1
|
Fenton TA, Petkova SP, Adhikari A, Silverman JL. Acute administration of lovastatin had no pronounced effect on motor abilities, motor coordination, gait nor simple cognition in a mouse model of Angelman syndrome. J Neurodev Disord 2025; 17:27. [PMID: 40382580 DOI: 10.1186/s11689-025-09616-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/01/2025] [Indexed: 05/20/2025] Open
Abstract
Translational research is needed to discover pharmacological targets and treatments for the diagnostic behavioral domains of neurodevelopmental disorders (NDDs), including autism spectrum disorders (ASDs) and intellectual disabilities (IDs). One NDD, associated with ASD and ID, is Angelman Syndrome (AS). AS is a rare genetic NDD for which there is currently no cure nor effective therapeutics. The genetic cause is known to be the loss of expression from the maternal allele of ubiquitin protein ligase E3A (UBE3A). The Ube3a maternal deletion mouse model of AS reliably demonstrates behavioral phenotypes of relevance to AS and therefore offers a suitable in vivo system in which to test potential therapeutics, with construct and face validity. Successes in reducing hyperexcitability and epileptogenesis have been reported in an AS model following acute treatment with lovastatin, an ERK inhibitor by reducing seizure threshold and percentage of mice exhibiting seizures. Since there has been literature reporting disruption of the ERK signaling pathway in AS, we chose to evaluate the effects of acute lovastatin administration in a tailored set of translationally relevant behavioral assays in a mouse model of AS. Unexpectedly, deleterious effects of sedation were observed in wildtype (WT), age matched littermate control mice and despite a baseline hypolocomotive phenotype in AS mice, even further reductions in exploratory activity, were observed post-acute lovastatin treatment. Limitations of this work include that chronic lower dose regimens, more akin to drug administration in humans were beyond the scope of this work, and may have produced a more favorable impact of lovastatin administration over single acute high doses. In addition, lovastatin's effects were not assessed in younger subjects, since our study focused exclusively on adult functional outcomes. Metrics of gait, as well as motor coordination and motor learning in rotarod, previously observed to be impaired in AS mice, were not improved by lovastatin treatment. Finally, cognition by novel object recognition task was worsened in WT controls and not improved in AS, following lovastatin administration. In conclusion, lovastatin did not indicate any major improvement to AS symptoms, and in fact, worsened behavioral outcomes in the WT control groups. Therefore, despite its attractive low toxicity, immediate availability, and low cost of the drug, further investigation for clinical study is unwarranted given the results presented herein.
Collapse
Affiliation(s)
- Timothy A Fenton
- MIND Institute, University of California Davis School of Medicine, Room 1001 A, Research II Building 96, 4625 2nd Avenue, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Stela P Petkova
- MIND Institute, University of California Davis School of Medicine, Room 1001 A, Research II Building 96, 4625 2nd Avenue, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Anna Adhikari
- MIND Institute, University of California Davis School of Medicine, Room 1001 A, Research II Building 96, 4625 2nd Avenue, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jill L Silverman
- MIND Institute, University of California Davis School of Medicine, Room 1001 A, Research II Building 96, 4625 2nd Avenue, Sacramento, CA, 95817, USA.
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
2
|
Huie EZ, Yang X, Rioult-Pedotti MS, Tran K, Monsen ER, Hansen K, Erickson MA, Naik M, Yotova AY, Banks WA, Huang YWA, Silverman JL, Marshall J. Peptidomimetic inhibitors targeting TrkB/PSD-95 signaling improves cognition and seizure outcomes in an Angelman Syndrome mouse model. Neuropsychopharmacology 2025; 50:772-782. [PMID: 39511336 PMCID: PMC11914665 DOI: 10.1038/s41386-024-02020-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/18/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024]
Abstract
Angelman syndrome (AS) is a rare genetic neurodevelopmental disorder with profoundly debilitating symptoms with no FDA-approved cure or therapeutic. Brain-derived neurotrophic factor (BDNF), and its receptor tropomyosin receptor kinase B (TrkB), have a well-established role as regulators of synaptic plasticity, dendritic outgrowth and spine formation. Previously, we reported that the association of postsynaptic density protein 95 (PSD-95) with TrkB is critical for intact BDNF signaling in the AS mouse model, as illustrated by attenuated PLCγ and PI3K signaling and intact MAPK pathway signaling. These data suggest that drugs tailored to enhance the TrkB-PSD-95 interaction may provide a novel approach for the treatment of AS and a variety of neurodevelopmental disorders (NDDs). To evaluate this critical interaction, we synthesized a class of high-affinity PSD-95 ligands that bind specifically to the PDZ3 domain of PSD-95, denoted as Syn3 peptidomimetic ligands. We evaluated Syn3 and its analog D-Syn3 (engineered using dextrorotary (D)-amino acids) in vivo using the Ube3a exon 2 deletion mouse model of AS. Following systemic administration of Syn3 and D-Syn3, we demonstrate improvement in the seizure domain of AS. Learning and memory using the novel object recognition assay also illustrated improved cognition following Syn3 and D-Syn3, along with restored long-term potentiation. A pharmacokinetic analysis of D-Syn3 demonstrates that it crosses the blood-brain barrier (BBB), and the brain influx rate is in the range of CNS therapeutics. Finally, D-Syn3 treated mice showed a partial rescue in motor learning. Neither Syn3 nor D-Syn3 improved gross exploratory locomotion deficits, nor gait impairments that have been well documented in the AS rodent models. These findings highlight the need for further investigation of this compound class as a potential therapeutic for AS and other genetic NDDs.
Collapse
Affiliation(s)
- Emily Z Huie
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, 4625 2nd Avenue Suite 1001A, Sacramento, CA, 95817, USA
| | - Xin Yang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Mengia S Rioult-Pedotti
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Kyle Tran
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, 4625 2nd Avenue Suite 1001A, Sacramento, CA, 95817, USA
| | - Emma R Monsen
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, 4625 2nd Avenue Suite 1001A, Sacramento, CA, 95817, USA
| | - Kim Hansen
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
- Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Department of Medicine, Seattle, WA, 98104, USA
| | - Michelle A Erickson
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
- Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Department of Medicine, Seattle, WA, 98104, USA
| | - Mandar Naik
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Anna Y Yotova
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, 4625 2nd Avenue Suite 1001A, Sacramento, CA, 95817, USA
| | - William A Banks
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
- Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Department of Medicine, Seattle, WA, 98104, USA
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Jill L Silverman
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, 4625 2nd Avenue Suite 1001A, Sacramento, CA, 95817, USA.
| | - John Marshall
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
3
|
Radin DP. AMPA Receptor Modulation in the Treatment of High-Grade Glioma: Translating Good Science into Better Outcomes. Pharmaceuticals (Basel) 2025; 18:384. [PMID: 40143160 PMCID: PMC11945080 DOI: 10.3390/ph18030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Glioblastoma (GB) treatment, despite consisting of surgical resection paired with radiation, temozolomide chemotherapy and tumor-treating fields, yields a median survival of 15-20 months. One of the more recently appreciated hallmarks of GB aggressiveness is the co-opting of neurotransmitter signaling mechanisms that normally sustain excitatory synaptic communication in the CNS. AMPA-glutamate receptor (AMPAR) signaling governs the majority of excitatory synaptic activity in the mammalian brain. AMPAR activation in glioma cells activates cellular pathways that enhance proliferation and invasion and confer resistance to approved GB therapeutics. In addition, this review places a specific emphasis on discussing the redefined GB cytoarchitecture that consists of neuron-to-glioma cell synapses, whose oncogenic activity is driven by AMPAR activation on glioma cells, and the discovery of tumor microtubes, which propagate calcium signals throughout the tumor network in order to enhance resistance to complete surgical resection and radiotherapy. These new discoveries notwithstanding, some evidence suggests that AMPAR activation can produce excitotoxicity in tumor cells. This disparity warrants a closer examination at how AMPAR modulation can be leveraged to produce more durable outcomes in the treatment of GB and tumors in peripheral organs that express AMPAR.
Collapse
Affiliation(s)
- Daniel P Radin
- Stony Brook Medical Scientist Training Program, Renaissance School of Medicine at Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| |
Collapse
|
4
|
Radin DP, Lippa A, Rana S, Fuller DD, Smith JL, Cerne R, Witkin JM. Amplification of the therapeutic potential of AMPA receptor potentiators from the nootropic era to today. Pharmacol Biochem Behav 2025; 248:173967. [PMID: 39894310 PMCID: PMC11849398 DOI: 10.1016/j.pbb.2025.173967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptors (AMPA receptors or AMPARs) are involved in fast excitatory neurotransmission and as such control multiple important physiological processes. AMPARs also are involved in the dynamics of synaptic plasticity in the nervous system where they impact neuroplastic responses such as long-term facilitation and long-term potentiation that regulate biological functions ranging from breathing to cognition. AMPARs also regulate neurotrophic factors that are strategically involved in neural plastic changes in the nervous system. As with other major ionotropic receptors, modulation of AMPARs can have prominent effects on biological systems that can include marked tolerability issues. AMPAR potentiators (AMPAkines) are positive allosteric modulators of AMPARs which have therapeutic potential. Medicinal chemistry combined with new pharmacological findings have defined AMPAkines with favorable oral bioavailability and pharmacological safety parameters that enable clinical advancement of their therapeutic utility. AMPAkines are being investigated in patients with diverse neurological and psychiatric disorders including spinal cord injury (breathing and bladder function), cognition, attention-deficit-hyperactivity disorder, and major depressive disorder. The present discussion of this class of compounds focuses on their general value as therapeutics through their impact on synaptic plasticity.
Collapse
Affiliation(s)
| | - Arnold Lippa
- RespireRx Pharmaceuticals Inc., Glen Rock, NJ, USA
| | - Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery St. Vincent's Hospital, Indianapolis, IN, USA
| | - Rok Cerne
- RespireRx Pharmaceuticals Inc., Glen Rock, NJ, USA; Laboratory of Antiepileptic Drug Discovery St. Vincent's Hospital, Indianapolis, IN, USA; Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, Ljubljana, Slovenia
| | - Jeffrey M Witkin
- RespireRx Pharmaceuticals Inc., Glen Rock, NJ, USA; Laboratory of Antiepileptic Drug Discovery St. Vincent's Hospital, Indianapolis, IN, USA; Department of Neurosciene and Trauma Research, Ascension St. Vincent Hospital, Indianapolis IN, USA.
| |
Collapse
|
5
|
Rana S, Fusco AF, Witkin JM, Radin DP, Cerne R, Lippa A, Fuller DD. Pharmacological modulation of respiratory control: Ampakines as a therapeutic strategy. Pharmacol Ther 2025; 265:108744. [PMID: 39521442 PMCID: PMC11849399 DOI: 10.1016/j.pharmthera.2024.108744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Ampakines are a class of compounds that are positive allosteric modulators of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and enhance glutamatergic neurotransmission. Glutamatergic synaptic transmission and AMPA receptor activation are fundamentally important to the genesis and propagation of the neural impulses driving breathing, including respiratory motoneuron depolarization. Ampakines therefore have the potential to modulate the neural control of breathing. In this paper, we describe the influence of ampakines on respiratory motor output in health and disease. We dissect the molecular mechanisms underlying ampakine action, delineate the diverse targets of ampakines along the respiratory neuraxis, survey the spectrum of respiratory disorders in which ampakines have been tested, and culminate with an examination of how ampakines modulate respiratory function after spinal cord injury. Collectively, the studies reviewed here indicate that ampakines may be a useful adjunctive strategy to pair with conventional respiratory rehabilitation approaches in conditions with impaired neural activation of the respiratory muscles.
Collapse
Affiliation(s)
- Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States of America.
| | - Anna F Fusco
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States of America
| | - Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, IN, United States of America; Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN, United States of America; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, United States of America
| | - Daniel P Radin
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, United States of America
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, IN, United States of America; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, United States of America; Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, Ljubljana, Slovenia
| | - Arnold Lippa
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, United States of America
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States of America
| |
Collapse
|
6
|
Morè L, Privitera L, Lopes M, Arthur JSC, Lauterborn JC, Corrêa SAL, Frenguelli BG. MSK1 is required for the experience- and ampakine-dependent enhancement of spatial reference memory and reversal learning and for the induction of Arc and BDNF. Neuropharmacology 2024; 261:110110. [PMID: 39128584 DOI: 10.1016/j.neuropharm.2024.110110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
There is considerable interest in the development of nootropics, pharmacological agents that can improve cognition across a range of both cognitive modalities and cognitive disabilities. One class of cognitive enhancers, the ampakines, has attracted particular attention by virtue of improving cognition associated with animal models of neurodevelopmental, neurodegenerative, and psychiatric conditions, as well as in age-related cognitive impairment. Ampakines elevate CNS levels of BDNF, and it is through this elevation that their beneficial actions are believed to occur. However, what transduces the elevation of BDNF into long-lasting cognitive enhancement is not known. We have previously shown that MSK1, by virtue of its ability to regulate gene transcription, converts the elevation of BDNF associated with environmental enrichment into molecular, synaptic, cognitive and genomic adaptations that underlie enrichment-induced enhanced synaptic plasticity and learning and memory, a property that MSK1 retains across the lifespan. To establish whether MSK1 similarly converts ampakine-induced elevations of BDNF into cognitive enhancement we tested an ampakine (CX929) in male WT mice and in male mice in which the kinase activity of MSK1 was inactivated. We found that MSK1 is required for the ampakine-dependent improvement in spatial reference memory and cognitive flexibility, and for the elevations of BDNF and the plasticity-related protein Arc associated with ampakines and experience. These observations implicate MSK1 as a key enabler of the beneficial effects of ampakines on cognitive function, and furthermore identify MSK1 as a hub for BDNF-elevating nootropic strategies.
