1
|
Oleshko A, Gruenbaum BF, Zvenigorodsky V, Shelef I, Negev S, Merzlikin I, Melamed I, Zlotnik A, Frenkel A, Boyko M. The role of isolated diffuse axonal brain injury on post-traumatic depressive- and anxiety-like behavior in rats. Transl Psychiatry 2025; 15:113. [PMID: 40164582 PMCID: PMC11958669 DOI: 10.1038/s41398-025-03333-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025] Open
Abstract
Traumatic brain injury (TBI) is a significant global health concern and is associated with short-term and long-term comorbidities such as mood disorders and reduced quality of life. Diffuse axonal brain injury (DABI) is a common but severe type of TBI. The role of DABI in the development of psychiatric sequelae after TBI is not well understood due to the challenge of isolating DABI from general TBI in the human population. Here we investigate the role of DABI in the occurrence of post-TBI depressive- and anxiety-like behaviors in a rat model. Forty rats were randomly assigned to two groups, with 20 receiving DABI and 20 receiving sham treatment. We used a magnetic resonance imaging (MRI) protocol developed for DABI using a 3-T clinical scanner to confirm DABI. We then compared neuroimaging, neurological and behavioral assessments across experimental groups. There was a significant difference between DABI and sham groups on sucrose preference, a measurement of depressive-like behavior (p < 0.012), and time spent on open arms on a plus maze test, a measurement of anxiety-like behavior (p < 0.032). For MRI-detected injury, there was a difference in diffusion-weighted imaging with relative anisotropy (p < 0.001) and fractional anisotropy (p < 0.001) mapping. We found that isolated DABI in our model led to post-traumatic depressive-like behavior in 30% of cases and anxiety-like behavior in 35%. Additionally, we established diagnostic cut-offs for depressive-like and anxiety-like behaviors in injured rats. We also documented comorbidity between the development of depression and anxiety in DABI-exposed rats. We anticipate that this study will greatly enhance the understanding of the relationship between DABI, TBI, and mood disorders like depression and anxiety, and aid in developing treatment options for these interconnected conditions.
Collapse
Affiliation(s)
- Anna Oleshko
- Department of Biology and Methods of Teaching Biology, A. S. Makarenko Sumy State Pedagogical University, Sumy, Ukraine
| | - Benjamin F Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Vladislav Zvenigorodsky
- Department of Radiology, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ilan Shelef
- Department of Radiology, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shahar Negev
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Igor Merzlikin
- Department of Biology and Methods of Teaching Biology, A. S. Makarenko Sumy State Pedagogical University, Sumy, Ukraine
| | - Israel Melamed
- Department of Neurosurgery, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Amit Frenkel
- Department of Emergency Medicine, Recanati School for Community Health Professions, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Matthew Boyko
- Department of Anesthesiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
2
|
Pearson JJ, Mao J, Temenoff JS. Effects of Release of TSG-6 from Heparin Hydrogels on Supraspinatus Muscle Regeneration. Tissue Eng Part A 2025; 31:195-207. [PMID: 39556321 DOI: 10.1089/ten.tea.2024.0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Muscle degeneration after rotator cuff tendon tear is a significant clinical problem. In these experiments, we developed a poly(ethylene glycol)-based injectable granular hydrogel containing two heparin derivatives (fully sulfated [Hep] and fully desulfated [Hep-]) as well as a matrix metalloproteinase-sensitive peptide to promote sustained release of tumor necrosis factor-stimulated gene 6 (TSG-6) over 14+ days in vivo in a rat model of rotator cuff muscle injury. The hydrogel formulations demonstrated similar release profiles in vivo, thus facilitating comparisons between delivery from heparin derivatives on the level of tissue repair in two different areas of muscle (near the myotendious junction [MTJ] and in the muscle belly [MB]) that have been shown previously to have differing responses to rotator cuff tendon injury. We hypothesized that sustained delivery of TSG-6 would enhance the anti-inflammatory response following rotator cuff injury through macrophage polarization and that release from Hep would potentiate this effect throughout the muscle. Inflammatory/immune cells, satellite cells, and fibroadipogenic progenitor cells were analyzed by flow cytometry 3 and 7 days after injury and hydrogel injection, while metrics of muscle healing were examined via immunohistochemistry up to day 14. Results showed controlled delivery of TSG-6 from Hep caused heightened macrophage response (day 7 macrophages, 4.00 ± 1.85% single cells, M2a, 3.27 ± 1.95% single cells) and increased markers of early muscle regeneration (embryonic heavy chain staining) by day 7, particularly in the MTJ region of the muscle. This work provides a novel strategy for localized, controlled delivery of TSG-6 to enhance muscle healing after rotator cuff tear.
Collapse
Affiliation(s)
- Joseph J Pearson
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech, Emory University, Atlanta, Georgia, USA
| | - Jiahui Mao
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech, Emory University, Atlanta, Georgia, USA
| | - Johnna S Temenoff
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech, Emory University, Atlanta, Georgia, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Salagean AA, Moldovan CAD, Slevin M. Utilisation of High Molecular Weight and Ultra-High Molecular Weight Hyaluronan in Management of Glioblastoma. Gels 2025; 11:50. [PMID: 39852021 PMCID: PMC11764969 DOI: 10.3390/gels11010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
HA (hyaluronan) has been considered in recent years as a naturally occurring modifiable gel-like scaffold that has the capability to absorb and release drugs over an extended period of time making it suitable as a potential chemotherapeutic delivery agent. Considering the limited treatment options available in the treatment of glioblastoma, in this review, we discuss the novel utilisation of ultra-high molecular weight HA-originally identified as a mechanism for maintaining longevity in the naked mole-rat-as both a protective and extracellular matrix-optimizing colloidal scaffold, and a means to deliver therapy in resected brain tumours. The unique properties of this unique form of HA cross-linked gel indicate potential future use in the prevention and treatment of both proliferative-based and inflammation-driven disease.
Collapse
Affiliation(s)
- Alex-Adrian Salagean
- Department of Histology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania;
| | - Cezara-Anca-Denisa Moldovan
- School of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania;
| | - Mark Slevin
- Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania
| |
Collapse
|
4
|
Du J, Zhong Y, Fan B, Yang X, Ye R, Huang Y, Li Z, Liang B, Xian H, Deng Y, Huang X, Chen X, Shi C, Yu X, Wu B, Yang X, Huang Z. Human umbilical cord mesenchymal stem cells mitigate A1 astrocyte neuroinflammation induced by 1,2-dichloroethane via ERBB pathway inhibition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117365. [PMID: 39571258 DOI: 10.1016/j.ecoenv.2024.117365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/09/2024]
Abstract
1,2-Dichloroethane (1,2-DCE), a prevalent industrial and environmental contaminant, induces toxic encephalopathy through inhalation, leading to neurotoxic effects and inflammation-driven brain edema. Human umbilical cord mesenchymal stem cells (HUCMSCs) secrete bioactive factors, including miRNAs, proteins, and lipids via exosomes, exhibiting anti-inflammatory and immune-regulatory properties. However, their potential in treating 1,2-DCE-induced neuroinflammation and the underlying mechanisms remain unclear. This study investigates how HUCMSCs mitigate 1,2-DCE-induced neuroinflammation. We exposed SVG p12 cells to 1,2-DCE and assessed inflammatory markers and A1 astrocyte activation. Co-culturing these cells with HUCMSCs, we used RNA sequencing to analyze inflammatory modulation. Additionally, HUCMSCs were administered to CD-1 male mice post-1,2-DCE exposure, evaluating the reduction in A1 astrocyte inflammation via behavioral tests, molecular analyses, and tissue staining. Pre-treating HUCMSCs with exosome inhibitors and co-culturing them with 1,2-DCE-treated SVG p12 cells investigated miRNA transfer. Results showed that 1,2-DCE activated A1 astrocytes, leading to increases in interleukin-1β (IL-1β, 4.9-fold), tumor necrosis factor-α (TNF-α, 2.5-fold), complement 3 (C3, 2.1-fold), and glial fibrillary acidic protein (GFAP, 1.4-fold). HUCMSCs effectively reversed 1,2-DCE-induced A1 astrocyte inflammation, attenuating IL-1β, TNF-α, and A1 astrocyte activation. RNA-seq highlighted modulation of the erb-b2 receptor tyrosine kinase (ERBB) pathway via Ral-binding protein 1-associated Eps domain-containing 2 (REPS2). In vivo confirmation underscored these findings. Importantly, HUCMSC-derived exosomes, particularly miR-3064-5p, reversed 1,2-DCE-activated A1 astrocyte inflammation, suggesting therapeutic potential. Collectively, HUCMSCs alleviate 1,2-DCE-induced neuroinflammation via exosome-mediated miR-3064-5p secretion, targeting REPS2 to mitigate neuroinflammation. This study advances the understanding of their therapeutic roles and highlights HUCMSC exosomal miRNA transfer for treating 1,2-DCE-induced neuroinflammatory conditions.
Collapse
Affiliation(s)
- Jiaxin Du
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yizhou Zhong
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China; Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Bingchi Fan
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaohong Yang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Rongyi Ye
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuji Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China; Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Zhiming Li
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Boxuan Liang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hongyi Xian
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yanhong Deng
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiyun Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaoqing Chen
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Congying Shi
- Institution of Guangdong Cord Blood Bank, Guangdong Women and Children Hospital, Guangzhou, Guangdong 510663, China; Department of Experimental Center, Guangzhou Municipality Tianhe Nuoya Bio-engineering Co., Ltd, Guangzhou, Guangdong 510663, China
| | - Xibao Yu
- Institution of Guangdong Cord Blood Bank, Guangdong Women and Children Hospital, Guangzhou, Guangdong 510663, China; Department of Experimental Center, Guangzhou Municipality Tianhe Nuoya Bio-engineering Co., Ltd, Guangzhou, Guangdong 510663, China
| | - Banghua Wu
- Institute of Chemical Surveillance, Guangdong Provincial Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Xingfen Yang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China; Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
5
|
Di Santo C, Siniscalchi A, La Russa D, Tonin P, Bagetta G, Amantea D. Brain Ischemic Tolerance Triggered by Preconditioning Involves Modulation of Tumor Necrosis Factor-α-Stimulated Gene 6 (TSG-6) in Mice Subjected to Transient Middle Cerebral Artery Occlusion. Curr Issues Mol Biol 2024; 46:9970-9983. [PMID: 39329947 PMCID: PMC11430743 DOI: 10.3390/cimb46090595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Ischemic preconditioning (PC) induced by a sub-lethal cerebral insult triggers brain tolerance against a subsequent severe injury through diverse mechanisms, including the modulation of the immune system. Tumor necrosis factor (TNF)-α-stimulated gene 6 (TSG-6), a hyaluronate (HA)-binding protein, has recently been involved in the regulation of the neuroimmune response following ischemic stroke. Thus, we aimed at assessing whether the neuroprotective effects of ischemic PC involve the modulation of TSG-6 in a murine model of transient middle cerebral artery occlusion (MCAo). The expression of TSG-6 was significantly elevated in the ischemic cortex of mice subjected to 1 h MCAo followed by 24 h reperfusion, while this effect was further potentiated (p < 0.05 vs. MCAo) by pre-exposure to ischemic PC (i.e., 15 min MCAo) 72 h before. By immunofluorescence analysis, we detected TSG-6 expression mainly in astrocytes and myeloid cells populating the lesioned cerebral cortex, with a more intense signal in tissue from mice pre-exposed to ischemic PC. By contrast, levels of TSG-6 were reduced after 24 h of reperfusion in plasma (p < 0.05 vs. SHAM), but were dramatically elevated when severe ischemia (1 h MCAo) was preceded by ischemic PC (p < 0.001 vs. MCAo) that also resulted in significant neuroprotection. In conclusion, our data demonstrate that neuroprotection exerted by ischemic PC is associated with the elevation of TSG-6 protein levels both in the brain and in plasma, further underscoring the beneficial effects of this endogenous modulator of the immune system.
Collapse
Affiliation(s)
- Chiara Di Santo
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (C.D.S.)
| | - Antonio Siniscalchi
- Department of Neurology and Stroke Unit, Annunziata Hospital, 87100 Cosenza, Italy
| | - Daniele La Russa
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (C.D.S.)
| | - Paolo Tonin
- Regional Center for Serious Brain Injuries, S. Anna Institute, 88900 Crotone, Italy
| | - Giacinto Bagetta
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (C.D.S.)
| | - Diana Amantea
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (C.D.S.)
| |
Collapse
|
6
|
Pearson JJ, Mao J, Temenoff JS. Effects of Release of TSG-6 from Heparin Hydrogels on Supraspinatus Muscle Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608812. [PMID: 39229126 PMCID: PMC11370378 DOI: 10.1101/2024.08.20.608812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Muscle degeneration after rotator cuff tendon tear is a significant clinical problem. In these experiments, we developed a poly(ethylene glycol)-based injectable granular hydrogel containing two heparin derivatives (fully sulfated (Hep) and fully desulfated (Hep-)) as well as a matrix metalloproteinase-sensitive peptide to promote sustained release of Tumor Necrosis Factor Stimulated Gene 6 (TSG-6) over 14+ days in vivo in a rat model of rotator cuff muscle injury. The hydrogel formulations demonstrated similar release profiles in vivo , thus facilitating comparisons between delivery from heparin derivatives on level of tissue repair in two different areas of muscle (near the myotendious junction (MTJ) and in the muscle belly (MB)) that have been shown previously to have differing responses to rotator cuff tendon injury. We hypothesized that sustained delivery of TSG-6 would enhance the anti-inflammatory response following rotator cuff injury through macrophage polarization, and that release from a fully sulfated heparin derivative (Hep) would potentiate this effect throughout the muscle. Inflammatory/immune cells, satellite cells, and fibroadipogenic progenitor cells, were analyzed by flow cytometery 3 and 7 days after injury and hydrogel injection, while metrics of muscle healing were examined via immunohistochemistry up to Day 14. Results showed controlled delivery of TSG-6 from Hep caused heightened macrophage response (Day 14 macrophages, 4.00 ± 1.85% single cells, M2a, 3.27 ± 1.95% single cells) and increased markers of early muscle regeneration (embryonic heavy chain staining) by Day 7, particularly in the MTJ region of the muscle, compared to release from desulfated heparin hydrogels. This work provides a novel strategy for localized, controlled delivery of TSG-6 to enhance muscle healing after rotator cuff tear. IMPACT STATEMENT Rotator cuff tear is a significant problem that can cause muscle degeneration. In this study, a hydrogel particle system was developed for sustained release of an anti-inflammatory protein, Tumor Necrosis Factor Stimulated Gene 6 (TSG-6), to injured muscle. Release of the protein from a fully sulfated heparin hydrogel-based carrier demonstrated greater changes in amount inflammatory cells and more early regenerative effects than a less-sulfated carrier. Thus, this work provides a novel strategy for localized, controlled delivery of an anti-inflammatory protein to enhance muscle healing after rotator cuff tear.
