | - Matthew P Henderson
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, 407 Mellon Hall, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, 407 Mellon Hall, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA.
| |
Collapse
|
39
|
Hamdi Y, Madfai H, Belhareth R, Mokni M, Masmoudi-Kouki O, Amri M. Prenatal exposure to cigarette smoke enhances oxidative stress in astrocytes of neonatal rat. Toxicol Mech Methods 2016; 26:231-7. [PMID: 26998663 DOI: 10.3109/15376516.2016.1156205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oxidative stress is involved in the pathogenesis of smoking-related disease. Protection of astrocytes from oxidative insult appears essential to maintain brain function. In this study, we have investigated the effect of gestational cigarette exposure on astrocyte survival. Pregnant female were randomly allocated to the control group or to the cigarette smoke group in which they were placed in an exposure chamber and inhale three cigarettes smoke twice a day for a period of 20 days. The control group was kept in the exposure chamber for the same duration, but without exposure to cigarette smoke. Newborn rats from both groups were weighed 24 h after birth and then cerebral hemispheres were collected for astrocyte culture. Incubation of astrocytes isolated from animals exposed to cigarette smoke with 300 μM H2O2 for 1 h induced a significant decrease of the proportion of surviving cells compared to cells isolated form control animals. We have observed that H2O2-treated astroglial cells derived from cigarette smoke exposure showed more reduced superoxide dismutase and catalase activities than H2O2-treated astroglial cells from control animals. In conclusion, this study indicates that astroglial cells derived from newborn rats exposed in utero to cigarette smoke are more vulnerable to oxidative assault than cultured astrocytes obtained from control animals. These results point out the existence of excitotoxic lesions in newborn exposed in utero to cigarette smoke and suggest that despite their high antioxidative activities, astrocytes cannot survive and protect neurons under massive oxidative stress.
Collapse
Affiliation(s)
- Yosra Hamdi
- a Laboratory of Functional Neurophysiology and Pathology, Research Unit UR11ES09, Department of Biological Sciences , Faculty of Science of Tunis, University Tunis El Manar , Tunis , Tunisia
| | - Hayfa Madfai
- a Laboratory of Functional Neurophysiology and Pathology, Research Unit UR11ES09, Department of Biological Sciences , Faculty of Science of Tunis, University Tunis El Manar , Tunis , Tunisia
| | - Rym Belhareth
- a Laboratory of Functional Neurophysiology and Pathology, Research Unit UR11ES09, Department of Biological Sciences , Faculty of Science of Tunis, University Tunis El Manar , Tunis , Tunisia
| | - Meherzia Mokni
- a Laboratory of Functional Neurophysiology and Pathology, Research Unit UR11ES09, Department of Biological Sciences , Faculty of Science of Tunis, University Tunis El Manar , Tunis , Tunisia
| | - Olfa Masmoudi-Kouki
- a Laboratory of Functional Neurophysiology and Pathology, Research Unit UR11ES09, Department of Biological Sciences , Faculty of Science of Tunis, University Tunis El Manar , Tunis , Tunisia
| | - Mohamed Amri
- a Laboratory of Functional Neurophysiology and Pathology, Research Unit UR11ES09, Department of Biological Sciences , Faculty of Science of Tunis, University Tunis El Manar , Tunis , Tunisia
| |
Collapse
|
40
|
Choi J, Polcher A, Joas A. Systematic literature review on Parkinson's disease and Childhood Leukaemia and mode of actions for pesticides. ACTA ACUST UNITED AC 2016. [DOI: 10.2903/sp.efsa.2016.en-955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Barakat R, Redzic Z. The Role of Activated Microglia and Resident Macrophages in the Neurovascular Unit during Cerebral Ischemia: Is the Jury Still Out? Med Princ Pract 2016; 25 Suppl 1:3-14. [PMID: 26303836 PMCID: PMC5588523 DOI: 10.1159/000435858] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 06/10/2015] [Indexed: 12/13/2022] Open
Abstract
Paracrine signaling in the neurovascular unit (NVU) is aimed to adjust the supply of oxygen and nutrients to metabolic demands of the brain in a feed-forward manner. Cerebral ischemia (CI) severely disrupts this homeostatic mechanism and also causes activation of microglia and resident macrophages in the brain. Contradictory data exist on the time pattern of microglial activation and polarization during CI, on molecular mechanisms that trigger them and on effects of microglia-derived cytokines on brain cells. It appears that conditions that occur during transient ischemia or in the penumbra of focal ischemia in vivo or equivalent conditions in vitro trigger polarization of resting microglia/macrophages into the M2 phenotype, which mainly exerts anti-inflammatory and protective effects in the brain, while prolonged ischemia with abundant necrosis promotes microglial polarization into the M1 phenotype. During the later stages of recovery, microglia that polarized initially into the M2 phenotype can shift into the M1 phenotype. Thus, it appears that cells with both phenotypes are present in the affected area, but their relative amount changes in time and probably depends on the proximity to the ischemic core. It was assumed that cells with the M1 phenotype exert detrimental effects on neurons and contribute to the blood-brain barrier opening. Several M1 phenotype-specific cytokines exert protective effects on astrocytes, which could be important for reactive gliosis occurring after ischemia. Thus, whether or not suppression of microglial activity after CI is beneficial for neurological outcome still remains unclear and current evidence suggests that no simple answer could be given to this question.
