1
|
Zolboot N, Xiao Y, Du JX, Ghanem MM, Choi SY, Junn MJ, Zampa F, Huang Z, MacRae IJ, Lippi G. MicroRNA mechanisms instructing Purkinje cell specification. Neuron 2025; 113:1629-1646.e15. [PMID: 40179877 DOI: 10.1016/j.neuron.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/22/2025] [Accepted: 03/04/2025] [Indexed: 04/05/2025]
Abstract
MicroRNAs (miRNAs) are critical for brain development; however, if, when, and how miRNAs drive neuronal subtype specification remains poorly understood. To address this, we engineered technologies with vastly improved spatiotemporal resolution that allow the dissection of cell-type-specific miRNA-target networks. Fast and reversible miRNA loss of function showed that miRNAs are necessary for Purkinje cell (PC) differentiation, which previously appeared to be miRNA independent, and identified distinct critical miRNA windows for dendritogenesis and climbing fiber synaptogenesis, structural features defining PC identity. Using new mouse models that enable miRNA-target network mapping in rare cell types, we uncovered PC-specific post-transcriptional programs. Manipulation of these programs revealed that the PC-enriched miR-206 and targets Shank3, Prag1, En2, and Vash1, which are uniquely repressed in PCs, are critical regulators of PC-specific dendritogenesis and synaptogenesis, with miR-206 knockdown and target overexpression partially phenocopying miRNA loss of function. Our results suggest that gene expression regulation by miRNAs, beyond transcription, is critical for neuronal subtype specification.
Collapse
Affiliation(s)
- Norjin Zolboot
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yao Xiao
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jessica X Du
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marwan M Ghanem
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Su Yeun Choi
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Miranda J Junn
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Federico Zampa
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Zeyi Huang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian J MacRae
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Giordano Lippi
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
2
|
Borgonio-Cuadra VM, Meza-Dorantes A, Pérez-Hernández N, Rodríguez-Pérez JM, Magaña JJ. In Silico Analysis of miRNA-Regulated Pathways in Spinocerebellar Ataxia Type 7. Curr Issues Mol Biol 2025; 47:170. [PMID: 40136424 PMCID: PMC11941346 DOI: 10.3390/cimb47030170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is an inherited neurodegenerative disease characterized by cerebellar ataxia and retinal degeneration, caused by an abnormal expansion of the CAG trinucleotide in the coding region of the ATXN7 gene. Currently, in silico analysis is used to explore mechanisms and biological processes through bioinformatics predictions in various neurodegenerative diseases. Therefore, the aim of this study was to identify candidate human gene targets of four miRNAs (hsa-miR-29a-3p, hsa-miR-132-3p, hsa-miR-25-3p, and hsa-miR-92a-3p) involved in pathways that could play an important role in SCA7 pathogenesis through comprehensive in silico analysis including the prediction of miRNA target genes, Gen Ontology enrichment, identification of core genes in KEGG pathways, transcription factors and validated miRNA target genes with the mouse SCA7 transcriptome data. Our results showed the participation of the following pathways: adherens junction, focal adhesion, neurotrophin signaling, endoplasmic reticulum processing, actin cytoskeleton regulation, RNA transport, and apoptosis and dopaminergic synapse. In conclusion, unlike previous studies, we highlight using a bioinformatics approach the core genes and transcription factors involved in the different biological pathways and which ones are targets for the four miRNAs, which, in addition to being associated with neurodegenerative diseases, are also de-regulated in the plasma of patients with SCA7.
Collapse
Affiliation(s)
- Verónica Marusa Borgonio-Cuadra
- Laboratory of Genomic Medicine, Department of Genetics, Instituto Nacional de Rehabilitation Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico
- Center for Research in Health Sciences, Faculty of Health Sciences, Universidad Anáhuac Mexico Norte, Mexico City 52786, Mexico
| | - Aranza Meza-Dorantes
- Department of Bioengineering, School of Engineering and Sciences, Tecnologico de Monterrey, Campus Ciudad de Mexico, Mexico City 14380, Mexico;
| | - Nonanzit Pérez-Hernández
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (N.P.-H.); (J.M.R.-P.)
| | - José Manuel Rodríguez-Pérez
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (N.P.-H.); (J.M.R.-P.)
| | - Jonathan J. Magaña
- Laboratory of Genomic Medicine, Department of Genetics, Instituto Nacional de Rehabilitation Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico
- Department of Bioengineering, School of Engineering and Sciences, Tecnologico de Monterrey, Campus Ciudad de Mexico, Mexico City 14380, Mexico;
| |
Collapse
|
3
|
Sarkar S, Pandey A, Kumar Yadav S, Haris Siddiqui M, Pant AB, Yadav S. Differentiated and mature neurons are more responsive to neurotoxicant exposure at both transcriptional and translational levels. Neuroscience 2025; 564:110-125. [PMID: 39571964 DOI: 10.1016/j.neuroscience.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/13/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024]
Abstract
SH-SY5Y human neuroblastoma cells have been extensively used as an in vitro model system in a diverse range of studies involving neurodevelopment, neurotoxicity, neurodegeneration, and neuronal ageing. Both naïve and differentiated phenotypes of SH-SY5Y cells are utilized to model human neurons under in vitro conditions. The process of differentiation causes extensive remodeling of neuronal cells at multiple omic levels, including the epigenome and proteome. In the present investigation, the miRNAome and proteome profiles of arsenic-treated naïve and differentiated SH-SY5Y cells were generated using the miRNA OpenArray technology and high-resolution mass spectrometry. Our findings demonstrated that differentiation dramatically affected the response of SH-SY5Y cells to toxicant exposure, as indicated by increased tolerance of differentiated cells against arsenic exposure compared to naïve cells in cell viability assay. Arsenic-exposed naïve and differentiated SH-SY5Y cells possess distinct miRNA and protein profiles with few similarities. Compared to naïve cells, differentiated cells have undergone higher deregulation in the expression of brain-enriched miRNAs and proteins and have shown a more drastic decrease in oxygen consumption rate, which is a measure of mitochondrial respiration after exposure to arsenic. Proteins identified in arsenic-treated differentiated SH-SY5Y cells were more enriched in pathways underlying multifactorial neurotoxic events. Additionally, more functional regulatory modules have been identified between the miRNAs and proteins differentially expressed in arsenic-treated differentiated SH-SY5Y cells relative to naïve cells. Collectively, our studies have shown that differentiated SH-SY5Y cells displayed alterations in the expression of a greater number of miRNAs and proteins following neurotoxicant exposure, indicating their higher responsivity.
Collapse
Affiliation(s)
- Sana Sarkar
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, Lucknow, Uttar Pradesh, India; Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, India.
| | - Anuj Pandey
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, Lucknow, Uttar Pradesh, India.
| | - Sanjeev Kumar Yadav
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, Lucknow, Uttar Pradesh, India.
| | | | - A B Pant
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, Lucknow, Uttar Pradesh, India.
| | - Sanjay Yadav
- All India Institute of Medical Sciences (AIIMS), Raebareli, Uttar Pradesh, India.
| |
Collapse
|
4
|
Ma J, Lin Y, Xiong W, Liu X, Pan M, Sun J, Sun Y, Li Y, Guo H, Pang G, Wang X, Ren F. The microRNA-29ab1/Zfp36/AR Axis in the Hypothalamus Regulates Male-Typical Behaviors in Mice. Int J Mol Sci 2024; 25:13089. [PMID: 39684798 DOI: 10.3390/ijms252313089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Male-typical behaviors such as aggression and mating, which reflect sexual libido in male mice, are regulated by the hypothalamus, a crucial part of the nervous system. Previous studies have demonstrated that microRNAs (miRNAs), especially miR-29, play a vital role in reproduction and the neural control of behaviors. However, it remains unclear whether miR-29 affects reproduction through the hypothalamus-mediated regulation of male-typical behaviors. Here, we constructed two mouse knockout models by ablating either the miR-29ab1 or miR-29b2c cluster. Compared to WT, the ablation of miR-29ab1 in male mice significantly reduced the incidence of aggression by 60% and the incidence of mating by 46.15%. Furthermore, the loss of miR-29ab1 in male mice led to the downregulation of androgen receptor (AR) in the ventromedial hypothalamus. Transcriptomic analysis of the hypothalamus of miR-29ab1-deficient mice revealed inflammatory activation and aberrant expression of genes associated with male-typical behaviors, including Ar, Pgr, Htr4, and Htr2c. Using bioinformatics analysis and dual-luciferase reporter assays, we identified zinc finger protein 36 (Zfp36) as a direct downstream target gene of miR-29ab1. We subsequently showed that ZFP36 colocalized with AR in GT1-7 cells. Furthermore, inhibition of Zfp36 or RelB in GT1-7 cells led to an increase in AR expression. Collectively, our results demonstrate that the miR-29ab1/Zfp36/AR axis in the hypothalamus plays a pivotal role in the regulation of aggression and mating in male mice, providing a potential therapeutic target for treating infertility caused by low libido.
Collapse
Affiliation(s)
- Jie Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yingying Lin
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Wei Xiong
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xiaoxue Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Minghui Pan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jiazeng Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yanan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Huiyuan Guo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Guofang Pang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Fazheng Ren
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Sarkar S, Pandey A, Yadav SK, Raghuwanshi P, Siddiqui MH, Srikrishna S, Pant AB, Yadav S. MicroRNA-29b-3p degenerates terminally differentiated dopaminergic SH-SY5Y cells by perturbation of mitochondrial functions. J Neurochem 2024; 168:1297-1316. [PMID: 38413218 DOI: 10.1111/jnc.16086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/31/2023] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
Mitochondrial dysfunction is the main cause of gradual deterioration of structure and function of neuronal cells, eventually resulting in neurodegeneration. Studies have revealed a complex interrelationship between neurotoxicant exposure, mitochondrial dysfunction, and neurodegenerative diseases. Alteration in the expression of microRNAs (miRNAs) has also been linked with disruption in mitochondrial homeostasis and bioenergetics. In our recent research (Cellular and Molecular Neurobiology (2023) https://doi.org/10.1007/s10571-023-01362-4), we have identified miR-29b-3p as one of the most significantly up-regulated miRNAs in the blood of Parkinson's patients. The findings of the present study revealed that neurotoxicants of two different natures, that is, arsenic or rotenone, dramatically increased miR-29b-3p expression (18.63-fold and 12.85-fold, respectively) in differentiated dopaminergic SH-SY5Y cells. This dysregulation of miR-29b-3p intricately modulated mitochondrial morphology, induced oxidative stress, and perturbed mitochondrial membrane potential, collectively contributing to the degeneration of dopaminergic cells. Additionally, using assays for mitochondrial bioenergetics in live and differentiated SH-SY5Y cells, a reduction in oxygen consumption rate (OCR), maximal respiration, basal respiration, and non-mitochondrial respiration was observed in cells transfected with mimics of miR-29b-3p. Inhibition of miR-29b-3p by transfecting inhibitor of miR-29b-3p prior to exposure to neurotoxicants significantly restored OCR and other respiration parameters. Furthermore, we observed that induction of miR-29b-3p activates neuronal apoptosis via sirtuin-1(SIRT-1)/YinYang-1(YY-1)/peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α)-regulated Bcl-2 interacting protein 3-like-dependent mechanism. Collectively, our studies have shown the role of miR-29b-3p in dysregulation of mitochondrial bioenergetics during degeneration of dopaminergic neurons via regulating SIRT-1/YY-1/PGC-1α axis.
Collapse
Affiliation(s)
- Sana Sarkar
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, UP, India
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, UP, India
| | - Anuj Pandey
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, UP, India
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, India
| | - Sanjeev Kumar Yadav
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, UP, India
| | - Pragati Raghuwanshi
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Raebareli, UP, India
| | - Mohammed Haris Siddiqui
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, UP, India
| | - Saripella Srikrishna
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, India
| | - Aditya Bhushan Pant
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, UP, India
| | - Sanjay Yadav
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Raebareli, UP, India
| |
Collapse
|
6
|
Nassar A, Kodi T, Satarker S, Gurram PC, Fayaz SM, Nampoothiri M. Astrocytic transcription factors REST, YY1, and putative microRNAs in Parkinson's disease and advanced therapeutic strategies. Gene 2024; 892:147898. [PMID: 37832803 DOI: 10.1016/j.gene.2023.147898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Transcription factors (TF) and microRNAs are regulatory factors in astrocytes and are linked to several Parkinson's disease (PD) progression causes, such as disruption of glutamine transporters in astrocytes and concomitant disrupted glutamine uptake and inflammation. REST, a crucial TF, has been documented as an epigenetic repressor that limits the expression of neuronal genes in non-neural cells. REST activity is significantly linked to its corepressors in astrocytes, specifically histone deacetylases (HDACs), CoREST, and MECP2. Another REST-regulating TF, YY1, has been studied in astrocytes, and its interaction with REST has been investigated. In this review, the molecular processes that support the astrocytic control of REST and YY1 in terms of the regulation of glutamate transporter EAAT2 were addressed in a more detailed and comprehensive manner. Both TFs' function in astrocytes and how astrocyte abnormalities cause PD is still a mystery. Moreover, microRNAs (short non-coding RNAs) are key regulators that have been correlated to the expression and regulation of numerous genes linked to PD. The identification of numerous miRs that are engaged in astrocyte dysfunction that triggers PD has been shown. The term "Gut-brain axis" refers to the two systems' mutual communication. Gut microbial dysbiosis, which mediates an imbalance of the gut-brain axis, might contribute to neurodegenerative illnesses through altered astrocytic regulation. New treatment approaches to modify the gut-brain axis and prevent astrocytic repercussions have also been investigated in this review.