Collapse
|
7
|
Pszczołowska M, Walczak K, Miśków W, Antosz K, Batko J, Kurpas D, Leszek J. Chronic Traumatic Encephalopathy as the Course of Alzheimer's Disease. Int J Mol Sci 2024; 25:4639. [PMID: 38731858 PMCID: PMC11083609 DOI: 10.3390/ijms25094639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
This editorial investigates chronic traumatic encephalopathy (CTE) as a course of Alzheimer's disease (AD). CTE is a debilitating neurodegenerative disease that is the result of repeated mild traumatic brain injury (TBI). Many epidemiological studies show that experiencing a TBI in early or middle life is associated with an increased risk of dementia later in life. Chronic traumatic encephalopathy (CTE) and Alzheimer's disease (AD) present a series of similar neuropathological features that were investigated in this work like recombinant tau into filaments or the accumulation and aggregation of Aβ protein. However, these two conditions differ from each other in brain-blood barrier damage. The purpose of this review was to evaluate information about CTE and AD from various articles, focusing especially on new therapeutic possibilities for the improvement in cognitive skills.
Collapse
Affiliation(s)
- Magdalena Pszczołowska
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (M.P.)
| | - Kamil Walczak
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (M.P.)
| | - Weronika Miśków
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (M.P.)
| | - Katarzyna Antosz
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (M.P.)
| | - Joanna Batko
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (M.P.)
| | - Donata Kurpas
- Faculty of Health Sciences, Wroclaw Medical University, Ul. Kazimierza Bartla 5, 51-618 Wrocław, Poland
| | - Jerzy Leszek
- Clinic of Psychiatry, Department of Psychiatry, Wroclaw Medical University, Ludwika Pasteura 10, 50-367 Wrocław, Poland
| |
Collapse
|
8
|
Verma S, Moreno IY, Prinholato da Silva C, Sun M, Cheng X, Gesteira TF, Coulson-Thomas VJ. Endogenous TSG-6 modulates corneal inflammation following chemical injury. Ocul Surf 2024; 32:26-38. [PMID: 38151073 PMCID: PMC11056311 DOI: 10.1016/j.jtos.2023.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/21/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
PURPOSE Tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6) is upregulated in various pathophysiological contexts, where it has a diverse repertoire of immunoregulatory functions. Herein, we investigated the expression and function of TSG-6 during corneal homeostasis and after injury. METHODS Human corneas, eyeballs from BALB/c (TSG-6+/+), TSG-6+/- and TSG-6-/- mice, human immortalized corneal epithelial cells and murine corneal epithelial progenitor cells were prepared for immunostaining and real time PCR analysis of endogenous expression of TSG-6. Mice were subjected to unilateral corneal debridement or alkali burn (AB) injuries and wound healing assessed over time using fluorescein stain, in vivo confocal microscopy and histology. RESULTS TSG-6 is endogenously expressed in the human and mouse cornea and established corneal epithelial cell lines and is upregulated after injury. A loss of TSG-6 has no structural and functional effect in the cornea during homeostasis. No differences were noted in the rate of corneal epithelial wound closure between BALB/c, TSG-6+/- and TSG-6-/- mice. TSG-6-/- mice presented decreased inflammatory response within the first 24 h of injury and accelerated corneal wound healing following AB when compared to control mice. CONCLUSION TSG-6 is endogenously expressed in the cornea and upregulated after injury where it propagates the inflammatory response following chemical injury.
Collapse
Affiliation(s)
- Sudhir Verma
- College of Optometry, University of Houston, Houston, TX, United States; Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi, India
| | - Isabel Y Moreno
- College of Optometry, University of Houston, Houston, TX, United States
| | | | - Mingxia Sun
- College of Optometry, University of Houston, Houston, TX, United States
| | - Xuhong Cheng
- College of Optometry, University of Houston, Houston, TX, United States
| | - Tarsis F Gesteira
- College of Optometry, University of Houston, Houston, TX, United States
| | | |
Collapse
|
9
|
Chen C, Peng C, Hu Z, Ge L. Effects of bone marrow mesenchymal stromal cells-derived therapies for experimental traumatic brain injury: A meta-analysis. Heliyon 2024; 10:e25050. [PMID: 38322864 PMCID: PMC10844131 DOI: 10.1016/j.heliyon.2024.e25050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/16/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
Background Bone-marrow-derived mesenchymal stromal (stem) cells [also called MSC(M)] and their extracellular vesicles (EVs) are considered a potentially innovative form of therapy for traumatic brain injury (TBI). Nevertheless, their application to TBI particularly remains preclinical, and the effects of these cells remain unclear and controversial. Therefore, an updated meta-analysis of preclinical studies is necessary to assess the effectiveness of MSC(M) and MSC(M) derived EVs in clinical trials. Methods The following databases were searched (to December 2022): PubMed, Web of Science, and Embase. In this study, we measured functional outcomes based on the modified neurological severity score (mNSS), cognitive outcomes based on the Morris water maze (MWM), and histopathological outcomes based on lesion volume. A random effects meta-analysis was conducted to evaluate the effect of mNSS, MWM, and lesion volume. Results A total of 2163 unique records were identified from our search, with Fifty-five full-text articles satisfying inclusion criteria. A mean score of 5.75 was assigned to the studies' quality scores, ranging from 4 to 7. MSC(M) and MSC(M) derived EVs had an overall positive effect on the mNSS score and MWM with SMDs -2.57 (95 % CI -3.26; -1.88; p < 0.01) and - 2.98 (95 % CI -4.21; -1.70; p < 0.01), respectively. As well, MSC(M) derived EVs were effective in reducing lesion volume by an SMD of - 0.80 (95 % CI -1.20; -0.40; p < 0.01). It was observed that there was significant variation among the studies, but further analyses could not determine the cause of this heterogeneity. Conclusions MSC(M) and MSC(M) derived EVs are promising treatments for TBI in pre-clinical studies, and translation to the clinical domain appears warranted. Besides, large-scale trials in animals and humans are required to support further research due to the limited sample size of MSC(M) derived EVs.
Collapse
Affiliation(s)
- Chunli Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Cuiying Peng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lite Ge
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan provincial key laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, 410003, China
| |
Collapse
|
10
|
Cui S, Ke L, Wang H, Li L. TSG-6 alleviates cerebral ischemia/reperfusion injury and blood-brain barrier disruption by suppressing ER stress-mediated inflammation. Brain Res 2023; 1817:148466. [PMID: 37336316 DOI: 10.1016/j.brainres.2023.148466] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Tumor necrosis factor-stimulated gene-6 (TSG-6) exhibits promising neuroprotective activity, but how it influences cerebral ischemia/reperfusion (CIR) injury remains to be established. Here, the impact of TSG-6 on the CIR-induced disturbance in the blood-brain barrier (BBB) and associated neurological degeneration was assessed, and the related molecular processes were explored. In this study, TSG-6 markedly reduced CIR-mediated increases in neurological deficit scores, decreased infarct volume, and protected against the apoptotic death of neurons in MCAO/R model rats. Similarly, TSG-6 pretreatment protected cultured neurons against OGD/R-associated neuronal death. TSG-6 also restored BBB integrity, suppressing PERK-eIF2α and IRE1α-TRAF2 pathway activation in CIR model systems, thereby inhibiting NF-κB, TNF-α, IL-1β, and IL-6. The further use of specific inhibitors of ER stress, 4-phenyl butyric acid (4-PBA), PERK (GSK2656157), and IRE1α (STF083010) demonstrated the ability of ER stress to drive inflammatory activity in the context of CIR injury i the PERK-eIF2α-NF-κB and IRE1α-TRAF2-NF-κB pathways. Consistently, the activation of ER stress using tunicamycin resulted in reversing the beneficial effects of TSG-6 on CIR-associated BBB disruption and neurological damage in vitro and in vivo. Treatment with TSG-6 can protect against CIR injury via the inhibition of ER stress-related inflammatory activity induced through the PERK-eIF2α-NF-κB and IRE1α-TRAF2-NF-κB pathways.
Collapse
Affiliation(s)
- Shengwei Cui
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China; Department of Neurology, Graduate School of Anhui University of Traditional Chinese Medicine, Anhui, Hefei 230038, China
| | - Li Ke
- Department of Thoracic Surgery, the First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Lujiang Road 17, Hefei 230001, China.
| | - Han Wang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China.
| | - Liangyong Li
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China.
| |
Collapse
|
11
|
Kodali M, Madhu LN, Reger RL, Milutinovic B, Upadhya R, Attaluri S, Shuai B, Shankar G, Shetty AK. A single intranasal dose of human mesenchymal stem cell-derived extracellular vesicles after traumatic brain injury eases neurogenesis decline, synapse loss, and BDNF-ERK-CREB signaling. Front Mol Neurosci 2023; 16:1185883. [PMID: 37284464 PMCID: PMC10239975 DOI: 10.3389/fnmol.2023.1185883] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/28/2023] [Indexed: 06/08/2023] Open
Abstract
An optimal intranasal (IN) dose of human mesenchymal stem cell-derived extracellular vesicles (hMSC-EVs), 90 min post-traumatic brain injury (TBI), has been reported to prevent the evolution of acute neuroinflammation into chronic neuroinflammation resulting in the alleviation of long-term cognitive and mood impairments. Since hippocampal neurogenesis decline and synapse loss contribute to TBI-induced long-term cognitive and mood dysfunction, this study investigated whether hMSC-EV treatment after TBI can prevent hippocampal neurogenesis decline and synapse loss in the chronic phase of TBI. C57BL6 mice undergoing unilateral controlled cortical impact injury (CCI) received a single IN administration of different doses of EVs or the vehicle at 90 min post-TBI. Quantifying neurogenesis in the subgranular zone-granule cell layer (SGZ-GCL) through 5'-bromodeoxyuridine and neuron-specific nuclear antigen double labeling at ~2 months post-TBI revealed decreased neurogenesis in TBI mice receiving vehicle. However, in TBI mice receiving EVs (12.8 and 25.6 × 109 EVs), the extent of neurogenesis was matched to naive control levels. A similar trend of decreased neurogenesis was seen when doublecortin-positive newly generated neurons were quantified in the SGZ-GCL at ~3 months post-TBI. The above doses of EVs treatment after TBI also reduced the loss of pre-and post-synaptic marker proteins in the hippocampus and the somatosensory cortex. Moreover, at 48 h post-treatment, brain-derived neurotrophic factor (BDNF), phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2), and phosphorylated cyclic AMP response-element binding protein (p-CREB) levels were downregulated in TBI mice receiving the vehicle but were closer to naïve control levels in TBI mice receiving above doses of hMSC-EVs. Notably, improved BDNF concentration observed in TBI mice receiving hMSC-EVs in the acute phase was sustained in the chronic phase of TBI. Thus, a single IN dose of hMSC-EVs at 90 min post-TBI can ease TBI-induced declines in the BDNF-ERK-CREB signaling, hippocampal neurogenesis, and synapses.
Collapse
|
12
|
Di Santo C, La Russa D, Greco R, Persico A, Zanaboni AM, Bagetta G, Amantea D. Characterization of the Involvement of Tumour Necrosis Factor (TNF)-α-Stimulated Gene 6 (TSG-6) in Ischemic Brain Injury Caused by Middle Cerebral Artery Occlusion in Mouse. Int J Mol Sci 2023; 24:ijms24065800. [PMID: 36982872 PMCID: PMC10051687 DOI: 10.3390/ijms24065800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The identification of novel targets to modulate the immune response triggered by cerebral ischemia is crucial to promote the development of effective stroke therapeutics. Since tumour necrosis factor (TNF)-α-stimulated gene 6 (TSG-6), a hyaluronate (HA)-binding protein, is involved in the regulation of immune and stromal cell functions in acute neurodegeneration, we aimed to characterize its involvement in ischemic stroke. Transient middle cerebral artery occlusion (1 h MCAo, followed by 6 to 48 of reperfusion) in mice resulted in a significant elevation in cerebral TSG-6 protein levels, mainly localized in neurons and myeloid cells of the lesioned hemisphere. These myeloid cells were clearly infiltrating from the blood, strongly suggesting that brain ischemia also affects TSG-6 in the periphery. Accordingly, TSG-6 mRNA expression was elevated in peripheral blood mononuclear cells (PBMCs) from patients 48 h after ischemic stroke onset, and TSG-6 protein expression was higher in the plasma of mice subjected to 1 h MCAo followed by 48 h of reperfusion. Surprisingly, plasma TSG-6 levels were reduced in the acute phase (i.e., within 24 h of reperfusion) when compared to sham-operated mice, supporting the hypothesis of a detrimental role of TSG-6 in the early reperfusion stage. Accordingly, systemic acute administration of recombinant mouse TSG-6 increased brain levels of the M2 marker Ym1, providing a significant reduction in the brain infarct volume and general neurological deficits in mice subjected to transient MCAo. These findings suggest a pivotal role of TSG-6 in ischemic stroke pathobiology and underscore the clinical relevance of further investigating the mechanisms underlying its immunoregulatory role.
