1
|
Jin J, Doan J, Fernandez C, Nguyen S, Spencer C, Kleschevnikov AM. Early postnatal GABAB antagonist treatment normalizes inhibitory/excitatory balance in neonatal Ts65Dn mice, a genetic model of down syndrome. Exp Neurol 2025; 386:115171. [PMID: 39889878 DOI: 10.1016/j.expneurol.2025.115171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Brain abnormalities in Down syndrome (DS) most rapidly accumulate during the third trimester, a critical period for the formation of neural circuits in the hippocampus and neocortex. In mice, this stage roughly corresponds to the first 2.5 weeks after birth. We hypothesized that enhanced Girk2 channel signaling during this critical period profoundly contributes to the formation of faulty neural circuits in mouse genetic models of DS, with a key feature being an imbalance of excitatory and inhibitory neurotransmission favoring inhibition. Major predictions of this hypothesis were tested. We observed that hippocampal Girk2 levels are enhanced, GABAB/Girk2 signaling efficiency is increased, and intrinsic neuronal excitability of dentate gyrus (DG) granule cells is reduced in neonatal Ts65Dn mice. Given this, we tested if suppressing the enhanced GABAB/Girk2 signaling in the early postnatal period would affect the inhibitory/excitatory (I/E) balance in Ts65Dn mice. Remarkably, GABAB antagonist treatment from postnatal day 2 (P2) to P17 normalized the exaggerated IPSC/EPSC ratio in DG granule cells in Ts65Dn mice. Our findings show that GABAB/Girk2 signaling is increased in neonatal Ts65Dn mice, and that pharmacological suppression of GABAB receptors during the early postnatal period normalizes the I/E balance. These results suggest that early intervention targeting GABAB/Girk2 signaling could be a promising therapeutic approach to mitigate cognitive impairment in DS.
Collapse
Affiliation(s)
- Joshua Jin
- University of California San Diego, La Jolla, CA, United States
| | - James Doan
- University of California San Diego, La Jolla, CA, United States
| | | | - Samuel Nguyen
- University of California San Diego, La Jolla, CA, United States
| | - Cole Spencer
- University of California San Diego, La Jolla, CA, United States
| | | |
Collapse
|
2
|
Lepagnol-Bestel AM, Haziza S, Viard J, Salin PA, Duchon A, Herault Y, Simonneau M. DYRK1A Up-Regulation Specifically Impairs a Presynaptic Form of Long-Term Potentiation. Life (Basel) 2025; 15:149. [PMID: 40003558 PMCID: PMC11856406 DOI: 10.3390/life15020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
Chromosome 21 DYRK1A kinase is associated with a variety of neuronal diseases including Down syndrome. However, the functional impact of this kinase at the synapse level remains unclear. We studied a mouse model that incorporated YAC 152F7 (570 kb), encoding six chromosome 21 genes including DYRK1A. The 152F7 mice displayed learning difficulties but their N-methyl-D-aspartate (NMDA)-dependent synaptic long-term potentiation is indistinguishable from non-transgenic animals. We have demonstrated that a presynaptic form of NMDA-independent long-term potentiation (LTP) at the hippocampal mossy fiber was impaired in the 152F7 animals. To obtain insights into the molecular mechanisms involved in such synaptic changes, we analyzed the Dyrk1a interactions with chromatin remodelers. We found that the number of DYRK1A-EP300 and DYRK1A-CREBPP increased in 152F7 mice. Moreover, we observed a transcriptional decrease in genes encoding presynaptic proteins involved in glutamate vesicle exocytosis, namely Rims1, Munc13-1, Syn2 and Rab3A.To refine our findings, we used a mouse BAC 189N3 (152 kb) line that only triplicates the gene Dyrk1a. Again, we found that this NMDA-independent form of LTP is impaired in this mouse line. Altogether, our results demonstrate that Dyrk1a up-regulation is sufficient to specifically inhibit the NMDA-independent form of LTP and suggest that this inhibition is linked to chromatin changes that deregulate genes encoding proteins involved in glutamate synaptic release.
Collapse
Affiliation(s)
| | - Simon Haziza
- Centre Psychiatrie & Neurosciences, INSERM U894, 75014 Paris, France; (A.-M.L.-B.); (S.H.); (J.V.)
- Centre National de la Recherche Scientifique, Université Paris-Saclay, CentraleSupélec, École Normale Supérieure Paris-Saclay, LuMIn, 91190 Gif-sur-Yvette, France
| | - Julia Viard
- Centre Psychiatrie & Neurosciences, INSERM U894, 75014 Paris, France; (A.-M.L.-B.); (S.H.); (J.V.)
| | - Paul A. Salin
- Centre de Recherche en Neuroscience de Lyon CRNL (INSERM U1028), Université Claude-Bernard Lyon 1, 69100 Lyon, France;
| | - Arnaud Duchon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM, U964, 67404 Illkirch, France; (A.D.); (Y.H.)
- Phenomin, Institut Clinique de la Souris (ICS), GIE CERBM, CNRS, INSERM, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM, U964, 67404 Illkirch, France; (A.D.); (Y.H.)
- Phenomin, Institut Clinique de la Souris (ICS), GIE CERBM, CNRS, INSERM, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Michel Simonneau
- Centre Psychiatrie & Neurosciences, INSERM U894, 75014 Paris, France; (A.-M.L.-B.); (S.H.); (J.V.)
- Centre National de la Recherche Scientifique, Université Paris-Saclay, CentraleSupélec, École Normale Supérieure Paris-Saclay, LuMIn, 91190 Gif-sur-Yvette, France
- Département d’Enseignement et de Recherche en Biologie, École Normale Supérieure Paris-Saclay, 91190 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Goodman EJ, Biltz RG, Packer JM, DiSabato DJ, Swanson SP, Oliver B, Quan N, Sheridan JF, Godbout JP. Enhanced fear memory after social defeat in mice is dependent on interleukin-1 receptor signaling in glutamatergic neurons. Mol Psychiatry 2024; 29:2321-2334. [PMID: 38459193 PMCID: PMC11412902 DOI: 10.1038/s41380-024-02456-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 03/10/2024]
Abstract
Chronic stress is associated with increased anxiety, cognitive deficits, and post-traumatic stress disorder. Repeated social defeat (RSD) in mice causes long-term stress-sensitization associated with increased microglia activation, monocyte accumulation, and enhanced interleukin (IL)-1 signaling in endothelia and neurons. With stress-sensitization, mice have amplified neuronal, immune, and behavioral responses to acute stress 24 days later. This is clinically relevant as it shares key aspects with post-traumatic stress disorder. The mechanisms underlying stress-sensitization are unclear, but enhanced fear memory may be critical. The purpose of this study was to determine the influence of microglia and IL-1R1 signaling in neurons in the development of sensitization and increased fear memory after RSD. Here, RSD accelerated fear acquisition, delayed fear extinction, and increased cued-based freezing at 0.5 day. The enhancement in contextual fear memory after RSD persisted 24 days later. Next, microglia were depleted with a CSF1R antagonist prior to RSD and several parameters were assessed. Microglia depletion blocked monocyte recruitment to the brain. Nonetheless, neuronal reactivity (pCREB) and IL-1β RNA expression in the hippocampus and enhanced fear memory after RSD were microglial-independent. Because IL-1β RNA was prominent in the hippocampus after RSD even with microglia depletion, IL-1R1 mediated signaling in glutamatergic neurons was assessed using neuronal Vglut2+/IL-1R1-/- mice. RSD-induced neuronal reactivity (pCREB) in the hippocampus and enhancement in fear memory were dependent on neuronal IL-1R1 signaling. Furthermore, single-nuclei RNA sequencing (snRNAseq) showed that RSD influenced transcription in specific hippocampal neurons (DG neurons, CA2/3, CA1 neurons) associated with glutamate signaling, inflammation and synaptic plasticity, which were neuronal IL-1R1-dependent. Furthermore, snRNAseq data provided evidence that RSD increased CREB, BDNF, and calcium signaling in DG neurons in an IL-1R1-dependent manner. Collectively, increased IL-1R1-mediated signaling (monocytes/microglia independent) in glutamatergic neurons after RSD enhanced neuronal reactivity and fear memory.
Collapse
Affiliation(s)
- Ethan J Goodman
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Rebecca G Biltz
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Jonathan M Packer
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Damon J DiSabato
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Samuel P Swanson
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Braeden Oliver
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Ning Quan
- Department of Biomedical Science, Brain Institute, Florida Atlantic University, Boca Raton, FL, USA
| | - John F Sheridan
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, USA.
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA.
| | - Jonathan P Godbout
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
4
|
Murphy AJ, Wilton SD, Aung-Htut MT, McIntosh CS. Down syndrome and DYRK1A overexpression: relationships and future therapeutic directions. Front Mol Neurosci 2024; 17:1391564. [PMID: 39114642 PMCID: PMC11303307 DOI: 10.3389/fnmol.2024.1391564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Down syndrome is a genetic-based disorder that results from the triplication of chromosome 21, leading to an overexpression of many triplicated genes, including the gene encoding Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A (DYRK1A). This protein has been observed to regulate numerous cellular processes, including cell proliferation, cell functioning, differentiation, and apoptosis. Consequently, an overexpression of DYRK1A has been reported to result in cognitive impairment, a key phenotype of individuals with Down syndrome. Therefore, downregulating DYRK1A has been explored as a potential therapeutic strategy for Down syndrome, with promising results observed from in vivo mouse models and human clinical trials that administered epigallocatechin gallate. Current DYRK1A inhibitors target the protein function directly, which tends to exhibit low specificity and selectivity, making them unfeasible for clinical or research purposes. On the other hand, antisense oligonucleotides (ASOs) offer a more selective therapeutic strategy to downregulate DYRK1A expression at the gene transcript level. Advances in ASO research have led to the discovery of numerous chemical modifications that increase ASO potency, specificity, and stability. Recently, several ASOs have been approved by the U.S. Food and Drug Administration to address neuromuscular and neurological conditions, laying the foundation for future ASO therapeutics. The limitations of ASOs, including their high production cost and difficulty delivering to target tissues can be overcome by further advances in ASO design. DYRK1A targeted ASOs could be a viable therapeutic approach to improve the quality of life for individuals with Down syndrome and their families.
Collapse
Affiliation(s)
- Aidan J. Murphy
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - May T. Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - Craig S. McIntosh
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
5
|
Canonica T, Kidd EJ, Gibbins D, Lana-Elola E, Fisher EMC, Tybulewicz VLJ, Good M. Dissecting the contribution of human chromosome 21 syntenic regions to recognition memory processes in adult and aged mouse models of Down syndrome. Front Behav Neurosci 2024; 18:1428146. [PMID: 39050700 PMCID: PMC11266108 DOI: 10.3389/fnbeh.2024.1428146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Background Trisomy of human chromosome 21 (Hsa21) results in a constellation of features known as Down syndrome (DS), the most common genetic form of intellectual disability. Hsa21 is orthologous to three regions in the mouse genome on mouse chromosome 16 (Mmu16), Mmu17 and Mmu10. We investigated genotype-phenotype relationships by assessing the contribution of these three regions to memory function and age-dependent cognitive decline, using three mouse models of DS, Dp1Tyb, Dp(17)3Yey, Dp(10)2Yey, that carry an extra copy of the Hsa21-orthologues on Mmu16, Mmu17 and Mmu10, respectively. Hypothesis Prior research on cognitive function in DS mouse models has largely focused on models with an extra copy of the Mmu16 region and relatively little is known about the effects of increased copy number on Mmu17 and Mmu10 on cognition and how this interacts with the effects of aging. As aging is is a critical contributor to cognitive and psychiatric changes in DS, we hypothesised that ageing would differentially impact memory function in Dp1Tyb, Dp(17)3Yey, and Dp(10)2Yey, models of DS. Methods Young (12-13 months and old (18-20 months mice Dp1Tyb, Dp(17)3Yey and Dp(10)2Yey mice were tested on a battery of object recognition memory test that assessed object novelty detection, novel location detection and associative object-in place memory. Following behavioral testing, hippocampal and frontal cortical tissue was analysed for expression of glutamatergic receptor proteins using standard immunoblot techniques. Results Young (12-13 months and old (18-20 months mice Dp1Tyb, Dp(17)3Yey and Dp(10)2Yey mice were tested on a battery of object recognition memory test that assessed object novelty detection, novel location detection and associative object-in place memory. Following behavioral testing, hippocampal and frontal cortical tissue was analysed for expression of glutamatergic receptor proteins using standard immunoblot techniques. Conclusion Our results show that distinct Hsa21-orthologous regions contribute differentially to cognitive dysfunction in DS mouse models and that aging interacts with triplication of Hsa21-orthologous genes on Mmu10.
Collapse
Affiliation(s)
- Tara Canonica
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Emma J. Kidd
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | | | | | - Elizabeth M. C. Fisher
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | | | - Mark Good
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
6
|
Delabar JM, Gomes MAGB, Fructuoso M, Sarrazin N, George N, Fleary-Roberts N, Sun H, Bui LC, Rodrigues-Lima F, Janel N, Dairou J, Maria EJ, Dodd RH, Cariou K, Potier MC. EGCG-like non-competitive inhibitor of DYRK1A rescues cognitive defect in a down syndrome model. Eur J Med Chem 2024; 265:116098. [PMID: 38171148 DOI: 10.1016/j.ejmech.2023.116098] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/23/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Overexpression of the chromosome 21 DYRK1A gene induces morphological defects and cognitive impairments in individuals with Down syndrome (DS) and in DS mice models. Aging neurons of specific brain regions of patients with Alzheimer's disease, DS and Pick's disease have increased DYRK1A immunoreactivity suggesting a possible association of DYRK1A with neurofibrillary tangle pathology. Epigallocatechin-3-gallate (EGCG) displays appreciable inhibition of DYRK1A activity and, contrary to all other published inhibitors, EGCG is a non-competitive inhibitor of DYRK1A. Prenatal exposure to green tea polyphenols containing EGCG protects from brain defects induced by overexpression of DYRK1A. In order to produce more robust and possibly more active analogues of the natural compound EGCG, here we synthetized new EGCG-like molecules with several structural modifications to the EGCG skeleton. We replaced the ester boun of EGCG with a more resistant amide bond. We also replaced the oxygen ring by a methylene group. And finally, we positioned a nitrogen atom within this ring. The selected compound was shown to maintain the non-competitive property of EGCG and to correct biochemical and behavioral defects present in a DS mouse model. In addition it showed high stability and specificity.