Collapse
Affiliation(s)
- Lorenzo Morè
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK; School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Lucia Privitera
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Marcia Lopes
- Bradford School of Pharmacy and Medical Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, University of Dundee, Dundee, DD1 5EH, UK
| | - Julie C Lauterborn
- Department of Anatomy & Neurobiology, University of California, Irvine, USA
| | - Sonia A L Corrêa
- Bradford School of Pharmacy and Medical Sciences, University of Bradford, Bradford, BD7 1DP, UK; Department of Life Sciences, Manchester Metropolitan University, Manchester, M15 6BH, UK
| | | |
Collapse
|
7
|
Le AA, Lauterborn JC, Jia Y, Cox CD, Lynch G, Gall CM. Metabotropic NMDAR Signaling Contributes to Sex Differences in Synaptic Plasticity and Episodic Memory. J Neurosci 2024; 44:e0438242024. [PMID: 39424366 PMCID: PMC11638816 DOI: 10.1523/jneurosci.0438-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
NMDA receptor (NMDAR)-mediated calcium influx triggers the induction and initial expression of long-term potentiation (LTP). Here we report that in male rodents, ion flux-independent (metabotropic) NMDAR signaling is critical for a third step in the production of enduring LTP, i.e., cytoskeletal changes that stabilize the activity-induced synaptic modifications. Surprisingly, females rely upon estrogen receptor alpha (ERα) for the metabotropic NMDAR operations used by males. Blocking NMDAR channels with MK-801 eliminated LTP expression in hippocampal field CA1 of both sexes but left intact theta burst stimulation (TBS)-induced actin polymerization within dendritic spines. A selective antagonist (Ro25-6981) of the NMDAR GluN2B subunit had minimal effects on synaptic responses but blocked actin polymerization and LTP consolidation in males only. Conversely, an ERα antagonist thoroughly disrupted TBS-induced actin polymerization and LTP in females while having no evident effect in males. In an episodic memory paradigm, Ro25-6981 prevented acquisition of spatial locations by males but not females, whereas an ERα antagonist blocked acquisition in females but not males. Sex differences in LTP consolidation were accompanied by pronounced differences in episodic memory in tasks involving minimal (for learning) cue sampling. Males did better on acquisition of spatial information whereas females had much higher scores than males on tests for acquisition of the identity of cues (episodic "what") and the order in which the cues were sampled (episodic "when"). We propose that sex differences in synaptic processes used to stabilize LTP result in differential encoding of the basic elements of episodic memory.
Collapse
Affiliation(s)
- Aliza A Le
- Departments of Anatomy and Neurobiology, University of California, Irvine, California 92697
| | - Julie C Lauterborn
- Departments of Anatomy and Neurobiology, University of California, Irvine, California 92697
| | - Yousheng Jia
- Departments of Anatomy and Neurobiology, University of California, Irvine, California 92697
| | - Conor D Cox
- Departments of Anatomy and Neurobiology, University of California, Irvine, California 92697
| | - Gary Lynch
- Departments of Anatomy and Neurobiology, University of California, Irvine, California 92697
- Psychiatry and Human Behavior, University of California, Irvine, California 92697
| | - Christine M Gall
- Departments of Anatomy and Neurobiology, University of California, Irvine, California 92697
- Neurobiology and Behavior, University of California, Irvine, California 92697
| |
Collapse
|
8
|
Pizzella A, Penna E, Liu Y, Abate N, Lacivita E, Leopoldo M, Perrone-Capano C, Crispino M, Baudry M, Bi X. Alterations of synaptic plasticity in Angelman syndrome model mice are rescued by 5-HT7R stimulation. Prog Neurobiol 2024; 242:102684. [PMID: 39481590 DOI: 10.1016/j.pneurobio.2024.102684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Angelman syndrome (AS) is a severe neurodevelopmental disorder characterized by motor disfunction, seizures, intellectual disability, speech deficits, and autism-like behavior, showing high comorbidity with Autism Spectrum Disorders (ASD). It is known that stimulation of the serotonin receptor 7 (5-HT7R) can rescue some of the behavioral and neuroplasticity dysfunctions in animal models of Fragile X and Rett syndrome, two pathologies associated with ASD. In view of these observations, we hypothesised that alterations of 5-HT7R signalling might also be involved in AS. To test this hypothesis, we stimulated 5-HT7R with the selective agonist LP-211 to investigate its possible beneficial effects on synaptic dysfunctions and altered behavior in the AS mice model. In mutant mice, we observed impairment of the synaptic machinery of protein synthesis, which was reversed by 5-HT7R activation. Moreover, stimulation of 5-HT7R was able to: i) enhance dendritic spine density in hippocampal neurons, which was reduced in AS mice; ii) restore impaired long-term potentiation (LTP) in hippocampal slices of the AS mice; iii) improve cognitive performance of the mutant animals subjected to the fear conditioning paradigm. Altogether, our results, showing beneficial effects of 5-HT7R stimulation in restoring molecular and cognitive deficits associated with AS, suggest that targeting 5-HT7R could be a promising therapeutic approach for the pathology.
Collapse
Affiliation(s)
- Amelia Pizzella
- Department of Biology, University of Naples Federico II, Naples, Italy; College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, USA.
| | - Eduardo Penna
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, USA.
| | - Yan Liu
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, USA.
| | - Natalia Abate
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Enza Lacivita
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy.
| | - Marcello Leopoldo
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy.
| | | | - Marianna Crispino
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Michel Baudry
- College of Dental Medicine, Western University of Health Sciences, Pomona, USA.
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, USA.
| |
Collapse
|
9
|
Biagioni M, Baronchelli F, Fossati M. Multiscale spatio-temporal dynamics of UBE3A gene in brain physiology and neurodevelopmental disorders. Neurobiol Dis 2024; 201:106669. [PMID: 39293689 DOI: 10.1016/j.nbd.2024.106669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024] Open
Abstract
The UBE3A gene, located in the chromosomal region 15q11-13, is subject to neuron-specific genomic imprinting and it plays a critical role in brain development. Genetic defects of UBE3A cause severe neurodevelopmental disorders, namely the Angelman syndrome (AS) and the 15q11.2-q13.3 duplication syndrome (Dup15q). In the last two decades, the development of in vitro and in vivo models of AS and Dup15q were fundamental to improve the understanding of UBE3A function in the brain. However, the pathogenic mechanisms of these diseases remain elusive and effective treatments are lacking. Recent evidence suggests that UBE3A functions are both spatially and temporally specific, varying across subcellular compartments, brain regions, and neuronal circuits. In the present review, we summarize current knowledge on the role of UBE3A in neuronal pathophysiology under this spatio-temporal perspective. Additionally, we propose key research questions that will be instrumental to better understand the pathogenic mechanisms underpinning AS and Dup15q disorders and provide the rationale to develop novel therapies.
Collapse
Affiliation(s)
- Martina Biagioni
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano 20089, MI, Italy
| | - Federica Baronchelli
- CNR - Institute of Neuroscience, Section of Milano, via Manzoni 56, Rozzano 20089, MI, Italy; Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini, 20072 Pieve Emanuele, MI, Italy
| | - Matteo Fossati
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano 20089, MI, Italy; CNR - Institute of Neuroscience, Section of Milano, via Manzoni 56, Rozzano 20089, MI, Italy.
| |
Collapse
|
10
|
Witkin JM, Radin DP, Rana S, Fuller DD, Fusco AF, Demers JC, Pradeep Thakre P, Smith JL, Lippa A, Cerne R. AMPA receptors play an important role in the biological consequences of spinal cord injury: Implications for AMPA receptor modulators for therapeutic benefit. Biochem Pharmacol 2024; 228:116302. [PMID: 38763261 DOI: 10.1016/j.bcp.2024.116302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Spinal cord injury (SCI) afflicts millions of individuals globally. There are few therapies available to patients. Ascending and descending excitatory glutamatergic neural circuits in the central nervous system are disrupted by SCI, making α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) a potential therapeutic drug target. Emerging research in preclinical models highlights the involvement of AMPARs in vital processes following SCI including breathing, pain, inflammation, bladder control, and motor function. However, there are no clinical trial data reported in this patient population to date. No work on the role of AMPA receptors in sexual dysfunction after SCI has been disclosed. Compounds with selective antagonist and potentiating effects on AMPA receptors have benefit in animal models of SCI, with antagonists generally showing protective effects early after injury and potentiators (ampakines) producing improved breathing and bladder function. The role of AMPARs in pathophysiology and recovery after SCI depends upon the time post injury, and the timing of AMPAR augmentation or antagonism. The roles of inflammation, synaptic plasticity, sensitization, neurotrophic factors, and neuroprotection are considered in this context. The data summarized and discussed in this paper document proof of principle and strongly encourage additional studies on AMPARs as novel gateways to therapeutic benefit for patients suffering from SCI. The availability of both AMPAR antagonists such as perampanel and AMPAR allosteric modulators (i.e., ampakines) such as CX1739, that have been safely administered to humans, provides an expedited means of clinical inquiry for possible therapeutic advances.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA; Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN, USA; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA.
| | | | - Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Anna F Fusco
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Julie C Demers
- Indiana University/Purdue University, Indianapolis, IN, USA
| | - Prajwal Pradeep Thakre
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA
| | - Arnold Lippa
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA; Faculty of Medicine, University of Ljubljana, Zaloška Cesta 4, Ljubljana, Slovenia
| |
Collapse
|
11
|
Radin DP, Zhong S, Cerne R, Shoaib M, Witkin JM, Lippa A. Preclinical characterization of a water-soluble low-impact ampakine prodrug, CX1942 and its active moiety, CX1763. Future Med Chem 2024; 16:2325-2336. [PMID: 39301929 PMCID: PMC11622767 DOI: 10.1080/17568919.2024.2401312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
Aim: AMPA-glutamate receptor (AMPAR) dysfunction mediates multiple neurological/neuropsychiatric disorders. Ampakines bind AMPARs and allosterically enhance glutamate-elicited currents. This report describes the activity of the water-soluble ampakine CX1942 prodrug and the active moiety CX1763.Results: CX1763 and CX1942 enhance synaptic transmission in hippocampi of rats. CX1763 increases attention in the 5CSRTT in rats and reduces amphetamine-induced hyperactivity in mice. CX1942 potently reverses opioid-induced respiratory depression in rats. CX1942/CX1763 was effective at 2.5-10 mg/kg. CX1763 lacked epileptogenicity up to 1500 mg/kg in rats.Conclusion: These data document that CX1942 and CX1763 are active and without prominent side effects in multiple pre-clinical assays. CX1942 could serve as a prodrug for CX1763 with the advantage of high water solubility as in an intravenous formulation.
Collapse
Affiliation(s)
- Daniel P Radin
- RespireRx Pharmaceuticals Inc., 126 Valley Road, Glen Rock, NJ07452, USA
| | - Sheng Zhong
- Psychogenics, 215 College Road, Paramus, NJ07652, USA
| | - Rok Cerne
- RespireRx Pharmaceuticals Inc., 126 Valley Road, Glen Rock, NJ07452, USA
| | - Mohammed Shoaib
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Jeffrey M Witkin
- RespireRx Pharmaceuticals Inc., 126 Valley Road, Glen Rock, NJ07452, USA
| | - Arnold Lippa
- RespireRx Pharmaceuticals Inc., 126 Valley Road, Glen Rock, NJ07452, USA
| |
Collapse
|
12
|
Huie EZ, Yang X, Rioult-Pedotti MS, Naik M, Huang YWA, Silverman JL, Marshall J. Peptidomimetic inhibitors targeting TrkB/PSD-95 signaling improves cognition and seizure outcomes in an Angelman Syndrome mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597833. [PMID: 38895218 PMCID: PMC11185757 DOI: 10.1101/2024.06.07.597833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Angelman syndrome (AS) is a rare genetic neurodevelopmental disorder with profoundly debilitating symptoms with no FDA-approved cure or therapeutic. Brain-derived neurotrophic factor (BDNF), and its receptor TrkB, have a well-established role as regulators of synaptic plasticity, dendritic outgrowth, dendritic spine formation and maintenance. Previously, we reported that the association of PSD-95 with TrkB is critical for intact BDNF signaling in the AS mouse model, as illustrated by attenuated PLCγ and PI3K signaling and intact MAPK pathway signaling. These data suggest that drugs tailored to enhance the TrkB-PSD-95 interaction may provide a novel approach for the treatment of AS and a variety of NDDs. To evaluate this critical interaction, we synthesized a class of high-affinity PSD-95 ligands that bind specifically to the PDZ3 domain of PSD-95, denoted as Syn3 peptidomimetic ligands. We evaluated Syn3 and its analog D-Syn3 (engineered using dextrorotary (D)-amino acids) in vivo using the Ube3a exon 2 deletion mouse model of AS. Following systemic administration of Syn3 and D-Syn3, we demonstrated improvement in the seizure domain of AS. Learning and memory using the novel object recognition assay also illustrated improved cognition following Syn3 and D-Syn3, along with restored long-term potentiation. Finally, D-Syn3 treated mice showed a partial rescue in motor learning. Neither Syn3 nor D-Syn3 improved gross exploratory locomotion deficits, nor gait impairments that have been well documented in the AS rodent models. These findings highlight the need for further investigation of this compound class as a potential therapeutic for AS and other genetic NDDs.