Collapse
Affiliation(s)
- Ajmal Nassar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Triveni Kodi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - S M Fayaz
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
7
|
Tao Q, Zhang ZD, Lu XR, Qin Z, Liu XW, Li SH, Bai LX, Ge BW, Li JY, Yang YJ. Multi-omics reveals aspirin eugenol ester alleviates neurological disease. Biomed Pharmacother 2023; 166:115311. [PMID: 37572635 DOI: 10.1016/j.biopha.2023.115311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Exosomes play an essential role in maintaining normal brain function due to their ability to cross the blood-brain barrier. Aspirin eugenol ester (AEE) is a new medicinal compound synthesized by the esterification of aspirin with eugenol using the prodrug principle. Aspirin has been reported to have neuroprotective effects and may be effective against neurodegenerative diseases. PURPOSE This study wanted to investigate how AEE affected neurological diseases in vivo and in vitro. EXPERIMENTAL APPROACH A multi-omics approach was used to explore the effects of AEE on the nervous system. Gene and protein expression changes of BDNF and NEFM in SY5Y cells after AEE treatment were detected using RT-qPCR and Western Blot. KEY RESULTS The multi-omics results showed that AEE could regulate neuronal synapses, neuronal axons, neuronal migration, and neuropeptide signaling by affecting transport, inflammatory response, and regulating apoptosis. Exosomes secreted by AEE-treated Caco-2 cells could promote the growth of neurofilaments in SY5Y cells and increased the expression of BDNF and NEFM proteins in SY5Y cells. miRNAs in the exosomes of AEE-treated Caco-2 cells may play an important role in the activation of SY5Y neuronal cells. CONCLUSIONS In conclusion, AEE could play positive effects on neurological-related diseases.
Collapse
Affiliation(s)
- Qi Tao
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Zhen-Dong Zhang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Xiao-Rong Lu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Xi-Wang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Shi-Hong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Li-Xia Bai
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Bo-Wen Ge
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Jian-Yong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China.
| | - Ya-Jun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China.
| |
Collapse
|
8
|
Zolboot N, Xiao Y, Du JX, Ghanem MM, Choi SY, Junn MJ, Zampa F, Huang Z, MacRae IJ, Lippi G. MicroRNAs are necessary for the emergence of Purkinje cell identity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.560023. [PMID: 37808721 PMCID: PMC10557743 DOI: 10.1101/2023.09.28.560023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Brain computations are dictated by the unique morphology and connectivity of neuronal subtypes, features established by closely timed developmental events. MicroRNAs (miRNAs) are critical for brain development, but current technologies lack the spatiotemporal resolution to determine how miRNAs instruct the steps leading to subtype identity. Here, we developed new tools to tackle this major gap. Fast and reversible miRNA loss-of-function revealed that miRNAs are necessary for cerebellar Purkinje cell (PC) differentiation, which previously appeared miRNA-independent, and resolved distinct miRNA critical windows in PC dendritogenesis and climbing fiber synaptogenesis, key determinants of PC identity. To identify underlying mechanisms, we generated a mouse model, which enables precise mapping of miRNAs and their targets in rare cell types. With PC-specific maps, we found that the PC-enriched miR-206 drives exuberant dendritogenesis and modulates synaptogenesis. Our results showcase vastly improved approaches for dissecting miRNA function and reveal that many critical miRNA mechanisms remain largely unexplored. Highlights Fast miRNA loss-of-function with T6B impairs postnatal Purkinje cell developmentReversible T6B reveals critical miRNA windows for dendritogenesis and synaptogenesisConditional Spy3-Ago2 mouse line enables miRNA-target network mapping in rare cellsPurkinje cell-enriched miR-206 regulates its unique dendritic and synaptic morphology.
Collapse
|
9
|
Bai X, Wang J, Zhang X, Tang Y, He Y, Zhao J, Han L, Fang R, Liu Z, Dong H, Li Q, Ge J, Ma Y, Yu M, Sun R, Wang J, Fei J, Huang F. Deficiency of miR-29a/b1 leads to premature aging and dopaminergic neuroprotection in mice. Front Mol Neurosci 2022; 15:978191. [PMID: 36277485 PMCID: PMC9582353 DOI: 10.3389/fnmol.2022.978191] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by progressive degeneration of midbrain dopaminergic neurons. The miR-29s family, including miR-29a and miR-29b1 as well as miR-29b2 and miR-29c, are implicated in aging, metabolism, neuronal survival, and neurological disorders. In this study, the roles of miR-29a/b1 in aging and PD were investigated. miR-29a/b1 knockout mice (named as 29a KO hereafter) and their wild-type (WT) controls were used to analyze aging-related phenotypes. After challenged with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), dopaminergic injuries, glial activation, and mouse behaviors were evaluated. Primary glial cells were further cultured to explore the underlying mechanisms. Additionally, the levels of miR-29s in the cerebrospinal fluid (CSF) of PD patients (n = 18) and healthy subjects (n = 17) were quantified. 29a KO mice showed dramatic weight loss, kyphosis, and along with increased and deepened wrinkles in skins, when compared with WT mice. Moreover, both abdominal and brown adipose tissues reduced in 29a KO mice, compared to their WT counterpart. However, in MPTP-induced PD mouse model, the deficiency of miR-29a/b1 led to less severe damages of dopaminergic system and mitigated glial activation in the nigrostriatal pathway, and subsequently alleviated the motor impairments in 3-month-old mice. Eight-month-old mutant mice maintained such a resistance to MPTP intoxication. Mechanistically, the deficiency of miR-29a/b-1 promoted the expression of neurotrophic factors in 1-Methyl-4-phenylpyridinium (MPP+)-treated primary mixed glia and primary astrocytes. In lipopolysaccharide (LPS)-treated primary microglia, knockout of miR-29a/b-1 inhibited the expression of inflammatory factors, and promoted the expression of anti-inflammatory factors and neurotrophic factors. Knockout of miR-29a/b1 increased the activity of AMP-activated protein kinase (AMPK) and repressed NF-κB/p65 signaling in glial cells. Moreover, we found miR-29a level was increased in the CSF of patients with PD. Our results suggest that 29a KO mice display the peripheral premature senility. The combined effects of less activated glial cells might contribute to the mitigated inflammatory responses and elicit resistance to MPTP intoxication in miR-29a/b1 KO mice.
Collapse
Affiliation(s)
- Xiaochen Bai
- Department of Translational Neuroscience, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jinghui Wang
- Department of Translational Neuroscience, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Xiaoshuang Zhang
- Department of Translational Neuroscience, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yilin Tang
- Department of Translational Neuroscience, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yongtao He
- Department of Translational Neuroscience, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Jiayin Zhao
- Department of Translational Neuroscience, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Linlin Han
- Department of Translational Neuroscience, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Rong Fang
- Department of Translational Neuroscience, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Zhaolin Liu
- Department of Translational Neuroscience, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Hongtian Dong
- Department of Translational Neuroscience, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Qing Li
- Department of Translational Neuroscience, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
- Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai, China
| | - Jingyu Ge
- Department of Translational Neuroscience, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yuanyuan Ma
- Department of Translational Neuroscience, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Mei Yu
- Department of Translational Neuroscience, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Ruilin Sun
- Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai, China
| | - Jian Wang
- Department of Translational Neuroscience, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Jian Wang,
| | - Jian Fei
- Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai, China
- School of Life Science and Technology, Tongji University, Shanghai, China
- *Correspondence: Jian Fei,
| | - Fang Huang
- Department of Translational Neuroscience, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
- Fang Huang,
| |
Collapse
|
10
|
Li S, Lei Z, Sun T. The role of microRNAs in neurodegenerative diseases: a review. Cell Biol Toxicol 2022; 39:53-83. [PMID: 36125599 PMCID: PMC9486770 DOI: 10.1007/s10565-022-09761-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 08/26/2022] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs which are essential post-transcriptional gene regulators in various neuronal degenerative diseases and playact a key role in these physiological progresses. Neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, multiple sclerosis, and, stroke, are seriously threats to the life and health of all human health and life kind. Recently, various studies have reported that some various miRNAs can regulate the development of neurodegenerative diseases as well as act as biomarkers to predict these neuronal diseases conditions. Endogenic miRNAs such as miR-9, the miR-29 family, miR-15, and the miR-34 family are generally dysregulated in animal and cell models. They are involved in regulating the physiological and biochemical processes in the nervous system by targeting regulating different molecular targets and influencing a variety of pathways. Additionally, exogenous miRNAs derived from homologous plants and defined as botanmin, such as miR2911 and miR168, can be taken up and transferred by other species to be and then act analogously to endogenic miRNAs to regulate the physiological and biochemical processes. This review summarizes the mechanism and principle of miRNAs in the treatment of some neurodegenerative diseases, as well as discusses several types of miRNAs which were the most commonly reported in diseases. These miRNAs could serve as a study provided some potential biomarkers in neurodegenerative diseases might be an ideal and/or therapeutic targets for neurodegenerative diseases. Finally, the role accounted of the prospective exogenous miRNAs involved in mammalian diseases is described.
Collapse
Affiliation(s)
- Shijie Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China. .,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China.
| |
Collapse
|
11
|
Das T, Das TK, Khodarkovskaya A, Dash S. Non-coding RNAs and their bioengineering applications for neurological diseases. Bioengineered 2021; 12:11675-11698. [PMID: 34756133 PMCID: PMC8810045 DOI: 10.1080/21655979.2021.2003667] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Engineering of cellular biomolecules is an emerging landscape presenting creative therapeutic opportunities. Recently, several strategies such as biomimetic materials, drug-releasing scaffolds, stem cells, and dynamic culture systems have been developed to improve specific biological functions, however, have been confounded with fundamental and technical roadblocks. Rapidly emerging investigations on the bioengineering prospects of mammalian ribonucleic acid (RNA) is expected to result in significant biomedical advances. More specifically, the current trend focuses on devising non-coding (nc) RNAs as therapeutic candidates for complex neurological diseases. Given the pleiotropic and regulatory role, ncRNAs such as microRNAs and long non-coding RNAs are deemed as attractive therapeutic candidates. Currently, the list of non-coding RNAs in mammals is evolving, which presents the plethora of hidden possibilities including their scope in biomedicine. Herein, we critically review on the emerging repertoire of ncRNAs in neurological diseases such as Alzheimer’s disease, Parkinson’s disease, neuroinflammation and drug abuse disorders. Importantly, we present the advances in engineering of ncRNAs to improve their biocompatibility and therapeutic feasibility as well as provide key insights into the applications of bioengineered non-coding RNAs that are investigated for neurological diseases.