Collapse
Affiliation(s)
- Jean M Delabar
- Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France.
| | - Marco Antônio G B Gomes
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette, France
| | - Marta Fructuoso
- Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France
| | - Nadège Sarrazin
- Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France
| | - Nicolas George
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette, France
| | - Nadia Fleary-Roberts
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette, France
| | - Hua Sun
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Linh Chi Bui
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Fernando Rodrigues-Lima
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Nathalie Janel
- Team Degenerative Process, Stress and Aging, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Julien Dairou
- Université Paris cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, 45 rue des Saints Pères, F-75006 Paris, France
| | - Edmilson J Maria
- Laboratório de Ciências Químicas, Centro de Ciências e Tecnologia, Universidade Estadual do Norte Fluminense-Darcy Ribeiro, Av. Alberto Lamego, 2000-Parque Califórnia, 28013-602, Campos dos Goytacazes/RJ, Brazil
| | - Robert H Dodd
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette, France
| | - Kevin Cariou
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette, France; current address: Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Marie-Claude Potier
- Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France.
| |
Collapse
|
7
|
Manubens-Gil L, Pons-Espinal M, Gener T, Ballesteros-Yañez I, de Lagrán MM, Dierssen M. Deficits in neuronal architecture but not over-inhibition are main determinants of reduced neuronal network activity in a mouse model of overexpression of Dyrk1A. Cereb Cortex 2024; 34:bhad431. [PMID: 37997361 PMCID: PMC10793573 DOI: 10.1093/cercor/bhad431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/25/2023] Open
Abstract
In this study, we investigated the impact of Dual specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A) overexpression, a gene associated with Down syndrome, on hippocampal neuronal deficits in mice. Our findings revealed that mice overexpressing Dyrk1A (TgDyrk1A; TG) exhibited impaired hippocampal recognition memory, disrupted excitation-inhibition balance, and deficits in long-term potentiation (LTP). Specifically, we observed layer-specific deficits in dendritic arborization of TG CA1 pyramidal neurons in the stratum radiatum. Through computational modeling, we determined that these alterations resulted in reduced storage capacity and compromised integration of inputs, with decreased high γ oscillations. Contrary to prevailing assumptions, our model suggests that deficits in neuronal architecture, rather than over-inhibition, primarily contribute to the reduced network. We explored the potential of environmental enrichment (EE) as a therapeutic intervention and found that it normalized the excitation-inhibition balance, restored LTP, and improved short-term recognition memory. Interestingly, we observed transient significant dendritic remodeling, leading to recovered high γ. However, these effects were not sustained after EE discontinuation. Based on our findings, we conclude that Dyrk1A overexpression-induced layer-specific neuromorphological disturbances impair the encoding of place and temporal context. These findings contribute to our understanding of the underlying mechanisms of Dyrk1A-related hippocampal deficits and highlight the challenges associated with long-term therapeutic interventions for cognitive impairments.
Collapse
Affiliation(s)
- Linus Manubens-Gil
- Institute for Brain Science and Intelligent Technology, Southeast University (SEU), Biomedical engineering, Sipailou street No. 2, Xuanwu district, 210096, Nanjing, China
- School of Biological Science and Medical Engineering, Southeast University (SEU), Sipailou street No. 2, Xuanwu district, 210096, Nanjing, China
| | - Meritxell Pons-Espinal
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Avinguda de la Granvia de l'Hospitalet, 199, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- Institute of Biomedicine (IBUB) of the University of Barcelona (UB), Avda. Diagonal, 643 Edifici Prevosti, planta -108028, Barcelona, Spain
| | - Thomas Gener
- Advanced Electronic Materials and Devices Group (AEMD), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, UAB Campus, Bellaterra Barcelona 08193, Spain
| | - Inmaculada Ballesteros-Yañez
- Inorganic and Organic Chemistry and Biochemistry, Faculty of Medicine, University of Castilla- La Mancha, Camino de Moledores, 13071, Ciudad Real, Spain
| | - María Martínez de Lagrán
- Cellular and Systems Neurobiology, Systems and Synthetic Biology Program, Center for Genomic Regulation, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Mara Dierssen
- Cellular and Systems Neurobiology, Systems and Synthetic Biology Program, Center for Genomic Regulation, Dr. Aiguader 88, 08003 Barcelona, Spain
- Center for Biomedical Research in the Network of Rare Diseases (CIBERER), v. Monforte de Lemos, 3-5. Pabellón 11. Planta 0 28029, Madrid, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
8
|
Idei H, Yamashita Y. Elucidating multifinal and equifinal pathways to developmental disorders by constructing real-world neurorobotic models. Neural Netw 2024; 169:57-74. [PMID: 37857173 DOI: 10.1016/j.neunet.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
Vigorous research has been conducted to accumulate biological and theoretical knowledge about neurodevelopmental disorders, including molecular, neural, computational, and behavioral characteristics; however, these findings remain fragmentary and do not elucidate integrated mechanisms. An obstacle is the heterogeneity of developmental pathways causing clinical phenotypes. Additionally, in symptom formations, the primary causes and consequences of developmental learning processes are often indistinguishable. Herein, we review developmental neurorobotic experiments tackling problems related to the dynamic and complex properties of neurodevelopmental disorders. Specifically, we focus on neurorobotic models under predictive processing lens for the study of developmental disorders. By constructing neurorobotic models with predictive processing mechanisms of learning, perception, and action, we can simulate formations of integrated causal relationships among neurodynamical, computational, and behavioral characteristics in the robot agents while considering developmental learning processes. This framework has the potential to bind neurobiological hypotheses (excitation-inhibition imbalance and functional disconnection), computational accounts (unusual encoding of uncertainty), and clinical symptoms. Developmental neurorobotic approaches may serve as a complementary research framework for integrating fragmented knowledge and overcoming the heterogeneity of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hayato Idei
- Department of Information Medicine, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Yuichi Yamashita
- Department of Information Medicine, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan.
| |
Collapse
|
9
|
Cording KR, Bateup HS. Altered motor learning and coordination in mouse models of autism spectrum disorder. Front Cell Neurosci 2023; 17:1270489. [PMID: 38026686 PMCID: PMC10663323 DOI: 10.3389/fncel.2023.1270489] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with increasing prevalence. Over 1,000 risk genes have now been implicated in ASD, suggesting diverse etiology. However, the diagnostic criteria for the disorder still comprise two major behavioral domains - deficits in social communication and interaction, and the presence of restricted and repetitive patterns of behavior (RRBs). The RRBs associated with ASD include both stereotyped repetitive movements and other motor manifestations including changes in gait, balance, coordination, and motor skill learning. In recent years, the striatum, the primary input center of the basal ganglia, has been implicated in these ASD-associated motor behaviors, due to the striatum's role in action selection, motor learning, and habit formation. Numerous mouse models with mutations in ASD risk genes have been developed and shown to have alterations in ASD-relevant behaviors. One commonly used assay, the accelerating rotarod, allows for assessment of both basic motor coordination and motor skill learning. In this corticostriatal-dependent task, mice walk on a rotating rod that gradually increases in speed. In the extended version of this task, mice engage striatal-dependent learning mechanisms to optimize their motor routine and stay on the rod for longer periods. This review summarizes the findings of studies examining rotarod performance across a range of ASD mouse models, and the resulting implications for the involvement of striatal circuits in ASD-related motor behaviors. While performance in this task is not uniform across mouse models, there is a cohort of models that show increased rotarod performance. A growing number of studies suggest that this increased propensity to learn a fixed motor routine may reflect a common enhancement of corticostriatal drive across a subset of mice with mutations in ASD-risk genes.
Collapse
Affiliation(s)
- Katherine R. Cording
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Helen S. Bateup
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
10
|
Serrano ME, Kim E, Siow B, Ma D, Rojo L, Simmons C, Hayward D, Gibbins D, Singh N, Strydom A, Fisher EM, Tybulewicz VL, Cash D. Investigating brain alterations in the Dp1Tyb mouse model of Down syndrome. Neurobiol Dis 2023; 188:106336. [PMID: 38317803 PMCID: PMC7615598 DOI: 10.1016/j.nbd.2023.106336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Down syndrome (DS) is one of the most common birth defects and the most prevalent genetic form of intellectual disability. DS arises from trisomy of chromosome 21, but its molecular and pathological consequences are not fully understood. In this study, we compared Dp1Tyb mice, a DS model, against their wild-type (WT) littermates of both sexes to investigate the impact of DS-related genetic abnormalities on the brain phenotype. We performed in vivo whole brain magnetic resonance imaging (MRI) and hippocampal 1H magnetic resonance spectroscopy (MRS) on the animals at 3 months of age. Subsequently, ex vivo MRI scans and histological analyses were conducted post-mortem. Our findings unveiled the following neuroanatomical and biochemical alterations in the Dp1Tyb brains: a smaller surface area and a rounder shape compared to WT brains, with DS males also presenting smaller global brain volume compared with the counterpart WT. Regional volumetric analysis revealed significant changes in 26 out of 72 examined brain regions, including the medial prefrontal cortex and dorsal hippocampus. These alterations were consistently observed in both in vivo and ex vivo imaging data. Additionally, high-resolution ex vivo imaging enabled us to investigate cerebellar layers and hippocampal sub-regions, revealing selective areas of decrease and remodelling in these structures. An analysis of hippocampal metabolites revealed an elevation in glutamine and the glutamine/glutamate ratio in the Dp1Tyb mice compared to controls, suggesting a possible imbalance in the excitation/inhibition ratio. This was accompanied by the decreased levels of taurine. Histological analysis revealed fewer neurons in the hippocampal CA3 and DG layers, along with an increase in astrocytes and microglia. These findings recapitulate multiple neuroanatomical and biochemical features associated with DS, enriching our understanding of the potential connection between chromosome 21 trisomy and the resultant phenotype.
Collapse
Affiliation(s)
- Maria Elisa Serrano
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Eugene Kim
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Bernard Siow
- The Francis Crick Institute, London, United Kingdom
| | - Da Ma
- Department of Internal Medicine Section of Gerontology and Geriatric Science, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Loreto Rojo
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Camilla Simmons
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | | | | | - Nisha Singh
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Elizabeth M.C. Fisher
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | | | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
11
|
Shih YT, Alipio JB, Sahay A. An inhibitory circuit-based enhancer of DYRK1A function reverses Dyrk1a-associated impairment in social recognition. Neuron 2023; 111:3084-3101.e5. [PMID: 37797581 PMCID: PMC10575685 DOI: 10.1016/j.neuron.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/29/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023]
Abstract
Heterozygous mutations in the dual-specificity tyrosine phosphorylation-regulated kinase 1a (Dyrk1a) gene define a syndromic form of autism spectrum disorder. The synaptic and circuit mechanisms mediating DYRK1A functions in social cognition are unclear. Here, we identify a social experience-sensitive mechanism in hippocampal mossy fiber-parvalbumin interneuron (PV IN) synapses by which DYRK1A recruits feedforward inhibition of CA3 and CA2 to promote social recognition. We employ genetic epistasis logic to identify a cytoskeletal protein, ABLIM3, as a synaptic substrate of DYRK1A. We demonstrate that Ablim3 downregulation in dentate granule cells of adult heterozygous Dyrk1a mice is sufficient to restore PV IN-mediated inhibition of CA3 and CA2 and social recognition. Acute chemogenetic activation of PV INs in CA3/CA2 of adult heterozygous Dyrk1a mice also rescued social recognition. Together, these findings illustrate how targeting DYRK1A synaptic and circuit substrates as "enhancers of DYRK1A function" harbors the potential to reverse Dyrk1a haploinsufficiency-associated circuit and cognition impairments.
Collapse
Affiliation(s)
- Yu-Tzu Shih
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; BROAD Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jason Bondoc Alipio
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; BROAD Institute of Harvard and MIT, Cambridge, MA, USA
| | - Amar Sahay
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; BROAD Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
12
|
Hogg EKJ, Findlay GM. Functions of SRPK, CLK and DYRK kinases in stem cells, development, and human developmental disorders. FEBS Lett 2023; 597:2375-2415. [PMID: 37607329 PMCID: PMC10952393 DOI: 10.1002/1873-3468.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023]
Abstract
Human developmental disorders encompass a wide range of debilitating physical conditions and intellectual disabilities. Perturbation of protein kinase signalling underlies the development of some of these disorders. For example, disrupted SRPK signalling is associated with intellectual disabilities, and the gene dosage of DYRKs can dictate the pathology of disorders including Down's syndrome. Here, we review the emerging roles of the CMGC kinase families SRPK, CLK, DYRK, and sub-family HIPK during embryonic development and in developmental disorders. In particular, SRPK, CLK, and DYRK kinase families have key roles in developmental signalling and stem cell regulation, and can co-ordinate neuronal development and function. Genetic studies in model organisms reveal critical phenotypes including embryonic lethality, sterility, musculoskeletal errors, and most notably, altered neurological behaviours arising from defects of the neuroectoderm and altered neuronal signalling. Further unpicking the mechanisms of specific kinases using human stem cell models of neuronal differentiation and function will improve our understanding of human developmental disorders and may provide avenues for therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth K. J. Hogg
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| | - Greg M. Findlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| |
Collapse
|
13
|
Rusu B, Kukreja B, Wu T, Dan SJ, Feng MY, Kalish BT. Single-Nucleus Profiling Identifies Accelerated Oligodendrocyte Precursor Cell Senescence in a Mouse Model of Down Syndrome. eNeuro 2023; 10:ENEURO.0147-23.2023. [PMID: 37491366 PMCID: PMC10449487 DOI: 10.1523/eneuro.0147-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023] Open
Abstract
Down syndrome (DS), the most common genetic cause of intellectual disability, is associated with lifelong cognitive deficits. However, the mechanisms by which triplication of chromosome 21 genes drive neuroinflammation and cognitive dysfunction are poorly understood. Here, using the Ts65Dn mouse model of DS, we performed an integrated single-nucleus ATAC and RNA-sequencing (snATAC-seq and snRNA-seq) analysis of the adult cortex. We identified cell type-specific transcriptional and chromatin-associated changes in the Ts65Dn cortex, including regulators of neuroinflammation, transcription and translation, myelination, and mitochondrial function. We discovered enrichment of a senescence-associated transcriptional signature in Ts65Dn oligodendrocyte (OL) precursor cells (OPCs) and epigenetic changes consistent with a loss of heterochromatin. We found that senescence is restricted to a subset of OPCs concentrated in deep cortical layers. Treatment of Ts65Dn mice with a senescence-reducing flavonoid rescued cortical OPC proliferation, restored microglial homeostasis, and improved contextual fear memory. Together, these findings suggest that cortical OPC senescence may be an important driver of neuropathology in DS.