Collapse
Affiliation(s)
- Chiara Di Santo
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Daniele La Russa
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Rosaria Greco
- IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, PV, Italy
| | | | | | - Giacinto Bagetta
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Diana Amantea
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| |
Collapse
|
13
|
Kodali M, Madhu LN, Reger RL, Milutinovic B, Upadhya R, Gonzalez JJ, Attaluri S, Shuai B, Gitai DLG, Rao S, Choi JM, Jung SY, Shetty AK. Intranasally administered human MSC-derived extracellular vesicles inhibit NLRP3-p38/MAPK signaling after TBI and prevent chronic brain dysfunction. Brain Behav Immun 2023; 108:118-134. [PMID: 36427808 PMCID: PMC9974012 DOI: 10.1016/j.bbi.2022.11.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/21/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
Traumatic brain injury (TBI) leads to lasting brain dysfunction with chronic neuroinflammation typified by nucleotide-binding domain leucine-rich repeat and pyrin domain-containing receptor 3 (NLRP3) inflammasome activation in microglia. This study probed whether a single intranasal (IN) administration of human mesenchymal stem cell-derived extracellular vesicles (hMSC-EVs) naturally enriched with activated microglia-modulating miRNAs can avert chronic adverse outcomes of TBI. Small RNA sequencing confirmed the enrichment of miRNAs capable of modulating activated microglia in hMSC-EV cargo. IN administration of hMSC-EVs into adult mice ninety minutes after the induction of a unilateral controlled cortical impact injury resulted in their incorporation into neurons and microglia in both injured and contralateral hemispheres. A single higher dose hMSC-EV treatment also inhibited NLRP3 inflammasome activation after TBI, evidenced by reduced NLRP3, apoptosis-associated speck-like protein containing a CARD, activated caspase-1, interleukin-1 beta, and IL-18 levels in the injured brain. Such inhibition in the acute phase of TBI endured in the chronic phase, which could also be gleaned from diminished NLRP3 inflammasome activation in microglia of TBI mice receiving hMSC-EVs. Proteomic analysis and validation revealed that higher dose hMSC-EV treatment thwarted the chronic activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway by IL-18, which decreased the release of proinflammatory cytokines. Inhibition of the chronic activation of NLRP3-p38/MAPK signaling after TBI also prevented long-term cognitive and mood impairments. Notably, the animals receiving higher doses of hMSC-EVs after TBI displayed better cognitive and mood function in all behavioral tests than animals receiving the vehicle after TBI. A lower dose of hMSC-EV treatment also partially improved cognitive and mood function. Thus, an optimal IN dose of hMSC-EVs naturally enriched with activated microglia-modulating miRNAs can inhibit the chronic activation of NLRP3-p38/MAPK signaling after TBI and prevent lasting brain dysfunction.
Collapse
Affiliation(s)
- Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Leelavathi N Madhu
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Roxanne L Reger
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Bojana Milutinovic
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Jenny J Gonzalez
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Daniel L G Gitai
- Institute of Biological Sciences and Health, Federal University of Alagoas, Brazil
| | - Shama Rao
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Jong M Choi
- Advanced Technology Core, Mass Spectrometry and Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Sung Y Jung
- The Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA.
| |
Collapse
|
14
|
La Russa D, Di Santo C, Lizasoain I, Moraga A, Bagetta G, Amantea D. Tumor Necrosis Factor (TNF)-α-Stimulated Gene 6 (TSG-6): A Promising Immunomodulatory Target in Acute Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24021162. [PMID: 36674674 PMCID: PMC9865344 DOI: 10.3390/ijms24021162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Tumor necrosis factor (TNF)-α-stimulated gene 6 (TSG-6), the first soluble chemokine-binding protein to be identified in mammals, inhibits chemotaxis and transendothelial migration of neutrophils and attenuates the inflammatory response of dendritic cells, macrophages, monocytes, and T cells. This immunoregulatory protein is a pivotal mediator of the therapeutic efficacy of mesenchymal stem/stromal cells (MSC) in diverse pathological conditions, including neuroinflammation. However, TSG-6 is also constitutively expressed in some tissues, such as the brain and spinal cord, and is generally upregulated in response to inflammation in monocytes/macrophages, dendritic cells, astrocytes, vascular smooth muscle cells and fibroblasts. Due to its ability to modulate sterile inflammation, TSG-6 exerts protective effects in diverse degenerative and inflammatory diseases, including brain disorders. Emerging evidence provides insights into the potential use of TSG-6 as a peripheral diagnostic and/or prognostic biomarker, especially in the context of ischemic stroke, whereby the pathobiological relevance of this protein has also been demonstrated in patients. Thus, in this review, we will discuss the most recent data on the involvement of TSG-6 in neurodegenerative diseases, particularly focusing on relevant anti-inflammatory and immunomodulatory functions. Furthermore, we will examine evidence suggesting novel therapeutic opportunities that can be afforded by modulating TSG-6-related pathways in neuropathological contexts and, most notably, in stroke.
Collapse
Affiliation(s)
- Daniele La Russa
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Chiara Di Santo
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, and Instituto de Investigación Hospital 12 de Octubre (Imas12), 28040 Madrid, Spain
| | - Ana Moraga
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, and Instituto de Investigación Hospital 12 de Octubre (Imas12), 28040 Madrid, Spain
| | - Giacinto Bagetta
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Diana Amantea
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
- Correspondence:
| |
Collapse
|
15
|
Li L, Yang L, Chen X, Chen X, Diao L, Zeng Y, Xu J. TNFAIP6 defines the MSC subpopulation with enhanced immune suppression activities. STEM CELL RESEARCH & THERAPY 2022; 13:479. [PMID: 36153571 PMCID: PMC9509641 DOI: 10.1186/s13287-022-03176-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/11/2022] [Indexed: 11/30/2022]
Abstract
Background Mesenchymal stromal/stem cells (MSCs) have been intensively investigated in both pre-clinical and clinical studies. However, the therapeutic efficacy varies resulting from the heterogenicity of MSCs. Therefore, purifying the specific MSC subpopulation with specialized function is necessary for their therapeutic applications. Methods The large-scale RNA sequencing analysis was performed to identify potential cell markers for the mouse MSCs. Then, the immune suppression activities of the purified MSC subpopulation were assessed in vitro and in vivo.
Results The TNFAIP6 (tumor necrosis factor alpha-induced protein 6) has been identified as a potential cell marker for mouse MSCs, irrespective of tissue origin and laboratory origin. The TNFAIP6+ mouse MSCs showed enhanced immune suppression activities and improved therapeutic effects on the mouse model of acute inflammation, resulting from faster response to immune stimulation. Conclusions Therefore, we have demonstrated that the TNFAIP6+ MSC subpopulation has enhanced immune suppression capabilities. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03176-5.
Collapse
|
16
|
Feng Z, Hua S, Li W, Han J, Li F, Chen H, Zhang Z, Xie Y, Ouyang Q, Zou X, Liu Z, Li C, Huang S, Lai Z, Cai X, Cai Y, Zou Y, Tang Y, Jiang X. Mesenchymal stem cells protect against TBI-induced pyroptosis in vivo and in vitro through TSG-6. Cell Commun Signal 2022; 20:125. [PMID: 35982465 PMCID: PMC9387023 DOI: 10.1186/s12964-022-00931-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Background Pyroptosis, especially microglial pyroptosis, may play an important role in central nervous system pathologies, including traumatic brain injury (TBI). Transplantation of mesenchymal stem cells (MSCs), such as human umbilical cord MSCs (hUMSCs), has been a focus of brain injury treatment. Recently, MSCs have been found to play a role in many diseases by regulating the pyroptosis pathway. However, the effect of MSC transplantation on pyroptosis following TBI remains unknown. Tumor necrosis factor α stimulated gene 6/protein (TSG-6), a potent anti-inflammatory factor expressed in many cell types including MSCs, plays an anti-inflammatory role in many diseases; however, the effect of TSG-6 secreted by MSCs on pyroptosis remains unclear. Methods Mice were subjected to controlled cortical impact injury in vivo. To assess the time course of pyroptosis after TBI, brains of TBI mice were collected at different time points. To study the effect of TSG-6 secreted by hUMSCs in regulating pyroptosis, normal hUMSCs, sh-TSG-6 hUMSCs, or different concentrations of rmTSG-6 were injected intracerebroventricularly into mice 4 h after TBI. Neurological deficits, double immunofluorescence staining, presence of inflammatory factors, cell apoptosis, and pyroptosis were assessed. In vitro, we investigated the anti-pyroptosis effects of hUMSCs and TSG-6 in a lipopolysaccharide/ATP-induced BV2 microglial pyroptosis model. Results In TBI mice, the co-localization of Iba-1 (marking microglia/macrophages) with NLRP3/Caspase-1 p20/GSDMD was distinctly observed at 48 h. In vivo, hUMSC transplantation or treatment with rmTSG-6 in TBI mice significantly improved neurological deficits, reduced inflammatory cytokine expression, and inhibited both NLRP3/Caspase-1 p20/GSDMD expression and microglial pyroptosis in the cerebral cortices of TBI mice. However, the therapeutic effect of hUMSCs on TBI mice was reduced by the inhibition of TSG-6 expression in hUMSCs. In vitro, lipopolysaccharide/ATP-induced BV2 microglial pyroptosis was inhibited by co-culture with hUMSCs or with rmTSG-6. However, the inhibitory effect of hUMSCs on BV2 microglial pyroptosis was significantly reduced by TSG-6-shRNA transfection. Conclusion In TBI mice, microglial pyroptosis was observed. Both in vivo and in vitro, hUMSCs inhibited pyroptosis, particularly microglial pyroptosis, by regulating the NLRP3/Caspase-1/GSDMD signaling pathway via TSG-6. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00931-2.
Collapse
Affiliation(s)
- Zhiming Feng
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Shiting Hua
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Wangan Li
- Emergency Trauma Center, Huizhou First Hospital, Huizhou, China
| | - Jianbang Han
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Feng Li
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Haijia Chen
- Guangzhou Saliai Stem Cell Science and Technology Co. Ltd, Guangzhou, China
| | - Zhongfei Zhang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yu Xie
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Qian Ouyang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Xiaoxiong Zou
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zhizheng Liu
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Cong Li
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Sixian Huang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zelin Lai
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Xiaolin Cai
- Emergency Trauma Center, Huizhou First Hospital, Huizhou, China
| | - Yingqian Cai
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yuxi Zou
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yanping Tang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Xiaodan Jiang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
17
|
Pischiutta F, Caruso E, Cavaleiro H, Salgado AJ, Loane DJ, Zanier ER. Mesenchymal stromal cell secretome for traumatic brain injury: Focus on immunomodulatory action. Exp Neurol 2022; 357:114199. [PMID: 35952763 DOI: 10.1016/j.expneurol.2022.114199] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/14/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022]
Abstract
The severity and long-term consequences of brain damage in traumatic brain injured (TBI) patients urgently calls for better neuroprotective/neuroreparative strategies for this devastating disorder. Mesenchymal stromal cells (MSCs) hold great promise and have been shown to confer neuroprotection in experimental TBI, mainly through paracrine mechanisms via secreted bioactive factors (i.e. secretome), which indicates significant potential for a cell-free neuroprotective approach. The secretome is composed of cytokines, chemokines, growth factors, proteins, lipids, nucleic acids, metabolites, and extracellular vesicles; it may offer advantages over MSCs in terms of delivery, safety, and variability of therapeutic response for brain injury. Immunomodulation by molecular factors secreted by MSCs is considered to be a key mechanism involved in their multi-potential therapeutic effects. Regulated neuroinflammation is required for healthy remodeling of central nervous system during development and adulthood. Moreover, immune cells and their secreted factors can also contribute to tissue repair and neurological recovery following acute brain injury. However, a chronic and maladaptive neuroinflammatory response can exacerbate TBI and contribute to progressive neurodegeneration and long-term neurological impairments. Here, we review the evidence for MSC-derived secretome as a therapy for TBI. Our framework incorporates a detailed analysis of in vitro and in vivo studies investigating the effects of the secretome on clinically relevant neurological and histopathological outcomes. We also describe the activation of immune cells after TBI and the immunomodulatory properties exerted by mediators released in the secretome. We then describe how ageing modifies central and systemic immune responses to TBI and discuss challenges and opportunities of developing secretome based neuroprotective therapies for elderly TBI populations. Finally, strategies aimed at modulating the secretome in order to boost its efficacy for TBI will also be discussed.