Collapse
Affiliation(s)
| | - Zoran Redzic
- *Dr. Zoran Redzic, Department of Physiology, Faculty of Medicine, Kuwait University, PO Box 24923, Safat 13110 (Kuwait), E-Mail
| |
Collapse
|
42
|
Yoshioka Y, Kadoi H, Yamamuro A, Ishimaru Y, Maeda S. Noradrenaline increases intracellular glutathione in human astrocytoma U-251 MG cells by inducing glutamate-cysteine ligase protein via β3-adrenoceptor stimulation. Eur J Pharmacol 2015; 772:51-61. [PMID: 26724392 DOI: 10.1016/j.ejphar.2015.12.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 11/16/2022]
Abstract
Glutathione (GSH) plays a critical role in protecting cells from oxidative damage. Since neurons rely on the supply of GSH from astrocytes to maintain optimal intracellular GSH concentrations, the GSH concentration of astrocytes is important for the survival of neighboring neurons against oxidative stress. The neurotransmitter noradrenaline is known to modulate the functions of astrocytes and has been suggested to have neuroprotective properties in neurodegenerative diseases. To elucidate the mechanisms underlying the neuroprotective properties of noradrenaline, in this study, we investigated the effect of noradrenaline on the concentrations of intracellular GSH in human U-251 malignant glioma (MG; astrocytoma) cells. Treatment of the cells with noradrenaline for 24h concentration-dependently increased their intracellular GSH concentration. This increase was inhibited by a non-selective β-adrenoceptor antagonist propranolol and by a selective β3-adrenoceptor antagonist SR59230A, but not by a non-selective α-adrenoceptor antagonist phenoxybenzamine, or by a selective β1-adrenoceptor antagonist atenolol or by a selective β2-adrenoceptor antagonist butoxamine. In addition, the selective β3-adrenoceptor agonist CL316243 increased the intracellular GSH in U-251 MG cells. Treatment of the cells with noradrenaline (10μM) for 24h increased the protein level of the catalytic subunit of glutamate-cysteine ligase (GCLc), the rate-limiting enzyme of GSH synthesis; and this increase was inhibited by SR59230A. These results thus suggest that noradrenaline increased the GSH concentration in astrocytes by inducing GCLc protein in them via β3-adrenoceptor stimulation.
Collapse
Affiliation(s)
- Yasuhiro Yoshioka
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| | - Hisatsugu Kadoi
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| | - Akiko Yamamuro
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| | - Yuki Ishimaru
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| | - Sadaaki Maeda
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| |
Collapse
|
43
|
Yang J, Hertz E, Zhang X, Leinartaité L, Lundius EG, Li J, Svenningsson P. Overexpression of α-synuclein simultaneously increases glutamate NMDA receptor phosphorylation and reduces glucocerebrosidase activity. Neurosci Lett 2015; 611:51-8. [PMID: 26610904 DOI: 10.1016/j.neulet.2015.11.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/08/2015] [Accepted: 11/15/2015] [Indexed: 12/23/2022]
Abstract
Progressive accumulation of α-synuclein (α-syn)-containing protein aggregates throughout the nervous system is a pathological hallmark of Parkinson's disease (PD). The mechanisms whereby α-syn exerts neurodegeneration remain to be fully understood. Here we show that overexpression of α-syn in transgenic mice leads to increased phosphorylation of glutamate NMDA receptor (NMDAR) subunits NR1 and NR2B in substantia nigra and striatum as well as reduced glucocerebrosidase (GCase) levels. Similarly, molecular studies performed in mouse N2A cells stably overexpressing human α-syn ((α-syn)N2A) showed that phosphorylation states of the same NMDAR subunits were increased, whereas GCase levels and lysosomal GCase activity were reduced. (α-syn)N2A cells showed an increased sensitivity to neurotoxicity towards 6-hydroxydopamine and NMDA. However, wildtype N2A, but not (α-syn)N2A cells, showed a further reduction in viability when co-incubated with 6-hydroxydopamine and the lysosomal inhibitors NH4Cl and leupeptin, suggesting that α-syn per se perturbs lysosomal functions. NMDA treatment reduced lysosomal GCase activity to the same extent in (α-syn)N2A cells as in wildtype N2A cells, indicating that the α-syn-dependent difference in NMDA neurotoxicity is unrelated to an altered GCase activity. Nevertheless, these data provide molecular evidence that overexpression of α-syn simultaneously induces two potential neurotoxic hits by increasing glutamate NMDA receptor phosphorylation, consistent with increased NMDA receptors functionality, and reducing GCase activity.