Collapse
Affiliation(s)
- Bianca Rusu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
| | - Bharti Kukreja
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
| | - Taiyi Wu
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
| | - Sophie J Dan
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Min Yi Feng
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
| | - Brian T Kalish
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
- Division of Neonatology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
14
|
Shao LR, Gao F, Chinnasamy V, Kazuki Y, Oshimura M, Reeves RH, Stafstrom CE. Increased propensity for infantile spasms and altered neocortical excitation-inhibition balance in a mouse model of down syndrome carrying human chromosome 21. Neurobiol Dis 2023; 184:106198. [PMID: 37315904 DOI: 10.1016/j.nbd.2023.106198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/30/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023] Open
Abstract
Children with Down syndrome (DS, trisomy of chromosome 21) have an increased risk of infantile spasms (IS). As an epileptic encephalopathy, IS may further impair cognitive function and exacerbate neurodevelopmental delays already present in children with DS. To investigate the pathophysiology of IS in DS, we induced IS-like epileptic spasms in a genetic mouse model of DS that carries human chromosome 21q, TcMAC21, the animal model most closely representing gene dosage imbalance in DS. Repetitive extensor/flexor spasms were induced by the GABAB receptor agonist γ-butyrolactone (GBL) and occurred predominantly in young TcMAC21 mice (85%) but also in some euploid mice (25%). During GBL application, background electroencephalographic (EEG) amplitude was reduced, and rhythmic, sharp-and-slow wave activity or high-amplitude burst (epileptiform) events emerged in both TcMAC21 and euploid mice. Spasms occurred only during EEG bursts, but not every burst was accompanied by a spasm. Electrophysiological experiments revealed that basic membrane properties (resting membrane potential, input resistance, action-potential threshold and amplitude, rheobase, input-output relationship) of layer V pyramidal neurons were not different between TcMAC21 mice and euploid controls. However, excitatory postsynaptic currents (EPSCs) evoked at various intensities were significantly larger in TcMAC21 mice than euploid controls, while inhibitory postsynaptic currents (IPSCs) were similar between the two groups, resulting in an increased excitation-inhibition (E-I) ratio. These data show that behavioral spasms with epileptic EEG activity can be induced in young TcMAC21 DS mice, providing proof-of-concept evidence for increased IS susceptibility in these DS mice. Our findings also show that basic membrane properties are similar in TcMAC21 and euploid mice, while the neocortical E-I balance is altered to favor increased excitation in TcMAC21 mice, which may predispose to IS generation.
Collapse
Affiliation(s)
- Li-Rong Shao
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Feng Gao
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Viveka Chinnasamy
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
| | - Mistuo Oshimura
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan; Trans Chromosomics, Inc., Tottori, Japan
| | - Roger H Reeves
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan; Department of Human Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carl E Stafstrom
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
15
|
Manubens-Gil L, Pons-Espinal M, Gener T, Ballesteros-Yañez I, de Lagrán MM, Dierssen M. Deficits in neuronal architecture but not over-inhibition are main determinants of reduced neuronal network activity in a mouse model of overexpression of Dyrk1A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531874. [PMID: 36945607 PMCID: PMC10028951 DOI: 10.1101/2023.03.09.531874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Abnormal dendritic arbors, dendritic spine "dysgenesis" and excitation inhibition imbalance are main traits assumed to underlie impaired cognition and behavioral adaptation in intellectual disability. However, how these modifications actually contribute to functional properties of neuronal networks, such as signal integration or storage capacity is unknown. Here, we used a mouse model overexpressing Dyrk1A (Dual-specificity tyrosine [Y]-regulated kinase), one of the most relevant Down syndrome (DS) candidate genes, to gather quantitative data regarding hippocampal neuronal deficits produced by the overexpression of Dyrk1A in mice (TgDyrk1A; TG). TG mice showed impaired hippocampal recognition memory, altered excitation-inhibition balance and deficits in hippocampal CA1 LTP. We also detected for the first time that deficits in dendritic arborization in TG CA1 pyramidal neurons are layer-specific, with a reduction in the width of the stratum radiatum, the postsynaptic target site of CA3 excitatory neurons, but not in the stratum lacunosum-moleculare, which receives temporo-ammonic projections. To interrogate about the functional impact of layer-specific TG dendritic deficits we developed tailored computational multicompartmental models. Computational modelling revealed that neuronal microarchitecture alterations in TG mice lead to deficits in storage capacity, altered the integration of inputs from entorhinal cortex and hippocampal CA3 region onto CA1 pyramidal cells, important for coding place and temporal context and on connectivity and activity dynamics, with impaired the ability to reach high γ oscillations. Contrary to what is assumed in the field, the reduced network activity in TG is mainly contributed by the deficits in neuronal architecture and to a lesser extent by over-inhibition. Finally, given that therapies aimed at improving cognition have also been tested for their capability to recover dendritic spine deficits and excitation-inhibition imbalance, we also tested the short- and long-term changes produced by exposure to environmental enrichment (EE). Exposure to EE normalized the excitation inhibition imbalance and LTP, and had beneficial effects on short-term recognition memory. Importantly, it produced massive but transient dendritic remodeling of hippocampal CA1, that led to recovery of high γ oscillations, the main readout of synchronization of CA1 neurons, in our simulations. However, those effects where not stable and were lost after EE discontinuation. We conclude that layer-specific neuromorphological disturbances produced by Dyrk1A overexpression impair coding place and temporal context. Our results also suggest that treatments targeting structural plasticity, such as EE, even though hold promise towards improved treatment of intellectual disabilities, only produce temporary recovery, due to transient dendritic remodeling.
Collapse
Affiliation(s)
- Linus Manubens-Gil
- SEU-Allen Joint Center, Institute for Brain and Intelligence, Southeast University (SEU), China
| | - Meritxell Pons-Espinal
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Barcelona, Spain
- Institute of Biomedicine (IBUB) of the University of Barcelona (UB), Barcelona, Spain
| | - Thomas Gener
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, Barcelona, Spain
| | - Inmaculada Ballesteros-Yañez
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain (UCLM), CRIB, Spain
| | - María Martínez de Lagrán
- Centre for Genomic Regulation (CRG), BIST, Spain
- Center for Biomedical Research in the Network of Rare Diseases (CIBERER), Spain
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), BIST, Spain
- Center for Biomedical Research in the Network of Rare Diseases (CIBERER), Spain
| |
Collapse
|
16
|
Falkovich R, Danielson EW, Perez de Arce K, Wamhoff EC, Strother J, Lapteva AP, Sheng M, Cottrell JR, Bathe M. A synaptic molecular dependency network in knockdown of autism- and schizophrenia-associated genes revealed by multiplexed imaging. Cell Rep 2023; 42:112430. [PMID: 37099425 DOI: 10.1016/j.celrep.2023.112430] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/29/2023] [Accepted: 04/08/2023] [Indexed: 04/27/2023] Open
Abstract
The complex functions of neuronal synapses depend on their tightly interconnected protein network, and their dysregulation is implicated in the pathogenesis of autism spectrum disorders and schizophrenia. However, it remains unclear how synaptic molecular networks are altered biochemically in these disorders. Here, we apply multiplexed imaging to probe the effects of RNAi knockdown of 16 autism- and schizophrenia-associated genes on the simultaneous joint distribution of 10 synaptic proteins, observing several protein composition phenotypes associated with these risk genes. We apply Bayesian network analysis to infer hierarchical dependencies among eight excitatory synaptic proteins, yielding predictive relationships that can only be accessed with single-synapse, multiprotein measurements performed simultaneously in situ. Finally, we find that central features of the network are affected similarly across several distinct gene knockdowns. These results offer insight into the convergent molecular etiology of these widespread disorders and provide a general framework to probe subcellular molecular networks.
Collapse
Affiliation(s)
- Reuven Falkovich
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eric W Danielson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Karen Perez de Arce
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eike-C Wamhoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Juliana Strother
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna P Lapteva
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Morgan Sheng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeffrey R Cottrell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Medical School Initiative for RNA Medicine, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
17
|
Redhead Y, Gibbins D, Lana-Elola E, Watson-Scales S, Dobson L, Krause M, Liu KJ, Fisher EMC, Green JBA, Tybulewicz VLJ. Craniofacial dysmorphology in Down syndrome is caused by increased dosage of Dyrk1a and at least three other genes. Development 2023; 150:dev201077. [PMID: 37102702 PMCID: PMC10163349 DOI: 10.1242/dev.201077] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 03/21/2023] [Indexed: 04/28/2023]
Abstract
Down syndrome (DS), trisomy of human chromosome 21 (Hsa21), occurs in 1 in 800 live births and is the most common human aneuploidy. DS results in multiple phenotypes, including craniofacial dysmorphology, which is characterised by midfacial hypoplasia, brachycephaly and micrognathia. The genetic and developmental causes of this are poorly understood. Using morphometric analysis of the Dp1Tyb mouse model of DS and an associated mouse genetic mapping panel, we demonstrate that four Hsa21-orthologous regions of mouse chromosome 16 contain dosage-sensitive genes that cause the DS craniofacial phenotype, and identify one of these causative genes as Dyrk1a. We show that the earliest and most severe defects in Dp1Tyb skulls are in bones of neural crest (NC) origin, and that mineralisation of the Dp1Tyb skull base synchondroses is aberrant. Furthermore, we show that increased dosage of Dyrk1a results in decreased NC cell proliferation and a decrease in size and cellularity of the NC-derived frontal bone primordia. Thus, DS craniofacial dysmorphology is caused by an increased dosage of Dyrk1a and at least three other genes.
Collapse
Affiliation(s)
- Yushi Redhead
- Centre for Craniofacial Biology and Regenerative Biology, King's College London, London SE1 9RT, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | | | | | | | - Lisa Dobson
- Centre for Craniofacial Biology and Regenerative Biology, King's College London, London SE1 9RT, UK
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Matthias Krause
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Karen J. Liu
- Centre for Craniofacial Biology and Regenerative Biology, King's College London, London SE1 9RT, UK
| | | | - Jeremy B. A. Green
- Centre for Craniofacial Biology and Regenerative Biology, King's College London, London SE1 9RT, UK
| | | |
Collapse
|
18
|
Delabar JM, Lagarde J, Fructuoso M, Mohammad A, Bottlaender M, Doran E, Lott I, Rivals I, Schmitt FA, Head E, Sarazin M, Potier MC. Increased plasma DYRK1A with aging may protect against neurodegenerative diseases. Transl Psychiatry 2023; 13:111. [PMID: 37015911 PMCID: PMC10073199 DOI: 10.1038/s41398-023-02419-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/06/2023] Open
Abstract
Early markers are needed for more effective prevention of Alzheimer's disease. We previously showed that individuals with Alzheimer's disease have decreased plasma DYRK1A levels compared to controls. We assessed DYRK1A in the plasma of cognitively healthy elderly volunteers, individuals with either Alzheimer's disease (AD), tauopathies or Down syndrome (DS), and in lymphoblastoids from individuals with DS. DYRK1A levels were inversely correlated with brain amyloid β burden in asymptomatic elderly individuals and AD patients. Low DYRK1A levels were also detected in patients with tauopathies. Individuals with DS had higher DYRK1A levels than controls, although levels were lower in individuals with DS and with dementia. These data suggest that plasma DYRK1A levels could be used for early detection of at risk individuals of AD and for early detection of AD. We hypothesize that lack of increase of DYRK1A at middle age (40-50 years) could be a warning before the cognitive decline, reflecting increased risk for AD.
Collapse
Affiliation(s)
- Jean M Delabar
- Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France.
| | - Julien Lagarde
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, Paris, 75013, France
- Paris-Saclay University, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Orsay, 91400, France
| | - Marta Fructuoso
- Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France
| | - Ammara Mohammad
- Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France
| | - Michel Bottlaender
- Paris-Saclay University, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Orsay, 91400, France
| | - Eric Doran
- School of Medicine, Department of Pediatrics, University of California, Irvine, CA, 92697, USA
| | - Ira Lott
- School of Medicine, Department of Pediatrics, University of California, Irvine, CA, 92697, USA
| | - Isabelle Rivals
- Equipe de Statistique Appliquée, ESPCI Paris, INSERM, UMRS 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, PSL Research University, Paris, 75005, France
| | - Frederic A Schmitt
- Department of Neurology, University of Kentucky, Lexington, KY, 40506, USA
| | - Elizabeth Head
- Department of Neurology, University of Kentucky, Lexington, KY, 40506, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, 92697, USA
| | - Marie Sarazin
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, Paris, 75013, France
- Paris-Saclay University, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Orsay, 91400, France
| | - Marie-Claude Potier
- Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France.
| |
Collapse
|
19
|
Shih YT, Alipio JB, Sahay A. An inhibitory circuit-based enhancer of Dyrk1a function reverses Dyrk1a -associated impairment in social recognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.526955. [PMID: 36778241 PMCID: PMC9915696 DOI: 10.1101/2023.02.03.526955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heterozygous mutations in the Dual specificity tyrosine-phosphorylation-regulated kinase 1a Dyrk1a gene define a syndromic form of Autism Spectrum Disorder. The synaptic and circuit mechanisms mediating Dyrk1a functions in social cognition are unclear. Here, we identify a social experience-sensitive mechanism in hippocampal mossy fiber-parvalbumin interneuron (PV IN) synapses by which Dyrk1a recruits feedforward inhibition of CA3 and CA2 to promote social recognition. We employ genetic epistasis logic to identify a cytoskeletal protein, Ablim3, as a synaptic substrate of Dyrk1a. We demonstrate that Ablim3 downregulation in dentate granule cells of adult hemizygous Dyrk1a mice is sufficient to restore PV IN mediated inhibition of CA3 and CA2 and social recognition. Acute chemogenetic activation of PV INs in CA3/CA2 of adult hemizygous Dyrk1a mice also rescued social recognition. Together, these findings illustrate how targeting Dyrk1a synaptic and circuit substrates as "enhancers of Dyrk1a function" harbors potential to reverse Dyrk1a haploinsufficiency-associated circuit and cognition impairments. Highlights Dyrk1a in mossy fibers recruits PV IN mediated feed-forward inhibition of CA3 and CA2Dyrk1a-Ablim3 signaling in mossy fiber-PV IN synapses promotes inhibition of CA3 and CA2 Downregulating Ablim3 restores PV IN excitability, CA3/CA2 inhibition and social recognition in Dyrk1a+/- mice Chemogenetic activation of PV INs in CA3/CA2 rescues social recognition in Dyrk1a+/- mice.