Collapse
|
13
|
Mill NR, Ogoe RH, Valibeigi N, Chen D, Kimbal CL, Yoon SJ, Ganju S, Perdomo JA, Sardana A, McHail DG, Gonzalez DA, Dumas TC. Positive modulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors differentially alters spatial learning and memory in juvenile rats younger and older than three weeks. Behav Pharmacol 2024; 35:79-91. [PMID: 38451022 PMCID: PMC10921984 DOI: 10.1097/fbp.0000000000000764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Remarkable performance improvements occur at the end of the third postnatal week in rodents tested in various tasks that require navigation according to spatial context. While alterations in hippocampal function at least partially subserve this cognitive advancement, physiological explanations remain incomplete. Previously, we discovered that developmental modifications to hippocampal glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in juvenile rats was related to more mature spontaneous alternation behavior in a symmetrical Y-maze. Moreover, a positive allosteric modulator of AMPA receptors enabled immature rats to alternate at rates seen in older animals, suggesting an excitatory synaptic limitation to hippocampal maturation. We then validated the Barnes maze for juvenile rats in order to test the effects of positive AMPA receptor modulation on a goal-directed spatial memory task. Here we report the effects of the AMPA receptor modulator, CX614, on spatial learning and memory in the Barnes maze. Similar to our prior report, animals just over 3 weeks of age display substantial improvements in learning and memory performance parameters compared to animals just under 3 weeks of age. A moderate dose of CX614 enabled immature animals to move more directly to the goal location, but only after 1 day of training. This performance improvement was observed on the second day of training with drug delivery or during a memory probe trial performed without drug delivery after the second day of training. Higher doses created more search errors, especially in more mature animals. Overall, CX614 provided modest performance benefits for immature rats in a goal-directed spatial memory task.
Collapse
Affiliation(s)
| | | | | | - Diyi Chen
- Interdisciplinary Program in Neuroscience
| | | | | | | | | | - Anjali Sardana
- James Madison High School, George Mason University, Fairfax, Virginia, USA
| | | | | | | |
Collapse
|
14
|
Thakre PP, Fuller DD. Pattern sensitivity of ampakine-hypoxia interactions for evoking phrenic motor facilitation in anesthetized rat. J Neurophysiol 2024; 131:216-224. [PMID: 38116608 PMCID: PMC11286303 DOI: 10.1152/jn.00315.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023] Open
Abstract
Repeated hypoxic episodes can produce a sustained (>60 min) increase in neural drive to the diaphragm. The requirement of repeated hypoxic episodes (vs. a single episode) to produce phrenic motor facilitation (pMF) can be removed by allosteric modulation of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors using ampakines. We hypothesized that the ampakine-hypoxia interaction resulting in pMF requires that ampakine dosing precedes the onset of hypoxia. Phrenic nerve recordings were made from urethane-anesthetized, mechanically ventilated, and vagotomized adult male Sprague-Dawley rats during isocapnic conditions. Ampakine CX717 (15 mg/kg iv) was given immediately before (n = 8), during (n = 8), or immediately after (n = 8) a 5-min hypoxic episode (arterial oxygen partial pressure 40-45 mmHg). Ampakine before hypoxia (Aprior) resulted in a sustained increase in inspiratory phrenic burst amplitude (i.e., pMF) reaching +70 ± 21% above baseline (BL) after 60 min. This was considerably greater than corresponding values in the groups receiving ampakine during hypoxia (+28 ± 47% above BL, P = 0.005 vs. Aprior) or after hypoxia (+23 ± 40% above BL, P = 0.005 vs. Aprior). Phrenic inspiratory burst rate, heart rate, and systolic, diastolic, and mean arterial pressure (mmHg) were similar across the three treatment groups (all P > 0.3, treatment effect). We conclude that the presentation order of ampakine and hypoxia impacts the magnitude of pMF, with ampakine pretreatment evoking the strongest response. Ampakine pretreatment may have value in the context of hypoxia-based neurorehabilitation strategies.NEW & NOTEWORTHY Phrenic motor facilitation (pMF) is evoked after repeated episodes of brief hypoxia. pMF can also be induced when an allosteric modulator of AMPA receptors (ampakine) is intravenously delivered immediately before a single brief hypoxic episode. Here we show that ampakine delivery before hypoxia (vs. during or after hypoxia) evokes the largest pMF with minimal impact on arterial blood pressure and heart rate. Ampakine pretreatment may have value in the context of hypoxia-based neurorehabilitation strategies.
Collapse
Affiliation(s)
- Prajwal P Thakre
- Department of Physical Therapy, University of Florida, Gainesville, Florida, United States
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida, United States
- McKnight Brain Institute, University of Florida, Gainesville, Florida, United States
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, Florida, United States
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida, United States
- McKnight Brain Institute, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
15
|
Radin DP, Zhong S, Cerne R, Shoaib M, Smith JL, Witkin J, Lippa A. Preclinical Pharmacology of CX1837, a High-Impact Ampakine with an Improved Safety Margin: Implications for Treating Alzheimer's Disease and Ischemic Stroke. Curr Alzheimer Res 2024; 21:745-754. [PMID: 39931857 DOI: 10.2174/0115672050365821250127055828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 04/30/2025]
Abstract
INTRODUCTION For over a decade, AMPA receptor allosteric potentiators (AMPAkines) have shown significant effectiveness in multiple preclinical studies related to neurodegenerative and psychiatric disorders underpinned by deficient excitatory synaptic activity. Despite promising preclinical evidence, the clinical translation of AMPAkines has been slow due to the propensity of some of these compounds to produce seizures at or around therapeutic doses. MATERIALS AND METHODS The preclinical activity of the AMPAkine CX1837 is disclosed in the current work. RESULTS CX1837 enhanced synaptic transmission in hippocampal slices in vitro and dose-dependently enhanced long-term potentiation, which is believed to control memory consolidation. CX1837 boosted performance in cognition tests, such as the novel object recognition test and the win-shift radial arm maze. CX1837 also increased attentional functioning in the 5-choice serial reaction time task in rats. CX1837 produced positive preclinical effects at 0.01-1.0 mg/kg dose and elicited epileptic effects at 10 mg/kg dose. DISCUSSION CX1837 has one of the largest safety margins to date in preclinical studies. Low doses of CX1837, which produce acute increases in cognition, may potentially increase neurotrophins when given chronically. This could slow the progression of Alzheimer's disease and reverse deficits secondary to ischemic stroke. CONCLUSION Together, our findings highlight CX1837 as a potential candidate for clinical development in order to treat multiple neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Daniel P Radin
- RespireRx Pharmaceuticals Inc. Research and Development, 126 Valley Road, Glen Rock, NJ07452, USA
| | - Sheng Zhong
- Department of Neuroscience, Psychogenics, 215 College Road, Paramus, NJ07652, USA
| | - Rok Cerne
- RespireRx Pharmaceuticals Inc. Research and Development, 126 Valley Road, Glen Rock, NJ07452, USA
| | - Mohammed Shoaib
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10, 9AB, UK
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA
| | - Jeffrey Witkin
- RespireRx Pharmaceuticals Inc. Research and Development, 126 Valley Road, Glen Rock, NJ07452, USA
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA
| | - Arnold Lippa
- RespireRx Pharmaceuticals Inc. Research and Development, 126 Valley Road, Glen Rock, NJ07452, USA
| |
Collapse
|
16
|
Dejanovic B, Sheng M, Hanson JE. Targeting synapse function and loss for treatment of neurodegenerative diseases. Nat Rev Drug Discov 2024; 23:23-42. [PMID: 38012296 DOI: 10.1038/s41573-023-00823-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 11/29/2023]
Abstract
Synapse dysfunction and loss are hallmarks of neurodegenerative diseases that correlate with cognitive decline. However, the mechanisms and therapeutic strategies to prevent or reverse synaptic damage remain elusive. In this Review, we discuss recent advances in understanding the molecular and cellular pathways that impair synapses in neurodegenerative diseases, including the effects of protein aggregation and neuroinflammation. We also highlight emerging therapeutic approaches that aim to restore synaptic function and integrity, such as enhancing synaptic plasticity, preventing synaptotoxicity, modulating neuronal network activity and targeting immune signalling. We discuss the preclinical and clinical evidence for each strategy, as well as the challenges and opportunities for developing effective synapse-targeting therapeutics for neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Morgan Sheng
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jesse E Hanson
- Department of Neuroscience, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
17
|
Su W, Liu Y, Lam A, Hao X, Baudry M, Bi X. Contextual fear memory impairment in Angelman syndrome model mice is associated with altered transcriptional responses. Sci Rep 2023; 13:18647. [PMID: 37903805 PMCID: PMC10616231 DOI: 10.1038/s41598-023-45769-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/24/2023] [Indexed: 11/01/2023] Open
Abstract
Angelman syndrome (AS) is a rare neurogenetic disorder caused by UBE3A deficiency and characterized by severe developmental delay, cognitive impairment, and motor dysfunction. In the present study, we performed RNA-seq on hippocampal samples from both wildtype (WT) and AS male mice, with or without contextual fear memory recall. There were 281 recall-associated differentially expressed genes (DEGs) in WT mice and 268 DEGs in AS mice, with 129 shared by the two genotypes. Gene ontology analysis showed that extracellular matrix and stimulation-induced response genes were prominently enriched in recall-associated DEGs in WT mice, while nuclear acid metabolism and tissue development genes were highly enriched in those from AS mice. Further analyses showed that the 129 shared DEGs belonged to nuclear acid metabolism and tissue development genes. Unique recall DEGs in WT mice were enriched in biological processes critical for synaptic plasticity and learning and memory, including the extracellular matrix network clustered around fibronectin 1 and collagens. In contrast, AS-specific DEGs were not enriched in any known pathways. These results suggest that memory recall in AS mice, while altering the transcriptome, fails to recruit memory-associated transcriptional programs, which could be responsible for the memory impairment in AS mice.
Collapse
Affiliation(s)
- Wenyue Su
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Yan Liu
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Aileen Lam
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 701 E. 2nd St., Pomona, CA, 91766-1854, USA
| | - Xiaoning Hao
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 701 E. 2nd St., Pomona, CA, 91766-1854, USA
| | - Michel Baudry
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 701 E. 2nd St., Pomona, CA, 91766-1854, USA.
| |
Collapse
|
18
|
Aria F, Pandey K, Alberini CM. Excessive Protein Accumulation and Impaired Autophagy in the Hippocampus of Angelman Syndrome Modeled in Mice. Biol Psychiatry 2023; 94:68-83. [PMID: 36764852 PMCID: PMC10276539 DOI: 10.1016/j.biopsych.2022.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/03/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Angelman syndrome (AS), a neurodevelopmental disorder caused by abnormalities of the 15q11.2-q13.1 chromosome region, is characterized by impairment of cognitive and motor functions, sleep problems, and seizures. How the genetic defects of AS produce these neurological symptoms is unclear. Mice modeling AS (AS mice) accumulate activity-regulated cytoskeleton-associated protein (ARC/ARG3.1), a neuronal immediate early gene (IEG) critical for synaptic plasticity. This accumulation suggests an altered protein metabolism. METHODS Focusing on the dorsal hippocampus (dHC), a brain region critical for memory formation and cognitive functions, we assessed levels and tissue distribution of IEGs, de novo protein synthesis, and markers of protein synthesis, endosomes, autophagy, and synaptic functions in AS mice at baseline and following learning. We also tested autophagic flux and memory retention following autophagy-promoting treatment. RESULTS AS dHC exhibited accumulation of IEGs ARC, FOS, and EGR1; autophagy proteins MLP3B, SQSTM1, and LAMP1; and reduction of the endosomal protein RAB5A. AS dHC also had increased levels of de novo protein synthesis, impaired autophagic flux with accumulation of autophagosome, and altered synaptic protein levels. Contextual fear conditioning significantly increased levels of IEGs and autophagy proteins, de novo protein synthesis, and autophagic flux in the dHC of normal mice, but not in AS mice. Enhancing autophagy in the dHC alleviated AS-related memory and autophagic flux impairments. CONCLUSIONS A major biological deficit of AS brain is a defective protein metabolism, particularly that dynamically regulated by learning, resulting in stalled autophagy and accumulation of neuronal proteins. Activating autophagy ameliorates AS cognitive impairments and dHC protein accumulation.