Collapse
Affiliation(s)
- Junfeng Yang
- Translational Neuropharmacology, Department of Clinical Neuroscience, Center for Molecular Medicine L8:01, Karolinska Institute, Stockholm 171 76, Sweden; Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300071, China
| | - Ellen Hertz
- Translational Neuropharmacology, Department of Clinical Neuroscience, Center for Molecular Medicine L8:01, Karolinska Institute, Stockholm 171 76, Sweden
| | - Xiaoqun Zhang
- Translational Neuropharmacology, Department of Clinical Neuroscience, Center for Molecular Medicine L8:01, Karolinska Institute, Stockholm 171 76, Sweden
| | - Lina Leinartaité
- Translational Neuropharmacology, Department of Clinical Neuroscience, Center for Molecular Medicine L8:01, Karolinska Institute, Stockholm 171 76, Sweden
| | - Ebba Gregorsson Lundius
- Translational Neuropharmacology, Department of Clinical Neuroscience, Center for Molecular Medicine L8:01, Karolinska Institute, Stockholm 171 76, Sweden
| | - Jie Li
- Department of Mental Health Center, Tianjin Medical University, 13 Liulin Road, Tianjin 300222, China.
| | - Per Svenningsson
- Translational Neuropharmacology, Department of Clinical Neuroscience, Center for Molecular Medicine L8:01, Karolinska Institute, Stockholm 171 76, Sweden.
| |
Collapse
|
44
|
Bains M, Roberts JL. Estrogen protects against dopamine neuron toxicity in primary mesencephalic cultures through an indirect P13K/Akt mediated astrocyte pathway. Neurosci Lett 2015; 610:79-85. [PMID: 26520464 DOI: 10.1016/j.neulet.2015.10.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/14/2015] [Accepted: 10/22/2015] [Indexed: 02/05/2023]
Abstract
Astrocytes regulate neuronal homeostasis and have been implicated in affecting the viability and functioning of surrounding neurons under stressed and injured conditions. Previous data from our lab suggests indirect actions of estrogen through ERα in neighboring astroglia to protect dopamine neurons against 1-methyl-4-phenylpyridinium (MPP(+)) toxicity in mouse mesencephalic cultures. We further evaluate estrogen signaling in astrocytes and the mechanism of estrogen's indirect neuroprotective effects on dopamine neurons. Primary mesencephalic cultures pre-treated with 17β-estradiol and the membrane impermeable estrogen, E2-BSA, were both neuroprotective against MPP(+) -induced dopamine neuron toxicity, suggesting membrane-initiated neuroprotection. ERα was found in the plasma membrane of astrocyte cultures and colocalized with the lipid raft marker, flotillin-1. A 17β-estradiol time course revealed a significant increase in Akt, which was inhibited by the PI3 kinase inhibitor, LY294004. Estrogen conditioned media collected from pure astrocyte cultures rescued glial deficient mesencephalic cultures from MPP(+). This indirect estrogen-mediated neuroprotective effect in mesencephalic cultures was significantly reduced when PI3 kinase signaling in astrocytes was blocked prior to collecting estrogen-conditioned media using the irreversible PI3 kinase inhibitor, Wortmannin. Estrogen signaling via astrocytes is rapidly initiated at the membrane level and requires PI3 kinase signaling in order to protect primary mesencephalic dopamine neurons from MPP(+) neurotoxicity.