Collapse
Affiliation(s)
- Francesca Pischiutta
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Neuroscience, Milan, Italy
| | - Enrico Caruso
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Neuroscience, Milan, Italy; Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Helena Cavaleiro
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Neuroscience, Milan, Italy; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; Stemmatters, Biotechnology and Regenerative Medicine, Guimarães, Portugal
| | - Antonio J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - David J Loane
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Elisa R Zanier
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Neuroscience, Milan, Italy.
| |
Collapse
|
18
|
Skibber MA, Olson SD, Prabhakara KS, Gill BS, Cox CS. Enhancing Mesenchymal Stromal Cell Potency: Inflammatory Licensing via Mechanotransduction. Front Immunol 2022; 13:874698. [PMID: 35874742 PMCID: PMC9297916 DOI: 10.3389/fimmu.2022.874698] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022] Open
Abstract
Mesenchymal stromal cells (MSC) undergo functional maturation upon their migration from bone marrow and introduction to a site of injury. This inflammatory licensing leads to heightened immune regulation via cell-to-cell interaction and the secretion of immunomodulatory molecules, such as anti-inflammatory mediators and antioxidants. Pro-inflammatory cytokines are a recognized catalyst of inflammatory licensing; however, biomechanical forces, such as fluid shear stress, are a second, distinct class of stimuli that incite functional maturation. Here we show mechanotransduction, achieved by exposing MSC to various grades of wall shear stress (WSS) within a scalable conditioning platform, enhances the immunomodulatory potential of MSC independent of classical pro-inflammatory cytokines. A dose-dependent effect of WSS on potency is evidenced by production of prostaglandin E2 (PGE2) and indoleamine 2,3 dioxygenase 1 (IDO1), as well as suppression of tumor necrosis factor-α (TNF- α) and interferon-γ (IFN-γ) production by activated immune cells. Consistent, reproducible licensing is demonstrated in adipose tissue and bone marrow human derived MSC without significant impact on cell viability, cellular yield, or identity. Transcriptome analysis of WSS-conditioned BM-MSC elucidates the broader phenotypic implications on the differential expression of immunomodulatory factors. These results suggest mechanotransduction as a viable, scalable pre-conditioning alternative to pro-inflammatory cytokines. Enhancing the immunomodulatory capacity of MSC via biomechanical conditioning represents a novel cell therapy manufacturing approach.
Collapse
Affiliation(s)
- Max A. Skibber
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Scott D. Olson
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- *Correspondence: Scott D. Olson, ; Brijesh S. Gill, ; Charles S. Cox Jr,
| | - Karthik S. Prabhakara
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Brijesh S. Gill
- Department of Surgery, McGovern Medical School, University of Texas Health Science Center At Houston, Houston, TX, United States
- *Correspondence: Scott D. Olson, ; Brijesh S. Gill, ; Charles S. Cox Jr,
| | - Charles S. Cox
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- *Correspondence: Scott D. Olson, ; Brijesh S. Gill, ; Charles S. Cox Jr,
| |
Collapse
|
19
|
Lin D, Li W, Zhang N, Cai M. Identification of TNFAIP6 as a hub gene associated with the progression of glioblastoma by weighted gene co-expression network analysis. IET Syst Biol 2022; 16:145-156. [PMID: 35766985 PMCID: PMC9469790 DOI: 10.1049/syb2.12046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 05/29/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022] Open
Abstract
This study aims to discover the genetic modules that distinguish glioblastoma multiforme (GBM) from low‐grade glioma (LGG) and identify hub genes. A co‐expression network is constructed using the expression profiles of 28 GBM and LGG patients from the Gene Expression Omnibus database. The authors performed gene ontology (GO) and Kyoto encyclopaedia of genes and genomes (KEGG) analysis on these genes. The maximal clique centrality method was used to identify hub genes. Online tools were employed to confirm the link between hub gene expression and overall patient survival rate. The top 5000 genes with major variance were classified into 18 co‐expression gene modules. GO analysis indicated that abnormal changes in ‘cell migration’ and ‘collagen metabolic process’ were involved in the development of GBM. KEGG analysis suggested that ‘focal adhesion’ and ‘p53 signalling pathway’ regulate the tumour progression. TNFAIP6 was identified as a hub gene, and the expression of TNFAIP6 was increased with the elevation of pathological grade. Survival analysis indicated that the higher the expression of TNFAIP6, the shorter the survival time of patients. The authors identified TNFAIP6 as the hub gene in the progression of GBM, and its high expression indicates the poor prognosis of the patients.
Collapse
Affiliation(s)
- Dongdong Lin
- Department of Neurosurgery, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Li
- Department of Neurosurgery, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ming Cai
- Department of Neurosurgery, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
20
|
Gottlieb A, Toledano-Furman N, Prabhakara KS, Kumar A, Caplan HW, Bedi S, Cox CS, Olson SD. Time dependent analysis of rat microglial surface markers in traumatic brain injury reveals dynamics of distinct cell subpopulations. Sci Rep 2022; 12:6289. [PMID: 35428862 PMCID: PMC9012748 DOI: 10.1038/s41598-022-10419-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/07/2022] [Indexed: 12/15/2022] Open
Abstract
Traumatic brain injury (TBI) results in a cascade of cellular responses, which produce neuroinflammation, partly due to the activation of microglia. Accurate identification of microglial populations is key to understanding therapeutic approaches that modify microglial responses to TBI and improve long-term outcome measures. Notably, previous studies often utilized an outdated convention to describe microglial phenotypes. We conducted a temporal analysis of the response to controlled cortical impact (CCI) in rat microglia between ipsilateral and contralateral hemispheres across seven time points, identified microglia through expression of activation markers including CD45, CD11b/c, and p2y12 receptor and evaluated their activation state using additional markers of CD32, CD86, RT1B, CD200R, and CD163. We identified unique sub-populations of microglial cells that express individual or combination of activation markers across time points. We further portrayed how the size of these sub-populations changes through time, corresponding to stages in TBI response. We described longitudinal changes in microglial population after CCI in two different locations using activation markers, showing clear separation into cellular sub-populations that feature different temporal patterns of markers after injury. These changes may aid in understanding the symptomatic progression following TBI and help define microglial subpopulations beyond the outdated M1/M2 paradigm.
Collapse
Affiliation(s)
- Assaf Gottlieb
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, 77030, USA.
| | - Naama Toledano-Furman
- Department of Pediatric Surgery, McGovern School of Medicine, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Karthik S Prabhakara
- Department of Pediatric Surgery, McGovern School of Medicine, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Akshita Kumar
- Department of Pediatric Surgery, McGovern School of Medicine, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Henry W Caplan
- Department of Pediatric Surgery, McGovern School of Medicine, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Supinder Bedi
- Department of Pediatric Surgery, McGovern School of Medicine, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Charles S Cox
- Department of Pediatric Surgery, McGovern School of Medicine, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Scott D Olson
- Department of Pediatric Surgery, McGovern School of Medicine, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA.
| |
Collapse
|
21
|
Golub VM, Reddy DS. Post-Traumatic Epilepsy and Comorbidities: Advanced Models, Molecular Mechanisms, Biomarkers, and Novel Therapeutic Interventions. Pharmacol Rev 2022; 74:387-438. [PMID: 35302046 PMCID: PMC8973512 DOI: 10.1124/pharmrev.121.000375] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Post-traumatic epilepsy (PTE) is one of the most devastating long-term, network consequences of traumatic brain injury (TBI). There is currently no approved treatment that can prevent onset of spontaneous seizures associated with brain injury, and many cases of PTE are refractory to antiseizure medications. Post-traumatic epileptogenesis is an enduring process by which a normal brain exhibits hypersynchronous excitability after a head injury incident. Understanding the neural networks and molecular pathologies involved in epileptogenesis are key to preventing its development or modifying disease progression. In this article, we describe a critical appraisal of the current state of PTE research with an emphasis on experimental models, molecular mechanisms of post-traumatic epileptogenesis, potential biomarkers, and the burden of PTE-associated comorbidities. The goal of epilepsy research is to identify new therapeutic strategies that can prevent PTE development or interrupt the epileptogenic process and relieve associated neuropsychiatric comorbidities. Therefore, we also describe current preclinical and clinical data on the treatment of PTE sequelae. Differences in injury patterns, latency period, and biomarkers are outlined in the context of animal model validation, pathophysiology, seizure frequency, and behavior. Improving TBI recovery and preventing seizure onset are complex and challenging tasks; however, much progress has been made within this decade demonstrating disease modifying, anti-inflammatory, and neuroprotective strategies, suggesting this goal is pragmatic. Our understanding of PTE is continuously evolving, and improved preclinical models allow for accelerated testing of critically needed novel therapeutic interventions in military and civilian persons at high risk for PTE and its devastating comorbidities. SIGNIFICANCE STATEMENT: Post-traumatic epilepsy is a chronic seizure condition after brain injury. With few models and limited understanding of the underlying progression of epileptogenesis, progress is extremely slow to find a preventative treatment for PTE. This study reviews the current state of modeling, pathology, biomarkers, and potential interventions for PTE and comorbidities. There's new optimism in finding a drug therapy for preventing PTE in people at risk, such as after traumatic brain injury, concussion, and serious brain injuries, especially in military persons.
Collapse
Affiliation(s)
- Victoria M Golub
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
22
|
Tucker LB, McCabe JT. Measuring Anxiety-Like Behaviors in Rodent Models of Traumatic Brain Injury. Front Behav Neurosci 2021; 15:682935. [PMID: 34776887 PMCID: PMC8586518 DOI: 10.3389/fnbeh.2021.682935] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/06/2021] [Indexed: 12/31/2022] Open
Abstract
Anxiety is a common complaint following acquired traumatic brain injury (TBI). However, the measurement of dysfunctional anxiety behavioral states following experimental TBI in rodents is complex. Some studies report increased anxiety after TBI, whereas others find a decreased anxiety-like state, often described as increased risk-taking behavior or impulsivity. These inconsistencies may reflect a lack of standardization of experimental injury models or of behavioral testing techniques. Here, we review the most commonly employed unconditioned tests of anxiety and discuss them in a context of experimental TBI. Special attention is given to the effects of repeated testing, and consideration of potential sensory and motor confounds in injured rodents. The use of multiple tests and alternative data analysis methods are discussed, as well as the potential for the application of common data elements (CDEs) as a means of providing a format for documentation of experimental details and procedures of each published research report. CDEs may improve the rigor, reproducibility, as well as endpoint for better relating findings with clinical TBI phenotypes and the final goal of translation. While this may not resolve all incongruities in findings across laboratories, it is seen as a way forward for standardized and universal data collection for improvement of data quality and sharing, and advance therapies for neuropsychiatric symptoms that often present for decades following TBI.
Collapse
Affiliation(s)
- Laura B Tucker
- Preclinical Behavior and Models Core, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Joseph T McCabe
- Preclinical Behavior and Models Core, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
23
|
Zhang R, Wang J, Huang L, Wang TJ, Huang Y, Li Z, He J, Sun C, Wang J, Chen X, Wang J. The pros and cons of motor, memory, and emotion-related behavioral tests in the mouse traumatic brain injury model. Neurol Res 2021; 44:65-89. [PMID: 34308784 DOI: 10.1080/01616412.2021.1956290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is a medical emergency with high morbidity and mortality. Motor, memory, and emotion-related deficits are common symptoms following TBI, yet treatment is very limited. To develop new drugs and find new therapeutic avenues, a wide variety of TBI models have been established to mimic the heterogeneity of TBI. In this regard, along with histologic measures, behavioral functional outcomes provide valuable insight into the underlying neuropathology and guide neurorehabilitation efforts for neuropsychiatric impairment after TBI. Development, characterization, and application of behavioral tests that can assess functional neurologic deficits are essential to the development of translational therapies. This comprehensive review aims to summarize 19 common behavioral tests from three aspects (motor, memory, and emotion-related) that are associated with TBI pathology. Discussion covers the apparatus, the test steps, the evaluation indexes, data collection and analysis, animal performance and applications, advantages and disadvantages as well as precautions to eliminate bias wherever possible. We discussed recent studies on TBI-related preconditioning, biomarkers, and optimized behavioral protocols. The neuropsychologic tests employed in clinics were correlated with those used in mouse TBI models. In summary, this review provides a comprehensive, up-to-date reference for TBI researchers to choose the right neurobehavioral protocol according to the research objectives of their translational investigation.