Collapse
Affiliation(s)
- Francesca Aria
- Center for Neural Science, New York University, New York, New York
| | - Kiran Pandey
- Center for Neural Science, New York University, New York, New York
| | | |
Collapse
|
19
|
Hao X, Sun J, Zhong L, Baudry M, Bi X. UBE3A deficiency-induced autophagy is associated with activation of AMPK-ULK1 and p53 pathways. Exp Neurol 2023; 363:114358. [PMID: 36849003 PMCID: PMC10073344 DOI: 10.1016/j.expneurol.2023.114358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/03/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Angelman Syndrome (AS) is a neurodevelopmental disorder caused by deficiency of the maternally expressed UBE3A gene. The UBE3A proteins functions both as an E3 ligase in the ubiquitin-proteasome system (UPS), and as a transcriptional co-activator for steroid hormone receptors. Here we investigated the effects of UBE3A deficiency on autophagy in the cerebellum of AS mice and in COS1 cells. Numbers and size of LC3- and LAMP2-immunopositive puncta were increased in cerebellar Purkinje cells of AS mice, as compared to wildtype mice. Western blot analysis showed an increase in the conversion of LC3I to LC3II in AS mice, as expected from increased autophagy. Levels of active AMPK and of one of its substrates, ULK1, a factor involved in autophagy initiation, were also increased. Colocalization of LC3 with LAMP2 was increased and p62 levels were decreased, indicating an increase in autophagy flux. UBE3A deficiency was also associated with reduced levels of phosphorylated p53 in the cytosol and increased levels in nuclei, which favors autophagy induction. UBE3A siRNA knockdown in COS-1 cells resulted in increased size and intensity of LC3-immunopositive puncta and increased the LC3 II/I ratio, as compared to control siRNA-treated cells, confirming the results found in the cerebellum of AS mice. These results indicate that UBE3A deficiency enhances autophagic activity through activation of the AMPK-ULK1 pathway and alterations in p53.
Collapse
Affiliation(s)
- Xiaoning Hao
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Jiandong Sun
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Li Zhong
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Michel Baudry
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
20
|
Sun J, Liu Y, Hao X, Baudry M, Bi X. Lack of UBE3A-Mediated Regulation of Synaptic SK2 Channels Contributes to Learning and Memory Impairment in the Female Mouse Model of Angelman Syndrome. Neural Plast 2022; 2022:3923384. [PMID: 36237484 PMCID: PMC9553421 DOI: 10.1155/2022/3923384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/16/2022] [Indexed: 11/29/2022] Open
Abstract
Angelman syndrome (AS) is a rare neurodevelopmental disorder characterized by severe developmental delay, motor impairment, language and cognition deficits, and often with increased seizure activity. AS is caused by deficiency of UBE3A, which is both an E3 ligase and a cofactor for transcriptional regulation. We previously showed that the small conductance potassium channel protein SK2 is a UBE3A substrate, and that increased synaptic SK2 levels contribute to impairments in synaptic plasticity and fear-conditioning memory, as inhibition of SK2 channels significantly improved both synaptic plasticity and fear memory in male AS mice. In the present study, we investigated UBE3a-mediated regulation of synaptic plasticity and fear-conditioning in female AS mice. Results from both western blot and immunofluorescence analyses showed that synaptic SK2 levels were significantly increased in hippocampus of female AS mice, as compared to wild-type (WT) littermates. Like in male AS mice, long-term potentiation (LTP) was significantly reduced while long-term depression (LTD) was enhanced at hippocampal CA3-CA1 synapses of female AS mice, as compared to female WT mice. Both alterations were significantly reduced by treatment with the SK2 inhibitor, apamin. The shunting effect of SK2 channels on NMDA receptor was significantly larger in female AS mice as compared to female WT mice. Female AS mice also showed impairment in both contextual and tone memory recall, and this impairment was significantly reduced by apamin treatment. Our results indicate that like male AS mice, female AS mice showed significant impairment in both synaptic plasticity and fear-conditioning memory due to increased levels of synaptic SK2 channels. Any therapeutic strategy to reduce SK2-mediated inhibition of NMDAR should be beneficial to both male and female patients.
Collapse
Affiliation(s)
- Jiandong Sun
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766, USA
| | - Yan Liu
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766, USA
| | - Xiaoning Hao
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766, USA
| | - Michel Baudry
- College of Dental Medicine, Western University of Health Sciences, Pomona, California 91766, USA
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766, USA
| |
Collapse
|
21
|
Cosgrove JA, Kelly LK, Kiffmeyer EA, Kloth AD. Sex-dependent influence of postweaning environmental enrichment in Angelman syndrome model mice. Brain Behav 2022; 12:e2468. [PMID: 34985196 PMCID: PMC8865162 DOI: 10.1002/brb3.2468] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/09/2021] [Accepted: 12/12/2021] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Angelman syndrome (AS) is a rare neurodevelopmental disorder caused by mutation or loss of UBE3A and marked by intellectual disability, ataxia, autism-like symptoms, and other atypical behaviors. One route to treatment may lie in the role that environment plays early in postnatal life. Environmental enrichment (EE) is one manipulation that has shown therapeutic potential in preclinical models of many brain disorders, including neurodevelopmental disorders. Here, we examined whether postweaning EE can rescue behavioral phenotypes in Ube3a maternal deletion mice (AS mice), and whether any improvements are sex-dependent. METHODS Male and female mice (C57BL/6J Ube3atm1Alb mice and wild-type (WT) littermates; ≥10 mice/group) were randomly assigned to standard housing (SH) or EE at weaning. EE had a larger footprint, a running wheel, and a variety of toys that promoted foraging, burrowing, and climbing. Following 6 weeks of EE, animals were submitted to a battery of tests that reliably elicit behavioral deficits in AS mice, including rotarod, open field, marble burying, and forced swim; weights were also monitored. RESULTS In male AS-EE mice, we found complete restoration of motor coordination, marble burying, and forced swim behavior to the level of WT-SH mice. We also observed a complete normalization of exploratory distance traveled in the open field, but we found no rescue of vertical behavior or center time. AS-EE mice also had weights comparable to WT-SH mice. Intriguingly, in the female AS-EE mice, we found a failure of EE to rescue the same behavioral deficits relative to female WT-SH mice. CONCLUSIONS Environmental enrichment is an effective route to correcting the most penetrant phenotypes in male AS mice but not female AS mice. This finding has important implications for the translatability of early behavioral intervention for AS patients, most importantly the potential dependency of treatment response on sex.
Collapse
Affiliation(s)
- Jameson A. Cosgrove
- Department of BiologyAugustana University2001 S. Summit AvenueSioux FallsSouth DakotaUSA
| | - Lauren K. Kelly
- Department of BiologyAugustana University2001 S. Summit AvenueSioux FallsSouth DakotaUSA
| | - Elizabeth A. Kiffmeyer
- Department of BiologyAugustana University2001 S. Summit AvenueSioux FallsSouth DakotaUSA
| | - Alexander D. Kloth
- Department of BiologyAugustana University2001 S. Summit AvenueSioux FallsSouth DakotaUSA
| |
Collapse
|
22
|
Elgersma Y, Sonzogni M. UBE3A reinstatement as a disease-modifying therapy for Angelman syndrome. Dev Med Child Neurol 2021; 63:802-807. [PMID: 33543479 PMCID: PMC8248324 DOI: 10.1111/dmcn.14831] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2021] [Indexed: 01/08/2023]
Abstract
Half a century ago, Harry Angelman reported three patients with overlapping clinical features, now well known as Angelman syndrome. Angelman syndrome is caused by mutations affecting the maternally inherited UBE3A gene, which encodes an E3-ubiquitin ligase that is critical for typical postnatal brain development. Emerging evidence indicates that UBE3A plays a particularly important role in the nucleus. However, the critical substrates that are controlled by UBE3A remain elusive, which hinders the search for effective treatments. Moreover, given the multitude of signalling mechanisms that are derailed, it is unlikely that targeting a single pathway is going to be very effective. Therefore, expectations are very high for approaches that aim to restore UBE3A protein levels. A particular promising strategy is an antisense oligonucleotide approach, which activates the silenced paternal UBE3A gene. When successful, such treatments potentially offer a disease-modifying therapy for Angelman syndrome and several other neurodevelopmental disorders. What this paper adds Loss of UBE3A affects multiple signalling pathways in the brain. Emerging evidence suggests that UBE3A plays a critical role in the cell nucleus. Trials using antisense oligonucleotides to restore UBE3A levels are continuing.
Collapse
Affiliation(s)
- Ype Elgersma
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
- Deptartment of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, the Netherlands
| | - Monica Sonzogni
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
- The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
23
|
Markati T, Duis J, Servais L. Therapies in preclinical and clinical development for Angelman syndrome. Expert Opin Investig Drugs 2021; 30:709-720. [PMID: 34112038 DOI: 10.1080/13543784.2021.1939674] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Angelman syndrome is a rare genetic neurodevelopmental disorder, caused by deficiency or abnormal function of the maternal ubiquitin protein-ligase E3A, known as UBE3A, in the central nervous system. There is no disease-modifying treatment available, but the therapeutic pipeline of Angelman syndrome includes at least 15 different approaches at preclinical or clinical development. In the coming years, several clinical trials will be enrolling patients, which prompted this comprehensive review.Areas covered: We summarize and critically review the different therapeutic approaches. Some approaches attempt to restore the missing or nonfunctional UBE3A protein in the neurons via gene replacement or enzyme replacement therapies. Other therapies aim to induce expression of the normal paternal copy of the UBE3A gene by targeting a long non-coding RNA, the UBE3A-ATS, which interferes with its own expression. Another therapeutic category includes compounds that target molecular pathways and effector proteins known to be involved in Angelman syndrome pathophysiology.Expert opinion: We believe that by 2022-2023, more than five disease-modifying treatments will be simultaneously at clinical testing. However, the are several challenges with regards to safety and efficacy, which need to be addressed. Additionally, there is still a significant unmet need for clinical trial readiness.
Collapse
Affiliation(s)
- Theodora Markati
- MDUK Oxford Neuromuscular Center, University of Oxford, Oxford, UK.,Department of Paediatrics, University of Oxford, Oxford, UK
| | - Jessica Duis
- Section of Genetics & Inherited Metabolic Disease, Department of Pediatrics, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Laurent Servais
- MDUK Oxford Neuromuscular Center, University of Oxford, Oxford, UK.,Department of Paediatrics, University of Oxford, Oxford, UK.,Division of Child Neurology, Centre De Références Des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liège & University of Liège, Belgium
| |
Collapse
|
24
|
Lo LHY, Dong R, Lyu Q, Lai KO. The Protein Arginine Methyltransferase PRMT8 and Substrate G3BP1 Control Rac1-PAK1 Signaling and Actin Cytoskeleton for Dendritic Spine Maturation. Cell Rep 2021; 31:107744. [PMID: 32521269 DOI: 10.1016/j.celrep.2020.107744] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/01/2020] [Accepted: 05/18/2020] [Indexed: 01/25/2023] Open
Abstract
Excitatory synapses of neurons are located on dendritic spines. Spine maturation is essential for the stability of synapses and memory consolidation, and overproduction of the immature filopodia is associated with brain disorders. The structure and function of synapses can be modulated by protein post-translational modification (PTM). Arginine methylation is a major PTM that regulates chromatin structure, transcription, and splicing within the nucleus. Here we find that the protein arginine methyltransferase PRMT8 is present at neuronal synapses and its expression is upregulated in the hippocampus when dendritic spine maturation occurs. Depletion of PRMT8 leads to overabundance of filopodia and mis-localization of excitatory synapses. Mechanistically, PRMT8 promotes dendritic spine morphology through methylation of the dendritic RNA-binding protein G3BP1 and suppression of the Rac1-PAK1 signaling pathway to control synaptic actin dynamics. Our findings unravel arginine methylation as a crucial regulatory mechanism for actin cytoskeleton during synapse development.
Collapse
Affiliation(s)
- Louisa Hoi-Ying Lo
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Rui Dong
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Quanwei Lyu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Kwok-On Lai
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
25
|
Mezzena R, Masciullo C, Antonini S, Cremisi F, Scheffner M, Cecchini M, Tonazzini I. Study of adhesion and migration dynamics in ubiquitin E3A ligase (UBE3A)-silenced SYSH5Y neuroblastoma cells by micro-structured surfaces. NANOTECHNOLOGY 2021; 32:025708. [PMID: 33055385 DOI: 10.1088/1361-6528/abbb03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
During neuronal development, neuronal cells read extracellular stimuli from the micro/nano-environment within which they exist, retrieving essential directionality and wiring information. Here, focal adhesions (FAs-protein clusters anchoring integrins to cytoskeleton) act as sensors, by integrating signals from both the extracellular matrix environment and chemotactic factors, contributing to the final neuronal pathfinding and migration. In the processes that orchestrate neuronal development, the important function of ubiquitin E3A ligase (UBE3A) is emerging. UBE3A has crucial functions in the brain and changes in its expression levels lead to neurodevelopmental disorders: the lack of UBE3A leads to Angelman syndrome (AS, OMIN 105830), while its increase causes autisms (Dup15q-autism). By using nano/micro-structured anisotropic substrates we previously showed that UBE3A-deficient neurons have deficits in contact guidance (Tonazzini et al, Mol Autism 2019). Here, we investigate the adhesion and migration dynamics of UBE3A-silenced SH-SY5Y neuroblastoma cells in vitro by exploiting nano/micro-grooved substrates. We analyze the molecular processes regulating the development of FAs by transfection with EGFP-vector encoding for paxillin, a protein of FA clusters, and by live-cell total-internal-reflection-fluorescence microscopy. We show that UBE3A-silenced SH-SY5Y cells have impaired FA morphological development and pathway activation, which lead to a delayed adhesion and also explain the defective contact guidance in response to directional topographical stimuli. However, UBE3A-silenced SH-SY5Y cells show an overall normal migration behavior, in terms of speed and ability to follow the GRs directional stimulus. Only the collective cell migration upon cell gaps was slightly delayed for UBE3Ash SHs. Overall, the deficits of UBE3Ash SHS-SY5Y cells in FA maturation/sensing and in collective migration may have patho-physiological implications, in AS condition, considering the much more complex stimuli that neurons find in vivo during the neurodevelopment.