Collapse
Affiliation(s)
- Tuhin Das
- Quanta Therapeutics, San Francisco, CA, 94158, USA.,RayBiotech, Inc, 3607 Parkway Lane, Peachtree Corners, GA, 30092, USA
| | - Tushar Kanti Das
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Anne Khodarkovskaya
- Department of Pathology, Weill Cornell Medicine, Medical College of Cornell University, New York, NY, 10065, USA
| | - Sabyasachi Dash
- Department of Pathology, Weill Cornell Medicine, Medical College of Cornell University, New York, NY, 10065, USA.,School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024 India
| |
Collapse
|
12
|
Zhao M, Gao J, Zhang Y, Jiang X, Tian Y, Zheng X, Wang K, Cui J. Elevated miR-29a Contributes to Axonal Outgrowth and Neurological Recovery After Intracerebral Hemorrhage via Targeting PTEN/PI3K/Akt Pathway. Cell Mol Neurobiol 2021; 41:1759-1772. [PMID: 32889668 PMCID: PMC11444011 DOI: 10.1007/s10571-020-00945-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/14/2020] [Indexed: 01/24/2023]
Abstract
Spontaneous intracerebral hemorrhage (ICH) is a clinical challenge with high disability and lacks an effective treatment. miR-29a strongly expressed in the brain has been implicated in various neurological disorders. In this study, we investigated the biological roles of miR-29a in axonal outgrowth and neurological outcomes after ICH and relevant molecular mechanism. The rat model of ICH was established by injection of autologous whole blood into the right basal ganglia. First, a significant decrease in miR-29a level was found in perihematomal brain tissues and cerebrospinal fluid (CSF) after ICH in vivo and hemin-treated neurons in vitro. Further study documented that lentivirus-mediated miR-29a overexpression could remarkably attenuate hemorrhagic brain injury, promoted regenerative outgrowth of injured axons and improved neurobehavioral and cognitive impairments after ICH in rats. In addition, we also identified that overexpression of miR-29a obviously alleviated neuronal damage and mitochondrial dysfunctions, and facilitated neurite outgrowth in cultured neurons exposed to hemin in vitro. Furthermore, luciferase reporter assay showed that miR-29a directly targeted the 3'-UTR region of phosphatase and tensin homolog (PTEN) mRNA and negatively regulated its expression. More importantly, pharmacological inhibition of PTEN has similar neuroprotective effects as miR-29a overexpression involving activation of the PI3K/Akt pathway after hemorrhagic stroke. Collectively, these results suggested that elevated miR-29a could contribute to axonal outgrowth and neurological recovery through targeting PTEN/PI3K/Akt pathway after ICH, thereby providing a potential therapeutic target for patients with ICH.
Collapse
Affiliation(s)
- Manman Zhao
- Department of Surgery, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
| | - Junling Gao
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research On Chronic Diseases, Tangshan, 063000, Hebei, China
- Department of Histology and Embryology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Yanan Zhang
- Department of Histology and Embryology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Xiaohua Jiang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research On Chronic Diseases, Tangshan, 063000, Hebei, China
- Department of Histology and Embryology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Yanxia Tian
- Department of Histology and Embryology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Xuecheng Zheng
- Department of Surgery, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
| | - Kaijie Wang
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China
| | - Jianzhong Cui
- Department of Surgery, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China.
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China.
| |
Collapse
|
13
|
Bai X, Zhang X, Fang R, Wang J, Ma Y, Liu Z, Dong H, Li Q, Ge J, Yu M, Fei J, Sun R, Huang F. Deficiency of miR-29b2/c leads to accelerated aging and neuroprotection in MPTP-induced Parkinson's disease mice. Aging (Albany NY) 2021; 13:22390-22411. [PMID: 34543233 PMCID: PMC8507277 DOI: 10.18632/aging.203545] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022]
Abstract
Studies reveal a linkage of miR-29s in aging and Parkinson's disease (PD). Here we show that the serum levels of miR-29s in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice exhibited dynamic changes. The role of miR-29b2/c in aging and PD was studied utilizing miR-29b2/c gene knockout mice (miR-29b2/c KO). miR-29b2/c KO mice were characterized by a markedly lighter weight, kyphosis, muscle weakness and abnormal gait, when compared with wild-type (WT) mice. The WT also developed apparent dermis thickening and adipose tissue reduction. However, deficiency of miR-29b2/c alleviated MPTP-induced damages of the dopaminergic system and glial activation in the nigrostriatal pathway and consequently improved the motor function of MPTP-treated KO mice. Knockout of miR-29b2/c inhibited the expression of inflammatory factors in 1-methyl-4-phenylpyridinium (MPP+)-treated primary cultures of mixed glia, primary astrocytes, or LPS-treated primary microglia. Moreover, miR-29b2/c deficiency enhanced the activity of AMPK but repressed the NF-κB p65 signaling in glial cells. Our results show that miR-29b2/c KO mice display the progeria-like phenotype. Less activated glial cells and repressed neuroinflammation might bring forth dopaminergic neuroprotection in miR-29b2/c KO mice. Conclusively, miR-29b2/c is involved in the regulation of aging and plays a detrimental role in Parkinson's disease.
Collapse
Affiliation(s)
- Xiaochen Bai
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.,Department of Rehabilitation Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xiaoshuang Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Rong Fang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Jinghui Wang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yuanyuan Ma
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhaolin Liu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Hongtian Dong
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Qing Li
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Jingyu Ge
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Mei Yu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai 200092, China.,Shanghai Engineering Research Center for Model Organisms, Shanghai Model Organisms Center, INC, Shanghai 201203, China
| | - Ruilin Sun
- Shanghai Engineering Research Center for Model Organisms, Shanghai Model Organisms Center, INC, Shanghai 201203, China
| | - Fang Huang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
14
|
Kurinna S, Seltmann K, Bachmann AL, Schwendimann A, Thiagarajan L, Hennig P, Beer HD, Mollo MR, Missero C, Werner S. Interaction of the NRF2 and p63 transcription factors promotes keratinocyte proliferation in the epidermis. Nucleic Acids Res 2021; 49:3748-3763. [PMID: 33764436 PMCID: PMC8053124 DOI: 10.1093/nar/gkab167] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/22/2022] Open
Abstract
Epigenetic regulation of cell and tissue function requires the coordinated action of transcription factors. However, their combinatorial activities during regeneration remain largely unexplored. Here, we discover an unexpected interaction between the cytoprotective transcription factor NRF2 and p63- a key player in epithelial morphogenesis. Chromatin immunoprecipitation combined with sequencing and reporter assays identifies enhancers and promoters that are simultaneously activated by NRF2 and p63 in human keratinocytes. Modeling of p63 and NRF2 binding to nucleosomal DNA suggests their chromatin-assisted interaction. Pharmacological and genetic activation of NRF2 increases NRF2–p63 binding to enhancers and promotes keratinocyte proliferation, which involves the common NRF2–p63 target cyclin-dependent kinase 12. These results unravel a collaborative function of NRF2 and p63 in the control of epidermal renewal and suggest their combined activation as a strategy to promote repair of human skin and other stratified epithelia.
Collapse
Affiliation(s)
- Svitlana Kurinna
- Division of Cell Matrix Biology and Regenerative Medicine, FBMH, University of Manchester, M13 9PT, United Kingdom
| | - Kristin Seltmann
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Andreas L Bachmann
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Andreas Schwendimann
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Lalitha Thiagarajan
- Division of Cell Matrix Biology and Regenerative Medicine, FBMH, University of Manchester, M13 9PT, United Kingdom
| | - Paulina Hennig
- Department of Dermatology, University Hospital Zurich, 8006 Zurich, Switzerland
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital Zurich, 8006 Zurich, Switzerland
| | - Maria Rosaria Mollo
- CEINGE Biotecnologie Avanzate, Naples, Italy, University of Naples Federico II, 80131 Naples, Italy
| | - Caterina Missero
- CEINGE Biotecnologie Avanzate, Naples, Italy, University of Naples Federico II, 80131 Naples, Italy
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
15
|
Swahari V, Nakamura A, Hollville E, Stroud H, Simon JM, Ptacek TS, Beck MV, Flowers C, Guo J, Plestant C, Liang J, Kurtz CL, Kanke M, Hammond SM, He YW, Anton ES, Sethupathy P, Moy SS, Greenberg ME, Deshmukh M. MicroRNA-29 is an essential regulator of brain maturation through regulation of CH methylation. Cell Rep 2021; 35:108946. [PMID: 33826889 PMCID: PMC8103628 DOI: 10.1016/j.celrep.2021.108946] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/09/2020] [Accepted: 03/14/2021] [Indexed: 11/27/2022] Open
Abstract
Although embryonic brain development and neurodegeneration have received considerable attention, the events that govern postnatal brain maturation are less understood. Here, we identify the miR-29 family to be strikingly induced during the late stages of brain maturation. Brain maturation is associated with a transient, postnatal period of de novo non-CG (CH) DNA methylation mediated by DNMT3A. We examine whether an important function of miR-29 during brain maturation is to restrict the period of CH methylation via its targeting of Dnmt3a. Deletion of miR-29 in the brain, or knockin mutations preventing miR-29 to specifically target Dnmt3a, result in increased DNMT3A expression, higher CH methylation, and repression of genes associated with neuronal activity and neuropsychiatric disorders. These mouse models also develop neurological deficits and premature lethality. Our results identify an essential role for miR-29 in restricting CH methylation in the brain and illustrate the importance of CH methylation regulation for normal brain maturation.
Collapse
Affiliation(s)
- Vijay Swahari
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA.
| | - Ayumi Nakamura
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA; Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC, USA
| | - Emilie Hollville
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Hume Stroud
- Department of Neurobiology, Harvard University, Boston, MA, USA
| | - Jeremy M Simon
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC, USA; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA
| | - Travis S Ptacek
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA
| | - Matthew V Beck
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Cornelius Flowers
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Jiami Guo
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | | | - Jie Liang
- Department of Immunology, Duke University, Durham, NC, USA
| | - C Lisa Kurtz
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Matt Kanke
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Scott M Hammond
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - You-Wen He
- Department of Immunology, Duke University, Durham, NC, USA
| | - E S Anton
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA; Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Praveen Sethupathy
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA; Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Sheryl S Moy
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA
| | | | - Mohanish Deshmukh
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA; Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC, USA; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
16
|
Yang Y, Li Y, Yang H, Guo J, Li N. Circulating MicroRNAs and Long Non-coding RNAs as Potential Diagnostic Biomarkers for Parkinson's Disease. Front Mol Neurosci 2021; 14:631553. [PMID: 33762908 PMCID: PMC7982809 DOI: 10.3389/fnmol.2021.631553] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease (PD) is the world’s second most common neurodegenerative disease that is associated with age. With the aging of the population, patients with PD are increasing in number year by year. Most such patients lose their ability to self-care with disease progression, which brings an incalculable burden to individual families and society. The pathogenesis of PD is complex, and its clinical manifestations are diverse. Therefore, it is of great significance to screen for circulating biomarkers associated with PD to reveal its pathogenesis and develop objective diagnostic methods so as to prevent, control, and treat the disease. In recent years, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are considered to be effective biomarkers for various diseases due to their stability, and resistance to RNAase digestion and extreme conditions in circulating fluids. Here, we review recent advances in the detection of abnormally expressed miRNAs and lncRNAs in PD circulating fluids, and discuss the function and molecular mechanisms of plasma or serum miR-124, miR-132, miR-29, miR-221, miR-7, miR-433, and miR-153 in the regulation and progression of PD. Additionally, application of the differential expression of lncRNAs in circulating fluid in the pathological progression and diagnosis of PD is also reviewed. In short, the determination of abnormally expressed circulating miRNAs and lncRNAs will be valuable for the future diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Yimin Yang
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, China
| | - Yanhua Li
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, China
| | - Hongmei Yang
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, China
| | - Jianxing Guo
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, China
| | - Nan Li
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Hrdlicka HC, Pereira RC, Shin B, Yee SP, Deymier AC, Lee SK, Delany AM. Inhibition of miR-29-3p isoforms via tough decoy suppresses osteoblast function in homeostasis but promotes intermittent parathyroid hormone-induced bone anabolism. Bone 2021; 143:115779. [PMID: 33253931 PMCID: PMC7770763 DOI: 10.1016/j.bone.2020.115779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 01/07/2023]
Abstract
miRNAs play a vital role in post-transcriptional regulation of gene expression in osteoblasts and osteoclasts, and the miR-29 family is expressed in both lineages. Using mice globally expressing a miR-29-3p tough decoy, we demonstrated a modest 30-60% decrease all three miR-29-3p isoforms: miR-29a, miR-29b, and miR-29c. While the miR-29-3p decoy did not impact osteoclast number or function, the tough decoy decreased bone formation in growing mice, which led to decreased trabecular bone volume in mature animals. These data support previous in vitro studies suggesting that miR-29-3p is a positive regulator of osteoblast differentiation. In contrast, when mice were treated with intermittent parathyroid hormone (PTH1-34), inhibition of miR-29-3p augmented the effect of PTH on cortical bone anabolism, increased bone formation rate and osteoblast surface, and increased levels of Ctnnb1/βcatenin mRNA, which is a miR-29 target. These findings highlight differences in the mechanisms controlling basal level bone formation and bone formation induced by intermittent PTH. Overall, the global miR-29-3p tough decoy model represents a modest loss-of-function, which could be a relevant tool for assessing the possible impact of systemically administered miR-29-3p inhibitors. Our studies provide a potential rationale for co-administration of PTH1-34 and miR-29-3p inhibitors, to boost bone formation in severely affected osteoporosis patients, particularly in the cortical compartment.