Collapse
Affiliation(s)
- Mona Bains
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United states.
| | - James L Roberts
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United states
| |
Collapse
|
45
|
Brück D, Wenning GK, Stefanova N, Fellner L. Glia and alpha-synuclein in neurodegeneration: A complex interaction. Neurobiol Dis 2015; 85:262-274. [PMID: 25766679 DOI: 10.1016/j.nbd.2015.03.003] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/23/2015] [Accepted: 03/03/2015] [Indexed: 02/07/2023] Open
Abstract
α-Synucleinopathies (ASP) comprise adult-onset, progressive neurodegenerative disorders such as Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA) that are characterized by α-synuclein (AS) aggregates in neurons or glia. PD and DLB feature neuronal AS-positive inclusions termed Lewy bodies (LB) whereas glial cytoplasmic inclusions (GCIs, Papp-Lantos bodies) are recognized as the defining hallmark of MSA. Furthermore, AS-positive cytoplasmic aggregates may also be seen in astroglial cells of PD/DLB and MSA brains. The glial AS-inclusions appear to trigger reduced trophic support resulting in neuronal loss. Moreover, microgliosis and astrogliosis can be found throughout the neurodegenerative brain and both are key players in the initiation and progression of ASP. In this review, we will highlight AS-dependent alterations of glial function and their impact on neuronal vulnerability thereby providing a detailed summary on the multifaceted role of glia in ASP.
Collapse
Affiliation(s)
- Dominik Brück
- Division of Neurobiology, Department of Neurology, Innsbruck Medical University, Innrain 66, 6020 Innsbruck, Austria
| | - Gregor K Wenning
- Division of Neurobiology, Department of Neurology, Innsbruck Medical University, Innrain 66, 6020 Innsbruck, Austria
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Innsbruck Medical University, Innrain 66, 6020 Innsbruck, Austria
| | - Lisa Fellner
- Division of Neurobiology, Department of Neurology, Innsbruck Medical University, Innrain 66, 6020 Innsbruck, Austria.
| |
Collapse
|
46
|
Yang F, Liu Y, Tu J, Wan J, Zhang J, Wu B, Chen S, Zhou J, Mu Y, Wang L. Activated astrocytes enhance the dopaminergic differentiation of stem cells and promote brain repair through bFGF. Nat Commun 2014; 5:5627. [PMID: 25517983 PMCID: PMC4284631 DOI: 10.1038/ncomms6627] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/21/2014] [Indexed: 02/06/2023] Open
Abstract
Astrocytes provide neuroprotective effects against degeneration of dopaminergic (DA) neurons and play a fundamental role in DA differentiation of neural stem cells. Here we show that light illumination of astrocytes expressing engineered channelrhodopsin variant (ChETA) can remarkably enhance the release of basic fibroblast growth factor (bFGF) and significantly promote the DA differentiation of human embryonic stem cells (hESCs) in vitro. Light activation of transplanted astrocytes in the substantia nigra (SN) also upregulates bFGF levels in vivo and promotes the regenerative effects of co-transplanted stem cells. Importantly, upregulation of bFGF levels, by specific light activation of endogenous astrocytes in the SN, enhances the DA differentiation of transplanted stem cells and promotes brain repair in a mouse model of Parkinson's disease (PD). Our study indicates that astrocyte-derived bFGF is required for regulation of DA differentiation of the stem cells and may provide a strategy targeting astrocytes for treatment of PD.