Collapse
|
20
|
Benítez-Burraco A, Jiménez-Romero MS, Fernández-Urquiza M. Delving into the Genetic Causes of Language Impairment in a Case of Partial Deletion of NRXN1. Mol Syndromol 2023; 13:496-510. [PMID: 36660026 PMCID: PMC9843585 DOI: 10.1159/000524710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/22/2022] [Indexed: 01/22/2023] Open
Abstract
Introduction Copy-number variations (CNVs) impacting on small DNA stretches and associated with language deficits provide a unique window to the role played by specific genes in language function. Methods We report in detail on the cognitive, language, and genetic features of a girl bearing a small deletion (0.186 Mb) in the 2p16.3 region, arr[hg19] 2p16.3(50761778_50947729)×1, affecting exons 3-7 of NRXN1, a neurexin-coding gene previously related to schizophrenia, autism (ASD), attention deficit hyperactivity disorder (ADHD), mood disorder, and intellectual disability (ID). Results The proband exhibits many of the features commonly found in subjects with deletions of NRXN1, like ASD-like traits (including ritualized behaviors, disordered sensory aspects, social disturbances, and impaired theory of mind), ADHD symptoms, moderate ID, and impaired speech and language. Regarding this latter aspect, we observed altered speech production, underdeveloped phonological awareness, minimal syntax, serious shortage of active vocabulary, impaired receptive language, and inappropriate pragmatic behavior (including lack of metapragmatic awareness and communicative use of gaze). Microarray analyses point to the dysregulation of several genes important for language function in the girl compared to her healthy parents. Discussion Although some basic cognitive deficit - such as the impairment of executive function - might contribute to the language problems exhibited by the proband, molecular evidence suggests that they might result, to a great extent, from the abnormal expression of genes directly related to language.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), University of Seville, Seville, Spain,*Antonio Benítez-Burraco,
| | | | | |
Collapse
|
21
|
Pijuan I, Balducci E, Soto-Sánchez C, Fernández E, Barallobre MJ, Arbonés ML. Impaired macroglial development and axonal conductivity contributes to the neuropathology of DYRK1A-related intellectual disability syndrome. Sci Rep 2022; 12:19912. [PMID: 36402907 PMCID: PMC9675854 DOI: 10.1038/s41598-022-24284-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
Abstract
The correct development and activity of neurons and glial cells is necessary to establish proper brain connectivity. DYRK1A encodes a protein kinase involved in the neuropathology associated with Down syndrome that influences neurogenesis and the morphological differentiation of neurons. DYRK1A loss-of-function mutations in heterozygosity cause a well-recognizable syndrome of intellectual disability and autism spectrum disorder. In this study, we analysed the developmental trajectories of macroglial cells and the properties of the corpus callosum, the major white matter tract of the brain, in Dyrk1a+/- mice, a mouse model that recapitulates the main neurological features of DYRK1A syndrome. We found that Dyrk1a+/- haploinsufficient mutants present an increase in astrogliogenesis in the neocortex and a delay in the production of cortical oligodendrocyte progenitor cells and their progression along the oligodendroglial lineage. There were fewer myelinated axons in the corpus callosum of Dyrk1a+/- mice, axons that are thinner and with abnormal nodes of Ranvier. Moreover, action potential propagation along myelinated and unmyelinated callosal axons was slower in Dyrk1a+/- mutants. All these alterations are likely to affect neuronal circuit development and alter network synchronicity, influencing higher brain functions. These alterations highlight the relevance of glial cell abnormalities in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Isabel Pijuan
- grid.4711.30000 0001 2183 4846Instituto de Biología Molecular de Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain ,grid.452372.50000 0004 1791 1185Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028 Barcelona, Spain
| | - Elisa Balducci
- grid.4711.30000 0001 2183 4846Instituto de Biología Molecular de Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain ,grid.452372.50000 0004 1791 1185Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028 Barcelona, Spain
| | - Cristina Soto-Sánchez
- grid.26811.3c0000 0001 0586 4893Instituto de Bioingeniería, Miguel Hernández University, 03202 Elche, Spain ,grid.429738.30000 0004 1763 291XCentro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 03202 Elche, Spain
| | - Eduardo Fernández
- grid.26811.3c0000 0001 0586 4893Instituto de Bioingeniería, Miguel Hernández University, 03202 Elche, Spain ,grid.429738.30000 0004 1763 291XCentro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 03202 Elche, Spain
| | - María José Barallobre
- grid.4711.30000 0001 2183 4846Instituto de Biología Molecular de Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain ,grid.452372.50000 0004 1791 1185Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028 Barcelona, Spain
| | - Maria L. Arbonés
- grid.4711.30000 0001 2183 4846Instituto de Biología Molecular de Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain ,grid.452372.50000 0004 1791 1185Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028 Barcelona, Spain
| |
Collapse
|
22
|
Bartesaghi R. Brain circuit pathology in Down syndrome: from neurons to neural networks. Rev Neurosci 2022; 34:365-423. [PMID: 36170842 DOI: 10.1515/revneuro-2022-0067] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/28/2022] [Indexed: 11/15/2022]
Abstract
Down syndrome (DS), a genetic pathology caused by triplication of chromosome 21, is characterized by brain hypotrophy and impairment of cognition starting from infancy. While studies in mouse models of DS have elucidated the major neuroanatomical and neurochemical defects of DS, comparatively fewer investigations have focused on the electrophysiology of the DS brain. Electrical activity is at the basis of brain functioning. Therefore, knowledge of the way in which brain circuits operate in DS is fundamental to understand the causes of behavioral impairment and devise targeted interventions. This review summarizes the state of the art regarding the electrical properties of the DS brain, starting from individual neurons and culminating in signal processing in whole neuronal networks. The reported evidence derives from mouse models of DS and from brain tissues and neurons derived from individuals with DS. EEG data recorded in individuals with DS are also provided as a key tool to understand the impact of brain circuit alterations on global brain activity.
Collapse
Affiliation(s)
- Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
23
|
Zhu B, Parsons T, Stensen W, Mjøen Svendsen JS, Fugelli A, Hodge JJL. DYRK1a Inhibitor Mediated Rescue of Drosophila Models of Alzheimer’s Disease-Down Syndrome Phenotypes. Front Pharmacol 2022; 13:881385. [PMID: 35928283 PMCID: PMC9345315 DOI: 10.3389/fphar.2022.881385] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease which is becoming increasingly prevalent due to ageing populations resulting in huge social, economic, and health costs to the community. Despite the pathological processing of genes such as Amyloid Precursor Protein (APP) into Amyloid-β and Microtubule Associated Protein Tau (MAPT) gene, into hyperphosphorylated Tau tangles being known for decades, there remains no treatments to halt disease progression. One population with increased risk of AD are people with Down syndrome (DS), who have a 90% lifetime incidence of AD, due to trisomy of human chromosome 21 (HSA21) resulting in three copies of APP and other AD-associated genes, such as DYRK1A (Dual specificity tyrosine-phosphorylation-regulated kinase 1A) overexpression. This suggests that blocking DYRK1A might have therapeutic potential. However, it is still not clear to what extent DYRK1A overexpression by itself leads to AD-like phenotypes and how these compare to Tau and Amyloid-β mediated pathology. Likewise, it is still not known how effective a DYRK1A antagonist may be at preventing or improving any Tau, Amyloid-β and DYRK1a mediated phenotype. To address these outstanding questions, we characterised Drosophila models with targeted overexpression of human Tau, human Amyloid-β or the fly orthologue of DYRK1A, called minibrain (mnb). We found targeted overexpression of these AD-associated genes caused degeneration of photoreceptor neurons, shortened lifespan, as well as causing loss of locomotor performance, sleep, and memory. Treatment with the experimental DYRK1A inhibitor PST-001 decreased pathological phosphorylation of human Tau [at serine (S) 262]. PST-001 reduced degeneration caused by human Tau, Amyloid-β or mnb lengthening lifespan as well as improving locomotion, sleep and memory loss caused by expression of these AD and DS genes. This demonstrated PST-001 effectiveness as a potential new therapeutic targeting AD and DS pathology.
Collapse
Affiliation(s)
- Bangfu Zhu
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Science, University of Bristol, Bristol, United Kingdom
| | - Tom Parsons
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Science, University of Bristol, Bristol, United Kingdom
| | - Wenche Stensen
- Department of Chemistry, The Arctic University of Norway, Tromsø, Norway
- Pharmasum Therapeutics AS, ShareLab, Forskningsparken i Oslo, Oslo, Norway
| | - John S. Mjøen Svendsen
- Department of Chemistry, The Arctic University of Norway, Tromsø, Norway
- Pharmasum Therapeutics AS, ShareLab, Forskningsparken i Oslo, Oslo, Norway
| | - Anders Fugelli
- Pharmasum Therapeutics AS, ShareLab, Forskningsparken i Oslo, Oslo, Norway
| | - James J. L. Hodge
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Science, University of Bristol, Bristol, United Kingdom
- *Correspondence: James J. L. Hodge,
| |
Collapse
|
24
|
Hawley LE, Prochaska F, Stringer M, Goodlett CR, Roper RJ. Sexually dimorphic DYRK1A overexpression on postnatal day 15 in the Ts65Dn mouse model of Down syndrome: Effects of pharmacological targeting on behavioral phenotypes. Pharmacol Biochem Behav 2022; 217:173404. [DOI: 10.1016/j.pbb.2022.173404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
|
25
|
Fenster R, Ziegler A, Kentros C, Geltzeiler A, Green Snyder L, Brooks E, Chung WK. Characterization of phenotypic range in DYRK1A haploinsufficiency syndrome using standardized behavioral measures. Am J Med Genet A 2022; 188:1954-1963. [PMID: 35285131 DOI: 10.1002/ajmg.a.62721] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 11/08/2022]
Abstract
DYRK1A haploinsufficiency syndrome is a well-established neurodevelopmental disorder, but detailed information on the range of cognitive and behavioral issues associated with the condition is limited. We studied 24 participants with likely pathogenic or pathogenic variants in DYRK1A through the Simons Searchlight study and systematically assessed their medical history and development using standardized instruments: Vineland Adaptive Behavior Scale II (VABS-II) and Child Behavior Checklists/1.5-5 and 6-18 (CBCL/1.5-5, CBCL/6-18). All of the individuals in the cohort had neurological manifestations including intellectual disability or developmental delay, microcephaly, autism spectrum disorder, and/or seizures. The severity of the neurodevelopmental disorder was variable with a few children scoring in the moderately low range on the adaptive behavior composite score on the VABS-II. This study confirms the association of DYRK1A haploinsufficiency with neurodevelopmental disabilities, microcephaly, autism spectrum disorder, and epilepsy and quantifies the range of adaptive behaviors.
Collapse
Affiliation(s)
- Rebecca Fenster
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Alban Ziegler
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Catherine Kentros
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Alexa Geltzeiler
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | | | | | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA.,Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
26
|
Abstract
Aneuploidy, a genomic alternation characterized by deviations in the copy number of chromosomes, affects organisms from early development through to aging. Although it is a main cause of human pregnancy loss and a hallmark of cancer, how aneuploidy affects cellular function has been elusive. The last two decades have seen rapid advances in the understanding of the causes and consequences of aneuploidy at the molecular and cellular levels. These studies have uncovered effects of aneuploidy that can be beneficial or detrimental to cells and organisms in an environmental context-dependent and karyotype-dependent manner. Aneuploidy also imposes general stress on cells that stems from an imbalanced genome and, consequently, also an imbalanced proteome. These insights provide the fundamental framework for understanding the impact of aneuploidy in genome evolution, human pathogenesis and drug resistance.
Collapse
|
27
|
Atas-Ozcan H, Brault V, Duchon A, Herault Y. Dyrk1a from Gene Function in Development and Physiology to Dosage Correction across Life Span in Down Syndrome. Genes (Basel) 2021; 12:1833. [PMID: 34828439 PMCID: PMC8624927 DOI: 10.3390/genes12111833] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 01/12/2023] Open
Abstract
Down syndrome is the main cause of intellectual disabilities with a large set of comorbidities from developmental origins but also that appeared across life span. Investigation of the genetic overdosage found in Down syndrome, due to the trisomy of human chromosome 21, has pointed to one main driver gene, the Dual-specificity tyrosine-regulated kinase 1A (Dyrk1a). Dyrk1a is a murine homolog of the drosophila minibrain gene. It has been found to be involved in many biological processes during development and in adulthood. Further analysis showed its haploinsufficiency in mental retardation disease 7 and its involvement in Alzheimer's disease. DYRK1A plays a role in major developmental steps of brain development, controlling the proliferation of neural progenitors, the migration of neurons, their dendritogenesis and the function of the synapse. Several strategies targeting the overdosage of DYRK1A in DS with specific kinase inhibitors have showed promising evidence that DS cognitive conditions can be alleviated. Nevertheless, providing conditions for proper temporal treatment and to tackle the neurodevelopmental and the neurodegenerative aspects of DS across life span is still an open question.
Collapse
Affiliation(s)
- Helin Atas-Ozcan
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
| | - Véronique Brault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
| | - Arnaud Duchon
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
- Université de Strasbourg, CNRS, INSERM, Celphedia, Phenomin-Institut Clinique de la Souris (ICS), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| |
Collapse
|
28
|
Dard R, Moreau M, Parizot E, Ghieh F, Brehier L, Kassis N, Serazin V, Lamaziere A, Racine C, di Clemente N, Vialard F, Janel N. DYRK1A Overexpression in Mice Downregulates the Gonadotropic Axis and Disturbs Early Stages of Spermatogenesis. Genes (Basel) 2021; 12:1800. [PMID: 34828406 PMCID: PMC8621272 DOI: 10.3390/genes12111800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
Down syndrome (DS) is the most common chromosomal disorder. It is responsible for intellectual disability (ID) and several medical conditions. Although men with DS are thought to be infertile, some spontaneous paternities have been reported. The few studies of the mechanism of infertility in men with DS are now dated. Recent research in zebrafish has indicated that overexpression of DYRK1A (the protein primarily responsible for ID in DS) impairs gonadogenesis at the embryonic stage. To better ascertain DYRK1A's role in infertility in DS, we investigated the effect of DYRK1A overexpression in a transgenic mouse model. We found that overexpression of DYRK1A impairs fertility in transgenic male mice. Interestingly, the mechanism in mice differs slightly from that observed in zebrafish but, with disruption of the early stages of spermatogenesis, is similar to that seen in humans. Unexpectedly, we observed hypogonadotropic hypogonadism in the transgenic mice.