Collapse
Affiliation(s)
- Henry C Hrdlicka
- Center for Molecular Oncology, UConn Health Center, Farmington, CT, United States of America
| | - Renata C Pereira
- Division of Pediatric Nephrology, David Geffen School of Medicine at University of California, Los Angeles, United States of America
| | - Bongjin Shin
- Center on Aging, UConn Health Center, Farmington, CT, United States of America
| | - Siu-Pok Yee
- Center for Mouse Genome Modification, UConn Health Center, Farmington, CT, United States of America
| | - Alix C Deymier
- Institute of Material Sciences, UConn Health Center, Farmington, CT, United States of America
| | - Sun-Kyeong Lee
- Center on Aging, UConn Health Center, Farmington, CT, United States of America.
| | - Anne M Delany
- Center for Molecular Oncology, UConn Health Center, Farmington, CT, United States of America.
| |
Collapse
|
18
|
Guo Y, Wu Y, Shi J, Zhuang H, Ci L, Huang Q, Wan Z, Yang H, Zhang M, Tan Y, Sun R, Xu L, Wang Z, Shen R, Fei J. miR-29a/b1 Regulates the Luteinizing Hormone Secretion and Affects Mouse Ovulation. Front Endocrinol (Lausanne) 2021; 12:636220. [PMID: 34135859 PMCID: PMC8202074 DOI: 10.3389/fendo.2021.636220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
miR-29a/b1 was reportedly involved in the regulation of the reproductive function in female mice, but the underlying molecular mechanisms are not clear. In this study, female mice lacking miR-29a/b1 showed a delay in vaginal opening, irregular estrous cycles, ovulation disorder and subfertility. The level of luteinizing hormone (LH) was significantly lower in plasma but higher in pituitary of mutant mice. However, egg development was normal in mutant mice and the ovulation disorder could be rescued by the superovulation treatment. These results suggested that the LH secretion was impaired in mutant mice. Further studies showed that deficiency of miR-29a/b1 in mice resulted in an abnormal expression of a number of proteins involved in vesicular transport and exocytosis in the pituitary, indicating the mutant mice had insufficient LH secretion. However, the detailed mechanism needs more research.
Collapse
Affiliation(s)
- Yang Guo
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Lab, Animal Research Center, Shanghai, China
| | - Youbing Wu
- Shanghai Model Organisms, Shanghai, China
| | - Jiahao Shi
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Hua Zhuang
- Shanghai Model Organisms, Shanghai, China
| | - Lei Ci
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Model Organisms, Shanghai, China
| | - Qin Huang
- Shanghai Model Organisms, Shanghai, China
| | - Zhipeng Wan
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Model Organisms, Shanghai, China
| | - Hua Yang
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Mengjie Zhang
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Yutong Tan
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Ruilin Sun
- Shanghai Model Organisms, Shanghai, China
| | - Leon Xu
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Zhugang Wang
- Department of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ruling Shen
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Lab, Animal Research Center, Shanghai, China
- *Correspondence: Jian Fei, ; Ruling Shen,
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Model Organisms, Shanghai, China
- *Correspondence: Jian Fei, ; Ruling Shen,
| |
Collapse
|
19
|
Ogata M, Hayashi G, Ichiu A, Okamoto A. L-DNA-tagged fluorescence in situ hybridization for highly sensitive imaging of RNAs in single cells. Org Biomol Chem 2020; 18:8084-8088. [PMID: 33001106 DOI: 10.1039/d0ob01635g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report an effective fluorescence in situ hybridization strategy, named l-DNA tagged FISH (LT-FISH), for highly sensitive RNA detection in fixed cultured cells. LT-FISH includes two-step hybridization processes with a l-d chimera oligonucleotide probe and a fluorescence-labeled PCR product tethering a l-DNA tag. The degree of fluorescence enhancement, depending on the length of PCR products, was up to 14-fold when the 606 bp product was used. Endogenous mRNA and miRNA in cancer cells were visualized by utilizing this l-DNA-mediated signal amplification technique.
Collapse
Affiliation(s)
- Motoyuki Ogata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Gosuke Hayashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Anri Ichiu
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. and Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
20
|
Li J, Durose WW, Ito J, Kakita A, Iguchi Y, Katsuno M, Kunisawa K, Shimizu T, Ikenaka K. Exploring the factors underlying remyelination arrest by studying the post-transcriptional regulatory mechanisms of cystatin F gene. J Neurochem 2020; 157:2070-2090. [PMID: 32947653 DOI: 10.1111/jnc.15190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/11/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022]
Abstract
Remyelination plays an important role in determining the fate of demyelinating disorders. However, it is arrested during chronic disease states. Cystatin F, a papain-like lysosomal cysteine proteinase inhibitor, is a crucial regulator of demyelination and remyelination. Using hemizygous proteolipid protein transgenic 4e (PLP4e/- ) mice, an animal model of chronic demyelination, we found that cystatin F mRNA expression was induced at 2.5 months of age and up-regulated in the early phase of demyelination, but significantly decreased in the chronic phase. We next investigated cystatin F regulatory factors as potential mechanisms of remyelination arrest in chronic demyelinating disorders. We used the CysF-STOP-tetO::Iba-mtTA mouse model, in which cystatin F gene expression is driven by the tetracycline operator. Interestingly, we found that forced cystatin F mRNA over-expression was eventually decreased. Our findings show that cystatin F expression is modulated post-transcriptionally. We next identified embryonic lethal, abnormal vision, drosophila like RNA-binding protein 1 (ELAVL-1), and miR29a as cystatin F mRNA stabilizing and destabilizing factors, respectively. These roles were confirmed in vitro in NIH3T3 cells. Using postmortem plaque samples from human multiple sclerosis patients, we also confirmed that ELAVL-1 expression was highly correlated with the previously reported expression pattern of cystatin F. These data indicate the important roles of ELAVL-1 and miR29a in regulating cystatin F expression. Furthermore, they provide new insights into potential therapeutic targets for demyelinating disorders.
Collapse
Affiliation(s)
- Jiayi Li
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.,Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Wilaiwan Wisessmith Durose
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.,Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, Thailand.,Department of Pediatrics, Hematology University of Minnesota, Minneapolis, MN, USA
| | - Junko Ito
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yohei Iguchi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuo Kunisawa
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.,Research Division of Advanced Diagnostic System, Graduate School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Takeshi Shimizu
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.,Department of Neurophysiology and Brain Science, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| |
Collapse
|
21
|
Han L, Tang Y, Bai X, Liang X, Fan Y, Shen Y, Huang F, Wang J. Association of the serum microRNA-29 family with cognitive impairment in Parkinson's disease. Aging (Albany NY) 2020; 12:13518-13528. [PMID: 32649312 PMCID: PMC7377865 DOI: 10.18632/aging.103458] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/27/2020] [Indexed: 04/19/2023]
Abstract
We aimed to examine whether miRNA-29s (miR-29s) in serum are associated with cognitive impairment in Parkinson's disease (PD). Thirty-nine PD patients with normal cognition (PD-NC), 37 PD patients with mild cognitive impairment (PD-MCI), 22 PD patients with dementia (PDD) and 40 healthy controls were recruited. Detailed clinical evaluations and a schedule of neuropsychological tests were administered to all patients. MiR-29s expression in serum samples was assessed using reverse-transcription quantitative real-time PCR. We found that the levels of all three miR-29s in the PDD group were significantly lower than those in the PD-NC group (p < 0.05). In addition, the miR-29b level was downregulated in the PD-MCI group with respect to that in the PD-NC group (p < 0.05). After adjusting for years of education and the UPDRS-III subscore using a multivariate model, miR-29s showed significant associations with PDD. MiR-29b levels were shown to be associated with different subsets of PD cognition and could accurately discriminate PDD from non-PDD (area under the curve (AUC) = 0.859; 95% CI, 0.7817-0.9372). Further analysis of the cognitive domains found that the miR-29s levels were all associated with memory performance in PD patients. In summary, miR-29s are associated with cognitive impairment in PD.
Collapse
Affiliation(s)
- Linlin Han
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yilin Tang
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaochen Bai
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaoniu Liang
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yun Fan
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yan Shen
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Fang Huang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Jian Wang
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
22
|
Singh T, Yadav S. Role of microRNAs in neurodegeneration induced by environmental neurotoxicants and aging. Ageing Res Rev 2020; 60:101068. [PMID: 32283224 DOI: 10.1016/j.arr.2020.101068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/02/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023]
Abstract
The progressive loss of neuronal structure and functions resulting in the death of neurons is considered as neurodegeneration. Environmental toxicants induced degeneration of neurons is accelerated with aging. In adult brains, most of the neurons are post-mitotic, and their loss results in the development of diseases like amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), Alzheimer's disease (AD), and Huntington's disease (HD). Neurodegenerative diseases have several similarities at the sub-cellular and molecular levels, such as synaptic degeneration, oxidative stress, inflammation, and cognitive decline, which are also known in brain aging. Identification of these similarities at the molecular level offers hope for the development of new therapeutics to ameliorate all neurodegenerative diseases simultaneously. Aging is known as the most strongly associated additive factor in the pathogenesis of neurodegenerative diseases. Studies carried out so far identified several genes, which are responsible for selective degeneration of neurons in different neurodegenerative diseases. Countless efforts have been made in identifying therapeutics for neurodegenerative diseases; however, the discovery of effective therapy remains elusive. Findings made in the last two decades identified microRNAs (miRNAs) as the most potent post-transcription regulatory RNA molecule, which can condition protein levels in the cell and tissue-specific manner. Identification of miRNAs, which regulate both neurotoxicant and aging-associated degeneration of brain cells, raises the possibility that roads leading to aging and neurotoxicant induced neurodegeneration cross at some point. Identification of miRNAs, which are common to aging and neurotoxicant induced neurodegeneration, will help in understanding the complex mechanism of neurodegenerative disease development. In the future, the use of natural miRNAs in vivo in therapy will be able to tackle several issues of aging and neurodegeneration. In the present review, we have provided a summary of findings made on the role of miRNAs in neurodegeneration and explored the common link made by miRNAs between aging and neurotoxicants induced neurodegeneration.
Collapse
Affiliation(s)
- Tanisha Singh
- Developmental Toxicology Division, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan,31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Department of Neurological Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, Pennsylvania-15213, USA.
| | - Sanjay Yadav
- Developmental Toxicology Division, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan,31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Raebareli, Munsiganj, Raebareli 229405, UP, India.
| |
Collapse
|
23
|
Goh SY, Chao YX, Dheen ST, Tan EK, Tay SSW. Role of MicroRNAs in Parkinson's Disease. Int J Mol Sci 2019; 20:E5649. [PMID: 31718095 PMCID: PMC6888719 DOI: 10.3390/ijms20225649] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is a disabling neurodegenerative disease that manifests with resting tremor, bradykinesia, rigidity and postural instability. Since the discovery of microRNAs (miRNAs) in 1993, miRNAs have been shown to be important biological molecules involved in diverse processes to maintain normal cellular functions. Over the past decade, many studies have reported dysregulation of miRNA expressions in PD. Here, we identified 15 miRNAs from 34 reported screening studies that demonstrated dysregulation in the brain and/or neuronal models, cerebrospinal fluid (CSF) and blood. Specific miRNAs-of-interest that have been implicated in PD pathogenesis include miR-30, miR-29, let-7, miR-485 and miR-26. However, there are several challenges and limitations in drawing definitive conclusions due to the small sample size in clinical studies, varied laboratory techniques and methodologies and their incomplete penetrance of the blood-brain barrier. Developing an optimal delivery system and unravelling druggable targets of miRNAs in both experimental and human models and clinical validation of the results may pave way for novel therapeutics in PD.