Collapse
Affiliation(s)
- Ruoyu Zhang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Junming Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Tom J Wang
- Winston Churchill High School, Potomac, Maryland, USA
| | - Yinrou Huang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zefu Li
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinxin He
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chen Sun
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuemei Chen
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jian Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Shultz SR, McDonald SJ, Corrigan F, Semple BD, Salberg S, Zamani A, Jones NC, Mychasiuk R. Clinical Relevance of Behavior Testing in Animal Models of Traumatic Brain Injury. J Neurotrauma 2020; 37:2381-2400. [DOI: 10.1089/neu.2018.6149] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sandy R. Shultz
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Frances Corrigan
- Department of Anatomy, University of South Australia, Adelaide, South Australia, Australia
| | - Bridgette D. Semple
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Sabrina Salberg
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Akram Zamani
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Nigel C. Jones
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
25
|
Damodarasamy M, Vernon RB, Pathan JL, Keene CD, Day AJ, Banks WA, Reed MJ. The microvascular extracellular matrix in brains with Alzheimer's disease neuropathologic change (ADNC) and cerebral amyloid angiopathy (CAA). Fluids Barriers CNS 2020; 17:60. [PMID: 32993718 PMCID: PMC7525948 DOI: 10.1186/s12987-020-00219-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/09/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The microvasculature (MV) of brains with Alzheimer's disease neuropathologic change (ADNC) and cerebral amyloid angiopathy (CAA), in the absence of concurrent pathologies (e.g., infarctions, Lewy bodies), is incompletely understood. OBJECTIVE To analyze microvascular density, diameter and extracellular matrix (ECM) content in association with ADNC and CAA. METHODS We examined samples of cerebral cortex and isolated brain microvasculature (MV) from subjects with the National Institute on Aging-Alzheimer's Association (NIA-AA) designations of not-, intermediate-, or high ADNC and from subjects with no CAA and moderate-severe CAA. Cases for all groups were selected with no major (territorial) strokes, ≤ 1 microinfarct in screening sections, and no Lewy body pathology. MV density and diameter were measured from cortical brain sections. Levels of basement membrane (BM) ECM components, the protein product of TNF-stimulated gene-6 (TSG-6), and the ubiquitous glycosaminoglycan hyaluronan (HA) were assayed by western blots or HA ELISA of MV lysates. RESULTS We found no significant changes in MV density or diameter among any of the groups. Levels of BM laminin and collagen IV (col IV) were lower in MV isolated from the high ADNC vs. not-ADNC groups. In contrast, BM laminin was significantly higher in MV from the moderate-severe CAA vs. the no CAA groups. TSG-6 and HA content were higher in the presence of both high ADNC and CAA, whereas levels of BM fibronectin and perlecan were similar among all groups. CONCLUSIONS Cortical MV density and diameter are not appreciably altered by ADNC or CAA. TSG-6 and HA are increased in both ADNC and CAA, with laminin and col IV decreased in the BM of high ADNC, but laminin increased in moderate-severe CAA. These results show that changes in the ECM occur in AD and CAA, but independently of one another, and likely reflect on the regional functioning of the brain microvasculature.
Collapse
Affiliation(s)
- Mamatha Damodarasamy
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Robert B Vernon
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Jasmine L Pathan
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - C Dirk Keene
- Division of Neuropathology, Department of Pathology, University of Washington, Seattle, WA, USA
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research and Lydia Becker Institute of Immunology and Inflammation, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - William A Banks
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA
| | - May J Reed
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA.
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA.
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington Harborview Medical Center, Seattle, WA, 98104, USA.
| |
Collapse
|
26
|
McNamara EH, Grillakis AA, Tucker LB, McCabe JT. The closed-head impact model of engineered rotational acceleration (CHIMERA) as an application for traumatic brain injury pre-clinical research: A status report. Exp Neurol 2020; 333:113409. [PMID: 32692987 DOI: 10.1016/j.expneurol.2020.113409] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 06/18/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
Closed-head traumatic brain injury (TBI) is a worldwide concern with increasing prevalence and cost to society. Rotational acceleration is a primary mechanism in TBI that results from tissue strains that give rise to diffuse axonal injury. The Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA) was recently introduced as a method for the study of impact acceleration effects in pre-clinical TBI research. This review provides a survey of the published literature implementing the CHIMERA device and describes pathological, imaging, neurophysiological, and behavioral findings. Findings show CHIMERA inflicts damage in white matter tracts as a key area of injury. Behaviorally, repeated studies have shown motor deficits and more chronic cognitive effects after CHIMERA injury. Good progress with model application has been accomplished by investigators attending to what is required for model validation. However, the majority of CHIMERA studies only utilize adult male mice. To further establish this model, more work with female animals and various age groups need to be performed, as well as studies to further establish and standardize methodologies for validation of the models for clinical relevance. Common data elements to standardize the reporting methodology for the CHIMERA literature are suggested.
Collapse
Affiliation(s)
- Eileen H McNamara
- Neuroscience Graduate Program, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20817-4799, USA; Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20817-4799, USA
| | - Antigone A Grillakis
- Neuroscience Graduate Program, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20817-4799, USA; Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20817-4799, USA
| | - Laura B Tucker
- Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20817-4799, USA; Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20817-4799, USA
| | - Joseph T McCabe
- Neuroscience Graduate Program, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20817-4799, USA; Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20817-4799, USA; Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20817-4799, USA.
| |
Collapse
|
27
|
Bonsack B, Heyck M, Kingsbury C, Cozene B, Sadanandan N, Lee JY, Borlongan CV. Fast-tracking regenerative medicine for traumatic brain injury. Neural Regen Res 2020; 15:1179-1190. [PMID: 31960797 PMCID: PMC7047809 DOI: 10.4103/1673-5374.270294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 08/22/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022] Open
Abstract
Traumatic brain injury remains a global health crisis that spans all demographics, yet there exist limited treatment options that may effectively curtail its lingering symptoms. Traumatic brain injury pathology entails a progression from primary injury to inflammation-mediated secondary cell death. Sequestering this inflammation as a means of ameliorating the greater symptomology of traumatic brain injury has emerged as an attractive treatment prospect. In this review, we recapitulate and evaluate the important developments relating to regulating traumatic brain injury-induced neuroinflammation, edema, and blood-brain barrier disintegration through pharmacotherapy and stem cell transplants. Although these studies of stand-alone treatments have yielded some positive results, more therapeutic outcomes have been documented from the promising area of combined drug and stem cell therapy. Harnessing the facilitatory properties of certain pharmaceuticals with the anti-inflammatory and regenerative effects of stem cell transplants creates a synergistic effect greater than the sum of its parts. The burgeoning evidence in favor of combined drug and stem cell therapies warrants more elaborate preclinical studies on this topic in order to pave the way for later clinical trials.
Collapse
Affiliation(s)
- Brooke Bonsack
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Matt Heyck
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Chase Kingsbury
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Blaise Cozene
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Nadia Sadanandan
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Jea-Young Lee
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| |
Collapse
|
28
|
Woo Y, Lim JS, Oh J, Lee JS, Kim JS. Neuroprotective Effects of Euonymus alatus Extract on Scopolamine-Induced Memory Deficits in Mice. Antioxidants (Basel) 2020; 9:antiox9050449. [PMID: 32456069 PMCID: PMC7278771 DOI: 10.3390/antiox9050449] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/09/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022] Open
Abstract
Euonymus alatus is considered to elicit various beneficial effects against cancer, hyperglycemia, menstrual discomfort, diabetic complications, and detoxification. The young leaves of this plant are exploited as food and also utilized for traditional medicine in East Asian countries, including Korea and China. Our preliminary study demonstrated that ethanolic extract from the Euonymus alatus leaf (EAE) exhibited the strongest antioxidant enzyme-inducing activity among more than 100 kinds of edible tree leaf extracts. This study investigated whether EAE could attenuate the cognitive deficits caused by oxidative stress in mice. Oral intubation of EAE at 100 mg/kg bw or higher resulted in significant improvements to the memory and behavioral impairment induced via i.p. injection of scopolamine. Furthermore, EAE enhanced the expression levels of hippocampal neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor in mice, activated the Nrf2, and the downstream heme oxygenase-1 (HO-1) a quintessential antioxidant enzyme. As rutin (quercetin-3-O-rutinose) was abundantly present in EAE and free quercetin was able to induce defensive antioxidant enzymes in an Nrf2-dependent manner, our findings suggested that quercetin derived from rutin via the intestinal microflora played a significant role in the protection of the mouse hippocampus from scopolamine-induced damage through BDNF-mediated Nrf2 activation, thereby dampening cognitive decline.
Collapse
Affiliation(s)
- Yunju Woo
- School of Food Science and Biotechnology (BK21 plus) and Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea
| | - Ji Sun Lim
- School of Food Science and Biotechnology (BK21 plus) and Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea
| | - Jisun Oh
- School of Food Science and Biotechnology (BK21 plus) and Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea
| | - Jeong Soon Lee
- Forest Resources Development Institute of Gyeongsangbuk-do, Andong 36605, Korea
| | - Jong-Sang Kim
- School of Food Science and Biotechnology (BK21 plus) and Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
29
|
Honig MG, Dorian CC, Worthen JD, Micetich AC, Mulder IA, Sanchez KB, Pierce WF, Del Mar NA, Reiner A. Progressive long-term spatial memory loss following repeat concussive and subconcussive brain injury in mice, associated with dorsal hippocampal neuron loss, microglial phenotype shift, and vascular abnormalities. Eur J Neurosci 2020; 54:5844-5879. [PMID: 32090401 PMCID: PMC7483557 DOI: 10.1111/ejn.14711] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/14/2022]
Abstract
There is considerable concern about the long‐term deleterious effects of repeat head trauma on cognition, but little is known about underlying mechanisms and pathology. To examine this, we delivered four air blasts to the left side of the mouse cranium, a week apart, with an intensity that causes deficits when delivered singly and considered “concussive,” or an intensity that does not yield significant deficits when delivered singly and considered “subconcussive.” Neither repeat concussive nor subconcussive blast produced spatial memory deficits at 4 months, but both yielded deficits at 14 months, and dorsal hippocampal neuron loss. Hierarchical cluster analysis of dorsal hippocampal microglia across the three groups based on morphology and expression of MHCII, CX3CR1, CD68 and IBA1 revealed five distinct phenotypes. Types 1A and 1B microglia were more common in sham mice, linked to better neuron survival and memory, and appeared mildly activated. By contrast, 2B and 2C microglia were more common in repeat concussive and subconcussive mice, linked to poorer neuron survival and memory, and characterized by low expression levels and attenuated processes, suggesting they were de‐activated and dysfunctional. In addition, endothelial cells in repeat concussive mice exhibited reduced CD31 and eNOS expression, which was correlated with the prevalence of type 2B and 2C microglia. Our findings suggest that both repeat concussive and subconcussive head injury engender progressive pathogenic processes, possibly through sustained effects on microglia that over time lead to increased prevalence of dysfunctional microglia, adversely affecting neurons and blood vessels, and thereby driving neurodegeneration and memory decline.
Collapse
Affiliation(s)
- Marcia G Honig
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Conor C Dorian
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - John D Worthen
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Anthony C Micetich
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Isabelle A Mulder
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Katelyn B Sanchez
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - William F Pierce
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nobel A Del Mar
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
30
|
Wan YM, Wu HM, Li YH, Xu ZY, Yang JH, Liu C, He YF, Wang MJ, Wu XN, Zhang Y. TSG-6 Inhibits Oxidative Stress and Induces M2 Polarization of Hepatic Macrophages in Mice With Alcoholic Hepatitis via Suppression of STAT3 Activation. Front Pharmacol 2020; 11:10. [PMID: 32116692 PMCID: PMC7010862 DOI: 10.3389/fphar.2020.00010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 01/07/2020] [Indexed: 12/19/2022] Open
Abstract
Tumor necrosis factor (TNF)-α-stimulated protein 6 (TSG-6) is a secreted protein with diverse tissue protective and anti-inflammatory properties. We aimed to investigate its effective in treating mice with alcoholic hepatitis (AH) and the associated mechanisms. AH was induced in 8-10 week female C57BL/6N mice by chronic-binge ethanol feeding for 10 days. Intraperitoneal (i.p.) injection of recombinant mouse TSG-6 or saline were performed in mice on day 10. Blood samples and hepatic tissues were collected on day 11. Biochemistry, liver histology, flow cytometry, and cytokine measurements were conducted. Compared to the normal control mice, the AH mice had significantly increased liver/body weight ratio, serum alanine aminotransferase (ALT) and aspartate aminotransferases (AST), hepatic total cholesterol (TC), triglyceride (TG), malondialdehyde (MDA), hepatic macrophage infiltration, serum and hepatic interleukin (IL)-6, and tumor necrosis factor (TNF)-α, which were markedly reduced by i.p. injection of rmTSG-6. Compared to the normal control mice, the hepatic glutathione (GSH), accumulation of M2 macrophages, serum, and hepatic IL-10 and TSG-6 were prominently reduced in the AH mice, which were significantly enhanced after i.p. injection of rmTSG-6. Compared to the normal control mice, hepatic activation of signal transducer and activator of transcription 3 (STAT3) was significantly induced, which was markedly suppressed by rmTSG-6 treatment. TSG-6 were effective for the treatment of AH mice, which might be associated with its ability in inhibiting hepatic oxidative stress and inducing hepatic M2 macrophages polarization via suppressing STAT3 activation.
Collapse
Affiliation(s)
- Yue-Meng Wan
- Gastroenterology Department, the 2 Affiliated Hospital of Kunming Medical University, Kunming, China
- Department of Occupational, Labor and Environmental Health, Public Health Institute of Kunming Medical University, Kunming, China
| | - Hua-Mei Wu
- Gastroenterology Department, the 2 Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yu-Hua Li
- Gastroenterology Department, the 2 Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhi-Yuan Xu
- Gastroenterology Department, the 2 Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jin-Hui Yang
- Gastroenterology Department, the 2 Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chang Liu
- Department of Occupational, Labor and Environmental Health, Public Health Institute of Kunming Medical University, Kunming, China
| | - Yue-Feng He
- Department of Occupational, Labor and Environmental Health, Public Health Institute of Kunming Medical University, Kunming, China
| | - Men-Jie Wang
- Department of Occupational, Labor and Environmental Health, Public Health Institute of Kunming Medical University, Kunming, China
| | - Xi-Nan Wu
- Department of Occupational, Labor and Environmental Health, Public Health Institute of Kunming Medical University, Kunming, China
| | - Yuan Zhang
- The Biomedical Engineering Research Center, Kunming Medical University, Kunming, China
| |
Collapse
|
31
|
Watanabe J, Kagami N, Kawazoe M, Arata S. A simplified enriched environment increases body temperature and suppresses cancer progression in mice. Exp Anim 2019; 69:207-218. [PMID: 31852850 PMCID: PMC7220712 DOI: 10.1538/expanim.19-0099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mice housed in an enriched environment (EE) have inhibited tumor development because of
eustress (positive stress) stimulation. However, the mechanisms underlying increased
cancer resistance in EEs remain unclear; this may be due to poor reproducibility of the
results because of the complicated EE assembly requirements. In this study, we examined
the effects of a simplified EE (sEE) model, consisting only of a nesting shelter and a
running wheel, on cancer development in mice. We found that, similar to the complex EE,
the sEE promoted motor function and alleviated anxiety in mice. Moreover, the mice housed
in the sEE showed inhibited tumor growth and metastasis in addition to a higher average
body temperature (especially at the point of transition from light to darkness).