Collapse
Affiliation(s)
- Rodolphe Dard
- Laboratoire Processus Dégénératifs, Stress et Vieillissement, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251 CNRS, Université de Paris, 75205 Paris, France; (M.M.); (E.P.); (N.K.); (N.J.)
- Université Paris-Saclay, UVSQ, INRAE, ENVA, BREED, 78350 Jouy-en-Josas, France; (F.G.); (L.B.); (F.V.)
- Département de Génétique, CHI de Poissy St Germain en Laye, 78300 Poissy, France;
| | - Manon Moreau
- Laboratoire Processus Dégénératifs, Stress et Vieillissement, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251 CNRS, Université de Paris, 75205 Paris, France; (M.M.); (E.P.); (N.K.); (N.J.)
| | - Estelle Parizot
- Laboratoire Processus Dégénératifs, Stress et Vieillissement, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251 CNRS, Université de Paris, 75205 Paris, France; (M.M.); (E.P.); (N.K.); (N.J.)
- Université Paris-Saclay, UVSQ, INRAE, ENVA, BREED, 78350 Jouy-en-Josas, France; (F.G.); (L.B.); (F.V.)
| | - Farah Ghieh
- Université Paris-Saclay, UVSQ, INRAE, ENVA, BREED, 78350 Jouy-en-Josas, France; (F.G.); (L.B.); (F.V.)
| | - Leslie Brehier
- Université Paris-Saclay, UVSQ, INRAE, ENVA, BREED, 78350 Jouy-en-Josas, France; (F.G.); (L.B.); (F.V.)
| | - Nadim Kassis
- Laboratoire Processus Dégénératifs, Stress et Vieillissement, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251 CNRS, Université de Paris, 75205 Paris, France; (M.M.); (E.P.); (N.K.); (N.J.)
| | - Valérie Serazin
- Département de Génétique, CHI de Poissy St Germain en Laye, 78300 Poissy, France;
| | - Antonin Lamaziere
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université-INSERM, 75012 Paris, France; (A.L.); (C.R.); (N.d.C.)
| | - Chrystèle Racine
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université-INSERM, 75012 Paris, France; (A.L.); (C.R.); (N.d.C.)
| | - Nathalie di Clemente
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université-INSERM, 75012 Paris, France; (A.L.); (C.R.); (N.d.C.)
| | - François Vialard
- Université Paris-Saclay, UVSQ, INRAE, ENVA, BREED, 78350 Jouy-en-Josas, France; (F.G.); (L.B.); (F.V.)
- Département de Génétique, CHI de Poissy St Germain en Laye, 78300 Poissy, France;
| | - Nathalie Janel
- Laboratoire Processus Dégénératifs, Stress et Vieillissement, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251 CNRS, Université de Paris, 75205 Paris, France; (M.M.); (E.P.); (N.K.); (N.J.)
| |
Collapse
|
29
|
Brault V, Nguyen TL, Flores-Gutiérrez J, Iacono G, Birling MC, Lalanne V, Meziane H, Manousopoulou A, Pavlovic G, Lindner L, Selloum M, Sorg T, Yu E, Garbis SD, Hérault Y. Dyrk1a gene dosage in glutamatergic neurons has key effects in cognitive deficits observed in mouse models of MRD7 and Down syndrome. PLoS Genet 2021; 17:e1009777. [PMID: 34587162 PMCID: PMC8480849 DOI: 10.1371/journal.pgen.1009777] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/16/2021] [Indexed: 12/03/2022] Open
Abstract
Perturbation of the excitation/inhibition (E/I) balance leads to neurodevelopmental diseases including to autism spectrum disorders, intellectual disability, and epilepsy. Loss-of-function mutations in the DYRK1A gene, located on human chromosome 21 (Hsa21,) lead to an intellectual disability syndrome associated with microcephaly, epilepsy, and autistic troubles. Overexpression of DYRK1A, on the other hand, has been linked with learning and memory defects observed in people with Down syndrome (DS). Dyrk1a is expressed in both glutamatergic and GABAergic neurons, but its impact on each neuronal population has not yet been elucidated. Here we investigated the impact of Dyrk1a gene copy number variation in glutamatergic neurons using a conditional knockout allele of Dyrk1a crossed with the Tg(Camk2-Cre)4Gsc transgenic mouse. We explored this genetic modification in homozygotes, heterozygotes and combined with the Dp(16Lipi-Zbtb21)1Yey trisomic mouse model to unravel the consequence of Dyrk1a dosage from 0 to 3, to understand its role in normal physiology, and in MRD7 and DS. Overall, Dyrk1a dosage in postnatal glutamatergic neurons did not impact locomotor activity, working memory or epileptic susceptibility, but revealed that Dyrk1a is involved in long-term explicit memory. Molecular analyses pointed at a deregulation of transcriptional activity through immediate early genes and a role of DYRK1A at the glutamatergic post-synapse by deregulating and interacting with key post-synaptic proteins implicated in mechanism leading to long-term enhanced synaptic plasticity. Altogether, our work gives important information to understand the action of DYRK1A inhibitors and have a better therapeutic approach. The Dual Specificity Tyrosine Phosphorylation Regulated Kinase 1A, DYRK1A, drives cognitive alterations with increased dose in Down syndrome (DS) or with reduced dose in DYRK1A-related intellectual disability syndromes (ORPHA:268261; ORPHA:464311) also known as mental retardation, autosomal dominant disease 7 (MRD7; OMIM #614104). Here we report that specific and complete loss of Dyrk1a in glutamatergic neurons induced a range of specific cognitive phenotypes and alter the expression of genes involved in neurotransmission in the hippocampus. We further explored the consequences of Dyrk1a dosage in glutamatergic neurons on the cognitive phenotypes observed respectively in MRD7 and DS mouse models and we found specific roles in long-term explicit memory with no impact on motor activity, short-term working memory, and susceptibility to epilepsy. Then we demonstrated that DYRK1A is a component of the glutamatergic post-synapse and interacts with several component such as NR2B and PSD95. Altogether our work describes a new role of DYRK1A at the glutamatergic synapse that must be considered to understand the consequence of treatment targeting DYRK1A in disease.
Collapse
Affiliation(s)
- Véronique Brault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
| | - Thu Lan Nguyen
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
| | - Javier Flores-Gutiérrez
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
| | - Giovanni Iacono
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Marie-Christine Birling
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, Illkirch, France
| | - Valérie Lalanne
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, Illkirch, France
| | - Hamid Meziane
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, Illkirch, France
| | - Antigoni Manousopoulou
- Institute for Life Sciences, University of Southampton, School of Medicine, Southampton, United Kingdom
| | - Guillaume Pavlovic
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, Illkirch, France
| | - Loïc Lindner
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, Illkirch, France
| | - Mohammed Selloum
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
| | - Tania Sorg
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
| | - Eugene Yu
- The Children’s Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States of America
- Genetics, Genomics and Bioinformatics Program, State University of New York At Buffalo, Buffalo, New York, United States of America
| | - Spiros D. Garbis
- Institute for Life Sciences, University of Southampton, School of Medicine, Southampton, United Kingdom
| | - Yann Hérault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, Illkirch, France
- * E-mail:
| |
Collapse
|
30
|
Levy JA, LaFlamme CW, Tsaprailis G, Crynen G, Page DT. Dyrk1a Mutations Cause Undergrowth of Cortical Pyramidal Neurons via Dysregulated Growth Factor Signaling. Biol Psychiatry 2021; 90:295-306. [PMID: 33840455 PMCID: PMC8787822 DOI: 10.1016/j.biopsych.2021.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Mutations in DYRK1A are a cause of microcephaly, autism spectrum disorder, and intellectual disability; however, the underlying cellular and molecular mechanisms are not well understood. METHODS We generated a conditional mouse model using Emx1-cre, including conditional heterozygous and homozygous knockouts, to investigate the necessity of Dyrk1a in the cortex during development. We used unbiased, high-throughput phosphoproteomics to identify dysregulated signaling mechanisms in the developing Dyrk1a mutant cortex as well as classic genetic modifier approaches and pharmacological therapeutic intervention to rescue microcephaly and neuronal undergrowth caused by Dyrk1a mutations. RESULTS We found that cortical deletion of Dyrk1a in mice causes decreased brain mass and neuronal size, structural hypoconnectivity, and autism-relevant behaviors. Using phosphoproteomic screening, we identified growth-associated signaling cascades dysregulated upon Dyrk1a deletion, including TrkB-BDNF (tyrosine receptor kinase B-brain-derived neurotrophic factor), an important regulator of ERK/MAPK (extracellular signal-regulated kinase/mitogen-activated protein kinase) and mTOR (mammalian target of rapamycin) signaling. Genetic suppression of Pten or pharmacological treatment with IGF-1 (insulin-like growth factor-1), both of which impinge on these signaling cascades, rescued microcephaly and neuronal undergrowth in neonatal mutants. CONCLUSIONS Altogether, these findings identify a previously unknown mechanism through which Dyrk1a mutations disrupt growth factor signaling in the developing brain, thus influencing neuronal growth and connectivity. Our results place DYRK1A as a critical regulator of a biological pathway known to be dysregulated in humans with autism spectrum disorder and intellectual disability. In addition, these data position Dyrk1a within a larger group of autism spectrum disorder/intellectual disability risk genes that impinge on growth-associated signaling cascades to regulate brain size and connectivity, suggesting a point of convergence for multiple autism etiologies.
Collapse
Affiliation(s)
- Jenna A Levy
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida; Doctoral Program in Chemical and Biological Sciences, The Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, Jupiter, Florida
| | - Christy W LaFlamme
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida; The Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| | | | - Gogce Crynen
- Center for Computational Biology and Bioinformatics, The Scripps Research Institute, Jupiter, Florida
| | - Damon T Page
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida; Doctoral Program in Chemical and Biological Sciences, The Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, Jupiter, Florida.
| |
Collapse
|
31
|
Ellegood J, Petkova SP, Kinman A, Qiu LR, Adhikari A, Wade AA, Fernandes D, Lindenmaier Z, Creighton A, Nutter LMJ, Nord AS, Silverman JL, Lerch JP. Neuroanatomy and behavior in mice with a haploinsufficiency of AT-rich interactive domain 1B (ARID1B) throughout development. Mol Autism 2021; 12:25. [PMID: 33757588 PMCID: PMC7986278 DOI: 10.1186/s13229-021-00432-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND One of the causal mechanisms underlying neurodevelopmental disorders (NDDs) is chromatin modification and the genes that regulate chromatin. AT-rich interactive domain 1B (ARID1B), a chromatin modifier, has been linked to autism spectrum disorder and to affect rare and inherited genetic variation in a broad set of NDDs. METHODS A novel preclinical mouse model of Arid1b deficiency was created and validated to characterize and define neuroanatomical, behavioral and transcriptional phenotypes. Neuroanatomy was assessed ex vivo in adult animals and in vivo longitudinally from birth to adulthood. Behavioral testing was also performed throughout development and tested all aspects of motor, learning, sociability, repetitive behaviors, seizure susceptibility, and general milestones delays. RESULTS We validated decreased Arid1b mRNA and protein in Arid1b+/- mice, with signatures of increased axonal and synaptic gene expression, decreased transcriptional regulator and RNA processing expression in adult Arid1b+/- cerebellum. During neonatal development, Arid1b+/- mice exhibited robust impairments in ultrasonic vocalizations (USVs) and metrics of developmental growth. In addition, a striking sex effect was observed neuroanatomically throughout development. Behaviorally, as adults, Arid1b+/- mice showed low motor skills in open field exploration and normal three-chambered approach. Arid1b+/- mice had learning and memory deficits in novel object recognition but not in visual discrimination and reversal touchscreen tasks. Social interactions in the male-female social dyad with USVs revealed social deficits on some but not all parameters. No repetitive behaviors were observed. Brains of adult Arid1b+/- mice had a smaller cerebellum and a larger hippocampus and corpus callosum. The corpus callosum increase seen here contrasts previous reports which highlight losses in corpus callosum volume in mice and humans. LIMITATIONS The behavior and neuroimaging analyses were done on separate cohorts of mice, which did not allow a direct correlation between the imaging and behavioral findings, and the transcriptomic analysis was exploratory, with no validation of altered expression beyond Arid1b. CONCLUSIONS This study represents a full validation and investigation of a novel model of Arid1b+/- haploinsufficiency throughout development and highlights the importance of examining both sexes throughout development in NDDs.
Collapse
Affiliation(s)
- J Ellegood
- Mouse Imaging Centre (MICe), Hospital for Sick Children, 25 Orde Street, Toronto, ON, M5T 3H7, Canada.
| | - S P Petkova
- Department of Psychiatry and Behavioral Sciences, MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Neuroscience Graduate Group, University of California - Davis, Davis, CA, USA
| | - A Kinman
- Mouse Imaging Centre (MICe), Hospital for Sick Children, 25 Orde Street, Toronto, ON, M5T 3H7, Canada
| | - L R Qiu
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, UK
| | - A Adhikari
- Department of Psychiatry and Behavioral Sciences, MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - A A Wade
- Neuroscience Graduate Group, University of California - Davis, Davis, CA, USA
| | - D Fernandes
- Mouse Imaging Centre (MICe), Hospital for Sick Children, 25 Orde Street, Toronto, ON, M5T 3H7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Z Lindenmaier
- Mouse Imaging Centre (MICe), Hospital for Sick Children, 25 Orde Street, Toronto, ON, M5T 3H7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - A Creighton
- The Centre for Phenogenomics, Hospital for Sick Children, Toronto, ON, Canada
| | - L M J Nutter
- The Centre for Phenogenomics, Hospital for Sick Children, Toronto, ON, Canada
| | - A S Nord
- Department of Psychiatry and Behavioral Sciences, MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Neuroscience Graduate Group, University of California - Davis, Davis, CA, USA
- Department of Neurobiology, Physiology and Behavior, University of California - Davis, Davis, CA, USA
| | - J L Silverman
- Department of Psychiatry and Behavioral Sciences, MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - J P Lerch
- Mouse Imaging Centre (MICe), Hospital for Sick Children, 25 Orde Street, Toronto, ON, M5T 3H7, Canada
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, UK
| |
Collapse
|
32
|
Duchon A, Del Mar Muniz Moreno M, Martin Lorenzo S, Silva de Souza MP, Chevalier C, Nalesso V, Meziane H, Loureiro de Sousa P, Noblet V, Armspach JP, Brault V, Herault Y. Multi-influential genetic interactions alter behaviour and cognition through six main biological cascades in Down syndrome mouse models. Hum Mol Genet 2021; 30:771-788. [PMID: 33693642 PMCID: PMC8161522 DOI: 10.1093/hmg/ddab012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Down syndrome (DS) is the most common genetic form of intellectual disability caused by the presence of an additional copy of human chromosome 21 (Hsa21). To provide novel insights into genotype–phenotype correlations, we used standardized behavioural tests, magnetic resonance imaging and hippocampal gene expression to screen several DS mouse models for the mouse chromosome 16 region homologous to Hsa21. First, we unravelled several genetic interactions between different regions of chromosome 16 and how they contribute significantly to altering the outcome of the phenotypes in brain cognition, function and structure. Then, in-depth analysis of misregulated expressed genes involved in synaptic dysfunction highlighted six biological cascades centred around DYRK1A, GSK3β, NPY, SNARE, RHOA and NPAS4. Finally, we provide a novel vision of the existing altered gene–gene crosstalk and molecular mechanisms targeting specific hubs in DS models that should become central to better understanding of DS and improving the development of therapies.