Collapse
Affiliation(s)
- Fan Yang
- Shenzhen Key Lab of Neuropsychiatric Modulation, CAS Center for Excellence in Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yunhui Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation, CAS Center for Excellence in Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jie Tu
- Shenzhen Key Lab of Neuropsychiatric Modulation, CAS Center for Excellence in Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jun Wan
- Shenzhen Key Lab of Neuropsychiatric Modulation, CAS Center for Excellence in Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jie Zhang
- Shenzhen Key Lab of Neuropsychiatric Modulation, CAS Center for Excellence in Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bifeng Wu
- Shenzhen Key Lab of Neuropsychiatric Modulation, CAS Center for Excellence in Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shanping Chen
- Shenzhen Key Lab of Neuropsychiatric Modulation, CAS Center for Excellence in Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiawei Zhou
- State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yangling Mu
- Shenzhen Key Lab of Neuropsychiatric Modulation, CAS Center for Excellence in Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, CAS Center for Excellence in Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
47
|
Revilla S, Ursulet S, Álvarez-López MJ, Castro-Freire M, Perpiñá U, García-Mesa Y, Bortolozzi A, Giménez-Llort L, Kaliman P, Cristòfol R, Sarkis C, Sanfeliu C. Lenti-GDNF gene therapy protects against Alzheimer's disease-like neuropathology in 3xTg-AD mice and MC65 cells. CNS Neurosci Ther 2014; 20:961-72. [PMID: 25119316 DOI: 10.1111/cns.12312] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 02/01/2023] Open
Abstract
AIMS Glial cell-derived neurotrophic factor (GDNF) is emerging as a potent neurotrophic factor with therapeutic potential against a range of neurodegenerative conditions including Alzheimer's disease (AD). We assayed the effects of GDNF treatment in AD experimental models through gene-therapy procedures. METHODS Recombinant lentiviral vectors were used to overexpress GDNF gene in hippocampal astrocytes of 3xTg-AD mice in vivo, and also in the MC65 human neuroblastoma that conditionally overexpresses the 99-residue carboxyl-terminal (C99) fragment of the amyloid precursor protein. RESULTS After 6 months of overexpressing GDNF, 10-month-old 3xTg-AD mice showed preserved learning and memory, while their counterparts transduced with a green fluorescent protein vector showed cognitive loss. GDNF therapy did not significantly reduce amyloid and tau pathology, but rather, induced a potent upregulation of brain-derived neurotrophic factor that may act in concert with GDNF to protect neurons from atrophy and degeneration. MC65 cells overexpressing GDNF showed an abolishment of oxidative stress and cell death that was at least partially mediated by a reduced presence of intracellular C99 and derived amyloid β oligomers. CONCLUSIONS GDNF induced neuroprotection in the AD experimental models used. Lentiviral vectors engineered to overexpress GDNF showed to be safe and effective, both as a potential gene therapy and as a tool to uncover the mechanisms of GDNF neuroprotection, including cross talk between astrocytes and neurons in the injured brain.
Collapse
Affiliation(s)
- Susana Revilla
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Fon D, Al‐Abboodi A, Chan PPY, Zhou K, Crack P, Finkelstein DI, Forsythe JS. Effects of GDNF-loaded injectable gelatin-based hydrogels on endogenous neural progenitor cell migration. Adv Healthc Mater 2014; 3:761-74. [PMID: 24596339 DOI: 10.1002/adhm.201300287] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/11/2013] [Indexed: 12/21/2022]
Abstract
Brain repair following disease and injury is very limited due to difficulties in recruiting and mobilizing stem cells towards the lesion. More importantly, there is a lack of structural and trophic support to maintain viability of the limited stem/progenitor cells present. This study investigates the effectiveness of an injectable gelatin-based hydrogel in attracting neural progenitor cells (NPCs) from the subventricular zone (SVZ) towards the implant. Glial cell-line-derived neurotrophic factor (GDNF) encapsulated within the hydrogel and porosity within the hydrogel prevents glial scar formation. By directly targeting the hydrogel implant towards the SVZ, neuroblasts can actively migrate towards and along the implant tract. Significantly more doublecortin (DCX)-positive neuroblasts surround implants at 7 d post-implantation (dpi) compared with lesion alone controls, an effect that is enhanced when GDNF is incorporated into the hydrogels. Neuroblasts are not observed at the implant boundary at 21 dpi, indicating that neuroblast migration has halted, and neuroblasts have either matured or have not survived. The development of an injectable gelatin-based hydrogel has significant implications for the treatment of some neurodegenerative diseases and brain injuries. The ability of GDNF and porosity to effectively prevent glial scar formation will allow better integration and interaction between the implant and surrounding neural tissue.