Furthermore, mice in the sEE had a decreased brown adipose tissue (BAT) mass, with a
significant upregulation of the Ucp1 and Adrb3 genes
(which encode uncoupling protein 1 and β-adrenergic receptor, respectively) observed in
the BAT at the point of transition from light to darkness. An antibody against the immune
checkpoint protein programmed cell death 1 was also found to have an additive effect with
the sEE against tumor development. Our findings indicate that the established sEE model
may be a useful tool for studying the antitumor effects of eustress and can potentially
introduce new avenues for cancer prevention and treatment.
Collapse
Affiliation(s)
- Jun Watanabe
- Center for Biotechnology, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Tokyo, Japan.,Center for Laboratory Animal Science, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Nobuyuki Kagami
- Center for Laboratory Animal Science, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Mamiko Kawazoe
- Center for Laboratory Animal Science, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Satoru Arata
- Center for Biotechnology, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Tokyo, Japan.,Center for Laboratory Animal Science, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.,Department of Biochemistry, Faculty of Arts and Sciences, Showa University, 4562 Kamiyoshida, Fujiyoshida-shi, Yamanashi 403-0005, Japan
| |
Collapse
|
32
|
Chen T, Zhu J, Hang CH, Wang YH. The Potassium SK Channel Activator NS309 Protects Against Experimental Traumatic Brain Injury Through Anti-Inflammatory and Immunomodulatory Mechanisms. Front Pharmacol 2019; 10:1432. [PMID: 31849677 PMCID: PMC6895208 DOI: 10.3389/fphar.2019.01432] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 11/08/2019] [Indexed: 12/22/2022] Open
Abstract
Neuroinflammation plays important roles in neuronal cell death and functional deficits after TBI. Small conductance Ca2+-activated K+ channels (SK) have been shown to be potential therapeutic targets for treatment of neurological disorders, such as stroke and Parkinson’s disease (PD). The aim of the present study was to investigate the role of SK channels in an animal model of TBI induced by controlled cortical impact (CCI). The SK channels activator NS309 at a concentration of 2 mg/kg was administered by intraperitoneal injection, and no obviously organ-related toxicity of NS309 was found in Sprague-Dawley (SD) rats. Treatment with NS309 significantly reduced brain edema after TBI, but had no effect on contusion volume. This protection can be observed even when the administration was delayed by 4 h after injury. NS309 attenuated the TBI-induced deficits in neurological function, which was accompanied by the reduced neuronal apoptosis. The results of immunohistochemistry showed that NS309 decreased the number of neutrophils, lymphocytes, and microglia cells, with no effect on astrocytes. In addition, NS309 markedly decreased the levels of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and chemokines (MCP-1, MIP-2, and RANTES), but increased the levels of anti-inflammatory cytokines (IL-4, IL-10, and TGF-β1) after TBI. The results of RT-PCR and western blot showed that NS309 increased TSG-6 expression and inhibited NF-κB activation. Furthermore, knockdown of TSG-6 using in vivo transfection with TSG-6 specific shRNA partially reversed the protective and anti-inflammatory effects of NS309 against TBI. In summary, our results indicate that the SK channel activator NS309 could modulate inflammation-associated immune cells and cytokines via regulating the TSG-6/NF-κB pathway after TBI. The present study offers a new sight into the mechanisms responsible for SK channels activation with implications for the treatment of TBI.
Collapse
Affiliation(s)
- Tao Chen
- Department of Neurosurgery, The 904th Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, China.,Department of Neurosurgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jie Zhu
- Department of Neurosurgery, The 904th Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yu-Hai Wang
- Department of Neurosurgery, The 904th Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, China
| |
Collapse
|
33
|
Jha KA, Pentecost M, Lenin R, Gentry J, Klaic L, Del Mar N, Reiner A, Yang CH, Pfeffer LM, Sohl N, Gangaraju R. TSG-6 in conditioned media from adipose mesenchymal stem cells protects against visual deficits in mild traumatic brain injury model through neurovascular modulation. Stem Cell Res Ther 2019; 10:318. [PMID: 31690344 PMCID: PMC6833275 DOI: 10.1186/s13287-019-1436-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/21/2019] [Accepted: 09/30/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Retinal inflammation affecting the neurovascular unit may play a role in the development of visual deficits following mild traumatic brain injury (mTBI). We have shown that concentrated conditioned media from adipose tissue-derived mesenchymal stem cells (ASC-CCM) can limit retinal damage from blast injury and improve visual function. In this study, we addressed the hypothesis that TNFα-stimulated gene-6 (TSG-6), an anti-inflammatory protein released by mesenchymal cells, mediates the observed therapeutic potential of ASCs via neurovascular modulation. METHODS About 12-week-old C57Bl/6 mice were subjected to 50-psi air pulse on the left side of the head overlying the forebrain resulting in an mTBI. Age-matched sham blast mice served as control. About 1 μl of ASC-CCM (siControl-ASC-CCM) or TSG-6 knockdown ASC-CCM (siTSG-6-ASC-CCM) was delivered intravitreally into both eyes. One month following injection, the ocular function was assessed followed by molecular and immunohistological analysis. In vitro, mouse microglial cells were used to evaluate the anti-inflammatory effect of ASC-CCM. Efficacy of ASC-CCM in normalizing retinal vascular permeability was assessed using trans-endothelial resistance (TER) and VE-cadherin expression in the presence of TNFα (1 ng/ml). RESULTS We show that intravitreal injection of ASC-CCM (siControl-ASC-CCM) but not the TSG-6 knockdown ASC-CCM (siTSG-6-ASC-CCM) mitigates the loss of visual acuity and contrast sensitivity, retinal expression of genes associated with microglial and endothelial activation, and retinal GFAP immunoreactivity at 4 weeks after blast injury. In vitro, siControl-ASC-CCM but not the siTSG-6-ASC-CCM not only suppressed microglial activation and STAT3 phosphorylation but also protected against TNFα-induced endothelial permeability as measured by transendothelial electrical resistance and decreased STAT3 phosphorylation. CONCLUSIONS Our findings suggest that ASCs respond to an inflammatory milieu by secreting higher levels of TSG-6 that mediates the resolution of the inflammatory cascade on multiple cell types and correlates with the therapeutic potency of the ASC-CCM. These results expand our understanding of innate mesenchymal cell function and confirm the importance of considering methods to increase the production of key analytes such as TSG-6 if mesenchymal stem cell secretome-derived biologics are to be developed as a treatment solution against the traumatic effects of blast injuries and other neurovascular inflammatory conditions of the retina.
Collapse
Affiliation(s)
- Kumar Abhiram Jha
- Department of Ophthalmology, University of Tennessee Health Science Center, College of Medicine, 930 Madison Ave, Suite#768, Memphis, TN, 38163, USA
| | - Mickey Pentecost
- Cell Care Therapeutics, Inc., Los Angeles, CA, USA.,Present Address: Pathways to Stem Cell Science, Monrovia, CA, USA
| | - Raji Lenin
- Department of Ophthalmology, University of Tennessee Health Science Center, College of Medicine, 930 Madison Ave, Suite#768, Memphis, TN, 38163, USA
| | - Jordy Gentry
- Department of Ophthalmology, University of Tennessee Health Science Center, College of Medicine, 930 Madison Ave, Suite#768, Memphis, TN, 38163, USA
| | - Lada Klaic
- Cell Care Therapeutics, Inc., Los Angeles, CA, USA
| | - Nobel Del Mar
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Suite#515, Memphis, TN, 38163, USA
| | - Anton Reiner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Suite#515, Memphis, TN, 38163, USA
| | - Chuan He Yang
- Department of Pathology, University of Tennessee Health Science Center, College of Medicine, 19 South Manassas Street, Suite#214, Memphis, TN, 38163, USA
| | - Lawrence M Pfeffer
- Department of Pathology, University of Tennessee Health Science Center, College of Medicine, 19 South Manassas Street, Suite#214, Memphis, TN, 38163, USA
| | - Nicolas Sohl
- Cell Care Therapeutics, Inc., Los Angeles, CA, USA
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, University of Tennessee Health Science Center, College of Medicine, 930 Madison Ave, Suite#768, Memphis, TN, 38163, USA. .,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Suite#515, Memphis, TN, 38163, USA.
| |
Collapse
|
34
|
Reed MJ, Damodarasamy M, Banks WA. The extracellular matrix of the blood-brain barrier: structural and functional roles in health, aging, and Alzheimer's disease. Tissue Barriers 2019; 7:1651157. [PMID: 31505997 DOI: 10.1080/21688370.2019.1651157] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is increasing interest in defining the location, content, and role of extracellular matrix (ECM) components in brain structure and function during development, aging, injury, and neurodegeneration. Studies in vivo confirm brain ECM has a dynamic composition with constitutive and induced alterations that impact subsequent cell-cell and cell-matrix interactions. Moreover, it is clear that for any given ECM component, the brain region, and cell type within that location, determines the direction, magnitude, and composition of those changes. This review will examine the ECM at the neurovascular unit (NVU) and the blood-brain barrier (BBB) within the NVU. The discussion will begin at the glycocalyx ECM on the luminal surface of the vasculature, and progress to the abluminal side with a focus on changes in basement membrane ECM during aging and neurodegeneration.
Collapse
Affiliation(s)
- May J Reed
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA
| | - Mamatha Damodarasamy
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA
| | - William A Banks
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA.,VA Puget Sound Health Care System, Geriatric Research Education and Clinical Center, Seattle, WA, USA
| |
Collapse
|
35
|
Interleukin-1 in cerebrospinal fluid for evaluating the neurological outcome in traumatic brain injury. Biosci Rep 2019; 39:BSR20181966. [PMID: 30898979 PMCID: PMC6465413 DOI: 10.1042/bsr20181966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022] Open
Abstract
Objective Severe traumatic brain injury (TBI) is associated with unfavorable outcomes secondary to injury from activation of the inflammatory cascade, the release of excitotoxic neurotransmitters, and changes in the reactivity of cerebral vessels, causing ischemia. Inflammation induced by TBI is complex, individual-specific, and associated with morbidity and mortality. The aim of the present study was to discover the differentially expressed cerebrospinal fluid (CSF) proteins and identify which can improve the clinical outcomes in TBI patients. Methods In the present study, we reported 145 patients with TBI and found the change in patients’ leukocytes in serum and interleukin-1 (IL-1) in CSF, which strongly correlated with the neurological outcome. In terms of results of leukocytes in blood and IL-1 in CSF, we retained the patient’s CSF specimens and conducted a proteomic analysis. Results A total of 119 differentially expressed proteins were detected between samples of TBI and the normal, which were commonly expressed in all samples, indicating the differentially expressed proteins. When the patients’ Glasgow outcome score (GOS) improved, IL-1 was down-regulated, and when the patients’ GCS score deteriorated, IL-1 was up-regulated accompanied with the progression in TBI. Conclusion The differentially expressed proteins in CSF may be the novel therapeutic targets for TBI treatment. The leukocytes in blood samples and the IL-1 in CSF may be two important indicators for predicting the prognosis of TBI patients.
Collapse
|
36
|
Choi H, Phillips C, Oh JY, Potts L, Reger RL, Prockop DJ, Fulcher S. Absence of Therapeutic Benefit of the Anti-Inflammatory Protein TSG-6 for Corneal Alkali Injury in a Rat Model. Curr Eye Res 2019; 44:873-881. [PMID: 30935217 DOI: 10.1080/02713683.2019.1597893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose: To investigate the therapeutic efficacy of tumor necrosis factor (TNF)-α stimulated gene/protein 6 (TSG-6) in a rat model of corneal alkali injury. Methods: Corneal alkali injury was produced by placing an NaOH-soaked filter paper disk on the central cornea of the right eye of an anesthetized male Lewis (LEW/Crl) rat. Recombinant human TSG-6, or an equal volume of phosphate-buffered saline (PBS), was administered intravenously (IV), by anterior chamber (AC) injection, or as a topical drop. The affected eyes were photographed daily using a dissecting microscope and documented for clinical time course analysis of corneal opacification. Corneal tissue was excised at pre-determined therapeutic endpoints, with subsequent qRT-PCR or histological analyses. Results: The continuous monitoring of corneal alkali injury progression revealed TSG-6 treatments do not show sufficient effectiveness in vivo regardless of IV injection, AC injection, or topical application. Corneal opacification and neovascularization were not diminished, and gene expression was not impacted by these treatments. However, both IV and AC administration of TSG-6 significantly suppressed pro-inflammatory cytokines compared to PBS-treated eyes. Conclusion: We conclude that the therapeutic potential of TSG-6 is insufficient in a rat corneal alkali injury model.