Collapse
Affiliation(s)
- Arnaud Duchon
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), department of translational medicine and neurogenetics 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Maria Del Mar Muniz Moreno
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), department of translational medicine and neurogenetics 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Sandra Martin Lorenzo
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), department of translational medicine and neurogenetics 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Marcia Priscilla Silva de Souza
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), department of translational medicine and neurogenetics 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Claire Chevalier
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), department of translational medicine and neurogenetics 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Valérie Nalesso
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), department of translational medicine and neurogenetics 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Hamid Meziane
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), CELPHEDIA, PHENOMIN, 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | | | - Vincent Noblet
- Université de Strasbourg, CNRS UMR 7357, ICube, FMTS, 67000 Strasbourg, France
| | - Jean-Paul Armspach
- Université de Strasbourg, CNRS UMR 7357, ICube, FMTS, 67000 Strasbourg, France
| | - Veronique Brault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), department of translational medicine and neurogenetics 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), department of translational medicine and neurogenetics 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France.,Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), CELPHEDIA, PHENOMIN, 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| |
Collapse
|
33
|
Fructuoso M, Gu YC, Kassis N, de Lagran MM, Dierssen M, Janel N. Ethanol-Induced Changes in Brain of Transgenic Mice Overexpressing DYRK1A. Mol Neurobiol 2020; 57:3195-3205. [PMID: 32504418 DOI: 10.1007/s12035-020-01967-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/29/2020] [Indexed: 12/01/2022]
Abstract
Alcoholism is a chronic relapsing disorder defined by loss of control over excessive consumption of ethanol despite damaging effects on the liver and brain. We previously showed that the overexpression in mice of Dyrk1A (TgDyrk1A, for dual-specificity tyrosine (Y) phosphorylation-regulated kinase 1A) reduces the severity of alcohol mediated liver injury. Ethanol consumption has also been associated with increased brain glutamate concentration that led to therapies targeting glutamatergic receptors and normalization of glutamatergic neurotransmission. Interestingly, mice overexpressing Dyrk1A (TgDyrk1A mice) present a reduction of glutamatergic brain transmission, which we propose could be protective against alcohol intake. To answer this question, we investigated the ethanol preference in TgDyrk1A mice using a two-bottle choice paradigm. TgDyrk1A mice showed a non-significant decrease of voluntary ethanol intake and ethanol preference compared with wild-type mice. At the peripheral level, mice overexpressing Dyrk1A show lower ethanol plasma levels, indicating a faster ethanol metabolism. At the end of the protocol, lasting 21 days, brains were extracted for protein analysis. Ethanol reduced levels of the synaptic protein PSD-95 and increased the glutamate decarboxylase GAD65, specifically in the cortex of TgDyrk1A mice. Our results suggest that overexpression of DYRK1A may cause different ethanol-induced changes in the brain.
Collapse
Affiliation(s)
- Marta Fructuoso
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Pompeu Fabra University (Universitat Pompeu Fabra, UPF), 08003, Barcelona, Spain
- Institut du Cerveau et la Moelle épinière, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Paris, France
| | - Yu Chen Gu
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France
| | - Nadim Kassis
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France
| | - Maria Martinez de Lagran
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Pompeu Fabra University (Universitat Pompeu Fabra, UPF), 08003, Barcelona, Spain
| | - Mara Dierssen
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Pompeu Fabra University (Universitat Pompeu Fabra, UPF), 08003, Barcelona, Spain
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, Hospital Del Mar Medical Research Institute (IMIM), 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Department of Statistics and Operations Research, Universitat Politècnica de Catalunya BarcelonaTech, Barcelona, Spain
| | - Nathalie Janel
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France.
| |
Collapse
|
34
|
Goodlett CR, Stringer M, LaCombe J, Patel R, Wallace JM, Roper RJ. Evaluation of the therapeutic potential of Epigallocatechin-3-gallate (EGCG) via oral gavage in young adult Down syndrome mice. Sci Rep 2020; 10:10426. [PMID: 32591597 PMCID: PMC7319987 DOI: 10.1038/s41598-020-67133-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/29/2020] [Indexed: 01/09/2023] Open
Abstract
Epigallocatechin-3-gallate (EGCG) is a candidate therapeutic for Down syndrome (DS) phenotypes based on in vitro inhibition of DYRK1A, a triplicated gene product of Trisomy 21 (Ts21). Consumption of green tea extracts containing EGCG improved some cognitive and behavioral outcomes in DS mouse models and in humans with Ts21. In contrast, treatment with pure EGCG in DS mouse models did not improve neurobehavioral phenotypes. This study tested the hypothesis that 200 mg/kg/day of pure EGCG, given via oral gavage, would improve neurobehavioral and skeletal phenotypes in the Ts65Dn DS mouse model. Serum EGCG levels post-gavage were significantly higher in trisomic mice than in euploid mice. Daily EGCG gavage treatments over three weeks resulted in growth deficits in both euploid and trisomic mice. Compared to vehicle treatment, EGCG did not significantly improve behavioral performance of Ts65Dn mice in the multivariate concentric square field, balance beam, or Morris water maze tasks, but reduced swimming speed. Furthermore, EGCG resulted in reduced cortical bone structure and strength in Ts65Dn mice. These outcomes failed to support the therapeutic potential of EGCG, and the deleterious effects on growth and skeletal phenotypes underscore the need for caution in high-dose EGCG supplements as an intervention in DS.
Collapse
Affiliation(s)
- Charles R Goodlett
- IUPUI Department of Psychology, 402 North Blackford Street, LD 124, Indianapolis, IN, 46202-3275, USA
| | - Megan Stringer
- IUPUI Department of Psychology, 402 North Blackford Street, LD 124, Indianapolis, IN, 46202-3275, USA
| | - Jonathan LaCombe
- IUPUI Department of Biology, 723 West Michigan Street; SL 306, Indianapolis, IN, 46202-3275, USA
| | - Roshni Patel
- IUPUI Department of Biology, 723 West Michigan Street; SL 306, Indianapolis, IN, 46202-3275, USA
| | - Joseph M Wallace
- IUPUI Department of Biomedical Engineering, 723 West Michigan Street; SL 220B, Indianapolis, IN, 46202-3275, USA
| | - Randall J Roper
- IUPUI Department of Biology, 723 West Michigan Street; SL 306, Indianapolis, IN, 46202-3275, USA.
| |
Collapse
|
35
|
Ji W, Ferdman D, Copel J, Scheinost D, Shabanova V, Brueckner M, Khokha MK, Ment LR. De novo damaging variants associated with congenital heart diseases contribute to the connectome. Sci Rep 2020; 10:7046. [PMID: 32341405 PMCID: PMC7184603 DOI: 10.1038/s41598-020-63928-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
Congenital heart disease (CHD) survivors are at risk for neurodevelopmental disability (NDD), and recent studies identify genes associated with both disorders, suggesting that NDD in CHD survivors may be of genetic origin. Genes contributing to neurogenesis, dendritic development and synaptogenesis organize neural elements into networks known as the connectome. We hypothesized that NDD in CHD may be attributable to genes altering both neural connectivity and cardiac patterning. To assess the contribution of de novo variants (DNVs) in connectome genes, we annotated 229 published NDD genes for connectome status and analyzed data from 3,684 CHD subjects and 1,789 controls for connectome gene mutations. CHD cases had more protein truncating and deleterious missense DNVs among connectome genes compared to controls (OR = 5.08, 95%CI:2.81-9.20, Fisher's exact test P = 6.30E-11). When removing three known syndromic CHD genes, the findings remained significant (OR = 3.69, 95%CI:2.02-6.73, Fisher's exact test P = 1.06E-06). In CHD subjects, the top 12 NDD genes with damaging DNVs that met statistical significance after Bonferroni correction (PTPN11, CHD7, CHD4, KMT2A, NOTCH1, ADNP, SMAD2, KDM5B, NSD2, FOXP1, MED13L, DYRK1A; one-tailed binomial test P ≤ 4.08E-05) contributed to the connectome. These data suggest that NDD in CHD patients may be attributable to genes that alter both cardiac patterning and the connectome.
Collapse
Affiliation(s)
- Weizhen Ji
- Departments of Pediatrics, New Haven, CT, USA
| | | | - Joshua Copel
- Departments of Pediatrics, New Haven, CT, USA
- Obstetrics, Gynecology and Reproductive Sciences, New Haven, CT, USA
| | | | | | - Martina Brueckner
- Departments of Pediatrics, New Haven, CT, USA
- Genetics, New Haven, CT, USA
- Yale Combined Program in Biological and Biomedical Sciences, New Haven, CT, USA
| | - Mustafa K Khokha
- Departments of Pediatrics, New Haven, CT, USA
- Genetics, New Haven, CT, USA
| | - Laura R Ment
- Departments of Pediatrics, New Haven, CT, USA.
- Neurology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, USA.
| |
Collapse
|
36
|
Chang P, Bush D, Schorge S, Good M, Canonica T, Shing N, Noy S, Wiseman FK, Burgess N, Tybulewicz VLJ, Walker MC, Fisher EMC. Altered Hippocampal-Prefrontal Neural Dynamics in Mouse Models of Down Syndrome. Cell Rep 2020; 30:1152-1163.e4. [PMID: 31995755 PMCID: PMC6996020 DOI: 10.1016/j.celrep.2019.12.065] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/02/2019] [Accepted: 12/17/2019] [Indexed: 01/26/2023] Open
Abstract
Altered neural dynamics in the medial prefrontal cortex (mPFC) and hippocampus may contribute to cognitive impairments in the complex chromosomal disorder Down syndrome (DS). Here, we demonstrate non-overlapping behavioral differences associated with distinct abnormalities in hippocampal and mPFC electrophysiology during a canonical spatial working memory task in three partially trisomic mouse models of DS (Dp1Tyb, Dp10Yey, and Dp17Yey) that together cover all regions of homology with human chromosome 21 (Hsa21). Dp1Tyb mice show slower decision-making (unrelated to the gene dose of DYRK1A, which has been implicated in DS cognitive dysfunction) and altered theta dynamics (reduced frequency, increased hippocampal-mPFC coherence, and increased modulation of hippocampal high gamma); Dp10Yey mice show impaired alternation performance and reduced theta modulation of hippocampal low gamma; and Dp17Yey mice are not significantly different from the wild type. These results link specific hippocampal and mPFC circuit dysfunctions to cognitive deficits in DS models and, importantly, map them to discrete regions of Hsa21.
Collapse
Affiliation(s)
- Pishan Chang
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Daniel Bush
- UCL Institute of Cognitive Neuroscience, UCL Queen Square Institute of Neurology, University College London WC1N 3AZ, UK
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Mark Good
- School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Tara Canonica
- School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Nathanael Shing
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Suzanna Noy
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Frances K Wiseman
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Neil Burgess
- UCL Institute of Cognitive Neuroscience, UCL Queen Square Institute of Neurology, University College London WC1N 3AZ, UK
| | - Victor L J Tybulewicz
- Francis Crick Institute, London NW1 1AT, UK; Department of Medicine, Imperial College, London W12 0NN, UK
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
37
|
Martínez Cué C, Dierssen M. Plasticity as a therapeutic target for improving cognition and behavior in Down syndrome. PROGRESS IN BRAIN RESEARCH 2020; 251:269-302. [DOI: 10.1016/bs.pbr.2019.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Rueda N, Flórez J, Dierssen M, Martínez-Cué C. Translational validity and implications of pharmacotherapies in preclinical models of Down syndrome. PROGRESS IN BRAIN RESEARCH 2019; 251:245-268. [PMID: 32057309 DOI: 10.1016/bs.pbr.2019.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neurodevelopmental disorders are challenging to study in the laboratory, and despite a large investment, few novel treatments have been developed in the last decade. While animal models have been valuable in elucidating disease mechanisms and in providing insights into the function of specific genes, the predictive validity of preclinical models to test potential therapies has been questioned. In the last two decades, diverse new murine models of Down syndrome (DS) have been developed and numerous studies have demonstrated neurobiological alterations that could be responsible for the cognitive and behavioral phenotypes found in this syndrome. In many cases, similar alterations were found in murine models and in individuals with DS, although several phenotypes shown in animals have yet not been confirmed in the human condition. Some of the neurobiological alterations observed in mice have been proposed to account for their changes in cognition and behavior, and have received special attention because of being putative therapeutic targets. Those include increased oxidative stress, altered neurogenesis, overexpression of the Dyrk1A gene, GABA-mediated overinhibition and Alzheimer's disease-related neurodegeneration. Subsequently, different laboratories have tested the efficacy of pharmacotherapies targeting these alterations. Unfortunately, animal models are limited in their ability to mimic the extremely complex process of human neurodevelopment and neuropathology. Therefore, the safety and efficacy identified in animal studies are not always translated to humans, and most of the drugs tested have not demonstrated any positive effect or very limited efficacy in clinical trials. Despite their limitations, though, animal trials give us extremely valuable information for developing and testing drugs for human use that cannot be obtained from molecular or cellular experiments alone. This chapter reviews some of these therapeutic approaches and discusses some reasons that could account for the discrepancy between the findings in mouse models of DS and in humans, including: (i) the incomplete resemble of the genetic alterations of available mouse models of DS and human trisomy 21, (ii) the lack of evidence that some of the phenotypic alterations found in mice (e.g., GABA-mediated overinhibition, and alterations in adult neurogenesis) are also present in DS individuals, and (iii) the inaccuracy and/or inadequacy of the methods used in clinical trials to detect changes in the cognitive and behavioral functions of people with DS. Despite the shortcomings of animal models, animal experimentation remains an invaluable tool in developing drugs. Thus, we will also discuss how to increase predictive validity of mouse models.