Collapse
Affiliation(s)
- Suh Yee Goh
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore 117594, Singapore; (S.Y.G.); (S.T.D.)
| | - Yin Xia Chao
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
- Department of Neurology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
- Medical Education, Research and Evaluation (MERE) department, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
| | - Shaikali Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore 117594, Singapore; (S.Y.G.); (S.T.D.)
| | - Eng-King Tan
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
- Department of Neurology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
- Neuroscience and Behavioral Disorders (NBD) department, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
| | - Samuel Sam-Wah Tay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore 117594, Singapore; (S.Y.G.); (S.T.D.)
| |
Collapse
|
24
|
Klatt CL, Theis V, Hahn S, Theiss C, Matschke V. Deregulated miR-29b-3p Correlates with Tissue-Specific Activation of Intrinsic Apoptosis in An Animal Model of Amyotrophic Lateral Sclerosis. Cells 2019; 8:cells8091077. [PMID: 31547454 PMCID: PMC6770833 DOI: 10.3390/cells8091077] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 12/18/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is one of the most common incurable motor neuron disorders in adults. The majority of all ALS cases occur sporadically (sALS). Symptoms of ALS are caused by a progressive degeneration of motor neurons located in the motor cortex and spinal cord. The question arises why motor neurons selectively degenerate in ALS, while other cells and systems appear to be spared the disease. Members of the intrinsic apoptotic pathway are frequent targets of altered microRNA expression. Therefore, microRNAs and their effects on cell survival are subject of controversial debates. In this study, we investigated the expression of numerous members of the intrinsic apoptotic cascade by qPCR, western blot, and immunostaining in two different regions of the CNS of wobbler mice. Further we addressed the expression of miR-29b-3p targeting BMF, Bax, and, Bak, members of the apoptotic pathway. We show a tissue-specific differential expression of BMF, Bax, and cleaved-Caspase 3 in wobbler mice. An opposing regulation of miR-29b-3p expression in the cerebellum and cervical spinal cord of wobbler mice suggests different mechanisms regulating the intrinsic apoptotic pathway. Based on our findings, it could be speculated that miR-29b-3p might regulate antiapoptotic survival mechanisms in CNS areas that are not affected by neurodegeneration in the wobbler mouse ALS model.
Collapse
Affiliation(s)
- Christina L Klatt
- Ruhr University Bochum, Medical Faculty, Institute of Anatomy, Department of Cytology, 44801 Bochum, Germany.
| | - Verena Theis
- Ruhr University Bochum, Medical Faculty, Institute of Anatomy, Department of Cytology, 44801 Bochum, Germany.
| | - Stephan Hahn
- Ruhr University Bochum, Clinical Research Center, Department of Molecular Gastrointestinal Oncology, 44801 Bochum, Germany.
| | - Carsten Theiss
- Ruhr University Bochum, Medical Faculty, Institute of Anatomy, Department of Cytology, 44801 Bochum, Germany.
| | - Veronika Matschke
- Ruhr University Bochum, Medical Faculty, Institute of Anatomy, Department of Cytology, 44801 Bochum, Germany.
| |
Collapse
|
25
|
Juźwik CA, S Drake S, Zhang Y, Paradis-Isler N, Sylvester A, Amar-Zifkin A, Douglas C, Morquette B, Moore CS, Fournier AE. microRNA dysregulation in neurodegenerative diseases: A systematic review. Prog Neurobiol 2019; 182:101664. [PMID: 31356849 DOI: 10.1016/j.pneurobio.2019.101664] [Citation(s) in RCA: 306] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/15/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022]
Abstract
While the root causes for individual neurodegenerative diseases are distinct, many shared pathological features and mechanisms contribute to neurodegeneration across diseases. Altered levels of microRNAs, small non-coding RNAs involved in post transcriptional regulation of gene expression, are reported for numerous neurodegenerative diseases. Yet, comparison between diseases to uncover commonly dysregulated microRNAs during neurodegeneration in general is lagging. We performed a systematic review of peer-reviewed publications describing differential microRNA expression in neurodegenerative diseases and related animal models. We compiled the results from studies covering the prevalent neurodegenerative diseases in the literature: Alzheimer's disease, amyotrophic lateral sclerosis, age-related macular degeneration, ataxia, dementia, myotonic dystrophy, epilepsy, glaucoma, Huntington's disease, multiple sclerosis, Parkinson's disease, and prion disorders. MicroRNAs which were dysregulated most often in these diseases and their models included miR-9-5p, miR-21-5p, the miR-29 family, miR-132-3p, miR-124-3p, miR-146a-5p, miR-155-5p, and miR-223-3p. Common pathways targeted by these predominant miRNAs were identified and revealed great functional overlap across diseases. We also identified a strong role for each microRNA in both the neural and immune components of diseases. microRNAs regulate broad networks of genes and identifying microRNAs commonly dysregulated across neurodegenerative diseases could cultivate novel hypotheses related to common molecular mechanisms underlying neurodegeneration.
Collapse
Affiliation(s)
- Camille A Juźwik
- McGill University, Montréal Neurological Institute, 3801 University Street, room BT-109, Montréal, QC, H3A 2B4, Canada.
| | - Sienna S Drake
- McGill University, Montréal Neurological Institute, 3801 University Street, room BT-109, Montréal, QC, H3A 2B4, Canada.
| | - Yang Zhang
- McGill University, Montréal Neurological Institute, 3801 University Street, room BT-109, Montréal, QC, H3A 2B4, Canada.
| | - Nicolas Paradis-Isler
- McGill University, Montréal Neurological Institute, 3801 University Street, room BT-109, Montréal, QC, H3A 2B4, Canada.
| | - Alexandra Sylvester
- McGill University, Montréal Neurological Institute, 3801 University Street, room BT-109, Montréal, QC, H3A 2B4, Canada.
| | - Alexandre Amar-Zifkin
- McGill University Health Centre- Medical Libraries, 3801 University Street, Montréal, QC, H3A 2B4, Canada.
| | - Chelsea Douglas
- Program Manager, Plotly Technologies Inc, 5555 Gaspe Avenue #118, Montréal, QC, H2T 2A3, Canada.
| | - Barbara Morquette
- McGill University, Montréal Neurological Institute, 3801 University Street, room BT-109, Montréal, QC, H3A 2B4, Canada.
| | - Craig S Moore
- Division of BioMedical Sciences Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Alyson E Fournier
- McGill University, Montréal Neurological Institute, 3801 University Street, room BT-109, Montréal, QC, H3A 2B4, Canada.
| |
Collapse
|
26
|
The microRNA-29a Modulates Serotonin 5-HT7 Receptor Expression and Its Effects on Hippocampal Neuronal Morphology. Mol Neurobiol 2019; 56:8617-8627. [PMID: 31292861 DOI: 10.1007/s12035-019-01690-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/25/2019] [Indexed: 12/21/2022]
Abstract
miRNAs are master regulators of gene expression in diverse biological processes, including the modulation of neuronal cytoarchitecture. The identification of their physiological target genes remains one of the outstanding challenges. Recently, it has been demonstrated that the activation of serotonin receptor 7 (5-HT7R) plays a key role in regulating the neuronal structure, synaptogenesis, and synaptic plasticity during embryonic and early postnatal development of the central nervous system (CNS). In order to identify putative miRNAs targeting the 3'UTR of 5-HT7R mouse transcript, we used a computational prediction tool and detected the miR-29 family members as the only candidates. Thus, since miR-29a is more expressed than other members in the brain, we investigated its possible involvement in the regulation of neuronal morphology mediated by 5-HT7R. By luciferase assay, we show that miR-29a can act as a post-transcriptional regulator of 5-HT7R mRNA. Indeed, it downregulates 5-HT7R gene expression in cultured hippocampal neurons, while the expression of other serotonin receptors is not affected. From a functional point of view, miR-29a overexpression in hippocampal primary cultures impairs the 5HT7R-dependent neurite elongation and remodeling through the inhibition of the ERK intracellular signaling pathway. In vivo, the upregulation of miR-29a in the developing hippocampus parallels with the downregulation of 5-HT7R expression, supporting the hypothesis that this miRNA is a physiological modulator of 5-HT7R expression in the CNS.
Collapse
|
27
|
Asimes A, Kim CK, Rao YS, Bartelt K, Pak TR. microRNA Expression Profiles in the Ventral Hippocampus during Pubertal Development and the Impact of Peri-Pubertal Binge Alcohol Exposure. Noncoding RNA 2019; 5:ncrna5010021. [PMID: 30841593 PMCID: PMC6468757 DOI: 10.3390/ncrna5010021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 12/15/2022] Open
Abstract
Adolescence is hallmarked by two parallel processes of sexual maturation and adult patterning of the brain. Therefore, adolescence represents a vulnerable postnatal period for neurodevelopment where exogenous factors can negatively impact adult brain function. For example, alcohol exposure during pubertal development can lead to long-term and widespread neurobiological dysfunction and these effects have been shown to persist even in the absence of future alcohol exposure. However, the molecular mechanisms mediating the persistent effects of alcohol are unclear. We propose that dysregulation of microRNAs (miR) could be a unifying epigenetic mechanism underlying these widespread long-term changes. We tested the hypothesis that repeated alcohol exposure during pubertal development would cause disruption of normal miR expression profiles during puberty and, subsequently, their downstream mRNA target genes in the ventral hippocampus using an established rat model of adolescent binge drinking. We found 6 alcohol-sensitive miRs that were all downregulated following alcohol exposure and we also investigated the normal age-dependent changes in those miRs throughout the pubertal period. Interestingly, these miRs were normally decreased throughout the process of puberty, but alcohol prematurely exacerbated the normal decline in miR expression levels. The work presented herein provides foundational knowledge about the expression patterns of miRs during this critical period of neurodevelopment. Further, this regulation of miR and mRNA expression by alcohol exposure presents a complex regulatory mechanism by which perturbation in this time-sensitive period could lead to long-term neurological consequences.
Collapse
Affiliation(s)
- AnnaDorothea Asimes
- Loyola University Chicago Stritch School of Medicine, Department of Cell and Molecular Physiology, Maywood, IL 60153, USA.
| | - Chun K Kim
- Loyola University Chicago Stritch School of Medicine, Department of Cell and Molecular Physiology, Maywood, IL 60153, USA.
| | - Yathindar S Rao
- Loyola University Chicago Stritch School of Medicine, Department of Cell and Molecular Physiology, Maywood, IL 60153, USA.
| | - Kyle Bartelt
- Loyola University Chicago Stritch School of Medicine, Department of Cell and Molecular Physiology, Maywood, IL 60153, USA.
| | - Toni R Pak
- Loyola University Chicago Stritch School of Medicine, Department of Cell and Molecular Physiology, Maywood, IL 60153, USA.
| |
Collapse
|
28
|
Liao Y, Ouyang L, Ci L, Chen B, Lv D, Li Q, Sun Y, Fei J, Bao S, Liu X, Li L. Pravastatin regulates host foreign-body reaction to polyetheretherketone implants via miR-29ab1-mediated SLIT3 upregulation. Biomaterials 2019; 203:12-22. [PMID: 30851489 DOI: 10.1016/j.biomaterials.2019.02.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/20/2022]
Abstract
Host rejection to biomaterials can induce uncontrolled foreign-body reactions (FBR), resulting in a dense fibrous encapsulation that blocks mass transport and/or communication between the host and the implant. Adequate angiogenesis between the body and the implant has been implicated as a key regulator for overcoming FBR. Thus, approaches for stimulating neovascularization and/or suppressing FBR are under investigation. In this study, pravastatin (Pra) was loaded onto a 3D network surface of sulfonated polyetheretherketone (SP) to achieve superior local drug effects. The SP loaded with Pra (SP-Pra) promoted angiogenesis and mitigated FBR via miR-29 dependent SLIT3 upregulation in wild-type (WT) mice. miR-29a and miR-29b1 were significantly downregulated in the SP-Pra capsule compared to levels in the SP capsule, while SLIT3 and neovascularization were substantially upregulated in WT mice. However, the above effects presented in the WT mice were not detected in miR-29ab1 knockout mice which was generated by the CRISPR/Cas9 approach. Overall, the results suggest that miR-29 plays a critical role in reducing FBR to these implants by targeting SLIT3. Suppression of FBR by SP-Pra implants offers the potential to improve the performance of current medical devices.
Collapse
Affiliation(s)
- Yun Liao
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Liping Ouyang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Ci
- Shanghai Engineering Research Center for Model Organisms, Shanghai Model Organisms Center, INC., Shanghai 201203, China
| | - Baohui Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Lv
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Qin Li
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yingxiao Sun
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Shisan Bao
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Discipline of Pathology, Charles Perkin Centre, Bosch Institute and School of Medical Sciences, The University of Sydney, Australia.
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Ling Li
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| |
Collapse
|
29
|
Kabekkodu SP, Shukla V, Varghese VK, D' Souza J, Chakrabarty S, Satyamoorthy K. Clustered miRNAs and their role in biological functions and diseases. Biol Rev Camb Philos Soc 2018; 93:1955-1986. [PMID: 29797774 DOI: 10.1111/brv.12428] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are endogenous, small non-coding RNAs known to regulate expression of protein-coding genes. A large proportion of miRNAs are highly conserved, localized as clusters in the genome, transcribed together from physically adjacent miRNAs and show similar expression profiles. Since a single miRNA can target multiple genes and miRNA clusters contain multiple miRNAs, it is important to understand their regulation, effects and various biological functions. Like protein-coding genes, miRNA clusters are also regulated by genetic and epigenetic events. These clusters can potentially regulate every aspect of cellular function including growth, proliferation, differentiation, development, metabolism, infection, immunity, cell death, organellar biogenesis, messenger signalling, DNA repair and self-renewal, among others. Dysregulation of miRNA clusters leading to altered biological functions is key to the pathogenesis of many diseases including carcinogenesis. Here, we review recent advances in miRNA cluster research and discuss their regulation and biological functions in pathological conditions.