Collapse
Affiliation(s)
- R Mezzena
- NEST, Istituto Nanoscienze- CNR and Scuola Normale Superiore, Pisa, Italy
| | - C Masciullo
- NEST, Istituto Nanoscienze- CNR and Scuola Normale Superiore, Pisa, Italy
| | - S Antonini
- NEST, Istituto Nanoscienze- CNR and Scuola Normale Superiore, Pisa, Italy
| | - F Cremisi
- Scuola Normale Superiore, Bio@SNS, Pisa, Italy
| | - M Scheffner
- University of Konstanz, Department of Biology, Konstanz, Germany
| | - M Cecchini
- NEST, Istituto Nanoscienze- CNR and Scuola Normale Superiore, Pisa, Italy
| | - I Tonazzini
- NEST, Istituto Nanoscienze- CNR and Scuola Normale Superiore, Pisa, Italy
- Fondazione Umberto Veronesi, Milano, Italy
| |
Collapse
|
26
|
Smolen P, Wood MA, Baxter DA, Byrne JH. Modeling suggests combined-drug treatments for disorders impairing synaptic plasticity via shared signaling pathways. J Comput Neurosci 2020; 49:37-56. [PMID: 33175283 DOI: 10.1007/s10827-020-00771-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 08/27/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022]
Abstract
Genetic disorders such as Rubinstein-Taybi syndrome (RTS) and Coffin-Lowry syndrome (CLS) cause lifelong cognitive disability, including deficits in learning and memory. Can pharmacological therapies be suggested that improve learning and memory in these disorders? To address this question, we simulated drug effects within a computational model describing induction of late long-term potentiation (L-LTP). Biochemical pathways impaired in these and other disorders converge on a common target, histone acetylation by acetyltransferases such as CREB binding protein (CBP), which facilitates gene induction necessary for L-LTP. We focused on four drug classes: tropomyosin receptor kinase B (TrkB) agonists, cAMP phosphodiesterase inhibitors, histone deacetylase inhibitors, and ampakines. Simulations suggested each drug type alone may rescue deficits in L-LTP. A potential disadvantage, however, was the necessity of simulating strong drug effects (high doses), which could produce adverse side effects. Thus, we investigated the effects of six drug pairs among the four classes described above. These combination treatments normalized impaired L-LTP with substantially smaller individual drug 'doses'. In addition three of these combinations, a TrkB agonist paired with an ampakine and a cAMP phosphodiesterase inhibitor paired with a TrkB agonist or an ampakine, exhibited strong synergism in L-LTP rescue. Therefore, we suggest these drug combinations are promising candidates for further empirical studies in animal models of genetic disorders that impair histone acetylation, L-LTP, and learning.
Collapse
Affiliation(s)
- Paul Smolen
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
| | - Douglas A Baxter
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - John H Byrne
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| |
Collapse
|
27
|
Moreira-de-Sá A, Gonçalves FQ, Lopes JP, Silva HB, Tomé ÂR, Cunha RA, Canas PM. Adenosine A 2A receptors format long-term depression and memory strategies in a mouse model of Angelman syndrome. Neurobiol Dis 2020; 146:105137. [PMID: 33049319 DOI: 10.1016/j.nbd.2020.105137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/03/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Angelman syndrome (AS) is a neurodevelopmental disorder caused by loss of function of the maternally inherited Ube3a neuronal protein, whose main features comprise severe intellectual disabilities and motor impairments. Previous studies with the Ube3am-/p+ mouse model of AS revealed deficits in synaptic plasticity and memory. Since adenosine A2A receptors (A2AR) are powerful modulators of aberrant synaptic plasticity and A2AR blockade prevents memory dysfunction in various brain diseases, we tested if A2AR could control deficits of memory and hippocampal synaptic plasticity in AS. We observed that Ube3am-/p+ mice were unable to resort to hippocampal-dependent search strategies when tested for learning and memory in the Morris water maze; this was associated with a decreased magnitude of long-term depression (LTD) in CA1 hippocampal circuits. There was an increased density of A2AR in the hippocampus of Ube3am-/p+ mice and their chronic treatment with the selective A2AR antagonist SCH58261 (0.1 mg/kg/day, ip) restored both hippocampal-dependent learning strategies, as well as LTD deficits. Altogether, this study provides the first evidence of a role of A2AR as a new prospective therapeutic target to manage learning deficits in AS.
Collapse
Affiliation(s)
- Ana Moreira-de-Sá
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Francisco Q Gonçalves
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - João P Lopes
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Henrique B Silva
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ângelo R Tomé
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Paula M Canas
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal.
| |
Collapse
|
28
|
Dutta R, Crawley JN. Behavioral Evaluation of Angelman Syndrome Mice at Older Ages. Neuroscience 2020; 445:163-171. [PMID: 31730795 PMCID: PMC7214203 DOI: 10.1016/j.neuroscience.2019.10.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022]
Abstract
Angelman syndrome is a neurodevelopmental disorder presenting with severe deficits in motor, speech, and cognitive abilities. The primary genetic cause of Angelman syndrome is a maternally transmitted mutation in the Ube3a gene, which has been successfully modeled in Ube3a mutant mice. Phenotypes have been extensively reported in young adult Ube3a mice. Because symptoms continue throughout life in Angelman syndrome, we tested multiple behavioral phenotypes of male Ube3a mice and WT littermate controls at older adult ages. Social behaviors on both the 3-chambered social approach and male-female social interaction tests showed impairments in Ube3a at 12 months of age. Anxiety-related scores on both the elevated plus-maze and the light ↔ dark transitions assays indicated anxiety-like phenotypes in 12 month old Ube3a mice. Open field locomotion parameters were consistently lower at 12 months. Reduced general exploratory locomotion at this age prevented the interpretation of an anxiety-like phenotype, and likely impacted social tasks. Robust phenotypes in middle-aged Ube3a mice appear to result from continued motor decline. Motor deficits may provide the best outcome measures for preclinical testing of pharmacological targets, towards reductions of symptoms in adults with Angelman syndrome.
Collapse
Affiliation(s)
- Rebecca Dutta
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Jacqueline N Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|
29
|
Wollman LB, Streeter KA, Fusco AF, Gonzalez-Rothi EJ, Sandhu MS, Greer JJ, Fuller DD. Ampakines stimulate phrenic motor output after cervical spinal cord injury. Exp Neurol 2020; 334:113465. [PMID: 32949571 DOI: 10.1016/j.expneurol.2020.113465] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/31/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022]
Abstract
Activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors increases phrenic motor output. Ampakines are a class of drugs that are positive allosteric modulators of AMPA receptors. We hypothesized that 1) ampakines can stimulate phrenic activity after incomplete cervical spinal cord injury (SCI), and 2) pairing ampakines with brief hypoxia could enable sustained facilitation of phrenic bursting. Phrenic activity was recorded ipsilateral (IL) and contralateral (CL) to C2 spinal cord hemisection (C2Hx) in anesthetized adult rats. Two weeks after C2Hx, ampakine CX717 (15 mg/kg, i.v.) increased IL (61 ± 46% baseline, BL) and CL burst amplitude (47 ± 26%BL) in 8 of 8 rats. After 90 min, IL and CL bursting remained above baseline (BL) in 7 of 8 rats. Pairing ampakine with a single bout of acute hypoxia (5-min, arterial partial pressure of O2 ~ 50 mmHg) had a variable impact on phrenic bursting, with some rats showing a large facilitation that exceeded the response of the ampakine alone group. At 8 weeks post-C2Hx, 7 of 8 rats increased IL (115 ± 117%BL) and CL burst amplitude (45 ± 27%BL) after ampakine. The IL burst amplitude remained above BL for 90-min in 7 of 8 rats; CL bursting remained elevated in 6 of 8 rats. The sustained impact of ampakine at 8 weeks was not enhanced by hypoxia exposure. Intravenous vehicle (10% 2-Hydroxypropyl-β-cyclodextrin) did not increase phrenic bursting at either time point. We conclude that ampakines effectively stimulate neural drive to the diaphragm after cervical SCI. Pairing ampakines with a single hypoxic exposure did not consistently enhance phrenic motor facilitation.
Collapse
Affiliation(s)
- L B Wollman
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32610, United States of America
| | - K A Streeter
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32610, United States of America
| | - A F Fusco
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America
| | - E J Gonzalez-Rothi
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, United States of America; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32610, United States of America
| | - M S Sandhu
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America
| | - J J Greer
- Department of Physiology, University of Alberta, Edmonton, AB T6G2SE, Canada
| | - D D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, United States of America; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32610, United States of America.
| |
Collapse
|
30
|
Schultz MN, Crawley JN. Evaluation of a TrkB agonist on spatial and motor learning in the Ube3a mouse model of Angelman syndrome. Learn Mem 2020; 27:346-354. [PMID: 32817301 PMCID: PMC7433657 DOI: 10.1101/lm.051201.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/11/2020] [Indexed: 12/21/2022]
Abstract
Angelman syndrome is a rare neurodevelopmental disorder caused by a mutation in the maternal allele of the gene Ube3a The primary symptoms of Angelman syndrome are severe cognitive deficits, impaired motor functions, and speech disabilities. Analogous phenotypes have been detected in young adult Ube3a mice. Here, we investigate cognitive phenotypes of Ube3a mice as compared to wild-type littermate controls at an older adult age. Water maze spatial learning, swim speed, and rotarod motor coordination and balance were impaired at 6 mo of age, as predicted. Based on previous findings of reduced brain-derived neurotrophic factor in Ube3a mice, a novel therapeutic target, the TrkB agonist 7,8-DHF, was interrogated. Semichronic daily treatment with 7,8-DHF, 5 mg/kg i.p., did not significantly improve the impairments in performance during the acquisition of the water maze hidden platform location in Ube3a mice, after training with either massed or spaced trials, and had no effect on the swim speed and rotarod deficits. Robust behavioral phenotypes in middle-aged Ube3a mice appear to result from continued motor decline. Our results suggest that motor deficits could offer useful outcome measures for preclinical testing of many pharmacological targets, with the goal of reducing symptoms in adults with Angelman syndrome.
Collapse
Affiliation(s)
- Maria N Schultz
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California 95821, USA
| | - Jacqueline N Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California 95821, USA
| |
Collapse
|
31
|
Javed S, Selliah T, Lee YJ, Huang WH. Dosage-sensitive genes in autism spectrum disorders: From neurobiology to therapy. Neurosci Biobehav Rev 2020; 118:538-567. [PMID: 32858083 DOI: 10.1016/j.neubiorev.2020.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/26/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorders (ASDs) are a group of heterogenous neurodevelopmental disorders affecting 1 in 59 children. Syndromic ASDs are commonly associated with chromosomal rearrangements or dosage imbalance involving a single gene. Many of these genes are dosage-sensitive and regulate transcription, protein homeostasis, and synaptic function in the brain. Despite vastly different molecular perturbations, syndromic ASDs share core symptoms including social dysfunction and repetitive behavior. However, each ASD subtype has a unique pathogenic mechanism and combination of comorbidities that require individual attention. We have learned a great deal about how these dosage-sensitive genes control brain development and behaviors from genetically-engineered mice. Here we describe the clinical features of eight monogenic neurodevelopmental disorders caused by dosage imbalance of four genes, as well as recent advances in using genetic mouse models to understand their pathogenic mechanisms and develop intervention strategies. We propose that applying newly developed quantitative molecular and neuroscience technologies will advance our understanding of the unique neurobiology of each disorder and enable the development of personalized therapy.
Collapse
Affiliation(s)
- Sehrish Javed
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Tharushan Selliah
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Yu-Ju Lee
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Wei-Hsiang Huang
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| |
Collapse
|
32
|
PKA and Ube3a regulate SK2 channel trafficking to promote synaptic plasticity in hippocampus: Implications for Angelman Syndrome. Sci Rep 2020; 10:9824. [PMID: 32555345 PMCID: PMC7299966 DOI: 10.1038/s41598-020-66790-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/04/2020] [Indexed: 12/29/2022] Open
Abstract
The ubiquitin ligase, Ube3a, plays important roles in brain development and functions, since its deficiency results in Angelman Syndrome (AS) while its over-expression increases the risk for autism. We previously showed that the lack of Ube3a-mediated ubiquitination of the Ca2+-activated small conductance potassium channel, SK2, contributes to impairment of synaptic plasticity and learning in AS mice. Synaptic SK2 levels are also regulated by protein kinase A (PKA), which phosphorylates SK2 in its C-terminal domain, facilitating its endocytosis. Here, we report that PKA activation restores theta burst stimulation (TBS)-induced long-term potentiation (LTP) in hippocampal slices from AS mice by enhancing SK2 internalization. While TBS-induced SK2 endocytosis is facilitated by PKA activation, SK2 recycling to synaptic membranes after TBS is inhibited by Ube3a. Molecular and cellular studies confirmed that phosphorylation of SK2 in the C-terminal domain increases its ubiquitination and endocytosis. Finally, PKA activation increases SK2 phosphorylation and ubiquitination in Ube3a-overexpressing mice. Our results indicate that, although both Ube3a-mediated ubiquitination and PKA-induced phosphorylation reduce synaptic SK2 levels, phosphorylation is mainly involved in TBS-induced endocytosis, while ubiquitination predominantly inhibits SK2 recycling. Understanding the complex interactions between PKA and Ube3a in the regulation of SK2 synaptic levels might provide new platforms for developing treatments for AS and various forms of autism.