Collapse
Affiliation(s)
- Noemí Rueda
- Department of Physiology and Pharmacology, University of Cantabria, Santander, Spain
| | - Jesús Flórez
- Department of Physiology and Pharmacology, University of Cantabria, Santander, Spain
| | - Mara Dierssen
- Cellular and Systems Neurobiology, Systems Biology Program, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carmen Martínez-Cué
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain.
| |
Collapse
|
39
|
Muñiz Moreno MDM, Brault V, Birling MC, Pavlovic G, Herault Y. Modeling Down syndrome in animals from the early stage to the 4.0 models and next. PROGRESS IN BRAIN RESEARCH 2019; 251:91-143. [PMID: 32057313 DOI: 10.1016/bs.pbr.2019.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The genotype-phenotype relationship and the physiopathology of Down Syndrome (DS) have been explored in the last 20 years with more and more relevant mouse models. From the early age of transgenesis to the new CRISPR/CAS9-derived chromosomal engineering and the transchromosomic technologies, mouse models have been key to identify homologous genes or entire regions homologous to the human chromosome 21 that are necessary or sufficient to induce DS features, to investigate the complexity of the genetic interactions that are involved in DS and to explore therapeutic strategies. In this review we report the new developments made, how genomic data and new genetic tools have deeply changed our way of making models, extended our panel of animal models, and increased our understanding of the neurobiology of the disease. But even if we have made an incredible progress which promises to make DS a curable condition, we are facing new research challenges to nurture our knowledge of DS pathophysiology as a neurodevelopmental disorder with many comorbidities during ageing.
Collapse
Affiliation(s)
- Maria Del Mar Muñiz Moreno
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Véronique Brault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Marie-Christine Birling
- Université de Strasbourg, CNRS, INSERM, PHENOMIN Institut Clinique de la Souris, Illkirch, France
| | - Guillaume Pavlovic
- Université de Strasbourg, CNRS, INSERM, PHENOMIN Institut Clinique de la Souris, Illkirch, France
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Université de Strasbourg, CNRS, INSERM, PHENOMIN Institut Clinique de la Souris, Illkirch, France.
| |
Collapse
|
40
|
Serra D, Almeida LM, Dinis TCP. Polyphenols in the management of brain disorders: Modulation of the microbiota-gut-brain axis. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 91:1-27. [PMID: 32035595 DOI: 10.1016/bs.afnr.2019.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The modulation of the microbiota-gut-brain axis with a view to preventing and treating brain disorders became recently a hot topic for the scientific community. Dietary polyphenols are multifaceted compounds that have demonstrated to be highly advantageous to counteract inflammation, oxidative stress, and neurodegeneration, among other pathological conditions, being useful in the prevention and treatment of several chronic disorders. The potential of these compounds to prevent and treat brain disorders has not been only related to their capacity to reach the brain, depending on their chemical structure, and interact directly with brain cells, but also to their ability to modulate the communication between the brain and the gut, interfering with multiple branches of this axis. Preclinical studies have demonstrated the potential of these food bioactive compounds in brain diseases, namely, neurodevelopmental, such as Down's syndrome and Autism spectrum disorder, neurodegenerative, such as Parkinson's disease and Alzheimer's disease, and psychiatric disorders, such as depression and anxiety. Until now, dietary polyphenols have been recognized as promising nutraceuticals to combat brain disorders. However, the impact of these compounds on the gut-brain interconnection remains poorly elucidated. Also, clinical assays are crucial to further support the beneficial effects of these compounds as demonstrated in preclinical research.
Collapse
Affiliation(s)
- Diana Serra
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| | - Leonor M Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Teresa C P Dinis
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
41
|
Frohlich J, Reiter LT, Saravanapandian V, DiStefano C, Huberty S, Hyde C, Chamberlain S, Bearden CE, Golshani P, Irimia A, Olsen RW, Hipp JF, Jeste SS. Mechanisms underlying the EEG biomarker in Dup15q syndrome. Mol Autism 2019; 10:29. [PMID: 31312421 PMCID: PMC6609401 DOI: 10.1186/s13229-019-0280-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022] Open
Abstract
Background Duplications of 15q11.2-q13.1 (Dup15q syndrome), including the paternally imprinted gene UBE3A and three nonimprinted gamma-aminobutyric acid type-A (GABAA) receptor genes, are highly penetrant for neurodevelopmental disorders such as autism spectrum disorder (ASD). To guide targeted treatments of Dup15q syndrome and other forms of ASD, biomarkers are needed that reflect molecular mechanisms of pathology. We recently described a beta EEG phenotype of Dup15q syndrome, but it remains unknown which specific genes drive this phenotype. Methods To test the hypothesis that UBE3A overexpression is not necessary for the beta EEG phenotype, we compared EEG from a reference cohort of children with Dup15q syndrome (n = 27) to (1) the pharmacological effects of the GABAA modulator midazolam (n = 12) on EEG from healthy adults, (2) EEG from typically developing (TD) children (n = 14), and (3) EEG from two children with duplications of paternal 15q (i.e., the UBE3A-silenced allele). Results Peak beta power was significantly increased in the reference cohort relative to TD controls. Midazolam administration recapitulated the beta EEG phenotype in healthy adults with a similar peak frequency in central channels (f = 23.0 Hz) as Dup15q syndrome (f = 23.1 Hz). Both paternal Dup15q syndrome cases displayed beta power comparable to the reference cohort. Conclusions Our results suggest a critical role for GABAergic transmission in the Dup15q syndrome beta EEG phenotype, which cannot be explained by UBE3A dysfunction alone. If this mechanism is confirmed, the phenotype may be used as a marker of GABAergic pathology in clinical trials for Dup15q syndrome.
Collapse
Affiliation(s)
- Joel Frohlich
- Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
- Center for Autism Research and Treatment, University of California Los Angeles, Semel Institute for Neuroscience, Los Angeles, CA 90024 USA
- Department of Psychology, University of California Los Angeles, 3423 Franz Hall, Los Angeles, CA 90095 USA
| | - Lawrence T. Reiter
- Departments of Neurology, Pediatrics and Anatomy & Neurobiology, The University of Tennessee Health Science Center, 855 Monroe Ave., Link, Memphis, TN 415 USA
| | - Vidya Saravanapandian
- Center for Autism Research and Treatment, University of California Los Angeles, Semel Institute for Neuroscience, Los Angeles, CA 90024 USA
| | - Charlotte DiStefano
- Center for Autism Research and Treatment, University of California Los Angeles, Semel Institute for Neuroscience, Los Angeles, CA 90024 USA
| | - Scott Huberty
- Center for Autism Research and Treatment, University of California Los Angeles, Semel Institute for Neuroscience, Los Angeles, CA 90024 USA
- McGill University, MUHC Research Institute, 5252, boul. de Maisonneuve Ouest, 3E.19, Montreal, QC H4A 3S5 Canada
| | - Carly Hyde
- Center for Autism Research and Treatment, University of California Los Angeles, Semel Institute for Neuroscience, Los Angeles, CA 90024 USA
| | - Stormy Chamberlain
- Genetics and Genome Sciences, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6403 USA
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences and Department of Psychology, University of California Los Angeles, Suite A7-460, 760 Westwood Plaza, Los Angeles, CA 90095 USA
| | - Peyman Golshani
- Department of Neurology and Psychiatry, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA 90095 USA
| | - Andrei Irimia
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave., Suite 228C, California, Los Angeles 90089 USA
| | - Richard W. Olsen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, California, Los Angeles 90095 USA
| | - Joerg F. Hipp
- Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Shafali S. Jeste
- Center for Autism Research and Treatment, University of California Los Angeles, Semel Institute for Neuroscience, Los Angeles, CA 90024 USA
| |
Collapse
|
42
|
Arranz J, Balducci E, Arató K, Sánchez-Elexpuru G, Najas S, Parras A, Rebollo E, Pijuan I, Erb I, Verde G, Sahun I, Barallobre MJ, Lucas JJ, Sánchez MP, de la Luna S, Arbonés ML. Impaired development of neocortical circuits contributes to the neurological alterations in DYRK1A haploinsufficiency syndrome. Neurobiol Dis 2019; 127:210-222. [PMID: 30831192 PMCID: PMC6753933 DOI: 10.1016/j.nbd.2019.02.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/14/2019] [Accepted: 02/27/2019] [Indexed: 12/18/2022] Open
Abstract
Autism spectrum disorders are early onset neurodevelopmental disorders characterized by deficits in social communication and restricted repetitive behaviors, yet they are quite heterogeneous in terms of their genetic basis and phenotypic manifestations. Recently, de novo pathogenic mutations in DYRK1A, a chromosome 21 gene associated to neuropathological traits of Down syndrome, have been identified in patients presenting a recognizable syndrome included in the autism spectrum. These mutations produce DYRK1A kinases with partial or complete absence of the catalytic domain, or they represent missense mutations located within this domain. Here, we undertook an extensive biochemical characterization of the DYRK1A missense mutations reported to date and show that most of them, but not all, result in enzymatically dead DYRK1A proteins. We also show that haploinsufficient Dyrk1a+/- mutant mice mirror the neurological traits associated with the human pathology, such as defective social interactions, stereotypic behaviors and epileptic activity. These mutant mice present altered proportions of excitatory and inhibitory neocortical neurons and synapses. Moreover, we provide evidence that alterations in the production of cortical excitatory neurons are contributing to these defects. Indeed, by the end of the neurogenic period, the expression of developmental regulated genes involved in neuron differentiation and/or activity is altered. Therefore, our data indicate that altered neocortical neurogenesis could critically affect the formation of cortical circuits, thereby contributing to the neuropathological changes in DYRK1A haploinsufficiency syndrome.
Collapse
Affiliation(s)
- Juan Arranz
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Elisa Balducci
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Krisztina Arató
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), 08003 Barcelona, Spain
| | - Gentzane Sánchez-Elexpuru
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; Department of Neuroscience, Laboratory of Neurology, IIS-Jiménez Díaz Foundation, 28040 Madrid, Spain
| | - Sònia Najas
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain
| | - Alberto Parras
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC/UAM, 28049 Madrid, Spain
| | - Elena Rebollo
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain
| | - Isabel Pijuan
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Ionas Erb
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), 08003 Barcelona, Spain
| | - Gaetano Verde
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), 08003 Barcelona, Spain
| | - Ignasi Sahun
- PCB-PRBB Animal Facility Alliance, 08020 Barcelona, Spain
| | - Maria J Barallobre
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - José J Lucas
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC/UAM, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marina P Sánchez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; Department of Neuroscience, Laboratory of Neurology, IIS-Jiménez Díaz Foundation, 28040 Madrid, Spain
| | - Susana de la Luna
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Maria L Arbonés
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.
| |
Collapse
|
43
|
Enhanced Dendritic Inhibition and Impaired NMDAR Activation in a Mouse Model of Down Syndrome. J Neurosci 2019; 39:5210-5221. [PMID: 31000585 DOI: 10.1523/jneurosci.2723-18.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 11/21/2022] Open
Abstract
Down syndrome (DS) or Trisomy 21 is a developmental disorder leading to cognitive deficits, including disruption of hippocampus-dependent learning and memory. Enhanced inhibition has been suggested to underlie these deficits in DS based on studies using the Ts65Dn mouse model. Here we show that, in this mouse model, GABAergic synaptic inhibition onto dendrites of hippocampal pyramidal cells is increased. By contrast, somatic inhibition was not altered. In addition, synaptic NMDAR currents were reduced. Furthermore, dendritic inhibition was mediated via nonlinear α5-subunit containing GABAARs that closely matched the kinetics and voltage dependence of NMDARs. Thus, enhanced dendritic inhibition and reduced NMDA currents strongly decreased burst-induced NMDAR-mediated depolarization and impaired LTP induction. Finally, selective reduction of α5-GABAAR-mediated inhibition rescued both burst-induced synaptic NMDAR activation and synaptic plasticity. These results demonstrate that reduced synaptic NMDAR activation and synaptic plasticity in the Ts65Dn mouse model of DS can be corrected by specifically targeting nonlinear dendritic inhibition.SIGNIFICANCE STATEMENT Mild to moderate intellectual disability is a prominent feature of Down syndrome. Previous studies in mouse models suggest that increased synaptic inhibition is a main factor for decreased synaptic plasticity, the cellular phenomenon underlying memory. The present study shows that increased inhibition specifically onto dendrites together with reduced NMDAR content in excitatory synapses may be the cause. Reducing a slow nonlinear component that is specific to dendritic inhibitory inputs and mediated by α5 subunit-containing GABAA receptors rescues both NMDAR activation and synaptic plasticity.
Collapse
|
44
|
Souchet B, Duchon A, Gu Y, Dairou J, Chevalier C, Daubigney F, Nalesso V, Créau N, Yu Y, Janel N, Herault Y, Delabar JM. Prenatal treatment with EGCG enriched green tea extract rescues GAD67 related developmental and cognitive defects in Down syndrome mouse models. Sci Rep 2019; 9:3914. [PMID: 30850713 PMCID: PMC6408590 DOI: 10.1038/s41598-019-40328-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 01/31/2019] [Indexed: 12/21/2022] Open
Abstract
Down syndrome is a common genetic disorder caused by trisomy of chromosome 21. Brain development in affected foetuses might be improved through prenatal treatment. One potential target is DYRK1A, a multifunctional kinase encoded by chromosome 21 that, when overexpressed, alters neuronal excitation-inhibition balance and increases GAD67 interneuron density. We used a green tea extract enriched in EGCG to inhibit DYRK1A function only during gestation of transgenic mice overexpressing Dyrk1a (mBACtgDyrk1a). Adult mice treated prenatally displayed reduced levels of inhibitory markers, restored VGAT1/VGLUT1 balance, and rescued density of GAD67 interneurons. Similar results for gabaergic and glutamatergic markers and interneuron density were obtained in Dp(16)1Yey mice, trisomic for 140 chromosome 21 orthologs; thus, prenatal EGCG exhibits efficacy in a more complex DS model. Finally, cognitive and behaviour testing showed that adult Dp(16)1Yey mice treated prenatally had improved novel object recognition memory but do not show improvement with Y maze paradigm. These findings provide empirical support for a prenatal intervention that targets specific neural circuitries.