Collapse
Affiliation(s)
- Shama P Kabekkodu
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vinay K Varghese
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Jeevitha D' Souza
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| |
Collapse
|
30
|
The microRNA-29/PGC1α regulatory axis is critical for metabolic control of cardiac function. PLoS Biol 2018; 16:e2006247. [PMID: 30346946 PMCID: PMC6211751 DOI: 10.1371/journal.pbio.2006247] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 11/01/2018] [Accepted: 10/09/2018] [Indexed: 01/10/2023] Open
Abstract
Different microRNAs (miRNAs), including miR-29 family, may play a role in the development of heart failure (HF), but the underlying molecular mechanisms in HF pathogenesis remain unclear. We aimed at characterizing mice deficient in miR-29 in order to address the functional relevance of this family of miRNAs in the cardiovascular system and its contribution to heart disease. In this work, we show that mice deficient in miR-29a/b1 develop vascular remodeling and systemic hypertension, as well as HF with preserved ejection fraction (HFpEF) characterized by myocardial fibrosis, diastolic dysfunction, and pulmonary congestion, and die prematurely. We also found evidence that the absence of miR-29 triggers the up-regulation of its target, the master metabolic regulator PGC1α, which in turn generates profound alterations in mitochondrial biogenesis, leading to a pathological accumulation of small mitochondria in mutant animals that contribute to cardiac disease. Notably, we demonstrate that systemic hypertension and HFpEF caused by miR-29 deficiency can be rescued by PGC1α haploinsufficiency, which reduces cardiac mitochondrial accumulation and extends longevity of miR-29–mutant mice. In addition, PGC1α is overexpressed in hearts from patients with HF. Collectively, our findings demonstrate the in vivo role of miR-29 in cardiovascular homeostasis and unveil a novel miR-29/PGC1α regulatory circuitry of functional relevance for cell metabolism under normal and pathological conditions. To combat diseases, we first need to gain knowledge on how cells function at the molecular level to maintain normal physiology. One great scientific achievement of the last decade was the identification of thousands of small regulatory RNA molecules, called microRNAs. Strikingly, each microRNA has the potential to fine-tune the expression of hundreds of target genes depending on the spatiotemporal context. Therefore, defects in key microRNAs can contribute to the development of diseases. In the present work, we characterize the role for miR-29 in cardiac function in a mouse model. We found that mice deficient for miR-29 develop life-threatening cardiometabolic alterations that subsequently cause heart failure with diastolic dysfunction and systemic hypertension. We also demonstrate that these pathological phenotypes originate in part by the anomalous up-regulation of the transcriptional coactivator PGC1α, which can lead to mitochondrial hyperplasia in the heart. Genetic removal of one copy of PGC1α significantly attenuated the severity of the cardiovascular phenotype observed in miR-29–deficient mice. In addition, we show that PGC1α expression is misregulated in heart failure patients, suggesting that the implementation of miR-29 replacement therapy could potentially be used to treat these fatal pathologies.
Collapse
|
31
|
Sierksma A, Lu A, Salta E, Vanden Eynden E, Callaerts-Vegh Z, D'Hooge R, Blum D, Buée L, Fiers M, De Strooper B. Deregulation of neuronal miRNAs induced by amyloid-β or TAU pathology. Mol Neurodegener 2018; 13:54. [PMID: 30314521 PMCID: PMC6186090 DOI: 10.1186/s13024-018-0285-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/27/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Despite diverging levels of amyloid-β (Aβ) and TAU pathology, different mouse models, as well as sporadic AD patients show predictable patterns of episodic memory loss. MicroRNA (miRNA) deregulation is well established in AD brain but it is unclear whether Aβ or TAU pathology drives those alterations and whether miRNA changes contribute to cognitive decline. METHODS miRNAseq was performed on cognitively intact (4 months) and impaired (10 months) male APPtg (APPswe/PS1L166P) and TAUtg (THY-Tau22) mice and their wild-type littermates (APPwt and TAUwt). We analyzed the hippocampi of 12 mice per experimental group (n = 96 in total), and employed a 2-way linear model to extract differentially expressed miRNAs. Results were confirmed by qPCR in a separate cohort of 4 M and 10 M APPtg and APPwt mice (n = 7-9 per group) and in human sporadic AD and non-demented control brain. Fluorescent in situ hybridization identified their cellular expression. Functional annotation of predicted targets was performed using GO enrichment. Behavior of wild-type mice was assessed after intracerebroventricular infusion of miRNA mimics. RESULTS Six miRNAs (miR-10a-5p, miR-142a-5p, miR-146a-5p, miR-155-5p, miR-211-5p, miR-455-5p) are commonly upregulated between APPtg and TAUtg mice, and four of these (miR-142a-5p, miR-146a-5p, miR-155-5p and miR-455-5p) are altered in AD patients. All 6 miRNAs are strongly enriched in neurons. Upregulating these miRNAs in wild-type mice is however not causing AD-related cognitive disturbances. CONCLUSION Diverging AD-related neuropathologies induce common disturbances in the expression of neuronal miRNAs. 4 of these miRNAs are also upregulated in AD patients. Therefore these 4 miRNAs (miR-142a-5p, miR-146a-5p, miR-155-5p and miR-455-5p) appear part of a core pathological process in AD patients and APPtg and TAUtg mice. They are however not causing cognitive disturbances in wild-type mice. As some of these miRNA target AD relevant proteins, they may be, in contrast, part of a protective response in AD.
Collapse
Affiliation(s)
- Annerieke Sierksma
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, Leuven research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| | - Ashley Lu
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, Leuven research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| | - Evgenia Salta
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, Leuven research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| | - Elke Vanden Eynden
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, Leuven research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| | - Zsuzsanna Callaerts-Vegh
- Faculty of Psychology and Educational Sciences, Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium
| | - Rudi D'Hooge
- Faculty of Psychology and Educational Sciences, Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium
| | - David Blum
- Université Lille, INSERM, CHU Lille, UMR-S 1172, LabEx DISTALZ, Alzheimer & Tauopathies, Lille, France
| | - Luc Buée
- Université Lille, INSERM, CHU Lille, UMR-S 1172, LabEx DISTALZ, Alzheimer & Tauopathies, Lille, France
| | - Mark Fiers
- VIB Center for Brain & Disease Research, Leuven, Belgium.
- Department of Neurosciences, Leuven research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium.
| | - Bart De Strooper
- VIB Center for Brain & Disease Research, Leuven, Belgium.
- Department of Neurosciences, Leuven research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium.
- Dementia Research Institute UK, ION, University College London, London, UK.
| |
Collapse
|
32
|
Zhang G, Zhang W, Hou Y, Chen Y, Song J, Ding L. Detection of miR‑29a in plasma of patients with lumbar spinal stenosis and the clinical significance. Mol Med Rep 2018; 18:223-229. [PMID: 29749498 PMCID: PMC6059673 DOI: 10.3892/mmr.2018.8956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/01/2018] [Indexed: 11/18/2022] Open
Abstract
The present study aimed to detect miR-29a expression in the plasma of patients with lumbar spinal stenosis (LSS) and to investigate the clinical significance. A total of 30 patients with LSS, 27 patients with lumbar intervertebral disc herniation (LDH), 27 healthy people and 7 patients that had succumbed to mortality were involved in the present study for specimen collection. Expression levels of miR-29a in plasma and intervertebral disc tissue were detected by reverse transcription-quantitative polymerase chain reaction analysis. Plasma expression levels of matrix metalloproteinase 9 (MMP9) and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) were detected ELISA. The expression levels of MMP9 and ADAMTS5 protein were detected by western blotting. Pearson correlation analysis was used to analyze the correlations between the expression levels of microRNA (miR)-29a, MMP9 and ADAMTS5. Receiver operating characteristic curve analysis was used to analyze the possibility of the use of miR-29a as a biomarker of LSS. The expression levels of miR-29a in plasma and intervertebral disc tissue of patients with LSS were significantly lower in patients with LSS compared with in patients with LDH, as well as healthy controls. Conversely, the protein expression levels of MMP9 and ADAMTS5 were significantly higher in patients with LSS compared with patients with LDH, as well as healthy controls. The expression levels of miR-29a was negatively correlated with the expression levels of MMP9 and ADAMTS5. In addition, miR-29a demonstrated low temperature sensitivity and high freeze-thaw stability, and may be used to accurately diagnose LSS. Therefore, miR-29a may be considered to be a potential biomarker of LSS.
Collapse
Affiliation(s)
- Genai Zhang
- Department of Spinal Surgery, Beijing Shi Ji Tan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Wenping Zhang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yu Hou
- Department of Spinal Surgery, Beijing Shi Ji Tan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Yingchun Chen
- Department of Spinal Surgery, Beijing Shi Ji Tan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Jipeng Song
- Department of Spinal Surgery, Beijing Shi Ji Tan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Lixiang Ding
- Department of Spinal Surgery, Beijing Shi Ji Tan Hospital, Capital Medical University, Beijing 100038, P.R. China
| |
Collapse
|
33
|
Abstract
MicroRNAs (miRNAs) are ∼22 nt RNAs that direct posttranscriptional repression of mRNA targets in diverse eukaryotic lineages. In humans and other mammals, these small RNAs help sculpt the expression of most mRNAs. This article reviews advances in our understanding of the defining features of metazoan miRNAs and their biogenesis, genomics, and evolution. It then reviews how metazoan miRNAs are regulated, how they recognize and cause repression of their targets, and the biological functions of this repression, with a compilation of knockout phenotypes that shows that important biological functions have been identified for most of the broadly conserved miRNAs of mammals.
Collapse
Affiliation(s)
- David P Bartel
- Howard Hughes Medical Institute and Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
34
|
MicroRNA degradation by a conserved target RNA regulates animal behavior. Nat Struct Mol Biol 2018; 25:244-251. [PMID: 29483647 DOI: 10.1038/s41594-018-0032-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/19/2018] [Indexed: 02/07/2023]
Abstract
microRNAs (miRNAs) repress target transcripts through partial complementarity. By contrast, highly complementary miRNA-binding sites within viral and artificially engineered transcripts induce miRNA degradation in vitro and in cell lines. Here, we show that a genome-encoded transcript harboring a near-perfect and deeply conserved miRNA-binding site for miR-29 controls zebrafish and mouse behavior. This transcript originated in basal vertebrates as a long noncoding RNA (lncRNA) and evolved to the protein-coding gene NREP in mammals, where the miR-29-binding site is located within the 3' UTR. We show that the near-perfect miRNA site selectively triggers miR-29b destabilization through 3' trimming and restricts its spatial expression in the cerebellum. Genetic disruption of the miR-29 site within mouse Nrep results in ectopic expression of cerebellar miR-29b and impaired coordination and motor learning. Thus, we demonstrate an endogenous target-RNA-directed miRNA degradation event and its requirement for animal behavior.
Collapse
|
35
|
Pieczora L, Stracke L, Vorgerd M, Hahn S, Theiss C, Theis V. Unveiling of miRNA Expression Patterns in Purkinje Cells During Development. THE CEREBELLUM 2017; 16:376-387. [PMID: 27387430 DOI: 10.1007/s12311-016-0814-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs of 19-25 nucleotides in length that regulate gene expression at the post-transcriptional level. Dysregulation of miRNAs is associated with many disorders and neurodegenerative diseases affecting numerous different pathways and processes, of which many have not yet been completely explored. Recent studies even indicate a crucial role of miRNAs during brain development, with differential expression patterns of several miRNAs seen in both developing and mature cells. A miRNA profiling in brain tissue and the fundamental understanding of their effects might optimize the therapeutical treatment of various neurological disorders. In this study, we performed miRNA array analysis of enriched cerebellar Purkinje cell (PC) samples from both young and mature rat cerebella. We used laser microdissection (LMD) to enrich PC for a highly specific miRNA profiling. Altogether, we present the expression profile of at least 27 miRNAs expressed in rat cerebellar PC and disclose a different expression pattern of at least three of these miRNAs during development. These miRNAs are potential candidates for the regulation and control of cerebellar PC development, including neuritic and dendritic outgrowth as well as spine formation.