Collapse
|
33
|
Tsagkaris C, Papakosta V, Miranda AV, Zacharopoulou L, Danilchenko V, Matiashova L, Dhar A. Gene Therapy for Angelman Syndrome: Contemporary Approaches and Future Endeavors. Curr Gene Ther 2020; 19:359-366. [DOI: 10.2174/1566523220666200107151025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/28/2019] [Accepted: 01/01/2020] [Indexed: 01/20/2023]
Abstract
Background:
Angelman Syndrome (AS) is a congenital non inherited neurodevelopmental
disorder. The contemporary AS management is symptomatic and it has been accepted that gene therapy
may play a key role in the treatment of AS.
Objective:
The purpose of this study is to summarize existing and suggested gene therapy approaches
to Angelman syndrome.
Methods:
This is a literature review. Pubmed and Scopus databases were researched with keywords
(gene therapy, Angelman’s syndrome, neurological disorders, neonates). Peer-reviewed studies that
were closely related to gene therapies in Angelman syndrome and available in English, Greek, Ukrainian
or Indonesian were included. Studies that were published before 2000 were excluded and did not
align with the aforementioned criteria.
Results:
UBE3A serves multiple roles in signaling and degradation procedures. Although the restoration
of UBE3A expression rather than targeting known activities of the molecule would be the optimal
therapeutic goal, it is not possible so far. Reinstatement of paternal UBE3A appears as an adequate alternative.
This can be achieved by administering topoisomerase-I inhibitors or reducing UBE3A antisense
transcript (UBE3A-ATS), a molecule which silences paternal UBE3A.
Conclusion:
Understanding UBE3A imprinting unravels the path to an etiologic treatment of AS.
Gene therapy models tested on mice appeared less effective than anticipated pointing out that activation
of paternal UBE3A cannot counteract the existing CNS defects. On the other hand, targeting abnormal
downstream cell signaling pathways has provided promising rescue effects. Perhaps, combined
reinstatement of paternal UBE3A expression with abnormal signaling pathways-oriented treatment is
expected to provide better therapeutic effects. However, AS gene therapy remains debatable in pharmacoeconomics
and ethics context.
Collapse
Affiliation(s)
| | | | | | | | - Valeriia Danilchenko
- Department of Pediatrics #1 with Propaedeutics and Neonatology, Ukrainian Medical Stomatological Academy, Poltava, Ukraine
| | | | - Amrit Dhar
- Government Medical College, Jammu and Kashmir, India
| |
Collapse
|
34
|
Mohammad S, Page SJ, Wang L, Ishii S, Li P, Sasaki T, Basha A, Salzberg A, Quezado Z, Imamura F, Nishi H, Isaka K, Corbin JG, Liu JS, Kawasawa YI, Torii M, Hashimoto-Torii K. Kcnn2 blockade reverses learning deficits in a mouse model of fetal alcohol spectrum disorders. Nat Neurosci 2020; 23:533-543. [PMID: 32203497 PMCID: PMC7131887 DOI: 10.1038/s41593-020-0592-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 01/16/2020] [Indexed: 12/19/2022]
Abstract
Learning disabilities are hallmarks of congenital conditions caused by prenatal exposure to harmful agents. Those include Fetal Alcohol Spectrum Disorders (FASD) with a wide range of cognitive deficiencies including impaired motor skill development. While these effects have been well characterized, the molecular effects that bring about these behavioral consequences remain to be determined. We have previously found that the acute molecular responses to alcohol in the embryonic brain are stochastic, varying among neural progenitor cells. However, the pathophysiological consequences stemming from these heterogeneous responses remain unknown. Here we show that acute responses to alcohol in progenitor cells alter gene expression in their descendant neurons. Among the altered genes, an increase of the calcium-activated potassium channel Kcnn2 in the motor cortex correlates with motor learning deficits in the mouse model of FASD. Pharmacologic blockade of Kcnn2 improves these learning deficits, suggesting Kcnn2 blockers as a novel intervention for learning disabilities in FASD.
Collapse
Affiliation(s)
- Shahid Mohammad
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Stephen J Page
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Li Wang
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Seiji Ishii
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Peijun Li
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA.,Wenzhou Medical University, Ouhai, Wenzhou, China
| | - Toru Sasaki
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA.,Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, Japan
| | - Aiesha Basha
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Anna Salzberg
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Zenaide Quezado
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Division of Anesthesiology, Pain and Perioperative Medicine, Children's National Hospital, Washington, DC, USA
| | - Fumiaki Imamura
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Hirotaka Nishi
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, Japan
| | - Keiichi Isaka
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, Japan
| | - Joshua G Corbin
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA.,Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Judy S Liu
- Department of Neurology, Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Yuka Imamura Kawasawa
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA. .,Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | - Masaaki Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA. .,Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA.
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA. .,Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA.
| |
Collapse
|
35
|
Maranga C, Fernandes TG, Bekman E, da Rocha ST. Angelman syndrome: a journey through the brain. FEBS J 2020; 287:2154-2175. [PMID: 32087041 DOI: 10.1111/febs.15258] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/02/2020] [Accepted: 02/21/2020] [Indexed: 12/31/2022]
Abstract
Angelman syndrome (AS) is an incurable neurodevelopmental disease caused by loss of function of the maternally inherited UBE3A gene. AS is characterized by a defined set of symptoms, namely severe developmental delay, speech impairment, uncontrolled laughter, and ataxia. Current understanding of the pathophysiology of AS relies mostly on studies using the murine model of the disease, although alternative models based on patient-derived stem cells are now emerging. Here, we summarize the literature of the last decade concerning the three major brain areas that have been the subject of study in the context of AS: hippocampus, cortex, and the cerebellum. Our comprehensive analysis highlights the major phenotypes ascribed to the different brain areas. Moreover, we also discuss the major drawbacks of current models and point out future directions for research in the context of AS, which will hopefully lead us to an effective treatment of this condition in humans.
Collapse
Affiliation(s)
- Carina Maranga
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Tiago G Fernandes
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Evguenia Bekman
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Simão Teixeira da Rocha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
36
|
Morè L, Lauterborn JC, Papaleo F, Brambilla R. Enhancing cognition through pharmacological and environmental interventions: Examples from preclinical models of neurodevelopmental disorders. Neurosci Biobehav Rev 2020; 110:28-45. [PMID: 30981451 DOI: 10.1016/j.neubiorev.2019.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/29/2022]
Abstract
In this review we discuss the role of environmental and pharmacological treatments to enhance cognition with special regards to neurodevelopmental related disorders and aging. How the environment influences brain structure and function, and the interactions between rearing conditions and gene expression, are fundamental questions that are still poorly understood. We propose a model that can explain some of the discrepancies in findings for effects of environmental enrichment on outcome measures. Evidence of a direct causal correlation of nootropics and treatments that enhanced cognition also will be presented, and possible molecular mechanisms that include neurotrophin signaling and downstream pathways underlying these processes are discussed. Finally we review recent findings achieved with a wide set of behavioral and cognitive tasks that have translational validity to humans, and should be useful for future work on devising appropriate therapies. As will be discussed, the collective findings suggest that a combinational therapeutic approach of environmental enrichment and nootropics could be particularly successful for improving learning and memory in both developmental disorders and normal aging.
Collapse
Affiliation(s)
- Lorenzo Morè
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, PR1 2XT, Preston, UK.
| | - Julie C Lauterborn
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, 92617, USA.
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Istituto Italiano di Tecnologia, Via Morego, 30, 16163, Genova, Italy.
| | - Riccardo Brambilla
- Neuroscience and Mental Health Research Institute (NMHRI), Division of Neuroscience, School of Biosciences, Cardiff University, CF24 4HQ, Cardiff, UK.
| |
Collapse
|
37
|
Wollman LB, Streeter KA, Fuller DD. Ampakine pretreatment enables a single brief hypoxic episode to evoke phrenic motor facilitation. J Neurophysiol 2020; 123:993-1003. [PMID: 31940229 PMCID: PMC7099472 DOI: 10.1152/jn.00708.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Phrenic long-term facilitation (LTF) is a sustained increase in phrenic motor output occurring after exposure to multiple (but not single) hypoxic episodes. Ampakines are a class of drugs that enhance AMPA receptor function. Ampakines can enhance expression of neuroplasticity, and the phrenic motor system is fundamentally dependent on excitatory glutamatergic currents. Accordingly, we tested the hypothesis that combining ampakine pretreatment with a single brief hypoxic exposure would result in phrenic motor facilitation lasting well beyond the period of hypoxia. Phrenic nerve output was recorded in urethane-anesthetized, ventilated, and vagotomized adult Sprague-Dawley rats. Ampakine CX717 (15 mg/kg iv; n = 8) produced a small increase in phrenic inspiratory burst amplitude and frequency, but values quickly returned to predrug baseline. When CX717 was followed 2 min later by a 5-min exposure to hypoxia (n = 8; PaO2 ~45 mmHg), a persistent increase in phrenic inspiratory burst amplitude (i.e., phrenic motor facilitation) was observed up to 60 min posthypoxia (103 ± 53% increase from baseline). In contrast, when hypoxia was preceded by vehicle injection (10% 2-hydroxypropyl-β-cyclodextrin; n = 8), inspiratory phrenic bursting was similar to baseline values at 60 min. Additional experiments with another ampakine (CX1739, 15 mg/kg) produced comparable results. We conclude that pairing low-dose ampakine treatment with a single brief hypoxic exposure can evoke sustained phrenic motor facilitation. This targeted approach for enhancing respiratory neuroplasticity may have value in the context of hypoxia-based neurorehabilitation strategies.NEW & NOTEWORTHY A single brief episode of hypoxia (e.g., 3-5 min) does not evoke long-lasting increases in respiratory motor output after the hypoxia is concluded. Ampakines are a class of drugs that enhance AMPA receptor function. We show that pairing low-dose ampakine treatment with a single brief hypoxic exposure can evoke sustained phrenic motor facilitation after the acute hypoxic episode.
Collapse
Affiliation(s)
- L B Wollman
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida
| | - K A Streeter
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida
| | - D D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida
| |
Collapse
|
38
|
Korgaonkar AA, Li Y, Sekhar D, Subramanian D, Guevarra J, Swietek B, Pallottie A, Singh S, Kella K, Elkabes S, Santhakumar V. Toll-like Receptor 4 Signaling in Neurons Enhances Calcium-Permeable α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid Receptor Currents and Drives Post-Traumatic Epileptogenesis. Ann Neurol 2020; 87:497-515. [PMID: 32031699 DOI: 10.1002/ana.25698] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Traumatic brain injury is a major risk factor for acquired epilepsies, and understanding the mechanisms underlying the early pathophysiology could yield viable therapeutic targets. Growing evidence indicates a role for inflammatory signaling in modifying neuronal excitability and promoting epileptogenesis. Here we examined the effect of innate immune receptor Toll-like receptor 4 (TLR4) on excitability of the hippocampal dentate gyrus and epileptogenesis after brain injury. METHODS Slice and in vivo electrophysiology and Western blots were conducted in rats subject to fluid percussion brain injury or sham injury. RESULTS The studies identify that TLR4 signaling in neurons augments dentate granule cell calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (CP-AMPAR) currents after brain injury. Blocking TLR4 signaling in vivo shortly after brain injury reduced dentate network excitability and seizure susceptibility. When blocking of TLR4 signaling after injury was delayed, however, this treatment failed to reduce postinjury seizure susceptibility. Furthermore, TLR4 signal blocking was less efficacious in limiting seizure susceptibility when AMPAR currents, downstream targets of TLR4 signaling, were transiently enhanced. Paradoxically, blocking TLR4 signaling augmented both network excitability and seizure susceptibility in uninjured controls. Despite the differential effect on seizure susceptibility, TLR4 antagonism suppressed cellular inflammatory responses after injury without impacting sham controls. INTERPRETATION These findings demonstrate that independently of glia, the immune receptor TLR4 directly regulates post-traumatic neuronal excitability. Moreover, the TLR4-dependent early increase in dentate excitability is causally associated with epileptogenesis. Identification and selective targeting of the mechanisms underlying the aberrant TLR4-mediated increase in CP-AMPAR signaling after injury may prevent epileptogenesis after brain trauma. ANN NEUROL 2020;87:497-515.