Collapse
Affiliation(s)
- Benoit Souchet
- Université Paris-Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, National Centre for Scientific Research (CNRS), UMR 8251, Paris, France
| | - Arnaud Duchon
- Institut Génétique Biologie Moléculaire Cellulaire, CNRS, French National Institute of Health and Medical Research (INSERM), UMR 7104, UMR 964, Illkirch, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- INSERM, U964, Illkirch, France
- Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Yuchen Gu
- Université Paris-Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, National Centre for Scientific Research (CNRS), UMR 8251, Paris, France
| | - Julien Dairou
- CNRS, UMR 8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes-Sorbonne Paris Cité, 75270, Paris, France
| | - Claire Chevalier
- Institut Génétique Biologie Moléculaire Cellulaire, CNRS, French National Institute of Health and Medical Research (INSERM), UMR 7104, UMR 964, Illkirch, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- INSERM, U964, Illkirch, France
- Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Fabrice Daubigney
- Université Paris-Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, National Centre for Scientific Research (CNRS), UMR 8251, Paris, France
| | - Valérie Nalesso
- Institut Génétique Biologie Moléculaire Cellulaire, CNRS, French National Institute of Health and Medical Research (INSERM), UMR 7104, UMR 964, Illkirch, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- INSERM, U964, Illkirch, France
- Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Nicole Créau
- Université Paris-Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, National Centre for Scientific Research (CNRS), UMR 8251, Paris, France
| | - Yuejin Yu
- Children's Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Nathalie Janel
- Université Paris-Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, National Centre for Scientific Research (CNRS), UMR 8251, Paris, France
- Children's Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Yann Herault
- Institut Génétique Biologie Moléculaire Cellulaire, CNRS, French National Institute of Health and Medical Research (INSERM), UMR 7104, UMR 964, Illkirch, France.
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France.
- CNRS, UMR 7104, Illkirch, France.
- INSERM, U964, Illkirch, France.
- Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France.
| | - Jean Maurice Delabar
- Université Paris-Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, National Centre for Scientific Research (CNRS), UMR 8251, Paris, France.
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et la Moelle épinière, ICM, Paris, France.
- Brain & Spine Institute (ICM) CNRS UMR7225, Inserm UMRS 975, Paris, France.
| |
Collapse
|
45
|
Down syndrome: Neurobiological alterations and therapeutic targets. Neurosci Biobehav Rev 2019; 98:234-255. [DOI: 10.1016/j.neubiorev.2019.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/02/2019] [Accepted: 01/02/2019] [Indexed: 12/12/2022]
|
46
|
Neuronal overexpression of Alzheimer's disease and Down's syndrome associated DYRK1A/minibrain gene alters motor decline, neurodegeneration and synaptic plasticity in Drosophila. Neurobiol Dis 2019; 125:107-114. [PMID: 30703437 PMCID: PMC6419573 DOI: 10.1016/j.nbd.2019.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/12/2018] [Accepted: 01/25/2019] [Indexed: 11/24/2022] Open
Abstract
Down syndrome (DS) is characterised by abnormal cognitive and motor development, and later in life by progressive Alzheimer's disease (AD)-like dementia, neuropathology, declining motor function and shorter life expectancy. It is caused by trisomy of chromosome 21 (Hsa21), but how individual Hsa21 genes contribute to various aspects of the disorder is incompletely understood. Previous work has demonstrated a role for triplication of the Hsa21 gene DYRK1A in cognitive and motor deficits, as well as in altered neurogenesis and neurofibrillary degeneration in the DS brain, but its contribution to other DS phenotypes is unclear. Here we demonstrate that overexpression of minibrain (mnb), the Drosophila ortholog of DYRK1A, in the Drosophila nervous system accelerated age-dependent decline in motor performance and shortened lifespan. Overexpression of mnb in the eye was neurotoxic and overexpression in ellipsoid body neurons in the brain caused age-dependent neurodegeneration. At the larval neuromuscular junction, an established model for mammalian central glutamatergic synapses, neuronal mnb overexpression enhanced spontaneous vesicular transmitter release. It also slowed recovery from short-term depression of evoked transmitter release induced by high-frequency nerve stimulation and increased the number of boutons in one of the two glutamatergic motor neurons innervating the muscle. These results provide further insight into the roles of DYRK1A triplication in abnormal aging and synaptic dysfunction in DS. Overexpression of minibrain (DYRK1A) causes Down's relevant phenotypes including: Age-dependent degeneration of brain neurons Accelerated age-dependent decline in motor performance and shorted lifespan Modified presynaptic structure and enhanced spontaneous transmitter release Slowed recovery from short-term depression of synaptic transmission
Collapse
|
47
|
Latour A, Gu Y, Kassis N, Daubigney F, Colin C, Gausserès B, Middendorp S, Paul JL, Hindié V, Rain JC, Delabar JM, Yu E, Arbones M, Mallat M, Janel N. LPS-Induced Inflammation Abolishes the Effect of DYRK1A on IkB Stability in the Brain of Mice. Mol Neurobiol 2019; 56:963-975. [PMID: 29850989 DOI: 10.1007/s12035-018-1113-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/09/2018] [Indexed: 12/21/2022]
Abstract
Down syndrome is characterized by premature aging and dementia with neurological features that mimic those found in Alzheimer's disease. This pathology in Down syndrome could be related to inflammation, which plays a role in other neurodegenerative diseases. We previously found a link between the NFkB pathway, long considered a prototypical proinflammatory signaling pathway, and the dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A). DYRK1A is associated with early onset of Alzheimer's disease in Down syndrome patients. Here, we sought to determine the role of DYRK1A on regulation of the NFkB pathway in the mouse brain. We found that over-expression of Dyrk1A (on a C57BL/6J background) stabilizes IκBα protein levels by inhibition of calpain activity and increases cytoplasmic p65 sequestration in the mouse brain. In contrast, Dyrk1A-deficient mice (on a CD1 background) have decreased IκBα protein levels with an increased calpain activity and decreased cytoplasmic p65 sequestration in the brain. Taken together, our results demonstrate a role of DYRK1A in regulation of the NFkB pathway. However, decreased IκBα and DYRK1A protein levels associated with an increased calpain activity were found in the brains of mice over-expressing Dyrk1A after lipopolysaccharide treatment. Although inflammation induced by lipopolysaccharide treatment has a positive effect on calpastatin and a negative effect on DYRK1A protein level, a positive effect on microglial activation is maintained in the brains of mice over-expressing Dyrk1A.
Collapse
Affiliation(s)
- Alizée Latour
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France
| | - Yuchen Gu
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France
| | - Nadim Kassis
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France
| | - Fabrice Daubigney
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France
| | - Catherine Colin
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Blandine Gausserès
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France
| | - Sandrine Middendorp
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France
| | - Jean-Louis Paul
- AP-HP, Hôpital Européen Georges Pompidou, Service de Biochimie, 75015, Paris, France
| | | | | | - Jean-Maurice Delabar
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France
| | - Eugene Yu
- Children's Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Mariona Arbones
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
- Institut de Biologia Molecular de Barcelona (IBMB), 08028, Barcelona, Spain
| | - Michel Mallat
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Nathalie Janel
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France.
- Laboratoire BFA, Université Paris Diderot - Paris 7, Case 7104, 3 rue Marie-Andrée Lagroua Weill Hallé, 75205, Paris Cedex 13, France.
| |
Collapse
|
48
|
Arbones ML, Thomazeau A, Nakano-Kobayashi A, Hagiwara M, Delabar JM. DYRK1A and cognition: A lifelong relationship. Pharmacol Ther 2019; 194:199-221. [PMID: 30268771 DOI: 10.1016/j.pharmthera.2018.09.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The dosage of the serine threonine kinase DYRK1A is critical in the central nervous system (CNS) during development and aging. This review analyzes the functions of this kinase by considering its interacting partners and pathways. The role of DYRK1A in controlling the differentiation of prenatal newly formed neurons is presented separately from its role at the pre- and post-synaptic levels in the adult CNS; its effects on synaptic plasticity are also discussed. Because this kinase is positioned at the crossroads of many important processes, genetic dosage errors in this protein produce devastating effects arising from DYRK1A deficiency, such as in MRD7, an autism spectrum disorder, or from DYRK1A excess, such as in Down syndrome. Effects of these errors have been shown in various animal models including Drosophila, zebrafish, and mice. Dysregulation of DYRK1A levels also occurs in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Finally, this review describes inhibitors that have been assessed in vivo. Accurate targeting of DYRK1A levels in the brain, with either inhibitors or activators, is a future research challenge.
Collapse
Affiliation(s)
- Maria L Arbones
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028 Barcelona, Spain.
| | - Aurore Thomazeau
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - Akiko Nakano-Kobayashi
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Jean M Delabar
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| |
Collapse
|
49
|
Navarro-Romero A, Vázquez-Oliver A, Gomis-González M, Garzón-Montesinos C, Falcón-Moya R, Pastor A, Martín-García E, Pizarro N, Busquets-Garcia A, Revest JM, Piazza PV, Bosch F, Dierssen M, de la Torre R, Rodríguez-Moreno A, Maldonado R, Ozaita A. Cannabinoid type-1 receptor blockade restores neurological phenotypes in two models for Down syndrome. Neurobiol Dis 2019; 125:92-106. [PMID: 30685352 DOI: 10.1016/j.nbd.2019.01.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/24/2018] [Accepted: 01/23/2019] [Indexed: 12/31/2022] Open
Abstract
Intellectual disability is the most limiting hallmark of Down syndrome, for which there is no gold-standard clinical treatment yet. The endocannabinoid system is a widespread neuromodulatory system involved in multiple functions including learning and memory processes. Alterations of this system contribute to the pathogenesis of several neurological and neurodevelopmental disorders. However, the involvement of the endocannabinoid system in the pathogenesis of Down syndrome has not been explored before. We used the best-characterized preclinical model of Down syndrome, the segmentally trisomic Ts65Dn model. In male Ts65Dn mice, cannabinoid type-1 receptor (CB1R) expression was enhanced and its function increased in hippocampal excitatory terminals. Knockdown of CB1R in the hippocampus of male Ts65Dn mice restored hippocampal-dependent memory. Concomitant with this result, pharmacological inhibition of CB1R restored memory deficits, hippocampal synaptic plasticity and adult neurogenesis in the subgranular zone of the dentate gyrus. Notably, the blockade of CB1R also normalized hippocampal-dependent memory in female Ts65Dn mice. To further investigate the mechanisms involved, we used a second transgenic mouse model overexpressing a single gene candidate for Down syndrome cognitive phenotypes, the dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A). CB1R pharmacological blockade similarly improved cognitive performance, synaptic plasticity and neurogenesis in transgenic male Dyrk1A mice. Our results identify CB1R as a novel druggable target potentially relevant for the improvement of cognitive deficits associated with Down syndrome.
Collapse
Affiliation(s)
- Alba Navarro-Romero
- Laboratory of Neuropharmacology-NeuroPhar, Department of Experimental and Health Sciences, University Pompeu Fabra, 08003 Barcelona, Spain
| | - Anna Vázquez-Oliver
- Laboratory of Neuropharmacology-NeuroPhar, Department of Experimental and Health Sciences, University Pompeu Fabra, 08003 Barcelona, Spain
| | - Maria Gomis-González
- Laboratory of Neuropharmacology-NeuroPhar, Department of Experimental and Health Sciences, University Pompeu Fabra, 08003 Barcelona, Spain
| | - Carlos Garzón-Montesinos
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Ctra Utrera km. 1, 41013 Seville, Spain
| | - Rafael Falcón-Moya
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Ctra Utrera km. 1, 41013 Seville, Spain
| | - Antoni Pastor
- Integrative Pharmacology and Systems Neuroscience Research Group, Hospital del Mar Medical Research Institute, 08003 Barcelona, Spain; CIBER Pathophysiology of Obesity and Nutrition, Institute of Health Carlos III, 28029 Madrid, Spain
| | - Elena Martín-García
- Laboratory of Neuropharmacology-NeuroPhar, Department of Experimental and Health Sciences, University Pompeu Fabra, 08003 Barcelona, Spain; Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Spain
| | - Nieves Pizarro
- Integrative Pharmacology and Systems Neuroscience Research Group, Hospital del Mar Medical Research Institute, 08003 Barcelona, Spain
| | - Arnau Busquets-Garcia
- Laboratory of Neuropharmacology-NeuroPhar, Department of Experimental and Health Sciences, University Pompeu Fabra, 08003 Barcelona, Spain
| | - Jean-Michel Revest
- INSERM U1215, Neurocentre Magendie, Physiopathology and Therapeutic Approaches of Stress-Related Diseases, 33077 Bordeaux, France
| | - Pier-Vincenzo Piazza
- INSERM U1215, Neurocentre Magendie, Physiopathology and Therapeutic Approaches of Stress-Related Diseases, 33077 Bordeaux, France
| | - Fátima Bosch
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain; Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; CIBER Diabetes and Associated Metabolic Disorders (CIBERDEM), 08017 Madrid, Spain
| | - Mara Dierssen
- Cellular & Systems Neurobiology, Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; CIBER Rare Disorders (CIBERER), Spain; Hospital del Mar Medical Research Institute, 08003 Barcelona, Spain
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience Research Group, Hospital del Mar Medical Research Institute, 08003 Barcelona, Spain; CIBER Pathophysiology of Obesity and Nutrition, Institute of Health Carlos III, 28029 Madrid, Spain
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Ctra Utrera km. 1, 41013 Seville, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology-NeuroPhar, Department of Experimental and Health Sciences, University Pompeu Fabra, 08003 Barcelona, Spain
| | - Andrés Ozaita
- Laboratory of Neuropharmacology-NeuroPhar, Department of Experimental and Health Sciences, University Pompeu Fabra, 08003 Barcelona, Spain.
| |
Collapse
|
50
|
Abstract
Down syndrome (DS; Trisomy 21) is the most common chromosomal disorder in humans. It has numerous associated neurologic phenotypes including intellectual disability, sleep apnea, seizures, behavioral problems, and dementia. With improved access to medical care, people with DS are living longer than ever before. As more individuals with DS reach old age, the necessity for further life span research is essential and cannot be overstated. There is currently a scarcity of information on common medical conditions encountered as individuals with DS progress into adulthood and old age. Conflicting information and uncertainty about the relative risk of dementia for adults with DS is a source of distress for the DS community that creates a major obstacle to proper evaluation and treatment. In this chapter, we discuss the salient neurologic phenotypes of DS, including Alzheimer's disease (AD), and current understanding of their biologic bases and management.
Collapse
Affiliation(s)
- Michael S Rafii
- Department of Neurology, Keck School of Medicine of the University of Southern California, San Diego, CA, United States
| | | | - Mariko Sawa
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States
| | - William C Mobley
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|