Collapse
Affiliation(s)
- Lukas Pieczora
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Lara Stracke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Neuromuscular Center Ruhrgebiet, University Hospital Bergmannsheil, Ruhr-University Bochum, Buerkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Stephan Hahn
- Department of Molecular Gastrointestinal Oncology, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
| | - Verena Theis
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| |
Collapse
|
36
|
van der Stijl R, Withoff S, Verbeek DS. Spinocerebellar ataxia: miRNAs expose biological pathways underlying pervasive Purkinje cell degeneration. Neurobiol Dis 2017; 108:148-158. [PMID: 28823930 DOI: 10.1016/j.nbd.2017.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/21/2017] [Accepted: 08/16/2017] [Indexed: 01/09/2023] Open
Abstract
Recent work has demonstrated the importance of miRNAs in the pathogenesis of various brain disorders including the neurodegenerative disorder spinocerebellar ataxia (SCA). This review focuses on the role of miRNAs in the shared pathogenesis of the different SCA types. We examine the novel findings of a recent cell-type-specific RNA-sequencing study in mouse brain and discuss how the identification of Purkinje-cell-enriched miRNAs highlights biological pathways that expose the mechanisms behind pervasive Purkinje cell degeneration in SCA. These key pathways are likely to contain targets for therapeutic development and represent potential candidate genes for genetically unsolved SCAs.
Collapse
Affiliation(s)
- Rogier van der Stijl
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Sebo Withoff
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Dineke S Verbeek
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
| |
Collapse
|
37
|
Pflieger LT, Dansithong W, Paul S, Scoles DR, Figueroa KP, Meera P, Otis TS, Facelli JC, Pulst SM. Gene co-expression network analysis for identifying modules and functionally enriched pathways in SCA2. Hum Mol Genet 2017; 26:3069-3080. [PMID: 28525545 PMCID: PMC5886232 DOI: 10.1093/hmg/ddx191] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/22/2017] [Accepted: 05/11/2017] [Indexed: 12/22/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disease caused by CAG repeat expansion in the ATXN2 gene. The repeat resides in an encoded region of the gene resulting in polyglutamine (polyQ) expansion which has been assumed to result in gain of function, predominantly, for the ATXN2 protein. We evaluated temporal cerebellar expression profiles by RNA sequencing of ATXN2Q127 mice versus wild-type (WT) littermates. ATXN2Q127 mice are characterized by a progressive motor phenotype onset, and have progressive cerebellar molecular and neurophysiological (Purkinje cell firing frequency) phenotypes. Our analysis revealed previously uncharacterized early and progressive abnormal patterning of cerebellar gene expression. Weighted Gene Coexpression Network Analysis revealed four gene modules that were significantly correlated with disease status, composed primarily of genes associated with GTPase signaling, calcium signaling and cell death. Of these genes, few overlapped with differentially expressed cerebellar genes that we identified in Atxn2-/- knockout mice versus WT littermates, suggesting that loss-of-function is not a significant component of disease pathology. We conclude that SCA2 is a disease characterized by gain of function for ATXN2.
Collapse
Affiliation(s)
| | - Warunee Dansithong
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sharan Paul
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| | - Daniel R. Scoles
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| | - Karla P. Figueroa
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| | - Pratap Meera
- Department of Neurobiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Thomas S. Otis
- Department of Neurobiology, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Stefan M. Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
38
|
Roshan R, Choudhary A, Bhambri A, Bakshi B, Ghosh T, Pillai B. microRNA dysregulation in polyglutamine toxicity of TATA-box binding protein is mediated through STAT1 in mouse neuronal cells. J Neuroinflammation 2017; 14:155. [PMID: 28774347 PMCID: PMC5543588 DOI: 10.1186/s12974-017-0925-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 07/21/2017] [Indexed: 01/10/2023] Open
Abstract
Background Polyglutamine diseases constitute a class of neurodegenerative disorders associated with expansion of the cytosine-adenine-guanine (CAG) triplet, in protein coding genes. Expansion of a polyglutamine tract in the N-terminal of TBP is the causal mutation in SCA17. Brain sections of patients with spinocerebellar ataxia 17 (SCA17), a type of neurodegenerative disease, have been reported to contain protein aggregates of TATA-binding protein (TBP). It is also implicated in other neurodegenerative diseases like Huntington’s disease, since the protein aggregates formed in such diseases also contain TBP. Dysregulation of miR-29a/b is another common feature of neurodegenerative diseases including Alzheimer’s disease, Huntington’s disease, and SCA17. Using a cellular model of SCA17, we identified key connections in the molecular pathway from protein aggregation to miRNA dysregulation. Methods Gene expression profiling was performed subsequent to the expression of TBP containing polyglutamine in a cellular model of SCA17. We studied the expression of STAT1 and other interferon-gamma dependent genes in neuronal apoptosis. The molecular pathway leading to the dysregulation of miRNA in response of protein aggregation and interferon release was investigated using RNAi-mediated knockdown of STAT1. Results We show that the accumulation of polyglutamine-TBP in the cells results in interferon-gamma release which in turn signals through STAT1 leading to downregulation of miR-29a/b. We propose that the release of interferons by cells harboring toxic protein aggregates may trigger a bystander effect resulting in loss of neurons. Interferon-gamma also led to upregulation of miR-322 although this effect is not mediated through STAT1. Conclusions Our investigation shows that neuroinflammation could be an important player in mediating the transcriptional dysregulation of miRNA and the subsequent apoptotic effect of toxic polyglutamine-TBP. The involvement of immunomodulators in polyglutamine diseases holds special therapeutic relevance in the light of recent findings that interferon-gamma can modulate behavior.
Collapse
Affiliation(s)
- Reema Roshan
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Ashwani Choudhary
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India.,Indian Institute of Science, Centre for Neuroscience, Bangalore, 560012, Karnataka, India
| | - Aksheev Bhambri
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Mathura Road, Delhi, 110025, India.,Present address: Indian Council of Medical Research, New Delhi, India
| | - Bhawani Bakshi
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Tanay Ghosh
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India.,Wellcome-Medical Research Council Cambridge Stem Cell Institute, Department of Clinical Neurosciences,, University of Cambridge, Cambridge, UK
| | - Beena Pillai
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India. .,Academy of Scientific and Innovative Research (AcSIR), Mathura Road, Delhi, 110025, India.
| |
Collapse
|
39
|
Bai X, Tang Y, Yu M, Wu L, Liu F, Ni J, Wang Z, Wang J, Fei J, Wang W, Huang F, Wang J. Downregulation of blood serum microRNA 29 family in patients with Parkinson's disease. Sci Rep 2017; 7:5411. [PMID: 28710399 PMCID: PMC5511199 DOI: 10.1038/s41598-017-03887-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 05/05/2017] [Indexed: 11/09/2022] Open
Abstract
There is currently no reliable and easily applicable diagnostic marker for Parkinson’s disease (PD). The aims of the present study were to compare the expression profiles of the microRNA29 family (miR-29s) in blood serum from patients with PD with healthy controls and to clarify whether the expression of miR-29s is correlated with disease severity, duration or L-dopa therapy and whether expression depends on the gender and age of patients. The levels of blood serum miR-29s in 80 patients with PD and 80 unaffected controls were assessed by reverse transcription-quantitative real-time PCR. The PCR products were confirmed by cloning and sequencing. Additionally, the expression of miR-7 in the blood serum from PD patients and control subjects was assessed. Serum miR-29 levels were significantly downregulated in PD patients compared to healthy controls. The serum miR-29 levels in female PD patients were markedly higher than in male PD patients. The expression of serum miR-29a and miR-29c expression tended to decrease with disease severity. Moreover, we found that serum miR-7 levels did not differ between PD patients and control subjects. Therefore, the reduction of serum miR-29 levels, particularly miR-29a and miR-29c, warrants further investigation of its potential serving as biomarkers for PD.
Collapse
Affiliation(s)
- Xiaochen Bai
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Yilin Tang
- Department of Neurology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Mei Yu
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Lei Wu
- Department of Neurology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Fengtao Liu
- Department of Neurology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Jianliang Ni
- Tongde Hospital of Zhejiang Province, 234 Gucui Road, Hangzhou, 310012, Zhejiang Province, China
| | - Zishan Wang
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Jinghui Wang
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Jian Fei
- School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.,Shanghai Research Center for Model Organisms, Pudong, Shanghai, 201203, China
| | - Wei Wang
- Tongde Hospital of Zhejiang Province, 234 Gucui Road, Hangzhou, 310012, Zhejiang Province, China.
| | - Fang Huang
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China.
| | - Jian Wang
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China. .,Department of Neurology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China.
| |
Collapse
|
40
|
Ripa R, Dolfi L, Terrigno M, Pandolfini L, Savino A, Arcucci V, Groth M, Terzibasi Tozzini E, Baumgart M, Cellerino A. MicroRNA miR-29 controls a compensatory response to limit neuronal iron accumulation during adult life and aging. BMC Biol 2017; 15:9. [PMID: 28193224 PMCID: PMC5304403 DOI: 10.1186/s12915-017-0354-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/25/2017] [Indexed: 02/07/2023] Open
Abstract
Background A widespread modulation of gene expression occurs in the aging brain, but little is known as to the upstream drivers of these changes. MicroRNAs emerged as fine regulators of gene expression in many biological contexts and they are modulated by age. MicroRNAs may therefore be part of the upstream drivers of the global gene expression modulation correlated with aging and aging-related phenotypes. Results Here, we show that microRNA-29 (miR-29) is induced during aging in short-lived turquoise killifish brain and genetic antagonism of its function induces a gene-expression signature typical of aging. Mechanicistically, we identified Ireb2 (a master gene for intracellular iron delivery that encodes for IRP2 protein), as a novel miR-29 target. MiR-29 is induced by iron loading and, in turn, it reduces IRP2 expression in vivo, therefore limiting intracellular iron delivery in neurons. Genetically modified fish with neuro-specific miR-29 deficiency exhibit increased levels of IRP2 and transferrin receptor, increased iron content, and oxidative stress. Conclusions Our results demonstrate that age-dependent miR-29 upregulation is an adaptive mechanism that counteracts the expression of some aging-related phenotypes and its anti-aging activity is primarily exerted by regulating intracellular iron homeostasis limiting excessive iron-exposure in neurons. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0354-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roberto Ripa
- Scuola Normale Superiore, Laboratory of Biology (Bio@SNS), c/o Istituto di Biofisica del CNR, via 17 Moruzzi 1, 56124, Pisa, Italy
| | - Luca Dolfi
- Scuola Normale Superiore, Laboratory of Biology (Bio@SNS), c/o Istituto di Biofisica del CNR, via 17 Moruzzi 1, 56124, Pisa, Italy
| | - Marco Terrigno
- Scuola Normale Superiore, Laboratory of Biology (Bio@SNS), c/o Istituto di Biofisica del CNR, via 17 Moruzzi 1, 56124, Pisa, Italy
| | - Luca Pandolfini
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge, CB2 1QN, UK
| | | | - Valeria Arcucci
- Scuola Normale Superiore, Laboratory of Biology (Bio@SNS), c/o Istituto di Biofisica del CNR, via 17 Moruzzi 1, 56124, Pisa, Italy
| | - Marco Groth
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745, Jena, Germany
| | - Eva Terzibasi Tozzini
- Scuola Normale Superiore, Laboratory of Biology (Bio@SNS), c/o Istituto di Biofisica del CNR, via 17 Moruzzi 1, 56124, Pisa, Italy
| | - Mario Baumgart
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745, Jena, Germany
| | - Alessandro Cellerino
- Scuola Normale Superiore, Laboratory of Biology (Bio@SNS), c/o Istituto di Biofisica del CNR, via 17 Moruzzi 1, 56124, Pisa, Italy. .,Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745, Jena, Germany.
| |
Collapse
|
41
|
Neault M, Couteau F, Bonneau É, De Guire V, Mallette FA. Molecular Regulation of Cellular Senescence by MicroRNAs: Implications in Cancer and Age-Related Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 334:27-98. [DOI: 10.1016/bs.ircmb.2017.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
42
|
Annis RP, Swahari V, Nakamura A, Xie AX, Hammond SM, Deshmukh M. Mature neurons dynamically restrict apoptosis via redundant premitochondrial brakes. FEBS J 2016; 283:4569-4582. [PMID: 27797453 DOI: 10.1111/febs.13944] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/20/2016] [Accepted: 10/26/2016] [Indexed: 12/30/2022]
Abstract
Apoptotic cell death is critical for the early development of the nervous system, but once the nervous system is established, the apoptotic pathway becomes highly restricted in mature neurons. However, the mechanisms underlying this increased resistance to apoptosis in these mature neurons are not completely understood. We have previously found that members of the miR-29 family of microRNAs (miRNAs) are induced with neuronal maturation and that overexpression of miR-29 was sufficient to restrict apoptosis in neurons. To determine whether endogenous miR-29 alone was responsible for the inhibition of cytochrome c release in mature neurons, we examined the status of the apoptotic pathway in sympathetic neurons deficient for all three miR-29 family members. Unexpectedly, we found that the apoptotic pathway remained largely restricted in miR-29-deficient mature neurons. We therefore probed for additional mechanisms by which mature neurons resist apoptosis. We identify miR-24 as another miRNA that is upregulated in the maturing cerebellum and sympathetic neurons that can act redundantly with miR-29 by targeting a similar repertoire of prodeath BH3-only genes. Overall, our results reveal that mature neurons engage multiple redundant brakes to restrict the apoptotic pathway and ensure their long-term survival.