Collapse
Affiliation(s)
- Akshata A Korgaonkar
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| | - Ying Li
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| | - Dipika Sekhar
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ.,Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, CA
| | - Deepak Subramanian
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ.,Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, CA
| | - Jenieve Guevarra
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| | - Bogumila Swietek
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| | - Alexandra Pallottie
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, NJ
| | - Sukwinder Singh
- Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Kruthi Kella
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| | - Stella Elkabes
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, NJ
| | - Vijayalakshmi Santhakumar
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ.,Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, CA
| |
Collapse
|
39
|
Seese RR, Le AA, Wang K, Cox CD, Lynch G, Gall CM. A TrkB agonist and ampakine rescue synaptic plasticity and multiple forms of memory in a mouse model of intellectual disability. Neurobiol Dis 2020; 134:104604. [PMID: 31494285 PMCID: PMC7258745 DOI: 10.1016/j.nbd.2019.104604] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/26/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022] Open
Abstract
Fragile X syndrome (FXS) is associated with deficits in various types of learning, including those that require the hippocampus. Relatedly, hippocampal long-term potentiation (LTP) is impaired in the Fmr1 knockout (KO) mouse model of FXS. Prior research found that infusion of brain-derived neurotrophic factor (BDNF) rescues LTP in the KOs. Here, we tested if, in Fmr1 KO mice, up-regulating BDNF production or treatment with an agonist for BDNF's TrkB receptor restores synaptic plasticity and improves learning. In hippocampal slices, bath infusion of the TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) completely restored otherwise impaired hippocampal field CA1 LTP of Fmr1 KOs without effect in wild types (WTs). Similarly, acute, semi-chronic, or chronic treatments with 7,8-DHF rescued a simple hippocampus-dependent form of spatial learning (object location memory: OLM) in Fmr1 KOs without effect in WTs. The agonist also restored object recognition memory, which depends on cortical regions. Semi-chronic, but not acute, treatment with the ampakine CX929, which up-regulates BDNF expression, lowered the training threshold for OLM in WT mice and rescued learning in the KOs. Positive results were also obtained in a test for social recognition. An mGluR5 antagonist did not improve learning. Quantification of synaptic immunolabeling demonstrated that 7,8-DHF and CX929 increase levels of activated TrkB at excitatory synapses. Moreover, CX929 induced a robust synaptic activation of the TrkB effector ERK1/2. These results suggest that enhanced synaptic BDNF signaling constitutes a plausible strategy for treating certain aspects of the cognitive disabilities associated with FXS.
Collapse
Affiliation(s)
- Ronald R Seese
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, United States of America
| | - Aliza A Le
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, United States of America
| | - Kathleen Wang
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, United States of America
| | - Conor D Cox
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, United States of America
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, United States of America; Department of Psychiatry and Human Behavior, University of California, Irvine, CA, United States of America.
| | - Christine M Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, United States of America; Department of Neurobiology and Behavior, University of California, Irvine, CA, United States of America.
| |
Collapse
|
40
|
Tonazzini I, Van Woerden GM, Masciullo C, Mientjes EJ, Elgersma Y, Cecchini M. The role of ubiquitin ligase E3A in polarized contact guidance and rescue strategies in UBE3A-deficient hippocampal neurons. Mol Autism 2019; 10:41. [PMID: 31798818 PMCID: PMC6884852 DOI: 10.1186/s13229-019-0293-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/17/2019] [Indexed: 11/10/2022] Open
Abstract
Background Although neuronal extracellular sensing is emerging as crucial for brain wiring and therefore plasticity, little is known about these processes in neurodevelopmental disorders. Ubiquitin protein ligase E3A (UBE3A) plays a key role in neurodevelopment. Lack of UBE3A leads to Angelman syndrome (AS), while its increase is among the most prevalent genetic causes of autism (e.g., Dup15q syndrome). By using microstructured substrates that can induce specific directional stimuli in cells, we previously found deficient topographical contact guidance in AS neurons, which was linked to a dysregulated activation of the focal adhesion pathway. Methods Here, we study axon and dendrite contact guidance and neuronal morphological features of wild-type, AS, and UBE3A-overexpressing neurons (Dup15q autism model) on micrograting substrates, with the aim to clarify the role of UBE3A in neuronal guidance. Results We found that loss of axonal contact guidance is specific for AS neurons while UBE3A overexpression does not affect neuronal directional polarization along microgratings. Deficits at the level of axonal branching, growth cone orientation and actin fiber content, focal adhesion (FA) effectors, and actin fiber-binding proteins were observed in AS neurons. We tested different rescue strategies for restoring correct topographical guidance in AS neurons on microgratings, by either UBE3A protein re-expression or by pharmacological treatments acting on cytoskeleton contractility. Nocodazole, a drug that depolymerizes microtubules and increases cell contractility, rescued AS axonal alignment to the gratings by partially restoring focal adhesion pathway activation. Surprisingly, UBE3A re-expression only resulted in partial rescue of the phenotype. Conclusions We identified a specific in vitro deficit in axonal topographical guidance due selectively to the loss of UBE3A, and we further demonstrate that this defective guidance can be rescued to a certain extent by pharmacological or genetic treatment strategies. Overall, cytoskeleton dynamics emerge as important partners in UBE3A-mediated contact guidance responses. These results support the view that UBE3A-related deficits in early neuronal morphogenesis may lead to defective neuronal connectivity and plasticity.
Collapse
Affiliation(s)
- Ilaria Tonazzini
- Istituto Nanoscienze- Consiglio Nazionale delle Ricerche (CNR) & Scuola Normale Superiore, NEST, Piazza San Silvestro 12, 56127 Pisa, Italy
- Department of Neuroscience, ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Wytemaweg 80, 3000 CA Rotterdam, the Netherlands
| | - Geeske M. Van Woerden
- Department of Neuroscience, ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Wytemaweg 80, 3000 CA Rotterdam, the Netherlands
| | - Cecilia Masciullo
- Istituto Nanoscienze- Consiglio Nazionale delle Ricerche (CNR) & Scuola Normale Superiore, NEST, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Edwin J. Mientjes
- Department of Neuroscience, ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Wytemaweg 80, 3000 CA Rotterdam, the Netherlands
| | - Ype Elgersma
- Department of Neuroscience, ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Wytemaweg 80, 3000 CA Rotterdam, the Netherlands
| | - Marco Cecchini
- Istituto Nanoscienze- Consiglio Nazionale delle Ricerche (CNR) & Scuola Normale Superiore, NEST, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
41
|
Abstract
The structure of neuronal circuits that subserve cognitive functions in the brain is shaped and refined throughout development and into adulthood. Evidence from human and animal studies suggests that the cellular and synaptic substrates of these circuits are atypical in neuropsychiatric disorders, indicating that altered structural plasticity may be an important part of the disease biology. Advances in genetics have redefined our understanding of neuropsychiatric disorders and have revealed a spectrum of risk factors that impact pathways known to influence structural plasticity. In this Review, we discuss the importance of recent genetic findings on the different mechanisms of structural plasticity and propose that these converge on shared pathways that can be targeted with novel therapeutics.
Collapse
|
42
|
Lauterborn JC, Schultz MN, Le AA, Amani M, Friedman AE, Leach PT, Gall CM, Lynch GS, Crawley JN. Spaced training improves learning in Ts65Dn and Ube3a mouse models of intellectual disabilities. Transl Psychiatry 2019; 9:166. [PMID: 31182707 PMCID: PMC6557858 DOI: 10.1038/s41398-019-0495-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/14/2019] [Accepted: 03/23/2019] [Indexed: 12/29/2022] Open
Abstract
Benefits of distributed learning strategies have been extensively described in the human literature, but minimally investigated in intellectual disability syndromes. We tested the hypothesis that training trials spaced apart in time could improve learning in two distinct genetic mouse models of neurodevelopmental disorders characterized by intellectual impairments. As compared to training with massed trials, spaced training significantly improved learning in both the Ts65Dn trisomy mouse model of Down syndrome and the maternally inherited Ube3a mutant mouse model of Angelman syndrome. Spacing the training trials at 1 h intervals accelerated acquisition of three cognitive tasks by Ts65Dn mice: (1) object location memory, (2) novel object recognition, (3) water maze spatial learning. Further, (4) spaced training improved water maze spatial learning by Ube3a mice. In contrast, (5) cerebellar-mediated rotarod motor learning was not improved by spaced training. Corroborations in three assays, conducted in two model systems, replicated within and across two laboratories, confirm the strength of the findings. Our results indicate strong translational relevance of a behavioral intervention strategy for improving the standard of care in treating the learning difficulties that are characteristic and clinically intractable features of many neurodevelopmental disorders.
Collapse
Affiliation(s)
- J C Lauterborn
- Department of Anatomy & Neurobiology, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - M N Schultz
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - A A Le
- Department of Anatomy & Neurobiology, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - M Amani
- Department of Psychiatry and Human Behavior, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - A E Friedman
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Harvard University, Cambridge, MA, USA
| | - P T Leach
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Biogen Inc., Cambridge, MA, USA
| | - C M Gall
- Department of Anatomy & Neurobiology, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - G S Lynch
- Department of Anatomy & Neurobiology, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
- Department of Psychiatry and Human Behavior, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - J N Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|
43
|
Song ZJ, Yang SJ, Han L, Wang B, Zhu G. Postnatal calpeptin treatment causes hippocampal neurodevelopmental defects in neonatal rats. Neural Regen Res 2019; 14:834-840. [PMID: 30688269 PMCID: PMC6375038 DOI: 10.4103/1673-5374.249231] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Our previous studies showed that the early use of calpain inhibitors reduces calpain activity in multiple brain regions, and that postnatal treatment with calpeptin may lead to cerebellar motor dysfunction. However, it remains unclear whether postnatal calpeptin application affects hippocampus-related behaviors. In this study, Sprague-Dawley rats were purchased from the Animal Center of Anhui Medical University of China. For the experiments in the adult stage, rats were intraperitoneally injected with calpeptin, 2 mg/kg, once a day, on postnatal days 7-14. Then on postnatal day 60, the Morris water maze test was used to evaluate spatial learning and memory abilities. The open field test was carried out to assess anxiety-like activities. Phalloidin staining was performed to observe synaptic morphology in the hippocampus. Immunohistochemistry was used to count the number of NeuN-positive cells in the hippocampal CA1 region. DiI was applied to label dendritic spines. Calpeptin administration impaired spatial memory, caused anxiety-like behavior in adulthood, reduced the number and area of apical dendritic spines, and decreased actin polymerization in the hippocampus, but did not affect the number of NeuN-positive cells in the hippocampal CA1 region. For the neonatal experiments, neonatal rats were intraperitoneally injected with calpeptin, 2 mg/kg, on postnatal days 7 and 8. Western blot assay was performed to analyze the protein levels of Akt, Erk, p-Akt, p-Erk1/2, Erk1/2, SCOP, PTEN, mTOR, p-mTOR, CREB and p-CREB in the hippocampus. SCOP expression was increased, and the phosphorylation levels of Akt, mTOR and CREB were reduced in the hippocampus. These findings show that calpeptin administration after birth affects synaptic development in neonatal rats by inhibiting the Akt/mTOR signaling pathway, thereby perturbing hippocampal function. Therefore, calpeptin administration after birth is a risk factor for neurodevelopmental defects.
Collapse
Affiliation(s)
- Zhu-Jin Song
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - San-Juan Yang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Lan Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Bin Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| |
Collapse
|
44
|
Enhancement of synaptic plasticity and reversal of impairments in motor and cognitive functions in a mouse model of Angelman Syndrome by a small neurogenic molecule, NSI-189. Neuropharmacology 2019; 144:337-344. [DOI: 10.1016/j.neuropharm.2018.10.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/22/2018] [Accepted: 10/28/2018] [Indexed: 01/31/2023]
|
45
|
Meloni EG, Kaye KT, Venkataraman A, Carlezon WA. PACAP increases Arc/Arg 3.1 expression within the extended amygdala after fear conditioning in rats. Neurobiol Learn Mem 2018; 157:24-34. [PMID: 30458282 DOI: 10.1016/j.nlm.2018.11.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 11/09/2018] [Accepted: 11/16/2018] [Indexed: 11/24/2022]
Abstract
The stress-related neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is implicated in neuromodulation of learning and memory. PACAP can alter synaptic plasticity and has direct actions on neurons in the amygdala and hippocampus that could contribute to its acute and persistent effects on the consolidation and expression of conditioned fear. We recently demonstrated that intracerebroventricular (ICV) infusion of PACAP prior to fear conditioning (FC) results in initial amnestic-like effects followed by hyper-expression of conditioned freezing with repeated testing, and analyses of immediate-early gene c-Fos expression suggested that the central nucleus of the amygdala (CeA), but not the lateral/basolateral amygdala (LA/BLA) or hippocampus, are involved in these PACAP effects. Here, we extend that work by examining the expression of the synaptic plasticity marker activity-regulated cytoskeleton-associated protein (Arc/Arg 3.1) after PACAP administration and FC. Male Sprague-Dawley rats were implanted with cannula for ICV infusion of PACAP-38 (1.5 µg) or vehicle followed by FC and tests for conditioned freezing. One hour after FC, Arc protein expression was significantly elevated in the CeA and bed nucleus of the stria terminalis (BNST), interconnected structures that are key elements of the extended amygdala, in rats that received the combination of PACAP + FC. In contrast, Arc expression within the subdivisions of the hippocampus, or the LA/BLA, were unchanged. A subpopulation of Arc-positive cells in both the CeA and BNST also express PKCdelta, an intracellular marker that has been used to identify microcircuits that gate conditioned fear in the CeA. Consistent with our previous findings, on the following day conditioned freezing behavior was reduced in rats that had been given the combination of PACAP + FC-an amnestic-like effect-and Arc expression levels had returned to baseline. Given the established role of Arc in modifying synaptic plasticity and memory formation, our findings suggest that PACAP-induced overexpression of Arc following fear conditioning may disrupt neuroplastic changes within populations of CeA and BNST neurons normally responsible for encoding fear-related cues that, in this case, results in altered fear memory consolidation. Hence, PACAP systems may represent an axis on which stress and experience-driven neurotransmission converge to alter emotional memory, and mediate pathologies that are characteristic of psychiatric illnesses such as post-traumatic stress disorder.