Collapse
Affiliation(s)
- Deniece Fon
- Department of Materials Engineering Monash University Clayton VIC 3800 Australia
| | - Aswan Al‐Abboodi
- Department of Chemical Engineering Monash University Clayton VIC 3800 Australia
- Micro/Nanophysics Research Laboratory RMIT University Melbourne VIC 3000 Australia
| | - Peggy P. Y. Chan
- Micro/Nanophysics Research Laboratory RMIT University Melbourne VIC 3000 Australia
- Melbourne Centre for Nanofabrication Clayton VIC 3168 Australia
| | - Kun Zhou
- Department of Materials Engineering Monash University Clayton VIC 3800 Australia
| | - Peter Crack
- Department of Pharmacology The University of Melbourne Parkville VIC 3010 Australia
| | - David I. Finkelstein
- Florey Institute of Neuroscience and Mental Health, Parkville The University of Melbourne VIC 3010 Australia
| | - John S. Forsythe
- Department of Materials Engineering Monash University Clayton VIC 3800 Australia
| |
Collapse
|
49
|
Wang TY, Bruggeman KAF, Sheean RK, Turner BJ, Nisbet DR, Parish CL. Characterization of the stability and bio-functionality of tethered proteins on bioengineered scaffolds: implications for stem cell biology and tissue repair. J Biol Chem 2014; 289:15044-51. [PMID: 24700461 DOI: 10.1074/jbc.m113.537381] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Various engineering applications have been utilized to deliver molecules and compounds in both innate and biological settings. In the context of biological applications, the timely delivery of molecules can be critical for cellular and organ function. As such, previous studies have demonstrated the superiority of long-term protein delivery, by way of protein tethering onto bioengineered scaffolds, compared with conventional delivery of soluble protein in vitro and in vivo. Despite such benefits little knowledge exists regarding the stability, release kinetics, longevity, activation of intracellular pathway, and functionality of these proteins over time. By way of example, here we examined the stability, degradation and functionality of a protein, glial-derived neurotrophic factor (GDNF), which is known to influence neuronal survival, differentiation, and neurite morphogenesis. Enzyme-linked immunosorbent assays (ELISA) revealed that GDNF, covalently tethered onto polycaprolactone (PCL) electrospun nanofibrous scaffolds, remained present on the scaffold surface for 120 days, with no evidence of protein leaching or degradation. The tethered GDNF protein remained functional and capable of activating downstream signaling cascades, as revealed by its capacity to phosphorylate intracellular Erk in a neural cell line. Furthermore, immobilization of GDNF protein promoted cell survival and differentiation in culture at both 3 and 7 days, further validating prolonged functionality of the protein, well beyond the minutes to hours timeframe observed for soluble proteins under the same culture conditions. This study provides important evidence of the stability and functionality kinetics of tethered molecules.
Collapse
Affiliation(s)
- Ting-Yi Wang
- From the Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, Australia, 3010 and
| | - Kiara A F Bruggeman
- the Research School of Engineering, The Australian National University, Canberra, Australia, 0200
| | - Rebecca K Sheean
- From the Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, Australia, 3010 and
| | - Bradley J Turner
- From the Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, Australia, 3010 and
| | - David R Nisbet
- the Research School of Engineering, The Australian National University, Canberra, Australia, 0200
| | - Clare L Parish
- From the Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, Australia, 3010 and
| |
Collapse
|
50
|
Proschel C, Stripay JL, Shih CH, Munger JC, Noble MD. Delayed transplantation of precursor cell-derived astrocytes provides multiple benefits in a rat model of Parkinsons. EMBO Mol Med 2014; 6:504-18. [PMID: 24477866 PMCID: PMC3992077 DOI: 10.1002/emmm.201302878] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In addition to dopaminergic neuron loss, it is clear that Parkinson disease includes other pathological changes, including loss of additional neuronal populations. As a means of addressing multiple pathological changes with a single therapeutically-relevant approach, we employed delayed transplantation of a unique class of astrocytes, GDAs(BMP), that are generated in vitro by directed differentiation of glial precursors. GDAs(BMP) produce multiple agents of interest as treatments for PD and other neurodegenerative disorders, including BDNF, GDNF, neurturin and IGF1. GDAs(BMP) also exhibit increased levels of antioxidant pathway components, including levels of NADPH and glutathione. Delayed GDA(BMP) transplantation into the 6-hydroxydopamine lesioned rat striatum restored tyrosine hydroxylase expression and promoted behavioral recovery. GDA(BMP) transplantation also rescued pathological changes not prevented in other studies, such as the rescue of parvalbumin(+) GABAergic interneurons. Consistent with expression of the synaptic modulatory proteins thrombospondin-1 and 2 by GDAs(BMP), increased expression of the synaptic protein synaptophysin was also observed. Thus, GDAs(BMP) offer a multimodal support cell therapy that provides multiple benefits without requiring prior genetic manipulation.
Collapse
Affiliation(s)
- Christoph Proschel
- Department for Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | | | | | | | | |
Collapse
|