Collapse
Affiliation(s)
- Ryan P Annis
- Neuroscience Center, UNC Chapel Hill, NC, USA.,Curriculum in Neurobiology, UNC Chapel Hill, NC, USA
| | | | - Ayumi Nakamura
- Neuroscience Center, UNC Chapel Hill, NC, USA.,Curriculum in Neurobiology, UNC Chapel Hill, NC, USA
| | - Alison X Xie
- Department of Pharmacology, UNC Chapel Hill, NC, USA
| | - Scott M Hammond
- Department of Cell Biology and Physiology, UNC Chapel Hill, NC, USA
| | - Mohanish Deshmukh
- Neuroscience Center, UNC Chapel Hill, NC, USA.,Curriculum in Neurobiology, UNC Chapel Hill, NC, USA.,Department of Cell Biology and Physiology, UNC Chapel Hill, NC, USA
| |
Collapse
|
43
|
Salta E, Sierksma A, Vanden Eynden E, De Strooper B. miR-132 loss de-represses ITPKB and aggravates amyloid and TAU pathology in Alzheimer's brain. EMBO Mol Med 2016; 8:1005-18. [PMID: 27485122 PMCID: PMC5009807 DOI: 10.15252/emmm.201606520] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
microRNA‐132 (miR‐132) is involved in prosurvival, anti‐inflammatory and memory‐promoting functions in the nervous system and has been found consistently downregulated in Alzheimer's disease (AD). Whether and how miR‐132 deficiency impacts AD pathology remains, however, unaddressed. We show here that miR‐132 loss exacerbates both amyloid and TAU pathology via inositol 1,4,5‐trisphosphate 3‐kinase B (ITPKB) upregulation in an AD mouse model. This leads to increased ERK1/2 and BACE1 activity and elevated TAU phosphorylation. We confirm downregulation of miR‐132 and upregulation of ITPKB in three distinct human AD patient cohorts, indicating the pathological relevance of this pathway in AD.
Collapse
Affiliation(s)
- Evgenia Salta
- VIB Center for the Biology of Disease, Leuven, Belgium Center for Human Genetics, Universitaire ziekenhuizen and LIND, KU, Leuven, Belgium
| | - Annerieke Sierksma
- VIB Center for the Biology of Disease, Leuven, Belgium Center for Human Genetics, Universitaire ziekenhuizen and LIND, KU, Leuven, Belgium
| | - Elke Vanden Eynden
- VIB Center for the Biology of Disease, Leuven, Belgium Center for Human Genetics, Universitaire ziekenhuizen and LIND, KU, Leuven, Belgium
| | - Bart De Strooper
- VIB Center for the Biology of Disease, Leuven, Belgium Center for Human Genetics, Universitaire ziekenhuizen and LIND, KU, Leuven, Belgium Institute of Neurology, University College London, London, UK
| |
Collapse
|
44
|
Fiorenza A, Barco A. Role of Dicer and the miRNA system in neuronal plasticity and brain function. Neurobiol Learn Mem 2016; 135:3-12. [PMID: 27163737 DOI: 10.1016/j.nlm.2016.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 01/26/2023]
Abstract
MicroRNAs (miRNAs) are small regulatory non-coding RNAs that contribute to fine-tuning regulation of gene expression by mRNA destabilization and/or translational repression. Their abundance in the nervous system, their temporally and spatially regulated expression and their ability to respond in an activity-dependent manner make miRNAs ideal candidates for the regulation of complex processes in the brain, including neuronal plasticity, memory formation and neural development. The conditional ablation of the RNase III Dicer, which is essential for the maturation of most miRNAs, is a useful model to investigate the effect of the loss of the miRNA system, as a whole, in different tissues and cellular types. In this review, we first provide an overview of Dicer function and structure, and discuss outstanding questions concerning the role of miRNAs in the regulation of gene expression and neuronal function, to later focus on the insight derived from studies in which the genetic ablation of Dicer was used to determine the role of the miRNA system in the nervous system. In particular, we highlight the collective role of miRNAs fine-tuning plasticity-related gene expression and providing robustness to neuronal gene expression networks.
Collapse
Affiliation(s)
- Anna Fiorenza
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Angel Barco
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain.
| |
Collapse
|
45
|
Substantial and robust changes in microRNA transcriptome support postnatal development of the hypothalamus in rat. Sci Rep 2016; 6:24896. [PMID: 27118433 PMCID: PMC4847009 DOI: 10.1038/srep24896] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 04/07/2016] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) modulate gene expression in male germ cells and somatic tissues of mammals on a genome-wide scale. Hundreds of miRNAs are encoded by mammalian genomes, a large fraction of which is expressed in brain. Here we have investigated the complexity and dynamics of miRNA transcriptomes that associate with neuronal network maturation of hypothalamic arcuate nucleus and median eminence (ARC/ME) in rat by analysing more than 300 miRNAs from 3-7 biological replicates at 5 postnatal time-points. The network connecting ARC/ME to other hypothalamic and extra-hypothalamic regions maturates in an environment-dependent manner. We therefore analyzed miRNA transcriptomes of progeny of dams fed either a balanced or unbalanced diet during gestation and lactation. More than 30% of the miRNAs displayed significative changes of expression between stages P8 and P14, and P21 and P28; half of the changes were greater than 3-fold. Among those miRNAs were well-known and dozens of still poorly documented miRNAs. Progeny of dams fed an unbanced diet displayed a severe growth retardation phenotype, lower levels of plasma leptin but almost identical miRNA transcriptomes. Together these data demonstrate that two substantial and robust changes in miRNA transcriptome of ARC/ME occur at a period crucial for neuronal network functional organization.
Collapse
|
46
|
Abstract
MicroRNAs (miRNAs) are endogenous, small non-coding RNA molecules that mediate post-transcriptional gene suppression by incomplete matches with their host mRNAs. In the central nervous system, miRNAs that functionally interact with their target genes constitute a flexible, robust and buffered regulatory network, exerting diverse roles in brain evolution and development. However, distinct variation either in hub miRNA expression levels or patterns may initiate and/or progress various adult-onset nerve-related diseases. In this review, we will summarize the current knowledge about the general hallmarks of brain miRNAs that act as vital determinants in increasingly complicated neural activities. We endeavor to provide a constructive insight into the neuroscience research in the quest to comprehend molecular underpinnings of physiological functions and pathological disorders in central nervous system.
Collapse
Affiliation(s)
- Wei Chen
- a Institute of Laboratory Animal Science; Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center; Peking Union Medical Collage (PUMC) ; Beijing , PR China
| | | |
Collapse
|
47
|
Nolan K, Walter F, Tuffy LP, Poeschel S, Gallagher R, Haunsberger S, Bray I, Stallings RL, Concannon CG, Prehn JHM. Endoplasmic reticulum stress-mediated upregulation of miR-29a enhances sensitivity to neuronal apoptosis. Eur J Neurosci 2016; 43:640-52. [DOI: 10.1111/ejn.13160] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/24/2015] [Accepted: 01/04/2016] [Indexed: 01/24/2023]
Affiliation(s)
- Katie Nolan
- Centre for the Study of Neurological Disorders and Department of Physiology and Medical Physics; Royal College of Surgeons in Ireland; 123 St. Stephens Green Dublin 2 Ireland
| | - Franziska Walter
- Centre for the Study of Neurological Disorders and Department of Physiology and Medical Physics; Royal College of Surgeons in Ireland; 123 St. Stephens Green Dublin 2 Ireland
| | - Liam P. Tuffy
- Centre for the Study of Neurological Disorders and Department of Physiology and Medical Physics; Royal College of Surgeons in Ireland; 123 St. Stephens Green Dublin 2 Ireland
| | - Simone Poeschel
- Centre for the Study of Neurological Disorders and Department of Physiology and Medical Physics; Royal College of Surgeons in Ireland; 123 St. Stephens Green Dublin 2 Ireland
| | - Ross Gallagher
- Centre for the Study of Neurological Disorders and Department of Physiology and Medical Physics; Royal College of Surgeons in Ireland; 123 St. Stephens Green Dublin 2 Ireland
| | - Stefan Haunsberger
- Centre for the Study of Neurological Disorders and Department of Physiology and Medical Physics; Royal College of Surgeons in Ireland; 123 St. Stephens Green Dublin 2 Ireland
| | - Isabella Bray
- Cancer Genetics; Molecular and Cellular Therapeutics; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Raymond L. Stallings
- Cancer Genetics; Molecular and Cellular Therapeutics; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Caoimhín G. Concannon
- Centre for the Study of Neurological Disorders and Department of Physiology and Medical Physics; Royal College of Surgeons in Ireland; 123 St. Stephens Green Dublin 2 Ireland
| | - Jochen H. M. Prehn
- Centre for the Study of Neurological Disorders and Department of Physiology and Medical Physics; Royal College of Surgeons in Ireland; 123 St. Stephens Green Dublin 2 Ireland
| |
Collapse
|
48
|
Zakhvataev VE. Possible scenarios of the influence of low-dose ionizing radiation on neural functioning. Med Hypotheses 2015; 85:723-35. [PMID: 26526727 DOI: 10.1016/j.mehy.2015.10.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/05/2015] [Accepted: 10/20/2015] [Indexed: 12/30/2022]
Abstract
Possible scenarios of the influence of ionizing radiation on neural functioning and the CNS are suggested. We argue that the radiation-induced bystander mechanisms associated with Ca(2+) flows, reactive nitrogen and oxygen species, and cytokines might lead to modulation of certain neuronal signaling pathways. The considered scenarios of conjugation of the bystander signaling and the neuronal signaling might result in modulation of certain synaptic receptors, neurogenesis, neurotransmission, channel conductance, synaptic signaling, different forms of neural plasticity, memory formation and storage, and learning. On this basis, corresponding new possible strategies for treating neurodegenerative deceases and mental disorders are proposed. The mechanisms considered might also be associated with neuronal survival and relevant to the treatment for brain injuries. At the same time, these mechanisms might be associated with detrimental effects and might facilitate the development of some neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Vladimir E Zakhvataev
- Neuroinformatics Department, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; Laboratory of Biological Action of Low-Intensity Factors, Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk, Russia.
| |
Collapse
|
49
|
Urbanek MO, Nawrocka AU, Krzyzosiak WJ. Small RNA Detection by in Situ Hybridization Methods. Int J Mol Sci 2015; 16:13259-86. [PMID: 26068454 PMCID: PMC4490494 DOI: 10.3390/ijms160613259] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/03/2015] [Indexed: 12/13/2022] Open
Abstract
Small noncoding RNAs perform multiple regulatory functions in cells, and their exogenous mimics are widely used in research and experimental therapies to interfere with target gene expression. MicroRNAs (miRNAs) are the most thoroughly investigated representatives of the small RNA family, which includes short interfering RNAs (siRNAs), PIWI-associated RNA (piRNAs), and others. Numerous methods have been adopted for the detection and characterization of small RNAs, which is challenging due to their short length and low level of expression. These include molecular biology methods such as real-time RT-PCR, northern blotting, hybridization to microarrays, cloning and sequencing, as well as single cell miRNA detection by microscopy with in situ hybridization (ISH). In this review, we focus on the ISH method, including its fluorescent version (FISH), and we present recent methodological advances that facilitated its successful adaptation for small RNA detection. We discuss relevant technical aspects as well as the advantages and limitations of ISH. We also refer to numerous applications of small RNA ISH in basic research and molecular diagnostics.
Collapse
Affiliation(s)
- Martyna O Urbanek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland.
| | - Anna U Nawrocka
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland.
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland.
| |
Collapse
|