Collapse
Affiliation(s)
- Hosoon Choi
- a Department of Basic Research, Central Texas Veterans Research Foundation , Temple , Texas , USA
| | - Casie Phillips
- a Department of Basic Research, Central Texas Veterans Research Foundation , Temple , Texas , USA
| | - Joo Youn Oh
- b Department of Ophthalmology, Seoul National University Hospital , Seoul , Republic of Korea
| | - Luke Potts
- c Department of Ophthalmology and Surgery, Scott and White Eye Institute , Temple , Texas , USA
| | - Roxanne L Reger
- d Institute for Regenerative Medicine, College of Medicine, Texas A&M University , College Station , Texas , USA
| | - Darwin J Prockop
- d Institute for Regenerative Medicine, College of Medicine, Texas A&M University , College Station , Texas , USA
| | - Samuel Fulcher
- e Department of Surgery, Central Texas Veterans Health Care System , Temple , Texas , United States of America
| |
Collapse
|
37
|
Reed MJ, Damodarasamy M, Pathan JL, Chan CK, Spiekerman C, Wight TN, Banks WA, Day AJ, Vernon RB, Keene CD. Increased Hyaluronan and TSG-6 in Association with Neuropathologic Changes of Alzheimer's Disease. J Alzheimers Dis 2019; 67:91-102. [PMID: 30507579 PMCID: PMC6398602 DOI: 10.3233/jad-180797] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Little is known about the extracellular matrix (ECM) during progression of AD pathology. Brain ECM is abundant in hyaluronan (HA), a non-sulfated glycosaminoglycan synthesized by HA synthases (HAS) 1-3 in a high molecular weight (MW) form that is degraded into lower MW fragments. We hypothesized that pathologic severity of AD is associated with increases in HA and HA-associated ECM molecules. To test this hypothesis, we assessed HA accumulation and size; HA synthases (HAS) 1-3; and the HA-stabilizing hyaladherin, TSG-6 in parietal cortex samples from autopsied research subjects with not AD (CERAD = 0, Braak = 0- II, n = 12-21), intermediate AD (CERAD = 2, Braak = III-IV, n = 13-18), and high AD (CERAD = 3, Braak = V-VI, n = 32-40) neuropathologic change. By histochemistry, HA was associated with deposits of amyloid and tau, and was also found diffusely in brain parenchyma, with overall HA quantity (measured by ELSA) significantly greater in brains with high AD neuropathology. Mean HA MW was similar among the samples. HAS2 and TSG-6 mRNA expression, and TSG-6 protein levels were significantly increased in high AD and both molecules were present in vasculature, NeuN-positive neurons, and Iba1-positive microglia. These results did not change when accounting for gender, advanced age (≥ 90 years versus <90 years), or the clinical diagnosis of dementia. Collectively, our results indicate a positive correlation between HA accumulation and AD neuropathology, and suggest a possible role for HA synthesis and metabolism in AD progression.
Collapse
Affiliation(s)
- MJ Reed
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA
| | - M Damodarasamy
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA
| | - JL Pathan
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA
| | - CK Chan
- Matrix Biology Program, Benaroya Research Institute, Virginia Mason, Seattle, WA, USA
| | - C Spiekerman
- Center for Biomedical Statistics, Institute for Translational Health Sciences, University of Washington, Seattle, WA, USA
| | - TN Wight
- Matrix Biology Program, Benaroya Research Institute, Virginia Mason, Seattle, WA, USA
| | - WA Banks
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA
- VA Puget Sound Health Care System, Geriatric Research Education and Clinical Center, Seattle, WA, USA
| | - AJ Day
- Wellcome Trust Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - RB Vernon
- Matrix Biology Program, Benaroya Research Institute, Virginia Mason, Seattle, WA, USA
| | - CD Keene
- Department of Pathology, Division of Neuropathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
38
|
Upregulated TSG-6 Expression in ADSCs Inhibits the BV2 Microglia-Mediated Inflammatory Response. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7239181. [PMID: 30584538 PMCID: PMC6280241 DOI: 10.1155/2018/7239181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/27/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022]
Abstract
Objectives The microglial cells are immune surveillance cells in the central nervous system and can be activated during neurological disorders. Adipose-derived stem cells (ADSCs) were reported to inhibit the inflammatory response in microglia by secreting proteins like tumor necrosis factor-inducible gene 6 protein (TSG-6). We aim to explore the mechanisms and the associated microRNAs. Methods ADSCs were cultured and TSG-6 expression was evaluated. ADSCs were cocultured with lipopolysaccharide- (LPS-) induced BV2 microglia and the supernatant was harvested for detecting cytokines. The total RNA was extracted and sequenced by high-throughput sequencing. MicroRNA profiles were compared between two treatment groups of ADSCs. A comprehensive bioinformatics analysis and confirmation experiments were performed to identify the microRNAs targeting at TSG-6. Results We found that ADSCs could secrete TSG-6 to inhibit the proinflammatory cytokines, including interleukin-1 beta and interleukin-6, and tumor necrosis factor alpha (TNFα), produced by LPS-induced microglia-mediated inflammatory response. Bioinformatics analysis showed a total of 35 microRNAs differentially expressed between the two groups of ADSCs, and miR-214-5p was identified as a regulator of TSG-6 mRNA. Conclusion Following a treatment with TNFα, ADSCs can regulate the inflammatory response in LPS-activated BV2 microglia by upregulating TSG-6 expression, which itself is under the negative control of miR-214-5p.
Collapse
|
39
|
Carbonara M, Fossi F, Zoerle T, Ortolano F, Moro F, Pischiutta F, Zanier ER, Stocchetti N. Neuroprotection in Traumatic Brain Injury: Mesenchymal Stromal Cells can Potentially Overcome Some Limitations of Previous Clinical Trials. Front Neurol 2018; 9:885. [PMID: 30405517 PMCID: PMC6208094 DOI: 10.3389/fneur.2018.00885] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. In the last 30 years several neuroprotective agents, attenuating the downstream molecular and cellular damaging events triggered by TBI, have been extensively studied. Even though many drugs have shown promising results in the pre-clinical stage, all have failed in large clinical trials. Mesenchymal stromal cells (MSCs) may offer a promising new therapeutic intervention, with preclinical data showing protection of the injured brain. We selected three of the critical aspects identified as possible causes of clinical failure: the window of opportunity for drug administration, the double-edged contribution of mechanisms to damage and recovery, and the oft-neglected role of reparative mechanisms. For each aspect, we briefly summarized the limitations of previous trials and the potential advantages of a newer approach using MSCs.
Collapse
Affiliation(s)
- Marco Carbonara
- Neuroscience Intensive Care Unit, Department of Anaesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Fossi
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.,School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Tommaso Zoerle
- Neuroscience Intensive Care Unit, Department of Anaesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabrizio Ortolano
- Neuroscience Intensive Care Unit, Department of Anaesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federico Moro
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Francesca Pischiutta
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elisa R Zanier
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Nino Stocchetti
- Neuroscience Intensive Care Unit, Department of Anaesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplants, Milan University, Milan, Italy
| |
Collapse
|
40
|
Li R, Liu W, Yin J, Chen Y, Guo S, Fan H, Li X, Zhang X, He X, Duan C. TSG-6 attenuates inflammation-induced brain injury via modulation of microglial polarization in SAH rats through the SOCS3/STAT3 pathway. J Neuroinflammation 2018; 15:231. [PMID: 30126439 PMCID: PMC6102893 DOI: 10.1186/s12974-018-1279-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/13/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND An acute and drastic inflammatory response characterized by the production of inflammatory mediators is followed by stroke, including SAH. Overactivation of microglia parallels an excessive inflammatory response and worsened brain damage. Previous studies indicate that TSG-6 has potent immunomodulatory and anti-inflammatory properties. This study aimed to evaluate the effects of TSG-6 in modulating immune reaction and microglial phenotype shift after experimental SAH. METHODS The SAH model was established by endovascular puncture method for Sprague-Dawley rats (weighing 280-320 g). Recombinant human protein and specific siRNAs for TSG-6 were exploited in vivo. Brain injury was assessed by neurologic scores, brain water content, and Fluoro-Jade C (FJC) staining. Microglia phenotypic status was evaluated and determined by Western immunoblotting, quantitative real-time polymerase chain reaction (qPCR) analyses, flow cytometry, and immunofluorescence labeling. RESULTS SAH induced significant inflammation, and M1-dominated microglia polarization increased expression of TSG-6 and neurological dysfunction in rats. rh-TSG-6 significantly ameliorated brain injury, decreased proinflammatory mediators, and skewed microglia towards a more anti-inflammatory property 24-h after SAH. While knockdown of TSG-6 further induced detrimental effects of microglia accompanied with more neurological deficits, the anti-inflammation effects of rh-TSG-6 were associated with microglia phenotypic shift by regulating the level of SOCS3/STAT3 axis. CONCLUSIONS TSG-6 exerted neuroprotection against SAH-induced EBI in rats, mediated in part by skewing the balance of microglial response towards a protective phenotype, thereby preventing excessive tissue damage and improving functional outcomes. Our findings revealed the role of TSG-6 in modulating microglial response partially involved in the SOCS3/STAT3 pathway and TSG-6 may be a promising therapeutic target for the treatment of brain injury following SAH.
Collapse
Affiliation(s)
- Ran Li
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, 510282, China
| | - Wenchao Liu
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, 510282, China
| | - Jian Yin
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, 510282, China
| | - Yunchang Chen
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, 510282, China
| | - Shenquan Guo
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, 510282, China
| | - Haiyan Fan
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, 510282, China
| | - Xifeng Li
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, 510282, China
| | - Xin Zhang
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, 510282, China
| | - Xuying He
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, 510282, China
| | - Chuanzhi Duan
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
41
|
Hubbard WB, Harwood CL, Geisler JG, Vekaria HJ, Sullivan PG. Mitochondrial uncoupling prodrug improves tissue sparing, cognitive outcome, and mitochondrial bioenergetics after traumatic brain injury in male mice. J Neurosci Res 2018; 96:1677-1688. [PMID: 30063076 DOI: 10.1002/jnr.24271] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/12/2018] [Accepted: 05/29/2018] [Indexed: 12/17/2022]
Abstract
Traumatic brain injury (TBI) results in cognitive impairment, which can be long-lasting after moderate to severe TBI. Currently, there are no FDA-approved therapeutics to treat the devastating consequences of TBI and improve recovery. This study utilizes a prodrug of 2,4-dinitrophenol, MP201, a mitochondrial uncoupler with extended elimination time, that was administered after TBI to target mitochondrial dysfunction, a hallmark of TBI. Using a model of cortical impact in male C57/BL6 mice, MP201 (80 mg/kg) was provided via oral gavage 2-hr post-injury and daily afterwards. At 25-hr post-injury, mice were euthanized and the acute rescue of mitochondrial bioenergetics was assessed demonstrating a significant improvement in both the ipsilateral cortex and ipsilateral hippocampus after treatment with MP201. Additionally, oxidative markers, 4-hydroxyneneal and protein carbonyls, were reduced compared to vehicle animals after MP201 administration. At 2-weeks post-injury, mice treated with MP201 post-injury (80 mg/kg; q.d.) displayed significantly increased cortical sparing (p = .0059; 38% lesion spared) and improved cognitive outcome (p = .0133) compared to vehicle-treated mice. Additionally, vehicle-treated mice had significantly lower (p = .0019) CA3 neuron count compared to sham while MP201-treated mice were not significantly different from sham levels. These results suggest that acute mitochondrial dysfunction can be targeted to impart neuroprotection from reactive oxygen species, but chronic administration may have an added benefit in recovery. This study highlights the potential for safe, effective therapy by MP201 to alleviate negative outcomes of TBI.
Collapse
Affiliation(s)
- W Brad Hubbard
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, Lexington, Kentucky.,Department of Neuroscience, University of Kentucky, Lexington, Kentucky
| | - Christopher L Harwood
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, Lexington, Kentucky
| | | | - Hemendra J Vekaria
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, Lexington, Kentucky.,Department of Neuroscience, University of Kentucky, Lexington, Kentucky
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, Lexington, Kentucky.,Department of Neuroscience, University of Kentucky, Lexington, Kentucky.,Lexington VAMC, Lexington, Kentucky
| |
Collapse
|
42
|
Semple BD, Zamani A, Rayner G, Shultz SR, Jones NC. Affective, neurocognitive and psychosocial disorders associated with traumatic brain injury and post-traumatic epilepsy. Neurobiol Dis 2018; 123:27-41. [PMID: 30059725 DOI: 10.1016/j.nbd.2018.07.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/08/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022] Open
Abstract
Survivors of traumatic brain injury (TBI) often develop chronic neurological, neurocognitive, psychological, and psychosocial deficits that can have a profound impact on an individual's wellbeing and quality of life. TBI is also a common cause of acquired epilepsy, which is itself associated with significant behavioral morbidity. This review considers the clinical and preclinical evidence that post-traumatic epilepsy (PTE) acts as a 'second-hit' insult to worsen chronic behavioral outcomes for brain-injured patients, across the domains of emotional, cognitive, and psychosocial functioning. Surprisingly, few well-designed studies have specifically examined the relationship between seizures and behavioral outcomes after TBI. The complex mechanisms underlying these comorbidities remain incompletely understood, although many of the biological processes that precipitate seizure occurrence and epileptogenesis may also contribute to the development of chronic behavioral deficits. Further, the relationship between PTE and behavioral dysfunction is increasingly recognized to be a bidirectional one, whereby premorbid conditions are a risk factor for PTE. Clinical studies in this arena are often challenged by the confounding effects of anti-seizure medications, while preclinical studies have rarely examined an adequately extended time course to fully capture the time course of epilepsy development after a TBI. To drive the field forward towards improved treatment strategies, it is imperative that both seizures and neurobehavioral outcomes are assessed in parallel after TBI, both in patient populations and preclinical models.
Collapse
Affiliation(s)
- Bridgette D Semple
- Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Royal Parade, Parkville, VIC, Australia.
| | - Akram Zamani
- Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC, Australia.
| | - Genevieve Rayner
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre (Austin Campus), Heidelberg, VIC, Australia; Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia; Comprehensive Epilepsy Program, Alfred Health, Australia.