Collapse
Affiliation(s)
- Edward G Meloni
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA 02478, United States.
| | - Karen T Kaye
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA 02478, United States
| | - Archana Venkataraman
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA 02478, United States
| | - William A Carlezon
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA 02478, United States
| |
Collapse
|
46
|
Sonzogni M, Wallaard I, Santos SS, Kingma J, du Mee D, van Woerden GM, Elgersma Y. A behavioral test battery for mouse models of Angelman syndrome: a powerful tool for testing drugs and novel Ube3a mutants. Mol Autism 2018; 9:47. [PMID: 30220990 PMCID: PMC6137919 DOI: 10.1186/s13229-018-0231-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/03/2018] [Indexed: 12/26/2022] Open
Abstract
Background Angelman syndrome (AS) is a neurodevelopmental disorder caused by mutations affecting UBE3A function. AS is characterized by intellectual disability, impaired motor coordination, epilepsy, and behavioral abnormalities including autism spectrum disorder features. The development of treatments for AS heavily relies on the ability to test the efficacy of drugs in mouse models that show reliable, and preferably clinically relevant, phenotypes. We previously described a number of behavioral paradigms that assess phenotypes in the domains of motor performance, repetitive behavior, anxiety, and seizure susceptibility. Here, we set out to evaluate the robustness of these phenotypes when tested in a standardized test battery. We then used this behavioral test battery to assess the efficacy of minocycline and levodopa, which were recently tested in clinical trials of AS. Methods We combined data of eight independent experiments involving 111 Ube3a mice and 120 wild-type littermate control mice. Using a meta-analysis, we determined the statistical power of the subtests and the effect of putative confounding factors, such as the effect of sex and of animal weight on rotarod performance. We further assessed the robustness of these phenotypes by comparing Ube3a mutants in different genetic backgrounds and by comparing the behavioral phenotypes of independently derived Ube3a-mutant lines. In addition, we investigated if the test battery allowed re-testing the same animals, which would allow a within-subject testing design. Results We find that the test battery is robust across different Ube3a-mutant lines, but confirm and extend earlier studies that several phenotypes are very sensitive to genetic background. We further found that the audiogenic seizure susceptibility phenotype is fully reversible upon pharmacological treatment and highly suitable for dose-finding studies. In agreement with the clinical trial results, we found that minocycline and levodopa treatment of Ube3a mice did not show any sign of improved performance in our test battery. Conclusions Our study provides a useful tool for preclinical drug testing to identify treatments for Angelman syndrome. Since the phenotypes are observed in several independently derived Ube3a lines, the test battery can also be employed to investigate the effect of specific Ube3a mutations on these phenotypes.
Collapse
Affiliation(s)
- Monica Sonzogni
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, Netherlands
| | - Ilse Wallaard
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, Netherlands
| | - Sara Silva Santos
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, Netherlands
| | - Jenina Kingma
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, Netherlands
| | - Dorine du Mee
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, Netherlands
| | - Geeske M. van Woerden
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, Netherlands
| | - Ype Elgersma
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
47
|
Sun J, Liu Y, Jia Y, Hao X, Lin WJ, Tran J, Lynch G, Baudry M, Bi X. UBE3A-mediated p18/LAMTOR1 ubiquitination and degradation regulate mTORC1 activity and synaptic plasticity. eLife 2018; 7:37993. [PMID: 30020076 PMCID: PMC6063731 DOI: 10.7554/elife.37993] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/17/2018] [Indexed: 01/04/2023] Open
Abstract
Accumulating evidence indicates that the lysosomal Ragulator complex is essential for full activation of the mechanistic target of rapamycin complex 1 (mTORC1). Abnormal mTORC1 activation has been implicated in several developmental neurological disorders, including Angelman syndrome (AS), which is caused by maternal deficiency of the ubiquitin E3 ligase UBE3A. Here we report that Ube3a regulates mTORC1 signaling by targeting p18, a subunit of the Ragulator. Ube3a ubiquinates p18, resulting in its proteasomal degradation, and Ube3a deficiency in the hippocampus of AS mice induces increased lysosomal localization of p18 and other members of the Ragulator-Rag complex, and increased mTORC1 activity. p18 knockdown in hippocampal CA1 neurons of AS mice reduces elevated mTORC1 activity and improves dendritic spine maturation, long-term potentiation (LTP), as well as learning performance. Our results indicate that Ube3a-mediated regulation of p18 and subsequent mTORC1 signaling is critical for typical synaptic plasticity, dendritic spine development, and learning and memory.
Collapse
Affiliation(s)
- Jiandong Sun
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, United States
| | - Yan Liu
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, United States
| | - Yousheng Jia
- Department of Psychiatry, University of California, Irvine, United States
| | - Xiaoning Hao
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, United States
| | - Wei Ju Lin
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, United States
| | - Jennifer Tran
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, United States
| | - Gary Lynch
- Department of Psychiatry, University of California, Irvine, United States
| | - Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, United States
| | - Xiaoning Bi
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, United States
| |
Collapse
|
48
|
Leach PT, Crawley JN. Touchscreen learning deficits in Ube3a, Ts65Dn and Mecp2 mouse models of neurodevelopmental disorders with intellectual disabilities. GENES, BRAIN, AND BEHAVIOR 2018; 17:e12452. [PMID: 29266714 PMCID: PMC6013336 DOI: 10.1111/gbb.12452] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/29/2017] [Accepted: 12/16/2017] [Indexed: 12/25/2022]
Abstract
Mutant mouse models of neurodevelopmental disorders with intellectual disabilities provide useful translational research tools, especially in cases where robust cognitive deficits are reproducibly detected. However, motor, sensory and/or health issues consequent to the mutation may introduce artifacts that preclude testing in some standard cognitive assays. Touchscreen learning and memory tasks in small operant chambers have the potential to circumvent these confounds. Here we use touchscreen visual discrimination learning to evaluate performance in the maternally derived Ube3a mouse model of Angelman syndrome, the Ts65Dn trisomy mouse model of Down syndrome, and the Mecp2Bird mouse model of Rett syndrome. Significant deficits in acquisition of a 2-choice visual discrimination task were detected in both Ube3a and Ts65Dn mice. Procedural control measures showed no genotype differences during pretraining phases or during acquisition. Mecp2 males did not survive long enough for touchscreen training, consistent with previous reports. Most Mecp2 females failed on pretraining criteria. Significant impairments on Morris water maze spatial learning were detected in both Ube3a and Ts65Dn, replicating previous findings. Abnormalities on rotarod in Ube3a, and on open field in Ts65Dn, replicating previous findings, may have contributed to the observed acquisition deficits and swim speed abnormalities during water maze performance. In contrast, these motor phenotypes do not appear to have affected touchscreen procedural abilities during pretraining or visual discrimination training. Our findings of slower touchscreen learning in 2 mouse models of neurodevelopmental disorders with intellectual disabilities indicate that operant tasks offer promising outcome measures for the preclinical discovery of effective pharmacological therapeutics.
Collapse
Affiliation(s)
- P T Leach
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California
| | - J N Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California
| |
Collapse
|
49
|
Murru L, Vezzoli E, Longatti A, Ponzoni L, Falqui A, Folci A, Moretto E, Bianchi V, Braida D, Sala M, D'Adamo P, Bassani S, Francolini M, Passafaro M. Pharmacological Modulation of AMPAR Rescues Intellectual Disability-Like Phenotype in Tm4sf2-/y Mice. Cereb Cortex 2018; 27:5369-5384. [PMID: 28968657 PMCID: PMC5939231 DOI: 10.1093/cercor/bhx221] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/02/2017] [Indexed: 01/02/2023] Open
Abstract
Intellectual disability affects 2–3% of the world's population and typically begins during childhood, causing impairments in social skills and cognitive abilities. Mutations in the TM4SF2 gene, which encodes the TSPAN7 protein, cause a severe form of intellectual disability, and currently, no therapy is able to ameliorate this cognitive impairment. We previously reported that, in cultured neurons, shRNA-mediated down-regulation of TSPAN7 affects AMPAR trafficking by enhancing PICK1–GluA2 interaction, thereby increasing the intracellular retention of AMPAR. Here, we found that loss of TSPAN7 function in mice causes alterations in hippocampal excitatory synapse structure and functionality as well as cognitive impairment. These changes occurred along with alterations in AMPAR expression levels. We also found that interfering with PICK1–GluA2 binding restored synaptic function in Tm4sf2−/y mice. Moreover, potentiation of AMPAR activity via the administration of the ampakine CX516 reverted the neurological phenotype observed in Tm4sf2−/y mice, suggesting that pharmacological modulation of AMPAR may represent a new approach for treating patients affected by TM4SF2 mutations and intellectual disability.
Collapse
Affiliation(s)
- Luca Murru
- CNR Institute of Neuroscience, 20129 Milano, Italy
| | - Elena Vezzoli
- Department of Medical Biotechnology and Translational Medicine, Università degli studi di Milano, Via Vanvitelli 32, 20129 Milano, Italy.,Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università di Milano, Via Balzaretti 9, 20133 Milano, Italy.,Department of Biosciences and Centre for Stem Cell Research, University of Milan and Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" Milan, Italy
| | - Anna Longatti
- CNR Institute of Neuroscience, 20129 Milano, Italy.,Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Luisa Ponzoni
- Department of Medical Biotechnology and Translational Medicine, Università degli studi di Milano, Via Vanvitelli 32, 20129 Milano, Italy.,Fondazione Umberto Veronesi, Piazza Velasca 5, 20122 Milan, Italy
| | - Andrea Falqui
- Biological and Environmental Sciences and Engineering Division, King Abdullah University for Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | | | | - Veronica Bianchi
- Division of Neuroscience, IRCSS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Daniela Braida
- Department of Medical Biotechnology and Translational Medicine, Università degli studi di Milano, Via Vanvitelli 32, 20129 Milano,Italy
| | | | - Patrizia D'Adamo
- Division of Neuroscience, IRCSS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Maura Francolini
- Department of Medical Biotechnology and Translational Medicine, Università degli studi di Milano, Via Vanvitelli 32, 20129 Milano,Italy
| | | |
Collapse
|
50
|
Martínez-Noël G, Luck K, Kühnle S, Desbuleux A, Szajner P, Galligan JT, Rodriguez D, Zheng L, Boyland K, Leclere F, Zhong Q, Hill DE, Vidal M, Howley PM. Network Analysis of UBE3A/E6AP-Associated Proteins Provides Connections to Several Distinct Cellular Processes. J Mol Biol 2018; 430:1024-1050. [PMID: 29426014 PMCID: PMC5866790 DOI: 10.1016/j.jmb.2018.01.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 12/18/2022]
Abstract
Perturbations in activity and dosage of the UBE3A ubiquitin-ligase have been linked to Angelman syndrome and autism spectrum disorders. UBE3A was initially identified as the cellular protein hijacked by the human papillomavirus E6 protein to mediate the ubiquitylation of p53, a function critical to the oncogenic potential of these viruses. Although a number of substrates have been identified, the normal cellular functions and pathways affected by UBE3A are largely unknown. Previously, we showed that UBE3A associates with HERC2, NEURL4, and MAPK6/ERK3 in a high-molecular-weight complex of unknown function that we refer to as the HUN complex (HERC2, UBE3A, and NEURL4). In this study, the combination of two complementary proteomic approaches with a rigorous network analysis revealed cellular functions and pathways in which UBE3A and the HUN complex are involved. In addition to finding new UBE3A-associated proteins, such as MCM6, SUGT1, EIF3C, and ASPP2, network analysis revealed that UBE3A-associated proteins are connected to several fundamental cellular processes including translation, DNA replication, intracellular trafficking, and centrosome regulation. Our analysis suggests that UBE3A could be involved in the control and/or integration of these cellular processes, in some cases as a component of the HUN complex, and also provides evidence for crosstalk between the HUN complex and CAMKII interaction networks. This study contributes to a deeper understanding of the cellular functions of UBE3A and its potential role in pathways that may be affected in Angelman syndrome, UBE3A-associated autism spectrum disorders, and human papillomavirus-associated cancers.
Collapse
Affiliation(s)
- Gustavo Martínez-Noël
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Katja Luck
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Simone Kühnle
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alice Desbuleux
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; GIGA-R, University of Liège, Liège 4000, Belgium
| | - Patricia Szajner
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey T Galligan
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Diana Rodriguez
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Leon Zheng
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Kathleen Boyland
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Flavian Leclere
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Quan Zhong
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - David E Hill
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Peter M Howley
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|