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Royal Parade, Parkville, VIC, Australia.
| | - Nigel C Jones
- Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Royal Parade, Parkville, VIC, Australia.
| |
Collapse
|
43
|
Tucker LB, Velosky AG, McCabe JT. Applications of the Morris water maze in translational traumatic brain injury research. Neurosci Biobehav Rev 2018; 88:187-200. [PMID: 29545166 DOI: 10.1016/j.neubiorev.2018.03.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 12/21/2022]
Abstract
Acquired traumatic brain injury (TBI) is frequently accompanied by persistent cognitive symptoms, including executive function disruptions and memory deficits. The Morris Water Maze (MWM) is the most widely-employed laboratory behavioral test for assessing cognitive deficits in rodents after experimental TBI. Numerous protocols exist for performing the test, which has shown great robustness in detecting learning and memory deficits in rodents after infliction of TBI. We review applications of the MWM for the study of cognitive deficits following TBI in pre-clinical studies, describing multiple ways in which the test can be employed to examine specific aspects of learning and memory. Emphasis is placed on dependent measures that are available and important controls that must be considered in the context of TBI. Finally, caution is given regarding interpretation of deficits as being indicative of dysfunction of a single brain region (hippocampus), as experimental models of TBI most often result in more diffuse damage that disrupts multiple neural pathways and larger functional networks that participate in complex behaviors required in MWM performance.
Collapse
Affiliation(s)
- Laura B Tucker
- Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA; Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301, Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Alexander G Velosky
- Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Joseph T McCabe
- Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA; Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301, Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
44
|
Wang Y, Pati S, Schreiber M. Cellular therapies and stem cell applications in trauma. Am J Surg 2018; 215:963-972. [PMID: 29502858 DOI: 10.1016/j.amjsurg.2018.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND As the leading cause of mortality in the United States, trauma management have improved drastically over the past few decades with improved resuscitation and hemorrhage control. Stem cells are being used in an attempt to augment healing from trauma. DATA SOURCES PubMed and ClinicalTrials.gov were searched for published and registered pre-clinical and clinical trials for the application of stem cells to AKI, ARDS, shock, infection, TBI, wound healing, and bone healing. CONCLUSIONS Stem cell therapy for augmentation of healing traumatic injuries appears safe, as demonstrated by completed phase I/II trials. Further large scale studies are needed to assess the clinical efficacy.
Collapse
Affiliation(s)
- Yuxuan Wang
- Oregon Health and Science University, Department of Trauma, Surgical Critical Care, and Acute Care Surgery, USA.
| | - Shibani Pati
- University of California, San Francisco, Department of Laboratory Medicine, USA
| | - Martin Schreiber
- Oregon Health and Science University, Department of Trauma, Surgical Critical Care, and Acute Care Surgery, USA
| |
Collapse
|
45
|
Watanabe R, Sato Y, Ozawa N, Takahashi Y, Koba S, Watanabe T. Emerging Roles of Tumor Necrosis Factor-Stimulated Gene-6 in the Pathophysiology and Treatment of Atherosclerosis. Int J Mol Sci 2018; 19:E465. [PMID: 29401724 PMCID: PMC5855687 DOI: 10.3390/ijms19020465] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/22/2018] [Accepted: 01/30/2018] [Indexed: 02/06/2023] Open
Abstract
Tumor necrosis factor-stimulated gene-6 (TSG-6) is a 35-kDa glycoprotein that has been shown to exert anti-inflammatory effects in experimental models of arthritis, acute myocardial infarction, and acute cerebral infarction. Several lines of evidence have shed light on the pathophysiological roles of TSG-6 in atherosclerosis. TSG-6 suppresses inflammatory responses of endothelial cells, neutrophils, and macrophages as well as macrophage foam cell formation and vascular smooth muscle cell (VSMC) migration and proliferation. Exogenous TSG-6 infusion and endogenous TSG-6 attenuation with a neutralizing antibody for four weeks retards and accelerates, respectively, the development of aortic atherosclerotic lesions in ApoE-deficient mice. TSG-6 also decreases the macrophage/VSMC ratio (a marker of plaque instability) and promotes collagen fibers in atheromatous plaques. In patients with coronary artery disease (CAD), plasma TSG-6 levels are increased and TSG-6 is abundantly expressed in the fibrous cap within coronary atheromatous plaques, indicating that TSG-6 increases to counteract the progression of atherosclerosis and stabilize the plaque. These findings indicate that endogenous TSG-6 enhancement and exogenous TSG-6 replacement treatments are expected to emerge as new lines of therapy against atherosclerosis and related CAD. Therefore, this review provides support for the clinical utility of TSG-6 in the diagnosis and treatment of atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Rena Watanabe
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-City, Tokyo 192-0392, Japan.
| | - Yuki Sato
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-City, Tokyo 192-0392, Japan.
| | - Nana Ozawa
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-City, Tokyo 192-0392, Japan.
| | - Yui Takahashi
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-City, Tokyo 192-0392, Japan.
| | - Shinji Koba
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan.
| | - Takuya Watanabe
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-City, Tokyo 192-0392, Japan.
| |
Collapse
|
46
|
de la Tremblaye PB, O'Neil DA, LaPorte MJ, Cheng JP, Beitchman JA, Thomas TC, Bondi CO, Kline AE. Elucidating opportunities and pitfalls in the treatment of experimental traumatic brain injury to optimize and facilitate clinical translation. Neurosci Biobehav Rev 2018; 85:160-175. [PMID: 28576511 PMCID: PMC5709241 DOI: 10.1016/j.neubiorev.2017.05.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/12/2017] [Indexed: 12/19/2022]
Abstract
The aim of this review is to discuss the research presented in a symposium entitled "Current progress in characterizing therapeutic strategies and challenges in experimental CNS injury" which was presented at the 2016 International Behavioral Neuroscience Society annual meeting. Herein we discuss diffuse and focal traumatic brain injury (TBI) and ensuing chronic behavioral deficits as well as potential rehabilitative approaches. We also discuss the effects of stress on executive function after TBI as well as the response of the endocrine system and regulatory feedback mechanisms. The role of the endocannabinoids after CNS injury is also discussed. Finally, we conclude with a discussion of antipsychotic and antiepileptic drugs, which are provided to control TBI-induced agitation and seizures, respectively. The review consists predominantly of published data.
Collapse
Affiliation(s)
- Patricia B de la Tremblaye
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Darik A O'Neil
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Megan J LaPorte
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jeffrey P Cheng
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joshua A Beitchman
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States; Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, United States; Midwestern University, Glendale, AZ, United States
| | - Theresa Currier Thomas
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States; Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, United States; Phoenix VA Healthcare System, Phoenix, AZ, United States
| | - Corina O Bondi
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anthony E Kline
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
47
|
Day AJ, Milner CM. TSG-6: A multifunctional protein with anti-inflammatory and tissue-protective properties. Matrix Biol 2018; 78-79:60-83. [PMID: 29362135 DOI: 10.1016/j.matbio.2018.01.011] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 02/06/2023]
Abstract
Tumor necrosis factor- (TNF) stimulated gene-6 (TSG-6) is an inflammation-associated secreted protein that has been implicated as having important and diverse tissue protective and anti-inflammatory properties, e.g. mediating many of the immunomodulatory and beneficial activities of mesenchymal stem/stromal cells. TSG-6 is constitutively expressed in some tissues, which are either highly metabolically active or subject to challenges from the environment, perhaps providing protection in these contexts. The diversity of its functions are dependent on the binding of TSG-6 to numerous ligands, including matrix molecules such as glycosaminoglycans, as well as immune regulators and growth factors that themselves interact with these linear polysaccharides. It is becoming apparent that TSG-6 can directly affect matrix structure and modulate the way extracellular signalling molecules interact with matrix. In this review, we focus mainly on the literature for TSG-6 over the last 10 years, summarizing its expression, structure, ligand-binding properties, biological functions and highlighting TSG-6's potential as a therapeutic for a broad range of disease indications.
Collapse
Affiliation(s)
- Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| | - Caroline M Milner
- Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
48
|
Lv YS, Gao R, Lin QM, Jiang T, Chen Q, Tang SX, Mao HP, Zhou HL, Cao LS. The role of TSG-6 and uroplakin III in bladder pain syndrome/ interstitial cystitis in rats and humans. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 20:1242-1249. [PMID: 29299202 PMCID: PMC5749359 DOI: 10.22038/ijbms.2017.9540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objectives We investigated the relationship between the expression of tumor necrosis factor-inducible gene 6 (TSG-6) with inflammation and integrity of the bladder epithelium in the bladder tissues of patients with bladder pain syndrome/interstitial cystitis (BPS/IC) and the mechanism of action using a rat model of BPS/IC. Materials and Methods Expression of TSG-6 and uroplakin III was determined by immuno- histochemistry of bladder biopsy samples from control human subjects and patients with verified BPS/IC. Our rat model of BPS/IC was employed to measure the perfusion of bladders with hyaluronidase, and assessment of the effect of TSG-6 administration on disease progression. Treatment effects were assessed by measurement of metabolic characteristics, RT-PCR of TGR-6 and interleukin-6, bladder histomorphology, and immunohistochemistry of TGR-6 and uroplakin III. Results The bladders of patients with BPS/IC had lower expression of uroplakin III and higher expression of TSG-6 than controls. Rats treated with hyaluronidase for 1 week developed the typical signs and symptoms of BPS/IC, and rats treated with hyaluronidase for 4 weeks had more serious disease. Administration of TSG-6 reversed the effects of hyaluronidase and protected against disease progression. Conclusion Our results indicate that TSG-6 plays an important role in maintaining the integrity of the bladder epithelial barrier.
Collapse
Affiliation(s)
- Yi-Song Lv
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Rui Gao
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Qing-Ming Lin
- Department of Emergency Medicine, Fujian Provincial Hospital, Fuzhou 350005, China
| | - Tao Jiang
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Qin Chen
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Song-Xi Tang
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Hou-Ping Mao
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Hui-Liang Zhou
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Lin-Sheng Cao
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
49
|
Xu L, Xing Q, Huang T, Zhou J, Liu T, Cui Y, Cheng T, Wang Y, Zhou X, Yang B, Yang GL, Zhang J, Zang X, Ma S, Guan F. HDAC1 Silence Promotes Neuroprotective Effects of Human Umbilical Cord-Derived Mesenchymal Stem Cells in a Mouse Model of Traumatic Brain Injury via PI3K/AKT Pathway. Front Cell Neurosci 2018; 12:498. [PMID: 30662396 PMCID: PMC6328439 DOI: 10.3389/fncel.2018.00498] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/03/2018] [Indexed: 01/09/2023] Open
Abstract
Stem cell transplantation is a promising therapy for traumatic brain injury (TBI), but low efficiency of survival and differentiation of transplanted stem cells limits its clinical application. Histone deacetylase 1 (HDAC1) plays important roles in self-renewal of stem cells as well as the recovery of brain disorders. However, little is known about the effects of HDAC1 on the survival and efficacy of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in vivo. In this study, our results showed that HDAC1 silence promoted hUC-MSCs engraftment in the hippocampus and increased the neuroprotective effects of hUC-MSCs in TBI mouse model, which was accompanied by improved neurological function, enhanced neurogenesis, decreased neural apoptosis, and reduced oxidative stress in the hippocampus. Further mechanistic studies revealed that the expressions of phosphorylated PTEN (p-PTEN), phosphorylated Akt (p-Akt), and phosphorylated GSK-3β (p-GSK-3β) were upregulated. Intriguingly, the neuroprotective effects of hUC-MSCs with HDAC1 silence on behavioral performance of TBI mice was markedly attenuated by LY294002, an inhibitor of the PI3K/AKT pathway. Taken together, our findings suggest that hUC-MSCs transplantation with HDAC1 silence may provide a potential strategy for treating TBI in the future.
Collapse
Affiliation(s)
- Ling Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial People’s Hospital, Zhengzhou, China
| | - Qu Xing
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Tuanjie Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiankang Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Tengfei Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuanbo Cui
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Tian Cheng
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinkui Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Bo Yang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Jiewen Zhang
- Henan Provincial People’s Hospital, Zhengzhou, China
| | - Xingxing Zang
- Department of Microbiology and Immunology, Einstein College of Medicine, Bronx, NY, United States
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Shanshan Ma Fangxia Guan
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial People’s Hospital, Zhengzhou, China
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Shanshan Ma Fangxia Guan
| |
Collapse
|
50
|
Abstract
Neurological injury is the primary lethal mechanism of injury in children, and the primary etiology of long-term disability after trauma. Laboratories and clinical/translational teams have sought to develop stem/progenitor cell therapies to improve recovery in a clinical setting in which there is no significant reparative option. While none of these treatments are currently standard therapeutics, phase IIb clinical trials are underway in both adults and children in severe traumatic brain injury (TBI) and phase I/IIa trials in spinal cord injury. This review will characterize the cell therapy strategies: cell replacement and tissue integration vs. immunomodulation/enhanced endogenous tissue repair. TBI is somewhat different from other central nervous system injuries (spinal cord injury and stroke), in that TBI is a diffuse injury, whereas spinal cord injury and stroke are anatomically discrete. Importantly, this drives cell therapy approaches, as TBI is less apt to be treatable with a local cell replacement intervention. More localized injuries may be more amenable to local approaches and cell replacement to bridge focal gaps. This review focuses on a few reports in the field that highlight areas of progress, but is not intended to be a comprehensive survey of the state of regenerative medicine for neurological injuries.
Collapse
|